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ABSTRACT
The carbon intensity of grid-supplied electricity depends on the
mix of generation sources used to satisfy its demand and varies
widely over time and across locations. There are two types of carbon
intensity signals: average and marginal. Both signals provide dis-
tinct information about grid operations and a�ect the electric grid’s
short- and long-term functioning in di�erent ways. Unfortunately,
there is a lack of consensus on the “right” signal for carbon-aware
optimizations, and decarbonization e�orts across domains have
used both signals to decide when and where to shift demand. To
understand the implications of signal selection on carbon-aware
optimizations, this paper performs a data-driven analysis using
both the average and marginal carbon intensity. Our analysis for
65 regions reveals multiple insights, including i) both signals are
statistically di�erent with very low correlation between them, ii)
optimizing for one signal could lead to more carbon emissions from
the other signal’s standpoint, and iii) di�erences in signal charac-
teristics in each region lead to di�erent electricity use incentives.
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1 INTRODUCTION
The growing concern about the climate impact of human activi-
ties has ampli�ed the importance of assessing and reducing the
carbon footprint of energy consumption across societal sectors,
including datacenters [1, 2, 18, 21], buildings [13, 28], and trans-
portation [20, 24]. Many of these decarbonization initiatives aim
to shift energy demand to when and where low-carbon electricity
is available. Such carbon-aware optimizations are enabled by the
recent emergence of third-party carbon information services, such
as Electricity Maps [16], and WattTime [29], that provide carbon
intensity of electricity across regions worldwide. The carbon in-
tensity of electricity is the grams of carbon dioxide emitted per
kilowatt-hour of electricity (6 ·⇠$24@/:,⌘ ) at the point of con-
sumption [17], which varies over time and across locations based
on the energy sources used to satisfy the electricity demand.

Carbon information services provide carbon intensity informa-
tion using two metrics: the average and marginal carbon intensity.
The average (or attributional) carbon intensity is the weighted aver-
age of the carbon intensity of all the generators used to satisfy the
current grid demand. The weights are the ratio of the production
of each generator to the total production that serves the current
demand. The marginal (or consequential) carbon intensity is the
carbon emissions rate of the generator that responds to incremental
changes in energy usage. Although other, more nascent, signals
such as long-term marginal emission rates (LMER) [9] incorporate
the e�ect of carbon-aware optimizations on electric grid’s capacity
planning, they are unavailable for most regions globally. Thus, our
work focuses on the average and marginal carbon intensity signals.

The two carbon intensity signals express di�erent aspects of
electric grid operations to satisfy the electricity demand. The aver-
age signal provides information on the grid’s overall portfolio of
energy generation resources. The marginal signal derives from a
smaller set of fast-responding generators that ful�ll the marginal
segment of electricity demand. Interestingly, the signals do not
always align (Section 3.2), which holds important implications for
carbon-aware optimizations. The weak correlations in the signals
imply that the choice of the signal determines how much carbon
savings are perceived due to carbon-aware scheduling (Section 3.3).
As a result, both signals often have con�icting impacts on grid
operations and long-term capacity planning as when and where
carbon-aware execution shifts the workloads di�er (Section 3.4).

Due to the vast and critical implications of choosing an electric-
ity carbon emissions signal for carbon-aware optimizations, there
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Figure 1: The energy generation mix of a hypothetical grid
ordered in terms of how various generators are engaged to
serve demand. The carbon intensity, in 6 · ⇠$24@/:,⌘ , for
each generator is labeled at the top of each bar.

is an ongoing debate as to which signal should be used for decar-
bonization [5, 9, 19]. Since there is no clear consensus yet, this
paper aims to facilitate this discourse using a data-driven approach.
In doing so, we make the following contributions.

(1) Large-scale data analysis. We analyze year-long average and
marginal carbon intensity traces from 65 regions worldwide
to assess the statistical properties of the individual signals and
quantify the correlation between them.

(2) Analyzing implications of carbon-aware optimizations.
We leverage state-of-the-art carbon-aware temporal workload
shifting approaches, e.g., WaitAWhile [30], and spatial workload
migration strategies [22], to quantify carbon savings using both
signals. Our analysis reveals that mixed use of signals, one for
scheduling and the other for reporting, detracts from carbon-
aware optimizations. Our �ndings further demonstrate that the
choice of signal can impact the grid in a way that discourages
the adoption of renewable energy sources, such as solar.

