
INVAR: Inversion Aware Resource Provisioning
and Workload Scheduling for Edge Computing

Bin Wang⇤, David Irwin†, Prashant Shenoy⇤, and Don Towsley⇤
University of Massachusetts Amherst, USA

Email: ⇤{binwang, shenoy, towsley}@cs.umass.edu, †irwin@ecs.umass.edu

Abstract—Edge computing is emerging as a complementary
architecture to cloud computing to address some of its associated
issues. One of the major advantages of edge computing is that
edge data centers are usually much closer to users compared
to traditional cloud data centers. Therefore, it is commonly
believed that for developers of latency-sensitive applications, they
can effectively reduce the overall end-to-end latency by simply
transitioning from a cloud deployment to an edge deployment.
However, as recent work has shown, the performance of an edge
deployment is vulnerable to a couple of factors which under
many practical scenarios can lead to edge servers providing
worse end-to-end response time than cloud servers. This phe-
nomenon is referred to as edge performance inversion. In this
paper, we propose resource allocation and workload scheduling
algorithms that actively prevent edge performance inversion.
Our algorithms, named INVAR, are based on queueing theory
results and optimization techniques. Evaluation results show that
INVAR can find a near-optimal solution that outperforms the
performance of a cloud deployment by an adjustable margin.
Simulation results based on production workloads from Akamai
data centers show that INVAR can outperform common heuristic-
based edge deployment by 11% to 24% in real-world scenarios.

Index Terms—edge computing, cloud computing, model-driven
resource management.

I. INTRODUCTION

While cloud computing has been popular for hosting a
variety of online applications and services, a new class of
applications has emerged in recent years that are characterized
by tight latency requirements. Examples of such applications
include mobile augmented and virtual reality (AR/VR), au-
tonomous vehicle navigation and control, online gaming, and
Internet of Things (IoT). The stringent latency requirements
of such workloads can not be satisfied by traditional cloud
servers, which are distant and incur higher latency. Edge
computing has emerged as a promising solution for such
applications, and involves deploying computing and storage
resources at the edge of the network and close to users and
end devices. Major cloud providers and even cellular telecom
providers have begun to offer edge computing services to
address the needs of such application workloads.

Since edge resources are closer to users and their devices,
the network latency to edge servers tends to be small and much
lower than the latency to cloud servers. Consequentially, con-
ventional wisdom holds that deploying applications on edge

This work was supported in part by the National Science Foundation under
awards 2211888, 2211302, and 2105494, and in part by the Army Research
Lab under Cooperative Agreement W911NF-17-2-0196.

servers (e.g., AWS Local Zones [1]), which are much closer to
users than traditional cloud data centers, can effectively reduce
the end-to-end latencies observed by users [2].

However, recent research has shown that there are practical
scenarios where edge servers become a bottleneck, causing
edge performance to become worse than cloud performance.
Specifically, the end-to-end latency of an application is the sum
of the network latency and the server processing latency. Since
edge clusters are often resource-constrained, edge processing
can incur high queueing delays, especially when bottlenecks
arise, causing high end-to-end latency for edge servers. The
work of [3] showed theoretical bounds when edge end-to-
end latency can be higher than the cloud end-to-end latency,
and also experimentally demonstrated such abnormal behavior
using real cloud applications and workloads. This counter-
intuitive phenomenon, which is referred to as edge perfor-
mance inversion, is problematic for applications when it occurs
since the higher edge latencies are worse than cloud latencies.
While the work of [3] provided theoretical bounds when such
performance inversion occurs and also validated the bounds
experimentally, it did not propose any solutions to avoid such
problems in practice.

An edge platform can employ one of two methods to avoid
performance bottlenecks and high queueing delays for hosted
applications. One approach is to dynamically provision more
resources when queueing delays exceed a threshold, such that
the additional capacity reduces the probability of an edge
inversion. However, additional capacity may not always be
available at a resource-constrained edge location. In this case,
requests can be redirected to another nearby edge location to
be serviced. While provisioning additional resources increases
server costs, redirecting requests to other locations increases
end-to-end latencies. Hence, both approaches need to be used
judiciously to maintain good edge performance in a cost-
efficient manner.

In this paper, we present INVAR: INVersion-Aware Re-
source provisioning and workload scheduling that is designed
to avoid the edge performance inversion problem and maintain
good edge performance. In designing, implementing, and eval-
uating INVAR, our paper makes the following contributions:

1) We define the inversion-aware resource provisioning and
workload scheduling problem, and introduce a queueing
theory framework to model the performance of different
deployment plans.

2) We develop two optimization algorithms based on
queueing theory results to determine the optimal perfor-
mance that can be achieved using a given budget, and
a search procedure that combines the two optimization
algorithms to find the deployment plan that satisfies a
given performance target with the lowest cost.

3) We implemented both numerical analysis and discrete
event simulation to evaluate the proposed algorithms.
Evaluation results on both synthetic scenarios and real-
world workloads show that deployment plans generated
by INVAR constantly outperforms cloud deployment
and other edge deployments in all cases. Simulation
results based on production Akamai workloads show that
INVAR can outperform common heuristic-based edge
deployment by 11% to 24% in real-world scenarios.

