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Abstract— Iris biometric systems offer non-contact
authentication, particularly advantageous in controlled
environments such as security checkpoints. However, challenges
arise in less controlled scenarios such as standoff biometrics where
captured images mostly are non-ideal including off-angle. This
paper addresses the need for iris recognition models adaptable to
various gaze angles by proposing a blink detection algorithm as an
additional feature. The study explores different blink detection
methods including involving logistic regression, random forest,
and deep learning models. For the first methodology, logistic
regression and a random forest model were used to classify eye
images into four different blink classes. The second methodology
involved labeling eye openness percentage. The ground-truth eye
blink was calculated using facial landmarks detected by the
MediaPipe model. For the deep learning approach, we used a pre-
trained Convolutional Neural Network (CNN) model by replacing
the output layer with a regression layer. Results show improved
precision and recall when incorporating height and width features
for the regression model. The AlexNet model achieves superior
performance, reaching 90% accuracy with a 10% error threshold.
This research contributes valuable insights for developing robust
iris recognition models adaptable to diverse gaze angles.
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I. INTRODUCTION

Iris biometrics has been one of the most common systems
for subject identification, offering distinct advantages over
traditional biometrics by enabling contactless authentication for
restricted access. Notably, the implementation of iris biometric
systems at airport security checkpoints and passport control
exemplifies their utility in providing convenient and secure
authentication for passengers. However, the recognition
performance highly depends on the image quality and their
performance is susceptible to degradation in the presence of
non-ideal images. Traditional iris recognition methods require
subjects to maintain fully open eyes throughout the entire
process of data acquisition to ensure accurate iris image
collection [1]. In contrast, recent advancements in standoff
biometric systems have been tailored to recognize subjects from
a distance, obviating the need for subjects to gaze directly at the
camera. This paradigm shift introduces additional challenges
for iris recognition, encompassing factors such as gaze angle,
pupil dilation, and occurrences of eye blinking.

Blinking poses a particular challenge for standoff systems,
as the natural reflex action may occur during the acquisition

Figure 1: The sample iris images from the dataset (a) frontal and (b-c) off-
angle images.

process, complicating gaze estimation. There has been research
in iris recognition systems that were designed for frontal iris
images including occlusion, blur, and lighting shift [2,3,4].
Recent studies focus on addressing challenges such as elliptical
unwrapping [5] and perspective projection [6] for standoff iris
images. Improving iris recognition algorithm accuracy involves
addressing issues like light refraction on the cornea, eliminating
limbus occlusions at sclera boundary, and adjusting various
parameters.

Traditional iris recognition systems are designed for frontal
iris images, limiting their effectiveness for different gaze
angles. The existing iris databases contain only iris codes from
frontal iris images. Addressing this limitation requires the
development of models capable of recognizing iris patterns
from various angles. Introducing a blink detection algorithm
provides the first step toward the potential solutions, with its
output serving as an additional feature for iris subject
recognition models, leading to improved classification
accuracy. The blink detection algorithm can also be applied for
related use cases.

The exploration of blink detection algorithms constitutes an
emerging area of research. In recent studies, Convolutional
Neural Networks (CNN) was trained on iris images annotated
with categorical eye openness labels [7]. Although these
experiments demonstrated the model's capability to classify
blink detection, its reliance on categorical labels presents a
limitation. This paper advances the field of blink detection
algorithms by extending prior work, specifically by training a
CNN on datasets enriched with regression labels indicating
varying degrees of eye openness. This augmentation of the data
labeling scheme contributes to a more nuanced and continuous
representation of eye openness levels, enhancing the
sophistication and potential accuracy of the blink detection.



The subsequent sections of this paper are structured as
follows: Section II provides an overview of related works in the
scope of blink detection. The description of our proposed
models is covered in Section III. Section IV expounds upon the
experimental setup and presents the experimental results from
the implemented models. Finally, Section V summarizes the
conclusion drawn from the research findings.