(3) Future research directions.We discuss how the data-driven
insights from this work can help shape the discourse on the
choice of carbon intensity signal. We enumerate numerous
research questions for future research that will enable a better
understanding of carbon intensity signals and their implications
for holistic and societal-scale decarbonization.

2 BACKGROUND
This section provides an overview of the electric grid’s operation
and discusses how carbon intensity signals are computed.

Electric grid operations. The electric grid’s operators must bal-
ance energy generation and energy demand in real time. The energy
demand varies primarily based on weather, which dictates the en-
ergy needed for indoor heating and cooling, and human behavioral
patterns, e.g., time of the day, day of the week, holidays, etc. The
mix of generators used to satisfy the energy demand changes over
time and is determined by the electricity markets. The characteris-
tics of energy resources, such as fuel types, capacities, and carbon
emissions, used to satisfy the energy demand vary across time and
location. Figure 1 shows a hypothetical electric grid, with a mix
of renewable energy, nuclear, coal, natural gas, and oil as the en-
ergy sources for a given time and location. Further details on the
electricity markets can be found in a primer on energy markets [23].

Carbon intensity of grid’s electricity. The carbon intensity (⇠� )
of electricity is measured in grams of carbon dioxide equivalent
per kilowatt-hours (6 · ⇠$24@/:,⌘ ). Figure 1 depicts the two
methods of estimating carbon intensity: the average paradigm and
the marginal paradigm. The average carbon intensity ⇠�avg of
electricity is estimated as the weighted average of carbon emissions
factors 28 for all the generators satisfying the current demand, i.e.,

⇠�avg =
Õ
8 (28 ·F8 )Õ

8 F8
. (1)

Here, the weightF8 for generator 8 is proportional to the portion of
demand it satis�es. It is worth noting that when an increase in de-
mand engages the next generator with higher emissions, increases
in emissions are uniformly distributed across all units of existing
demand and the new demand that triggered the next generator.

In the marginal paradigm, the carbon emission rate for the mar-
ginal generator is used as the carbon intensity signal, ⇠�mar, and
can be represented mathematically as

⇠�mar =
�⇠⇢

�⇡
, (2)

where �⇠⇢ and �⇡ represent the change in carbon emissions (CE)
and the change in electricity demand ⇡ , respectively. Equation 2
calculates the rate of change of carbon emissions if demand changes.
As not all the generators serve the added demand, only the marginal
generator does (see Figure 1), and the higher or lower marginal
emissions are assigned to consumers whose demand triggered it.

Since both the energy generation mix and the marginal gen-
erators change over time and across locations, the average and
marginal carbon intensities of the grid-supplied electricity also
change over time and locations. As shown in Figure 1, the genera-
tors that cannot be turned o� or ramped up/down are always-on
and serve as the grid’s base load [8], e.g., nuclear. The generators
with large to medium response times, such as coal plants, serve
the intermediate demand, while fast-responding generators – e.g.,
natural gas – serve the variable and unexpected demand. However,
depending on where demand occurs, generators with low emitting
rates, such as hydro, solar, and wind power plants, may also serve
as marginal generators [8]. Until recently, the carbon intensity of
energy was opaque to consumers since generation data was inacces-
sible. However, balancing authorities have begun publicly releasing
information about the active generator set and their real-time en-
ergy output via web APIs. Carbon information services, such as
Electricity Maps [16] and WattTime [29], combine this information
with data-driven or physical models to estimate the grid energy’s
carbon intensity in each region, making it available via web APIs.

3 ANALYSIS OF CARBON INTENSITY SIGNALS
The main objective of our analysis is to quantify the statistical
di�erences between the average and marginal carbon intensity
signals and assess how the magnitude of carbon savings di�ers
depending on the carbon intensity signal used for workload shifting.

3.1 Evaluation setup and methodology
In this section, we provide details on our data sources, analysis
methodology, and evaluation metrics.
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(a) Average Signal (b) Marginal Signal (c) Correlation

Figure 2: The mean average carbon intensity and its mean
daily coe�cient of variation (a), the mean marginal carbon
intensity and its mean daily coe�cient of variation (b), and
the mean daily correlation, categorized as Strong, Moderate,
and Weak, between the average and marginal signal (c).