The rest of this paper is structured as follows: In section
II we introduce the background of our research as well as
formulate the problem statement. In section III we explain
the details of the two optimization algorithms and the INVAR
deployment search procedure. In section IV we show the
evaluation results of INVAR using both numerical analysis
and simulation. Section V introduces related work in the field.
Finally, section VI concludes our work and discusses possible
future work directions.

II. BACKGROUND

In this section, we discuss the background on edge comput-
ing and the edge performance inversion problem, as well as
our problem statement.

A. Edge Computing
In recent years, edge computing has emerged as a comple-

mentary architecture to cloud computing. It’s believed to be
especially suited for latency-sensitive and bandwidth-sensitive
applications due to their close proximity to users and end
devices. Our work assumes an edge cloud model of edge
computing where edge resources are offered to applications us-
ing a cloud-like on-demand paradigm. Similar to conventional
cloud platforms, we assume that the edge cloud is distributed
across a large number of geographic locations, with each
server location consisting of a small server cluster that can run
applications in containers or virtual machines. This approach
is similar to the cloudlets model [4] that has been advocated
previously. Cloud providers have begun to offer edge cloud
services by augmenting their hyper-scale cloud data centers
with smaller edge data centers. In doing so, traditional cloud
platforms now offer a choice of traditional cloud servers, as
well as edge servers, to application developers. A developer
can choose to run their application on cloud servers, edge
servers, or a combination of both, depending on their needs.

Each edge cluster within the edge cloud is assumed to be
deployed close to the users in order to offer a low network
latency to applications. Modern edge platforms are able to
provide sub ten-millisecond network latencies. For instance,
Amazon Web Services (AWS) has deployed edge data centers
in metropolitan areas called Local Zones [1] that can provide

Fig. 1: Edge clouds offer lower network latency than tradi-
tional cloud platforms.

single-digit millisecond latency. In contrast, cloud platforms
offer latencies of tens of milliseconds to their users. A recent
measurement study of production edge and cloud platforms
showed that only 3-23% of users had latencies to cloud
platforms less than 10ms (depending on the cloud platform),
and only 22-52% had latencies less than 20ms [5]. This large-
scale study confirmed that edge network latencies are an order
of magnitude lower than their corresponding cloud latencies.
These lower network latencies and high bandwidth are two
significant advantages of edge computing for latency-sensitive
applications [6].

B. The Edge Performance Inversion Problem
As described in [3], the term edge performance inversion

is used to describe the phenomenon where users experience
worse end-to-end latencies with edge servers than cloud
servers despite the significant network latency advantage of
the edge. Below we motivate the edge performance inversion
problem by discussing two possible causes of edge perfor-
mance inversion.
Cause 1: The Bank teller analogy. The primary cause of
edge performance inversion can be understood using the well-
known Bank Teller problem [7], [8], a classical problem
from queueing theory. The bank teller problem tells us that
customers entering a bank always see lower waiting times
when using a single queue for all tellers versus a separate
queue per teller. This is because the time needed to service
each customer varies from customer to customer, and in the
case of separate queues, some queues see longer waiting
times when some customers from those queues make long
transactions. A centralized queue avoids such problems since
there is a single queue and all queued customers see the same
impact.

To understand how this analogy applies to edge comput-
ing, consider a cloud gaming application as a representation
example of an edge application. Suppose the game service is
deployed at multiple edge locations in order to serve geograph-
ically distributed users with low latency. In this case, each
edge location maintains a separate queue for incoming requests
from game users (as shown in Figure 2a). An alternative
approach is to deploy the entire application in a single cloud

(a) End-to-end edge latency

(b) End-to-end cloud latency

Fig. 2: End-to-end latency comparison with edge servers and
cloud servers.

data center. In this case, the application uses the same number
of aggregate servers as the distributed edge deployment but
uses a single queue to service all requests arriving at the
cloud deployment (as shown in Figure 2b). The Bank Teller
problem tells us that maintaining separate queues in the edge
deployment causes requests to experience higher queueing
delays than a single queue in the case of the cloud deployment.
Since the edge has much lower network latency than the cloud,
at low utilization levels, these higher queueing delays are offset
by the lower network latency, still yielding better overall end-
to-end latency than the cloud. However, as utilization rises,
there is a corresponding rise in queueing delays (or ”wait
times”). Since edge queueing delays rise faster than the cloud
ones due to the bank teller analogy, there is a cross-over point
where edge performance becomes worse than the cloud. This
cross-over point is depicted in Figure 3 and occurs when the
higher edge queueing delays offset the benefits of lower edge
network latency. Importantly, such performance inversion can
occur even at server utilization levels of as low as 40% in
real-world settings.

Fig. 3: Edge latency becomes worse than cloud latency above
a threshold utilization.

Cause 2: Elastic Scaling Under Resource Constraints. The
above bank teller example assumes a simple Poisson workload
and a static number of servers for the application. While edge
performance inversion can occur in such simple settings, in
practice, edge and cloud applications exhibit dynamic work-
loads with temporal and spatial variations. Such fluctuations
will further exacerbate the performance inversion problem

at edge locations, making it even more likely to occur in
practice. However, sophisticated applications are designed to
counter the impact of dynamic workload variations through
elastic scaling [9]. Elastic scaling enables an application to
dynamically vary the number of servers to match the observed
workload fluctuations, and thereby prevent overloads. How-
ever, edge data centers are often constrained in terms of the
cluster size which limits its ability to elastically scale. In con-
trast, due to their massive sizes, cloud data centers rarely have
resource pressure and can elastically scale applications when-
ever workloads rise. This is the second cause of performance
inversion, where resource-constrained edge sites are limited in
their ability to elastically scale overloaded applications, which
causes the edge to yield worse performance than the cloud.

