
Complementary Exclusion of Full Polynomials to
Enable Dual List Decoding of Convolutional Codes

Zihan Qu, Amaael Antonini, Wenhui Sui, Eugene Min, Arthur Yang, and Richard D. Wesel
Department of Electrical and Computer Engineering

University of California, Los Angeles
Email: {brucequ, amaael, wenhui.sui, eugenemin, arthuryang27, wesel}@ucla.edu

Abstract—Convolutional codes have been widely studied and
used in many systems. As the number of memory elements
increases, frame error rate (FER) improves but computa-
tional complexity increases exponentially. Recently, decoders that
achieve reduced average complexity through list decoding have
been demonstrated when the convolutional encoder polynomials
share a common factor that can be understood as a CRC or
more generally an expurgating linear function (ELF). However,
classical convolutional codes avoid such common factors because
they result in a catastrophic encoder. This paper provides a way
to access the complexity reduction possible with list decoding
even when the convolutional encoder polynomials do not share a
common factor. Decomposing the original code into component
encoders that fully exclude some polynomials can allow an ELF
to be factored from each component. Dual list decoding of the
component encoders can often find the ML codeword. Including
a fallback to regular Viterbi decoding yields excellent FER
performance while requiring less average complexity than always
performing Viterbi on the original trellis. A best effort dual list
decoder that avoids Viterbi has performance similar to the ML
decoder. Component encoders that have a shared polynomial
allow for even greater complexity reduction.

I. INTRODUCTION

Convolutional codes (CCs) are one of the most widely used
codes in modern wireless communications. A widely used
decoding method that minimizes the frame error rate [1] is
with the Viterbi algorithm, by A. Viterbi [2].

A common way of terminating a CC is to drive the states
back to the zero state after processing all message bits, i.e.
appending ν zeros to the end of a message, where ν is the
number of memory elements in a CC. In this paper, we explore
the efficient decoding of such zero-terminated (ZT) CCs.

In recent works, cyclic redundancy checks have been con-
catenated with CCs and used to expurgate CC codewords with
low Hamming weights, thus improving the minimum distance
Dmin and decreasing the number of nearest neighbors Adfree

at Dmin. Lou et al. [3] presented an algorithm that designs
optimal CRCs for ZTCCs. In [4], Yang et al. furthered the
work by jointly designing distance spectrum optimal (DSO)
CRCs and CCs at target frame error rates (FERs) of 10−2,
10−3, and 10−4. Yang et al. showed that the concatenation of
CCs with DSO CRCs can approach the random coding union

This research is supported by National Science Foundation (NSF) grant
CCF-2008918. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect views of NSF.

(RCU) bound [5]. Since these expurgating functions do not
have to be cyclic in nature, we will thereby follow [6] and
refer to them as expurgating linear functions (ELFs). Other
recent work on CCs concatenated with ELFs include [7], [8],
and [9]. The concatenation of an ELF with a CC is itself a
CC, although the ELF being a common factor of all of the
encoder polynomials would make the encoder catastrophic.

The reason why the concatenation of an ELF with degree m
and a CC with ν encoder memories is preferable to a CC with
ν +m encoder memories is that the ELF-CC can be decoded
with low average complexity using list decoding, as described
by Seshadri and Sundberg [10]. Using list Viterbi decoders, the
best L decoding estimates are produced either simultaneously
using a parallel list Viterbi algorithm or sequentially using a
serial list Viterbi algorithm (SLVA). For an ELF-CC, SLVA is
performed on a trellis with 2ν states rather than one with 2ν+m

states. Often, at the operating point of interest the average list
size of SLVA is one so that the average complexity of the
decoder is essentially the complexity of performing Viterbi on
a trellis with 2ν states.

Since the seminal paper by Seshadri and Sundberg, sub-
stantial progress has been made to reduce the complexity of
the list Viterbi algorithm (LVA). In [11], M. Roder and R.
Hamzaoui proposed a new implementation of LVA that is
linear in both time and space by maintaining an ordered list
of path metric differences using a Red-Black tree. The same
performance can be achieved using a Min Heap [12], which is
proven to have the same lowest runtime of inserting elements
as the Red-Black tree. Considerable effort was dedicated to
analyzing the complexity of list decoders. In [13], [14], the
decoding complexity of using LVA is analyzed and quantified,
concluding that the expected list size determines the overall
complexity of a list decoder.

While it’s possible, decoding CCs with large ν is inefficient
because the complexity of Viterbi decoding increases expo-
nentially with ν. In our paper, we propose a low complexity
decoder consisting of a pair of list decoders, which we refer
to as the Dual List Decoder (DLD).