II. RELATED WORKS

The scope of this research has been created as a derivative
of multiple deep learning frameworks that were developed for
iris recognition. We trained AlexNet and ResNet50 CNN
models using off-angle iris dataset via transfer learning. It
contained 10,000 images from 100 subjects that were taken at
several gaze angles between -50° and +50° with 10°
increments, as shown in Fig. 1. Once the models were trained,
they were evaluated using the classification accuracies of each
gaze angle. For the evaluated gaze angles that were adjacent to
the trained gaze angle, the model had a high classification
accuracy, while more distant evaluated gaze angles had a lower
classification accuracy. Based on these results, it was
determined that a deep neural network was effective in
detecting the differences in the subject’s iris region at off-angle
images, while a shallow network could effectively identify
subjects at a specific angle [8].

Another experiment involved the creation of a neural
network designed to classify subjects experiencing fatigue
within a vehicular context. In [9], three network models were
trained using the frontal images of the driver from an onboard
camera. The first model classified whether the subject’s eyes
were open, while the second model was a MediaPipe model that
extracted eye landmarks. Based on the extracted feature
landmarks, a height-to-width ratio was created to measure eye
openness. The third model classified how much the subject
yawned. Please note that the researchers included yawning as a
feature since it was one of the symptoms associated with
fatigue.

Furthermore, Saealal et al. devised a neural network capable
of distinguishing between authentic and Generative Adversarial
Network (GAN)-synthesized videos [10]. They determined that
using the subject’s blink rate as a feature improved their
model’s accuracy because most GAN-generated videos did not
contain the eye blinking. The researchers noted that the blinking
time of an actual subject was between 100 and 400 ms at 10-
second intervals. For the synthetic videos containing blinking,
the subject’s blinking time did not match this characteristic.
Given this information, their model’s architecture was created
with cascading CNNs with LSTMs and included a temporal
network that tracked eye input and generated blinking
probabilities [10].

Eye-LRCN has been proposed to detect the eye openness of
the subject [11]. The potential impact of this research was to
have this model implemented to reduce the occurrence of
computer vision syndrome, a medical condition where
prolonged exposure to computer displays causes eye
discomfort. The architecture included a long-term recurrent
convolutional network with a Siamese architecture. Because the

training dataset for this model contained imbalanced classes
and was a small size, the Siamese architecture normalized this
dataset. After evaluating the dataset, their model had an
accuracy of at least 90% and performed better than the model
that detected eyelid movements via flow image methods
[12][13].

Other notable related works include an eye-blinking model
for a computer interface’s input [14], and a face tracking model
with integrated blink detection[15] where it generates inter-eye-
blink rate and integrated the Haar Cascade Classifier and
Camshift algorithms. In [16], the blink detection algorithm
utilized a CNN and Support Vector Machine (SVM) where the
input was smartphone camera images. At last, CNNs
frameworks that classified whether a given subject’s eye was
open. While both models had high classification performance,
they could not classify images where the eye openness was in a
partial position.

Please note that while most models cited above had good
accuracy in detecting blinks, the output of these models
contained either a fully open or closed eye state. In addition, the
training dataset of these models was captured at the frontal gaze
angle. To determine how the classification accuracy is affected
for non-frontal angles, the scope of this research will focus on
training a new blink detection model for various gaze angles.
Since the eye-to-width ratio was used as an extracted feature for
the blink detection model [9], this methodology will be
incorporated into this research.

III. METHODOLOGY

For this study, we utilized an off-angle iris dataset [8] to
develop our algorithms and train our models. Since the dataset
does not contain ground-truth values for eye openness, we used
the MediaPipe pipeline to generate eye openness by feeding the
subject images into the model. This model includes a pre-
trained eye landmark detection model that localizes the
coordinates of facial features, as shown in Fig. 2. These eye
features included seven points in the subject’s upper eyelids
(marked as purple UE), seven points in the lower eyelids
(marked as red LE), four radially outer points on the iris, a point
in the pupils (marked as blue P), a point on the left eyelid corner
(marked as orange CL), and one point on the right eyelid corner
(marked as green CR).