C. Problem Statement
We consider a system with L user locations where requests

can originate from. Let 1/�i denote the mean inter-arrival time
of requests from user location i. There are K data centers
where requests can be serviced and they can be a mix of cloud
data centers and edge data centers. A deployment plan needs to
determine how many servers should be allocated in each data
center, denoted by a server allocation vector c = {c1, . . . , cK}
where cj is the number of servers to be provisioned at data
center j. cj is also bounded by a maximum number of servers
that can be allocated in data center j, denoted by Cj .

When a request arrives at data center j, it will be served
by one of the idle servers, or placed in a central queue if all
cj servers are busy. Requests in the queue will have access
to the next available server in a first-come-first-serve (FCFS)
manner. Let TS

j = 1/µj denote the mean service time for
requests in data center j. We assume that the servers in the
same data center are homogeneous but can be heterogeneous
across data centers. Each allocated server in the data center
has an associated “cost”, denoted by wj , and the values can
also be different across data centers. Depending on the context,
it can be real monetary cost or other considerations (e.g., it
can be the carbon intensity associated with each server for a
developer who wants to minimize the carbon emission of her
application). Given a server allocation vector c, the total cost
would be W (c) =

PK
j=1 cjwj .

Since both the user locations and data centers are geo-
logically distributed, there are latencies associated with re-
quests propagating through the network between user locations
and data centers. Let TN

i,j denote the round-trip time (RTT)
between user location i and data center j. As we have
explained in the previous section, it’s not always optimal to
send requests from one user location only to its nearest data
center: the local data center might be overloaded, or sharing
servers (with requests from other user locations) at a further
away data center could lead to shorter queueing delay which
outweighs the larger network latency. Therefore, we use a
probabilistic scheduling approach instead: when a request from
user location i arrives, one of the K data centers will be
probabilistically selected, and the incoming request will be
sent to the selected data center for processing. Let pi,j denote

TABLE I: Table of Notations

L Number of user locations
K Number of data centers
�i Arrival rate at user location i

pi,j Probability that an incoming request at user location
i is sent to data center j for processing

�j Effective arrival rate at data center j;
�j =

PL
i=1 �ipi,j

Cj The maximum number of servers that can be allo-
cated at data center j

cj The actual number of servers to be allocated at data
center j

µj The mean service rate at data center j
wj The cost of 1 server at data center j
TN
i,j Network latency between user location i and data

center j (RTT)
TD
j The average time spent in the data center for requests

arriving at data center j
T cloud The mean end-to-end response time observed by all

requests under the cloud deployment

the probability that an incoming request from user location i is
scheduled to data center j. The scheduling probability matrix
P = [pi,j]L⇥K also needs to be determined by a deployment
plan.

For a developer who is transitioning their application from
a cloud deployment to an edge deployment, our goal is to
devise an edge deployment plan that actively avoids edge
performance inversion — the generated edge deployment plan
should outperform its cloud counterpart by an adjustable
margin — while using the least cost. More specifically, we
assume that under a given set of parameters, the developer
has an existing procedure to generate a cloud deployment
plan. The mean response time attained under the cloud de-
ployment plan is denoted by T cloud. Note that T cloud is the
only information we need about the cloud deployment plan:
knowledge about the specifics of the cloud deployment plan
(such as c or P) or the procedure used for generating the cloud
deployment plan is not necessary. The developer will then
decide a target mean response time for the edge deployment
plan T target = T cloud � � where � is adjustable. Our goal
is to generate an edge deployment plan that can achieve a
mean response time that’s lower than T target with the least
cost. Furthermore, since our notion of T target is very general,
the techniques described in the work are also of interest
to application developers without existing cloud deployment
plans.

III. OPTIMIZATIONS ON RESOURCE PROVISIONING AND
WORKLOAD SCHEDULING

In this section, we first propose a system queueing model to
analyze the mean end-to-end response time under a given de-
ployment plan, then we formulate the inversion-aware resource
provisioning and workload scheduling algorithms based on the
proposed queueing model.

A. System Queueing Model
In this section, we show how each data center could be

modeled as an M/M/c queueing system and how to calcu-

late the mean end-to-end response time using a closed-form
formula. Recall that we are using a probabilistic scheduling
approach, with requests from user location i being scheduled
to data center j with probability pi,j . Thus the effective arrival
rate at data center j can be calculated as

�j =
LX

i=1

�ipi,j (1)

We assume the request arrival processes at user locations are
independent Poisson processes. Probability theory results show
that 1) splitting a Poisson process with a time-independent
probability generates multiple independent Poisson processes,
and 2) combining independent Poisson processes results in
a new Poisson process [10]. Therefore, the request arrival
process at each data center is also a Poisson process with a
mean arrival rate equal �j for data center j. Assuming request
service times follow the exponential distribution, and within a
data center, the requests are served in a first-come-first-serve
(FCFS) order with identical service rate regardless of which
user location the request originates from or which server gets
the request, then each data center could be effectively modeled
as an M/M/c queueing system.