A. Contributions

This paper presents list decoding algorithms where the
decoding complexity of a ZTCC with large ν is reduced to
below the complexity of standard soft Viterbi (SSV). For
ZTCCs with large ν, building the trellis and running a single



ELF CC

CCELF

Fig. 1. Convolutional code encoding circuit with ν = 10 from Lin & Costello
[15] having generator polynomial (p1(x), p2(x)) = (1+x+x3+x4+x5+
x8 + x10, 1 + x+ x2 + x3 + x7 + x9 + x10). The lower graph shows that
these two polynomials can be decomposed into (1+x+x3) · (1+x4 +x7)
and (1 + x2 + x4) · (1 + x+ x4 + x5 + x6), respectively.

traceback takes high computational complexity and memory
space. The complexity reduction possible with list decoding
can be achieved even for a CC that lacks the explicit ELF-
CC structure. To accomplish this, we decompose the CC into
two shorter component encoders, each of which has the ELF-
CC structure. To reveal the ELF-CC structure, we factor the
polynomial for each component encoder into two smaller ones,
where one polynomial acts as a smaller CC polynomial and
the other polynomial is seen as an ELF that expurgates low-
weight codewords of the smaller CC. Dual list decoding of the
two component ELF-CC codes offers a substantial decrease in
decoding complexity.

As we will see, a DLD that performs list decoding of both
component encoders in parallel can often find the ML code-
word. Including a fallback to regular Viterbi decoding on the
original trellis when needed produces an overall decoder with
excellent FER performance and less average complexity than
standard SSV. Designing an encoder where the component
encoders share a common constituent polynomial increases
the redundancy of the component encoders which drastically
improves the dual list decoder’s performance and leads to
significantly more complexity reduction over SSV.

B. Organization

The rest of the paper proceeds as follows. Sec. II describes
the system model, ZTCCs, standard Viterbi decoder, and serial
list Viterbi decoder. We also briefly analyze the complexity
of the SSV decoder given the number of memory elements
of a ZTCC. In Sec. III, we present three DLD decoding ap-
proaches. Sec. III-C explores another strategy that reduces the
decoding erasure rate by sharing information between the two
list decoders. Sec. IV shows the FER vs. Eb/N0 simulation
results of using different decoding schemes and compares their
decoding complexities. Finally, Sec. V concludes the paper.

II. COMPLEMENTARY POLYNOMIAL EXCLUSION (CPE)

A convolutional code encoder consists of linear finite-state
shift registers and is designed to process inputs and generate
outputs based on the current states of memory elements. In the
context of CC, the encoding trellis is commonly represented

by a generator polynomial. Let k be the number of message
bits, ν be the number of encoder memories, n be the number of
output symbols, and r = k/n be the rate of a CC. m denotes
the degree of the CRC or ELF. We use log(·) to denote the
log-2 logarithm. E(X) is denoted as the expected value of the
random variable X . The polynomial representation we use is
in GF(2).

For a ZTCC, we append ν zeros to k message bits to ensure
the feed-forward encoder starts from and ends in the all-zero
state. The trailing zeros lead to a total number of received sym-
bols n = 1

r (k+ν) so that the actual rate is lower than before.
In Fig. 1, the upper plot shows a ν = 10 feed-forward rate-1/2
convolutional encoder with generator polynomial (2473, 3217)
represented in octal. A rate-1/2 ZTCC can be decoded by
performing SSV that starts and terminates at the 0th state.

A ZTCC with a larger ν typically results in lower FER. The
construction complexity of a trellis is directly proportional to
the number of trellis states. For a CC with ν memory elements,
the associated complexity is dictated by the number of states,
which amounts to 2ν . As shown in [14], we can achieve a
reduction in average complexity when a ”CRC polynomial” or
ELF can be factored out of all of the constituent polynomials.
While [14] designs ELF-CC codes that have this structure, our
paper proposes an approach to reduce decoding complexity for
cases where the constituent polynomials can each be factored
but do not share a common factor.