Carbon traces. We collect hourly average and marginal carbon
intensity data from 65 regions for the year 2022 using Electricity
Maps and WattTime web API [16, 29]. The 65 regions cover most
of the world’s population and also include data center locations for
major cloud providers, such as Amazon Web Service (AWS), Google
Cloud Platform (GCP), and Microsoft Azure.

Workload characteristics. While our work applies to any �exible
workload, we consider a computing job of a given length ! that
needs to be completed within a time horizon of ! +) , where ) is
the slack for the completion. We set the value of ) as 24hrs for all
the experiments. We specify the value of ! with experiments.

Spatial and temporal scheduling. As a representative temporal
scheduling approach, we use a carbon-aware suspend-resume pol-
icy that assumes perfect knowledge of carbon intensity where the
algorithm picks the ! lowest carbon slots within the ! +) horizon.
This policy is based on prior work by Wiesner et al. [30] and yields
the lowest carbon emissions for the job. For the spatial workload
shifting, our policy migrates the job to the region with the lowest
carbon intensity within all the possible geographical regions under
analysis, inspired by approaches in prior work [7, 22].

Carbon savings calculations. To compute savings for either sig-
nal, we �rst compute the total carbon emissions in running the job
in a carbon-agnostic manner, i.e., run the job as soon as it arrives
(temporal) and at the location it arrives (spatial). We next compute
the carbon emissions after the scheduling policy has determined
when and where the job runs. We compute carbon savings as the
reduction in emissions with respect to the carbon-agnostic baseline.

3.2 Carbon intensity signal characteristics
The extent of savings from carbon-aware optimizations depends
on the spatiotemporal variability in the carbon intensity signals.
The larger the di�erence between the magnitudes of the carbon
signals across regions, the higher the spatial savings. The larger
the variations within a region’s carbon intensity, the higher the
temporal savings. Figure 2 shows the magnitude and variability of
the two carbon signals for all the regions in the trace. We quantify
the variability of a carbon signal as the daily coe�cient of variation
(CV), computed as the standard deviation over the mean.

Figure 2a and Figure 2b show that the average carbon intensity
signal has a lower mean value of 381.4 6 ·⇠$24@/:,⌘ as compared
to 444.29 6 ·⇠$24@/:,⌘ for the marginal carbon intensity signal.
However, the average signal exhibits a higher variability (0.11 CV)

(a) Carbon Trace (b) Demand (c) Spatial
Figure 3: Sample carbon intensity traces from Arizona and
Virginia, with one varying and one relatively constant (a) and
�nal demand (b) following carbon-aware temporal scheduling
based on the two signals. For spatial scheduling, we show two
sample regions (Ontario (CA-ON) and California (US-CA))
where average and marginal signals are opposite.

than the marginal signal (0.07 CV). While these statistics provide
information about overall carbon emissions and the potential for
carbon savings, they do not necessarily indicate that the signals
di�er, as trace statistics are similarly spread. Figure 2c shows the
distribution of the mean daily correlation between the average
and marginal carbon intensity signals. We categorize the values
as positively or negatively correlated with strong, moderate, and
weak correlations, speci�ed by the ranges of (0.7, 1], (0.2,0.7], and
[0,0.2], respectively. Among 65 regions, 36 regions (55.4%) exhibit a
negative correlation between their average and marginal carbon
intensity signal and only 1.5% have a strong positive correlation.

Key takeaway. Regions do not signi�cantly di�er in their average
and marginal carbon intensity signals based on their mean and
coe�cient of variation values. However, in most regions, signals ex-
hibit weak-to-modest negative correlation with potential con�icting
implications for carbon-aware optimizations.

3.3 Scheduling and accounting implications
The di�erences in the carbon intensity signal pro�les have profound
implications on the scheduling decisions and estimated carbon
savings. In both temporal and spatial scheduling, we consider 1-hr
long jobs and omit other job lengths and slacks as we focus on the
relative implications rather than the actual carbon savings.

Impact on workload scheduling. We next illustrate how the
di�erences in carbon intensity signals impact the scheduling deci-
sions made by carbon-aware optimizations. We take two sample
regions for each of the temporal scheduling and spatial scheduling.
Figure 3a shows the average and marginal carbon intensities for
Arizona and Virginia for a sample day in 2022. Both the two regions
exhibit one dynamic and one comparatively stable carbon signal.
For instance, Arizona has an almost constant marginal intensity
signal, while it is highly variable in Virginia.