The performance of an M/M/c queueing system has been
extensively studied. For all requests scheduled to data center
j, the average time spent in the data center can be calculated
using the following formula:

TD
j =

C(cj ,�j/µj)

cjµj � �j
+

1

µj
(2)

where C(c,�/µ) is the Erlang C function which calculates the
probability that all servers are busy. The formulation of the
Erlang C function is:

C(c,�/µ) =

⇣
(c⇢)c

c!

⌘⇣
1

1�⇢

⌘

Pc�1
k=0

(c⇢)k

k! +
⇣

(c⇢)c

c!

⌘⇣
1

1�⇢

⌘ (3)

Equipped with equation (2), we can now use the following
formula to calculate the mean end-to-end response time ob-
served by requests from all user locations, given a deployment
plan (c, P):

T (c, P) =
LX

i=1

�i
k�k1

KX

j=1

pi,j(T
N
i,j + TD

j) (4)

B. Performance Optimization Given a Cost Budget

As discussed in section II-C, our goal is to generate a
deployment plan that can achieve T target with the minimum
cost. Our first step in tackling this problem is to develop
an algorithm for finding a deployment plan with the optimal
performance (mean end-to-end response time) under a given
budget W . This can be effectively modeled as the optimization
problem below:

min
c,P

T (c, P) (5)

s.t. 0  pi,j  1 8i 2 1 . . . L, 8j 2 1 . . .K (6)
0  cj  Cj 8j 2 1 . . .K (7)
KX

j=1

pi,j = 1 8i 2 1 . . . L (8)

�j < cjµj 8j 2 1 . . .K (9)
KX

j=1

cjwj W (10)

Constraint (9) guarantees that no data center is overloaded
(meaning that requests arrive at a faster rate than they can
be serviced, which leads to unbounded queueing delay), and
constraint (10) guarantees that the cost of the deployment plan
is below the budget W .

However, this optimization problem cannot be solved in its
original form because T (c, p) requires computing the Erlang
C function which is defined on discrete values of c. This
makes the optimization problem a mixed-integer programming
problem which is NP-hard. In addition, the computation over-
head of the Erlang C function is very high, which renders the
problem intractable in many cases even with an advanced MIP
solver.

To address this problem, we use a continuous upper bound
of the Erlang C function proposed in [11] as an approximation.
The formula of the upper bound is as follows:

C(c,�/µ) 

�

cµ
+ ⌘

✓
�(↵)

�(↵)
+

2

3

1p
c

◆�
(11)

where ↵ =
p
�2c(1� ⇢+ ln ⇢), � = (c � �/µ)/

p
�/µ,

⌘ = (c � �/µ)/
p
c. �(↵) is the cumulative distribution

function (CDF) of the standard normal distribution variable,
and �(↵) is the probability density function (PDF) of the
standard normal distribution variable which has the formula
�(↵) = (1/

p
2⇡)e�(1/2)↵2

. Not only is the approximate
upper bound much more efficient to compute than the original
formula of the Erlang C function, it also makes c become a
continuous decision variable. In addition, we can also relax
constraint (10) using the Lagrangian relaxation technique [12]
to make the problem easier to solve. The final formulation of
the optimization is listed below:

min
c,P

T 0(c, P) + ⌧

0

@
KX

j=1

cjwj �W

1

A
2

(12)

s.t. 0  pi,j  1 8i 2 1 . . . L, 8j 2 1 . . .K (13)
0  cj  Cj 8j 2 1 . . .K (14)
KX

j=1

pi,j = 1 8i 2 1 . . . L (15)

�j < cjµj 8j 2 1 . . .K (16)

where T 0(c, P) is the overall mean response time formula (4)
calculated with the approximate upper bound of Erlang C in-
stead of the exact value. In the remainder of this paper, we will
refer to this optimization as the performance optimization
problem.

C. Flow Optimization Given a Server Allocation Vector
Since the solution obtained from the performance opti-

mization problem yields a fractional solution for the server
allocation vector c, it needs to be rounded to an integer vector
for the final solution. However, after rounding the scheduling
probability matrix P is no longer optimal. So we use a similar
optimization problem to readjust P to produce the optimal
mean response time, as shown below.

min
P

T (c, P) (17)

s.t. 0  pi,j  1 8i 2 1 . . . L, 8j 2 1 . . .K (18)
KX

j=1

pi,j = 1 8i 2 1 . . . L (19)

�j < cjµj 8j 2 1 . . .K (20)

In the remainder of this paper, we will refer to this optimiza-
tion as the flow optimization problem, as it only optimizes
the scheduling probabilities which affects how requests “flow”
between user locations and data centers. While the structure
of the flow optimization seems similar to the performance
optimization problem, there are two key differences:

1) In performance optimization the server allocation vector
c is a decision variable, while in flow optimization it
is an input parameter. As a result the flow optimization
problem no longer needs to consider the budget con-
straint.

2) In performance optimization we need to use T 0(c, P)
which is based on the approximate upper bound of
Erlang C in the objective function, while in flow op-
timization it’s viable to use T (c, P) which is based on
the exact Erlang C calculation since we only need to
calculate the derivatives of P . Although it has higher
computation complexity, the objective function now has
a convex structure which means it can be solved in
polynomial time.