Looking again at Fig. 1, we can use complementary polyno-
mial exclusion (CPE) to decompose the rate-1/2 convolutional
code into two rate-1/1 component encoders. Note that each
component encoder still has some redundancy because of
termination. One component encoder is created by excluding
the polynomial p1(x) = 1 + x + x3 + x4 + x5 + x8 + x10.
The other component encoder is created by excluding the
polynomial p2(x) = 1 + x+ x2 + x3 + x7 + x9 + x10. Each
of these component encoder polynomials can be factored into
an ELF and a CC so that each component encoder can be
decoded by a list decoder. In our example, we can decompose
p1(x) into two smaller polynomials, i.e., 1 + x + x3 + x4 +
x5 + x8 + x10 = (1 + x4 + x7) · (1 + x + x3). Similarly,
p2(x) = 1 + x + x2 + x3 + x7 + x9 + x10 = (1 + x + x4 +
x5 + x6) · (1 + x2 + x4). We will denote the factorization
of p1(x) as gcc,1 and gcrc,1. Likewise, p2(x) can be factored
into polynomials defined as gcc,2 and gcrc,2. If a codeword
generated by gcc,1 satisfies gcrc,1, then it is a codeword of the
code p1 = gcc,1 ∗ gcrc,1. The Euclidean distance path metric
obtained from both component encoders should add up to the
path metric obtained by decoding with SSV using the original
rate-1/2 code with generator polynomial (p1(x), p2(x)).

III. DUAL LIST DECODING (DLD)

In dual list decoding, two decoders collaborate to decode
the message. For a given overall convolutional code C0 with
ν0 memory elements, the SSV decoder has complexity of
2ν0 . Dual list decoding replaces the SSV decoder with two
list decoders, constructed for two distinct component convo-
lutional encoders C1 and C2, each concatenated with outer



Fig. 2. The sequence y is demultiplexed into sequence y1 from component
encoder p1(x) and y2 from component encoder p2(x). Sequences y1 and y2
are then decoded separately by two rate - 1/1 list decoders for the component
encoders that have been factored into an ELF and CC.

ELFs. Taken together, the transmitted bits produced by the
two component encoders C1 and C2 provide the identical
bit stream as the transmitted bits produced by the overall
convolutional code C0. However, the component encoders C1

and C2, each has corresponding lower numbers of memory
elements (not including the ELF) such that ν1 < ν0 and
ν2 < ν0, which allows the dual list decoder to provide a
complexity advantage over the SSV decoder for C0, as long
as the expected list size is not too large.

A. DLD for Complementary Polynomial Exclusion (CPE)

We now explain the dual list decoder for the code im-
plemented by the circuits of Fig. 1. The code has generator
polynomials of degree ν = 10, while component gcc,1 has
degree ν1 = 7 and component gcc,2 has degree ν2 = 6. Since
we divide the original generator polynomial p1(x) and p2(x),
each dual list decoder would only use half of the received
symbols. For this, we divide the received symbols into two
sequences based on the polynomials that generated them. All
symbols generated by the first polynomial p1(x) are used
by one decoder and the symbols generated by the second
polynomial p2(x) are used by the other decoder. As shown
in Fig. 2, this requires “unravelling” the received sequence,
y, as if it was encoded by p1(x) and p2(x) separately and
interleaved together. Let y1 and y2 denote the two sequences
encoded by each component encoder.

The first decoder enumerates a possible path through a trellis
constructed using y1, starting from the path with the lowest
metric, pausing once a codeword that satisfies gcrc,1 is found.
We store this codeword and its corresponding message as a
candidate in an associative array. Then we move on to the
other decoder that runs the same steps on y2. When the same
codeword has been found both by the decoder for y1 and the
decoder for y2, we have a potentially good estimate of the
transmitted codeword.

B. Verification (or not) and falling back to SSV

Now we consider making the best use of the results from
the two list decoders. For a general DLD system, the first
codeword that appears on both the list for C1 and the list for
C2 is not necessarily the maximum-likelihood (ML) estimate
of the transmitted codeword. One decoding option is to declare

ENCODER

DECODER

Fig. 3. Encoder and dual list decoder for a rate-1/2 code decomposed into two
rate-2/3 component encoders created by complementary polynomial exclusion
with a shared polynomial g1(x)g3(x). The rate-1/3 mother code is punctured
to rate 1/2 by puncturing every other bit from the two polynomials that are
excluded from one of the component encoders.

an erasure unless the decoding results (the metric information
from both lists) is sufficient to conclude that the codeword that
appears on both lists with the best metric is definitely the ML
codeword. We refer to this decoder, which returns either the
ML codeword or an erasure, as the DLD-ML/E decoder.

Since in practice, the erasure rate can be an order of
magnitude larger than the desired FER but still quite small
(say 10−3), a reasonable option is to fall back to running
SSV when DLD-ML/E produces an erasure. We refer to this
decoding approach as DLD-ML/SSV because DLD will either
return a known ML codeword or fall back to using SSV.