The height and width of the subject’s eyelids were
calculated using the Euclidean distance. Please note that the
distance is defined as:

ED(RLP) = (P~ P) + By —Pp)? (D)

where ED (P;, P,) is the distance between points P; and P».

LE; is the coordinates for the lower eyelid point 3, and UE;
is the coordinates for the upper eyelid point 3. Using these
definitions, eye height is the distance between LE3 and UEs. To
calculate the eye width, we use the distance between the left
eyelid corner, Cr, and the right eyelid corner, Cr. Then, the
height-to-width ratio is calculated for all images as their ratios.



UE3

LE1  LE2 \ N

Figure 2: The detected eye landmarks with the MediaPipe model.

The eye openness percentage is calculated as:

HtW;

eyeOpenness = ( ) * 100 )

thax
where HtWnayx is the height-to-width ratio of a fully open eye.

After finding the labels of images in the dataset, we develop
two methods for blink detection. The first method consists of
training the random forest and logistic regression models on the
dataset. We split the dataset into 70%-30% for training and
validation datasets. One pair of logistic regression and random
forest models was trained using the eyelid and iris points, iris
width, and eyelid width and height as features. On the other
hand, another set of logistic regression and random forest
models was only trained using the eyelid and iris points.

For the second method, a pre-trained AlexNet model was
used on the iris dataset using transfer learning, with the eye
openness being used as the label and the image used as the
feature. AlexNet architecture was trained previously for image
classification. It contains five convolutional layers with
different kernel sizes. For instance, the first convolutional layer
contained a size of 11x11x3, which was followed by a ReLU
activation layer. The fourth and fifth convolutional layers
consisted of two grouped convolution filters with dimensions
3x3x192. To make the AlexNet model output continuous values
of eye openness, the fully connected layer was replaced with a
single output and passed into the regression layer.

IV. EXPERIMENTAL SETUP AND RESULTS

Using the MediaPipe model, we utilized the TensorFlow
library to load the model to Python. The model detected the
coordinates of the eye landmarks in each iris image and
exported the data to a CSV file. This file was used by another
script to generate the height-to-width ratio as an additional

TABLE I: ALEXNET MODEL TRAINING PARAMETERS

Parameter Value
Learning Rate Schedule Piecewise
Learning Rate Drop Factor 0.1
Learning Rate Drop Period 5

Initial Learning Rate 1E-5
Mini Batch Size 64

feature for the dataset. For the first approach, random forest and
logistic regression models were implemented by the Sklearn
Python library [19]. To ensure these models would not be
overfitted, the features of the dataset were normalized using the
Sklearn StandardScaler library [20]. In addition, the dataset was
randomized, and the data was split 70%-30% between the
training and validation datasets.

The performance of the models from the first method was
evaluated by calculating the precision and recall for each output
class. Precision is calculated by (TP)/(TP+FP) and recall as
(TP)/(TP+FN). Note that TP is the number of correct positive
classifications, FP is the number of incorrect positive
classifications, and FN is the number of incorrect negative
classifications. Please note that the logistic regression and
random forest models only used eye landmark features for
classifying eye openness.

For the second approach, MATLAB was used to train the
AlexNet model with stochastic gradient descent where it
contains the pre-trained weights for the AlexNet model. This
streamlined the transfer learning process. Table 1 describes the
training parameters of the AlexNet model. The dataset for the
AlexNet model was the images of the iris dataset [8]. As part of
the data preparation process for the model, the images were
rescaled into the dimensions of 227x227x3. The AlexNet model
was trained with regression to estimate the eye blink.

The AlexNet model has been evaluated by two metrics. The
first metric consisted of calculating the error thresholds
between the model’s predicted and actual eye openness
percentage. For each error threshold, the accuracy was
calculated, where each prediction within the error threshold was
indicated as a true prediction. On the other hand, the second
metric consisted of the average prediction errors for each class
in the dataset, along with the standard deviation. Finally, a
visual analysis was created where the predicted labels of the
dataset were plotted against the actual labels.