D. Inversion-aware Deployment Plan Searching
In this section, we present an inversion-aware deployment

search algorithm that combines the two optimization algo-
rithms described in the previous sections, such that application
developers can apply this algorithm to find a deployment
plan that achieves a given performance target with the low-
est cost. The pseudocode of this algorithm is described in
Algorithm 1. Our search algorithm has two phases: first, we
use the PERF OPT function which solves the performance
optimization problem to do a binary search on the budget to
determine the least cost needed to satisfy the given mean end-
to-end response time target. This works because when other

parameters stay fixed, T 0(c, P) is monotonic with respect to
W . In the second phase, we use a specific round function to
convert the fractional solution returned by PERF OPT into an
integer solution before piping it into FLOW OPT which solves
the flow optimization problem. Combining the rounded integer
server allocation vector with the scheduling probability matrix
returned by FLOW OPT would produce the final solution.

Algorithm 1 Inversion Aware Deployment Plan Search Algo-
rithm
Input: L, �, K, C, µ, w, TN , T cloud, �, W , ✏
Output: c, P

1: T target T cloud � �
2: W l 0
3: Wu W
4: while Wu �W l > ✏ do
5: Wm W l+Wu

2
6: status, c, P PERF OPT(L, �,K,C, µ, w,Wm)
7: if status = solved and T 0(c, P)  T target then
8: Wu Wm

9: else
10: W l Wm

11: end if
12: end while
13: status, c, P PERF OPT(L, �,K,C, µ, w,Wu)
14: if T 0(c, P)  TTarget then
15: c round(c)
16: P FLOW OPT(L, �, µ, c)
17: return c, P
18: else
19: return “NO SOLUTION FOUND”
20: end if

IV. EVALUATION RESULTS

A. Evaluation Setup

We use both numerical analysis and simulation to evalu-
ate our algorithms. For numerical analysis, we implemented
INVAR using Julia [13], a free and open-source program-
ming language widely used for scientific computing. The
optimization algorithms are implemented with JuMP [14], a
modeling language for mathematical optimization embedded
in Julia. The performance optimization problem described in
section III-B is solved using the Artelys Knitro solver [15]
with the Interior-Point/Direct algorithm [16] and the multi-
start feature enabled: this is important because the objective
function (12) is non-convex and the multi-start procedure
helps overcome local optimality by exploring different starting
points. The flow optimization problem on the other hand is
a convex problem so we choose Ipopt [17], an open-source
solver that also implements the Interior-Point algorithm. For
simulation, we implemented a discrete event simulator (DES)
using Python and SimPy [18]. Both the numerical analysis
program and the simulator are open source and available at
https://github.com/umassos/invar.

We conducted evaluations using two different scenarios: a
synthetic scenario and a real-world scenario extracted from
traces collected by the Akamai content delivery network. In
the synthetic scenario, we have 1 cloud data center and 8 user
locations which are equally spaced on a circle centered at the
cloud data center. The Akamai traces, on the other hand, were
collected in August 2013 from production Akamai data centers
around the world. We extracted traces in two regions from the
Akamai dataset: the United States northeast region and the
Europe region, as shown in Figure 4.

(a) US Northeast (b) Europe

Fig. 4: Traces extracted from the Akamai CDN dataset. The
pink circles are user locations and their size is proportional
to the average request arrival rate. The blue triangles are the
cloud data centers (us-east-1 and eu-central-1).

B. Deployment Plans under Fixed Cost Budgets
In this section, we use a synthetic scenario to examine

the deployment plans generated by performance optimization
described in III-B to get a sense of how different budgets affect
the generated deployment plan.

The synthetic scenario that we use for evaluation is set as
follows. There are L = 8 user locations spaced equally on a
ring that is 30ms away from a cloud data center in the center.
Each user location has the same incoming arrival rate of � =
15. In the cloud deployment, every user location will send their
requests to the cloud data center. Now let’s assume that the
cloud provider has deployed edge data centers for 4 of the user
locations (which are also equally spaced), and the edge data
centers are only 1ms away from its edge location. Note that
for the other 4 user locations that do not have their own edge
data center, it is still closer to one of its neighboring edge data
centers compared to the cloud data center. We assume that all
the data centers have the same service rate µj = 10 and per
server cost wj = 1. We capped the maximum capacity at 50
at the cloud data center and at 10 for the edge data centers.

Our evaluation method is as follows. We vary the server
budget from 16 to 24. Then we solve the performance opti-
mization problem with each server budget value, then round
the generated allocation vector and finally solve the flow
optimization problem with the rounded allocation vector to

https://github.com/umassos/invar

get the final deployment plan and its corresponding mean end-
to-end response time. For comparison, we also calculated the
performance of the cloud deployment and a local-first edge
deployment (which means each user location will always try
to send its requests to the closest data center) under the same
server budgets.

Fig. 5: Numerical analysis results of mean total delay observed
with cloud deployment, local-first edge deployment, and IN-
VAR under different server budgets.

Figure 5 shows the mean total delay (which is the sum
of network latency and queueing delay) observed with each
deployment technique under different budgets. We can see
that with the increase of servers allocated, the delay of the
cloud deployment converges the physical limit which is the
network latency of 30ms. For the local-first edge deployment,
it experiences the performance inversion problem (meaning
that its performance is worse than a cloud deployment using
the same amount of servers) when using less than 19 servers
because of the long queueing delay at each data center.
However, when the budget is over 19 servers, the queueing
delay in the local-first deployments will become low enough
for the total delay to show an advantage over the cloud
deployment.