Yet another approach is to consider a best-effort DLD that
runs to a maximum list size and does the best that it can.
Such a decoder does not always return the ML decisions but
has the benefit of never employing a full SSV decoder. For this
decoder, we note that once a codeword has appeared in one
list, the decoder knows the message and can easily compute
the output associated with that message for the other list and
hence its overall decoding metric. This is important because
even if a codeword fails to appear on the other list before the
maximum list size is reached, it may still be the ML codeword.
With this in mind, we run the two list decoders to a maximum
list size and return the codeword with the best available metric
(BAM) regardless of whether that codeword has appeared on
both lists. We call this the DLD-BAM decoder.

C. DLD for CPE with a Shared Polynomial (SP)

We now introduce the paradigm of complementary polyno-
mial exclusion with a shared polynomial (CPE-SP) as a way
to increase the redundancy of the component encoders, which
improves the performance of the dual list decoders by reducing
the expected list size.

Fig. 3 illustrates a rate-1/2 convolutional encoder structure
that provides increased redundancy to the dual list decoders.



1 1.5 2 2.5 3 3.5 4 4.5 5

Eb=N0 (dB)

10!6

10!5

10!4

10!3

10!2

10!1

100
F
ra
m
e
E
rr
o
r
R
a
te

DLD-CPE, Lmax=1e5
DLD-ML/E, Lmax=800, E&E
DLD-BAM Decoder, Lmax=1e4
SSV-CPE CC
SSV-CPE-SP
DLD-ML/SSV-CPE, Lmax=800
DLD-ML/SSV-CPE-SP, Lmax=800
DSU CPE
DSU CPE-SP
RCU

Fig. 4. FER vs. Eb/N0 simulation results for DLD-ML/E, DLD-ML/SSV,
DLD-BAM, and SSV decoding of two codes. The first code is the ν = 10
rate-1/2 code from Lin & Costello [15]. The second code is a newly designed
ν = 10 rate-1/2 code obtained by puncturing a rate-1/3 code. This second
code is decomposed via CPE-SP into two rate-2/3 codes that are decoded
with DLD-ML/SSV and DLD-BAM decoder.

The rate-1/2 code is decomposed into two rate-2/3 component
encoders created by complementary polynomial exclusion with
a shared polynomial g1(x)g3(x). The rate-1/3 mother code is
punctured to rate 1/2 by puncturing every other bit from the
two polynomials g1(x)g2(x) and g4(x)g3(x) that are excluded
from one of the component encoders. The first component
encoder is the rate-2/3 code with polynomials g1(x)g2(x) and
g1(x)g3(x) so that g1(x) serves as the ELF and [g2(x), g3(x)]
is the CC. Note that every other bit is punctured from the
output of g1(x)g2(x). The second component encoder is the
rate-2/3 code with polynomials g1(x)g3(x) and g4(x)g3(x) so
that g3(x) serves as the ELF and [g1(x), g4(x)] is the CC. Note
that every other bit is punctured from the output of g4(x)g3(x).

The polynomials g1(x), g2(x), g3(x), and g4(x) were
selected from among all degree-5 polynomials to maximize
the minimum distance of the rate-1/2 code. The selected
polynomials are defined as follows:

g1(x) = x5 + x2 + 1 (1)

g2(x) = x5 + x4 + x3 + x2 + 1 (2)

g3(x) = x5 + x+ 1 (3)

g4(x) = x5 + x4 + x2 + x+ 1 . (4)

Note that with CPE-SP, the sum of the Euclidean metrics ob-
tained from the two dual list decoders for a specified message
will now exceed the total metric for that message decoded
by SSV since the portion of the metric corresponding to
output of the shared polynomial is double counted. Therefore,
designing a stopping criterion for the CPE-SP enhanced DLD
with shared information is slightly more involved.

While CPE-SP places significant constraints on the encoder
polynomials, our distance-spectrum union (DSU) bound and
simulated FER analysis in Fig. 4 both confirm that these
constraints do not significantly impact performance of the
overall encoder C0 as compared to an overall convolutional
encoder that is completely unconstrained with the same ν0.