Figure 3b shows how a carbon-aware scheduler will schedule
a hypothetical �exible workload of 2400 kWh in both regions. In
Arizona, shifting the workload based on the marginal signal does
not provide any incentive (constant signal) and the scheduler dis-
tributes the workload evenly throughout the day. We observe the
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(a) Temporal:Avg (b) Temporal:Mar (c) Spatial:Avg (d) Spatial:Mar

Figure 4: Scheduling and accounting implications: Carbon
savings using the average signal (a) and the marginal signal
(b) for temporal scheduling. Carbon savings using the average
signal (a) and the marginal signal (b) for spatial scheduling.

same trend for the average signal in Virginia. However, since Vir-
ginia has slight variations in its intensity, the scheduled loadmirrors
the variations. On the other hand, the average signal in Arizona
and the marginal signal in Virginia show signi�cant variations,
and the scheduled workload follows the low-carbon slots. In both
cases, most of the load is shifted to the nighttime periods when the
relevant carbon intensity signal is lower.

Figure 3c shows the average and marginal carbon intensity sig-
nals for two sample locations where the spatial workload shifting
between the two locations occurs. The choice of signal will deter-
mine where the load is executed. It will be executed in California
if the average signal is used. It will be executed in Ontario if the
marginal signal is used. Our results for both the temporal and the
spatial scheduling demonstrate that neither of the signals yields
consistent outcomes for the carbon-aware optimizations.

Key takeaway. The negative correlation between the average and
marginal carbon intensity signals results in con�icting scheduling
decisions for carbon-aware temporal and spatial optimizations. The
scheduling outcomes are region-dependent and are not consistent
across regions for either of the signals.

Impact on carbon savings calculations. Our previous analysis
demonstrates that the scheduling decisions guided by both signals
do not always align. Our next set of experimental results shows
that they also signi�cantly impact the perceived carbon savings
as a result of carbon-aware scheduling. This is an important con-
sideration where the enhanced focus on sustainability necessitates
reporting any reductions in the carbon footprint resulting from a
change in the operations of an individual or an organization.

Figure 4a shows carbon savings across all the regions when the
average signal is used to schedule the workloads. The two box-
plots correspond to the signal used for calculating carbon savings
compared to the counterfactual of no workload shifting (carbon-
agnostic execution). Figure 4b shows the same for a scenario when
the marginal signal is used. Interestingly, in both scenarios, the car-
bon savings only manifest when the same signal is used to compute
carbon savings. Based on the other signal, the carbon savings are
negative, i.e., carbon emissions actually increased. Also, the esti-
mated carbon savings based on the scheduling signal di�er for both
signals; scheduling and accounting based on average signal yields
18% savings while based on marginal signal yields 11% savings.

Moreover, Figure 4c and Figure 4d show mean carbon savings of
⇠87% when the average and marginal signals are used for spatial
workload shifting. As with temporal scheduling, the other signal

yields less carbon savings than the scheduling signal. Generally,
choosing one signal for carbon-aware optimizations for temporal
workload scheduling leads to more carbon emissions based on the
other signal. While the opposite signal gains some savings from the
decisions of the scheduling signal in spatial shifting, the savings of
the opposite signal are always less than the scheduling signal.

Key observation. Even when the decisions of carbon-aware op-
timizations are �xed, the carbon savings estimated based on both
signals do not yield the same results providing unclear incentives
to use either of the signals for scheduling and accounting.

3.4 Implications on grid operations
In addition to estimating the carbon footprint of electricity demand
and quantifying the carbon savings from carbon-aware optimiza-
tions, the aim of a carbon intensity signal is to shape the electric-
ity demand such that the use of electricity from renewable and
low-carbon energy resources is maximized [3, 6]. While accurately
estimating the impact on the grid without physical measurements
or a high-�delity simulator is challenging, we present key obser-
vations relating to how the choice of carbon intensity signal for
carbon-aware optimizations may impact the grid operations.

Impacts of temporal shi�ing. As outlined in Section 3.3, the
negative correlation between the average and the marginal signals
leads to con�icting scheduling decisions made by carbon-aware
optimizations. Here, we revisit Figure 3a and Figure 3b to under-
stand how these con�icting decisions impact grid operations. If the
carbon intensity signal in a given region is almost static (e.g., the
marginal signal in Arizona), a scheduler may not shift the workload
to avoid shifting costs. This can potentially indicate to the grid
operators that the demand is in�exible.