INVAR, on the other hand, outperforms the other two
deployment techniques in all cases. It basically provides the
same performance as the cloud deployment when the system
utilization is high, and converges with the local first deploy-
ments when the system utilization becomes lower. When the
system utilization (when the budget is between 18 to 20
servers) INVAR was able to balance between network latency
and queueing delay by opportunistically consolidating requests
from different user locations.

We can take a closer look at the topology of the deployment
plans generated by INVAR in Figure 6. When the budget
is 16 INVAR regresses to the cloud deployment because it’s
impossible to avoid performance inversion in that case, so the
cloud deployment is the best we can do. When the budget is
17, INVAR was able to find a deployment plan using only
2 edge data centers out of the 4 available data centers. This
is because if we deploy a few servers at a third data center,
that would mean there are fewer servers at the other two data
centers since the budget is fixed. In that case, although the
third data center would improve the delay of the corresponding

user location, the other user locations will all experience worse
delays which would make the mean total delay worse. When
the budget increases to 18 servers, INVAR still only uses two
data centers but is able to better balance the load between the
two data centers. When the budget is 19 INVAR determines
there are enough resources to deploy in a third data center.
Finally, INVAR switches to similar deployments as the local-
first approach when the budget is 20 or more.

We also run all the generated deployments in our simulator.
Our simulation results closely match the numerical analysis
results, as shown in Figure 7.

C. Akamai Workload Evaluation
In this section, we evaluate the effectiveness of the

inversion-aware deployment search algorithm described in
section III-D. For this evaluation, we are using traces collected
by the Akamai content delivery network in August 2013. The
original traces contain the amount of data served by Akamai
data centers around the world. We extracted two regions: the
US northeast region (13 cities) and the Europe region (20
cities), as shown in Figure 4. We assumed the cloud data center
is located in the AWS us-east-1 (N. Virginia) region for the
US northeast scenario and the AWS eu-central-1 (Frankfurt)
region for the Europe scenario. We also assumed that the edge
data centers are deployed in available or announced AWS
Local Zone locations. There are some key differences between
these two regions:

1) The requests distribution is very skewed in the US
northeast scenario: the top-4 cities generate more than
80% of the total requests, while in the Europe scenario,
the request distribution is more balanced.

2) The cloud latency in general is smaller in the US
northeast scenario than the Europe scenario: the largest
cloud latency in the US northeast scenario is less than
20ms, while in the Europe scenario, it’s over 40ms.

3) There are more data centers in the Europe scenario than
in the US northeast scenario. There are over 10 AWS
data centers (regions plus Local Zones) in the Europe
scenario but only 4 AWS data centers in the US northeast
scenario.

For both scenarios, first, we run a cloud deployment with
60% utilization to get a baseline performance. Next, we run a
local-first heuristic edge deployment that deploys servers at the
nearest data center to match the cloud utilization. Finally, we
run INVAR to generate deployment plans. We picked different
� values for the two scenarios: since the cloud is generally
further away and there are more data centers available in the
Europe region, this means it’s possible to achieve a higher
latency cut in the Europe scenario. Therefore, we picked � =
0.005 (5ms) for the US northeast scenario and � = 0.010 for
the Europe scenario.

The response times observed under different deployments
are shown in Figure 8. We can see that for the local-first
edge deployments, the observed response time is very volatile
and performance inversion happened in both cases. Also,
notice that the local-first approach yields worse performance

(a) budget=16 (b) budget=17 (c) budget=18 (d) budget=19 (e) budget=20

Fig. 6: Topology of deployment plans generated by INVAR under different budgets. The green circles represent user locations,
and the red squares represent data centers (1 cloud data center in the middle and 4 edge data centers near 4 of the user
locations). The number on each data center represents the number of servers to be allocated at that data center. The arrows
represent how the requests are scheduled from user locations to data centers, and the number on each arrow is the corresponding
scheduling probability if it’s not 1.

Fig. 7: Numerical analysis and simulation results of mean end-
to-end response time observed with INVAR under different
server budget.

in the Europe scenario than the US northeast scenario. This
is because the European region has more user locations, more
evenly distributed requests, and more data centers, which is
equivalent to more queues in the Bank Teller analogy which
accounts for higher queueing delay.

On the other hand, INVAR was able to avoid edge perfor-
mance inversion in all cases, while constantly achieving the
response time target with respect to �. On average INVAR
outperforms the local-first edge deployments by 23.9% in the
Europe scenario and by 10.7% in the US northeast scenario.
This does come at a cost of using more servers than the cloud
deployment and the local-first deployment, as shown in Figure
9, but we argue that the extra cost is necessary in order to fulfill
the promise of lower latency of edge computing. Figure 10
shows a more detailed graph of how INVAR provisions servers
across different data centers. We can see that although there are
4 available data centers, INVAR only deploys in 3 data centers,
and only in 2 data centers when the load is low in the early
morning. The Philadelphia data is left empty except for peak
hours: this is because INVAR would usually send requests
from Philadelphia to the New York data center instead since
the New York data center is very close to Philadelphia. By
doing so INVAR reduces the queueing delay seen by requests

from Philadelphia which offsets the slightly longer network
latency, while also reducing the overall server cost.