Regarding the results from the first methodology, Fig. 3(a)
displays the precision and recall for the logistic regression
models and Fig. 3(b) shows results for the random forest
models. We observed that recall and precision values of both
methods changed from around 70% to 80%. Both models had
the lowest precision and recall scores when classifying images
with a 32% eye openness label. When the height and width
features were included in the inputs as a feature, the precision
and recall values for the logistic regression model increased
significantly as shown in Fig 4(a) compared with Fig. 3(a). We
also observed slightly improved results in the random forest
method by including the height and width features. Please note
that the logistic regression performed better than the random
forest model in terms of both precision and recall values.
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Figure 3: (a) Precision and recall scores of the logistic regression (b) and
random forest models without the height and width features.

Fig. 5 shows both the prediction accuracy per error
threshold and the scatterplot between the actual and predicted
labels for the second set of experiments. Fig. 5(a) compares the
actual and predicted values on a scatterplot where most of the
values are very close to each other, and they located around the
diagonal axis. The results were mostly correlated with minor
outliers. To quantify the error between actual and predicted
values, we calculated the prediction accuracy per error
threshold as shown in Fig. 5(b). The prediction accuracy
reached 80% when the error threshold was approximately 5%,
and 90% when the error threshold was at 10%.

Fig. 6 shows the mean and standard deviation values of the
predicted labels per actual labels. Please note that there were
some outliers in the predicted labels on mean and standard
deviation plots compared to the actual labels. However,
standard deviation values are mostly around 2-5, and the mean
plot follows the diagonal axis. This shows the results are
consistent with different eye blink levels.

The first approach suggests that generating new features
regarding the dimensions of the subject’s eyes allow both the
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Figure 4: (a) Precision and recall scores of the logistic regression and (b)
random forest models with the height and width features.

random forest and logistic regression models to predict eye
openness more accurately. Since these features are expressed as
aratio, the models are not sensitive to outliers regarding the size
ofthe subject’s eyes. Please note that to calculate these features,
the subject’s facial landmarks must be extracted by the
MediaPipe model first. Therefore, it is feasible to classify eye
openness on limited hardware under this proposed
methodology.

On the other hand, the second approach suggests that
AlexNet can effectively calculate the subject’s eye openness
without relying on using the facial landmarks points as features.
The reason behind these results may be due to the architecture
of AlexNet. Having multiple hidden layers along with
convolutional filters results the model in extracting more
relevant features than the logistic and linear regression models
under the first methodology. Therefore, the classification under
the AlexNet model is more accurate than the random forest
model from the first methodology.
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Figure 5: Prediction accuracy per error threshold (a) and the scatterplot of
Actual Labels vs. Predicted Labels (b).

V. CONCLUSION

In this research, we conducted a comparative analysis of two
distinct methodologies for eye blink detection algorithms.
Firstly, logistic regression and random forest models were
trained on extracted facial landmark features. Secondly, a
CNN-regression-based blink detection model was trained
directly on input images. The initial phase of the experiment
involved training multiple CNN-based models with varied
parameter values. Subsequently, a new dataset was generated
using eye landmark features extracted through a face detection
model, and these features were employed to train random forest
and logistic regression models. The random forest model,
trained on the facial landmark dataset, exhibited a precision
score of at least 75% for each eye openness value but
demonstrated a lower score for images where the subject had
blinked. Conversely, the AlexNet blink detection model
outperformed the logistic regression and random forest models
in terms of classification performance. This superiority is
attributed to AlexNet's more effective feature extraction
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Figure 6: (a) Prediction accuracy per error threshold and (b) the scatterplot of
Actual Eye Openness vs. the Standard Deviation of Predicted Labels.

capabilities compared to logistic regression and random forest
models. It is noteworthy that the random forest and logistic
regression models can be optimized for deployment on iris
recognition hardware with limited computing resources. In
contrast, AlexNet, owing to its enhanced performance, is more
suited for utilization on high-performance computers. These
models hold significance not only for blink detection but also
for broader applications, including the more accurate
identification of subjects based on the iris texture.
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