Furthermore, if the signal is variable but has low values at night
(e.g., the marginal signal in Virginia), the scheduler will shift the
workloads to nighttime. The increase in demand at nighttime would
require grid capacity planners to add more generators at night.
As widely available low-carbon energy sources, such as solar and
wind, are either unavailable or intermittent at night, they cannot
be used to ful�ll the added demand. This can potentially force the
operators to add high-emitting generation resources such as natural
gas generators [9]. Of course, using one of the signals in several
regions can shift the demand to time periods with low carbon
energy potential, but the same signal would not achieve the same
outcome for the remaining regions.

Impact of spatial shi�ing. Similar to our analysis for the tem-
poral shifting, we revisit Figure 3c, which shows two regions to
illustrate the con�icting decisions for the spatial shifting scenario.
In this scenario, using the average signal would shift any added
demand from California to Ontario, as it almost always has a lower
average carbon intensity than California. As most of Ontario’s en-
ergy demand is ful�lled by nuclear and hydro, a signi�cant addition
of new demand may trigger the natural gas generators that serve
the marginal demand in the region. This is because nuclear and
hydro resources require long-term planning, are subject to public
opinion, and cannot handle short-term increases in demand.

On the other hand, using the marginal signal would shift the
demand to California, where the marginal carbon intensity is very

425



On the Implications of Average versus Marginal Carbon Signals E-Energy ’24, June 04–07, 2024, Singapore, Singapore

low as it is often ful�lled by wind or solar power plants that may
have been curtailed before the added demand. However, if a sig-
ni�cant demand is added to the California grid at all hours of the
day, solar and wind would not be able to satisfy all the demand,
and it would be satis�ed by using the dominant energy resource
of natural gas. As the average carbon intensity of California is 5⇥
higher than Ontario, the migrated workload would be served by a
carbon-intensive electricity supply if solar or wind do not engage
as marginal generators. Furthermore, as the marginal signals for
both locations do not overlap, all the additional demand in Ontario
at all timeslots would migrate to California.

Key takeaway. The choice of carbon intensity signal for carbon-
aware optimizations determines: if the workloads shift temporally,
the set of generators that are used to satisfy the added demand in
the short term (both temporally and spatially), and the deployment
of renewable energy as part of the long-term capacity planning.

4 RELATEDWORK
To the best of our knowledge, there is very limited prior work on
understanding the di�erence between the average and the marginal
carbon intensity signals and their implications on grid operations.
The most relevant work on this topic is done by Gagnon and Cole
[9], who look at the impact of traditional marginal signal and how
it can be extended to incorporate future capacity planning implica-
tions. Recent work has focused on leveraging the �exibility in the en-
ergy demand for various workloads to reduce their carbon footprint.
For computing workloads, recent work has explored leveraging the
temporal and spatial �exibility of computing to reduce its carbon
footprint [1, 2, 10–12, 14, 15, 18, 21, 22, 25–27, 30, 31]. While house-
hold energy demand cannot be shifted to other locations, recent
work explores shifting background and non-interactive appliances
to low-carbon periods to reduce their carbon footprint [4, 13]. Sim-
ilarly, researchers have begun exploring decarbonization potential
across other sectors, such as transportation [20, 24].

Importantly, though, there is little consensus on the choice of
carbon signal, its short- and long-term impact on the grid, and its
usefulness for accurate carbon accounting [5, 9, 19]. Most of the
prior work uses the average signal, while some studies use the mar-
ginal carbon intensity signal for carbon-aware optimizations [12].

5 CONCLUSION AND FUTUREWORK
In this study, we demonstrate the fundamental di�erences between
two commonly used carbon signals, marginal and average intensi-
ties, which yield distinct outcomes when applied to spatiotemporal
scheduling. We have observed that the relative variability of these
carbon intensity signals varies by location, leading to divergent
results in carbon-aware spatial workload shifting. The ongoing
debate in industry and research surrounding the choice of carbon
signals for sustainability policies highlights the complexity and
opacity of the factors in�uencing the relationship between these
paradigms. Our goal is to facilitate the ongoing discourse on the
topic. At the same time, we plan to continue further research using
data-driven and analytical models for the electric grid. We also
plan to explore approaches to devising either new carbon intensity
signals or leveraging the novel combinations of existing signals.
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