D. Sensitivity Analysis
In our model, we assume both the inter-arrival times and

service are exponentially distributed, while in reality, this may
not always be the case. In this section, we conduct sensitivity
analysis using simulation to study how different inter-arrival
time and service time distributions affect the accuracy of
INVAR. We do this using the Akamai traces in the US
Northeast region, and we use the deployment plans generated
in Section IV-C. We run the traces and deployment plans in
our simulator but with different distributions plugged in for the
inter-arrival time generation at user locations and service time
generation at data centers. We compared the original numer-
ical analysis and simulation results from Section IV-C with
three alternative distributions: uniform distributions, gamma
distribution with shape parameter 3, and gamma distribution
with shape parameter 5. All three alternative distributions still
have the same mean as the original exponential distributions.

The simulated mean end-to-end response times are reported
in Tables II and III, together with the numerical analysis and
simulation results using the original exponential distributions.
We can observe that alternative distributions do change the
response time result, but the effect is not very significant (the
difference is within 2% range for all cases). Moreover, in
all the cases tested the mean response times with alternative
distributions are actually lower than the original results, which
means our deployment plans are still sufficient to yield better
response time than the performance target.

TABLE II: Mean end-to-end results using different inter-arrival
time distribution in the US Northeast scenario

Method — Distribution mean 95% CI
Numerical Analysis — E(�) 0.0229955 –

Simulation — E(�) 0.0230106 (0.0229797, 0.0230415)
Simulation — U(0, 2/�) 0.0227394 (0.0227214, 0.0227574)

Simulation — �(3, 3�) 0.0226909 (0.022672, 0.0227097)
Simulation — �(5, 5�) 0.0226576 (0.0226449, 0.0226702)

(a) US Northeast (b) Europe

Fig. 8: Mean end-to-end response time using different deployments

Fig. 9: Total cost of different deployments
in the Europe region.

Fig. 10: Server allocation using INVAR versus cloud deploy-
ment

TABLE III: Mean end-to-end results using different service
time distribution in the US Northeast scenario

Method — Distribution mean 95% CI
Numerical Analysis — E(µ) 0.0229955 –

Simulation — E(µ) 0.0230106 (0.0229797, 0.0230415)
Simulation — U(0, 2/µ) 0.0228921 (0.0228825, 0.0229017)

Simulation — �(3, 3µ) 0.0228781 (0.022865, 0.0228911)
Simulation — �(5, 5µ) 0.0228574 (0.0228469, 0.0228679)

V. RELATED WORK

Model-driven resource allocation: Queueing theory models
have recently been widely used for resource allocation prob-
lems. Examples include optimal multi-core chip design with
constrained power or area budget [19], resource allocation in
multimedia cloud to provide services with minimal response
time or minimal cost [20], container allocation for serverless
functions with tail latency SLA requirements [21], and tenant
placement and resource provisioning in multi-tenant SaaS
[22]. However, to our knowledge, no previous work has
been proposed to address the performance inversion problem
in edge computing. In this work, we use queueing theory
models to avoid the edge performance inversion problem while
considering performance-cost tradeoffs.
Resource scheduling in Edge Computing: Resource schedul-
ing in edge computing has been widely studied [6]. [23]
proposes a resource allocation mechanism for managing com-
putational and communication resources for AR applications

at the edge. [24] proposes an optimization algorithm for
resource allocation and computation offloading in vehicular
edge networks. [25] investigates resource allocation and task
placement for IoT applications. Our approach doesn’t make
many assumptions about the workload, and our model is
general enough to be applied in many different scenarios.
Moreover, much of this work focuses on optimizing server
utilization or energy consumption, while the vulnerability of
edge performance is often overlooked. We argue that the
overall end-to-end latency needs to be prioritized because low
latency is a major selling point for edge computing adoption.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we introduce INVAR, an algorithm based on
queueing theory results and optimization techniques for pro-
visioning edge deployments that are guaranteed to avoid edge
performance inversion. Our algorithm considers the workload
distribution, the user location and data center topology, and the
edge data center resource constraints, based on which INVAR
will search the parameter space to find a deployment plan
that can achieve a given performance target with the least
cost. We have validated INVAR using both numerical analysis
and simulation. Simulation results using traces extracted from
Akamai production workloads show that INVAR-generated
deployments can avoid performance inversion in real-world
scenarios while outperforming a common heuristic-based edge
deployment by 11% to 24%.

There are several potential directions for future work. When
a request arrives at a data center, in some cases it needs
to be processed by more than one server or container, e.g.,
in microservices and serverless function composition. In that
case, the data center may not be suitable to be modeled as
an M/M/c queueing system but rather a directed acyclic
graph (DAG) of queueing networks, which requires certain
adjustments to our model. Another direction is that right now,
our model requires the budget W and performance difference
� as user inputs. As these parameters are crucial for the
deployment plan search, it could be tricky for users to figure
out the right values. A mechanism that can handle those
parameters automatically would be a useful improvement.

REFERENCES

[1] “AWS Local Zones,” https://aws.amazon.com/about-aws/global-
infrastructure/localzones/.

[2] B. Varghese, E. de Lara, A. Y. Ding, C.-H. Hong, F. Bonomi, S. Dustdar,
P. Harvey, P. Hewkin, W. Shi, M. Thiele, and P. Willis, “Revisiting the
Arguments for Edge Computing Research,” IEEE Internet Computing,
vol. 25, no. 5, pp. 36–42, Sep. 2021.

[3] A. Ali-Eldin, B. Wang, and P. Shenoy, “The hidden cost of the edge: A
performance comparison of edge and cloud latencies,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY, USA:
Association for Computing Machinery, Nov. 2021, pp. 1–12.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Comput-
ing, vol. 8, no. 4, pp. 14–23, Oct. 2009.

[5] B. Charyyev, E. Arslan, and M. H. Gunes, “Latency Comparison of
Cloud Datacenters and Edge Servers,” in GLOBECOM 2020 - 2020
IEEE Global Communications Conference, Dec. 2020, pp. 1–6.

[6] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource Scheduling in Edge
Computing: A Survey,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2131–2165, 2021.

[7] J. F. C. Kingman, “Inequalities in the Theory of Queues,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 32, no. 1,
pp. 102–110, 1970.

[8] J. J. Buckley, Simulating Fuzzy Systems. Springer Science & Business
Media, Feb. 2005.

[9] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “AGILE:
Elastic distributed resource scaling for Infrastructure-as-a-Service,” in
10th International Conference on Autonomic Computing (ICAC 13).
San Jose, CA: USENIX Association, Jun. 2013, pp. 69–82.

[10] H. Pishro-Nik, “Introduction to Probability, Statistics and Random Pro-
cesses,” Electrical and Computer Engineering Educational Materials,
Jan. 2014.

[11] A. J. E. M. Janssen, J. S. H. van Leeuwaarden, and B. Zwart, “Refin-
ing Square-Root Safety Staffing by Expanding Erlang C,” Operations
Research, vol. 59, no. 6, pp. 1512–1522, Dec. 2011.

[12] M. L. Fisher, “The Lagrangian Relaxation Method for Solving In-
teger Programming Problems,” Management Science, vol. 50, no.
12 supplement, pp. 1861–1871, Dec. 2004.

[13] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh
Approach to Numerical Computing,” SIAM Review, vol. 59, no. 1, pp.
65–98, Jan. 2017.

[14] M. Lubin, O. Dowson, J. D. Garcia, J. Huchette, B. Legat, and J. P.
Vielma, “JuMP 1.0: Recent improvements to a modeling language for
mathematical optimization,” Mathematical Programming Computation,
Jun. 2023.

[15] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Knitro: An Integrated Package
for Nonlinear Optimization,” in Large-Scale Nonlinear Optimization, ser.
Nonconvex Optimization and Its Applications, G. Di Pillo and M. Roma,
Eds. Boston, MA: Springer US, 2006, pp. 35–59.

[16] R. Waltz, J. Morales, J. Nocedal, and D. Orban, “An interior algorithm
for nonlinear optimization that combines line search and trust region
steps,” Mathematical Programming, vol. 107, no. 3, pp. 391–408, Jul.
2006.

[17] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, Mar. 2006.

[18] “SimPy 4.0.1 documentation,” https://simpy.readthedocs.io/en/4.0.1/.
[19] C. Delimitrou and C. Kozyrakis, “Amdahl’s law for tail latency,”

Communications of the ACM, vol. 61, no. 8, pp. 65–72, Jul. 2018.
[20] X. Nan, Y. He, and L. Guan, “Optimal resource allocation for multimedia

cloud based on queuing model,” in 2011 IEEE 13th International
Workshop on Multimedia Signal Processing, Oct. 2011, pp. 1–6.

[21] B. Wang, A. Ali-Eldin, and P. Shenoy, “LaSS: Running Latency Sensi-
tive Serverless Computations at the Edge,” in Proceedings of the 30th
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’21. New York, NY, USA: Association for
Computing Machinery, Jun. 2021, pp. 239–251.

[22] W. Su, J. Hu, C. Lin, and S. Shen, “SLA-Aware Tenant Placement
and Dynamic Resource Provision in SaaS,” in 2015 IEEE International
Conference on Web Services, Jun. 2015, pp. 615–622.

[23] A. Al-Shuwaili and O. Simeone, “Energy-Efficient Resource Allocation
for Mobile Edge Computing-Based Augmented Reality Applications,”
IEEE Wireless Communications Letters, vol. 6, no. 3, pp. 398–401, Jun.
2017.

[24] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint Offloading and
Resource Allocation in Vehicular Edge Computing and Networks,” in
2018 IEEE Global Communications Conference (GLOBECOM), Dec.
2018, pp. 1–7.

[25] X. Xu, C. He, Z. Xu, L. Qi, S. Wan, and M. Z. A. Bhuiyan, “Joint
Optimization of Offloading Utility and Privacy for Edge Computing
Enabled IoT,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2622–
2629, Apr. 2020.

	Introduction
	Background
	Edge Computing
	The Edge Performance Inversion Problem
	Problem Statement

	Optimizations on Resource Provisioning and Workload Scheduling
	System Queueing Model
	Performance Optimization Given a Cost Budget
	Flow Optimization Given a Server Allocation Vector
	Inversion-aware Deployment Plan Searching

	Evaluation Results
	Evaluation Setup
	Deployment Plans under Fixed Cost Budgets
	Akamai Workload Evaluation
	Sensitivity Analysis

	Related Work
	Conclusions and Future Work
	References