100 101 102 103

Lmax

0

0.25

0.5

0.75

1

N
or
m
al
iz
ed

C
om

p
le
x
it
y
/T

im
e

Viterbi Decoder Complexity: 7CSSV

Viterbi Decoder Time: 7TSSV

Mixed Decoder Total Complexity: 7CMix

Mixed Decoder Total Time: 7TMix

Defaulting to SSV Complexity: 7CDflt

Defaulting to SSV Time: 7TDflt

DLD Trellis Complexity: 7CTrellis

DLD Trellis combined Time: 7TTrellis

DLD Traceback+Insertion Complex.: 7CTrbck+Ins

DLD Traceback+Insertion Time: 7TTrbck+Ins

Fig. 5. Run time and complexity of DLD-ML/SSV decoder for CPE as
a function of maximum list size for the ν = 10 rate-1/2 code from Lin
& Costello [15] decoded using dual list decoding at Eb

N0
= 5.13 dB. All

variables are normalized by the time or complexity of the SSV decoding. In
the simulation setting, c1 = 0.3 , c2 = 0.4.

IV. RESULTS

We now show the simulation result in FER and the com-
plexity required to achieve target FER using DLD for CPE
and DLD for CPE-SP.

A. FER Performance

DLD decomposes convolutional encoders with large ν into
smaller ones that would enable serial list decoding. The ELF
codes serve to expurgate low weight codewords. However, as
we can see in Fig. 4, the FER of DLD for CPE is significantly
higher than that of SSV. The rate-1/1 codes have such low
redundancy that an extremely large list size is needed to
recover the ML codeword. However, we observed that the
DLD for CPE does not make decoding errors. Rather, it
simply fails to find an ELF-TB codeword and declares NACK
rather than undetected errors, which means the FER curve
can be interpreted as the percentage that are decoded by
DLD. For example, around Eb/N0 = 4.15 dB, DLD for
CPE with a Lmax = 105 would declare NACK one out
of 10 times on average. As we show in Fig. 5, a mixed
DLD/SSV for CPE, that falls back to run the full complexity
SSV whenever DLD fails to find an ELF-TB codeword, offers
both ML performance and significant complexity reduction
if the Eb/N0 is high enough for DLD to find an ELF-TB
codeword most of the time.

We also improve the dual decoding algorithm by sharing
received symbols as elaborated in the previous section. Look-
ing at Fig. 4, DLD for CPE-SP dramatically improves the
percentage decoded by DLD and shrinks the list size required
to find a match. For example, at FER 10−4 and max list size =
800, DLD declares NACK every one out of 500 times, which
means that the mixed DLD/SSV for CPE-SP decoder resorts
to SSV one out of 500 times on average.

B. Complexity Decrease of DLD over SSV

The overall complexity of DLD is dominated by the com-
plexity of maintaining separate ordered lists in both decoders.



3 3.5 4 4.5 5 5.5 6

Eb=N0 (dB)

0.05

0.1
0.125

0.25

0.5

1
N

or
m

al
iz

ed
 B

es
t C

om
pl

ex
ity

SSV Complexity
Optimized Complexity of DLD-ML/SSV-CPE
Optimized Complexity of DLD-ML/SSV-CPE-SP

Fig. 6. Normalized complexity for optimized maximum list sizes vs. Eb/N0

for two codes. The first code is the ν = 10 rate-1/2 code from Lin & Costello
[15]. The second code is the newly designed ν = 10 rate-1/2 code obtained
by puncturing a rate-1/3 code. Normalization is with respect to SSV.

Let L be a random variable defined as the “list rank” required
by S-LVA to search for a codeword that passes the CRC. In a
dual-list structure, two random variables L1 and L2 are defined
for each decoder to be the corresponding ”list ranks” of the
first matching codeword found on both lists. We developed
theoretical complexity expressions based on the methods by
Yang el al. [14]. The average complexity CSLVD of a rate-1/ω
CRC-ZTCCs SLVD of is decomposed into three components:

CSLVD = CSSV + Ctrace + Clist . (5)

CSSV denotes the complexity of summed add-compare-select
(ACS) operations on a zero-terminated CC trellis, Ctrace de-
notes the complexity of the additional traceback operations
required by SLVD, and Clist denotes the average complexity
of inserting new elements to maintain an ordered list of path
metric differences.

In [14], these metrics are evaluated by Eq. 6 through Eq. 9,
where E[I] is the expected number of insertions to maintain
the sorted list of path metric differences.

CSSV = 2v+1−2 + 1.5(2v+1−2) + 1.5(k+m+v)2v+1

+ c1[2(k+m+v) + 1.5(k+m)] (6)
Ctrace = 3.5c1(E[L]− 1)(K +m) (7)
Clist = c2E[I] log(E[I]) (8)
E[I] ≤ (K +m)E[L] + 2v − 1 . (9)

Similarly, we defined CTrellis as the combined complex-
ity of constructing the lower order trellises for DLD.
CTraceback+Insertion is defined as the combined complexity of
the additional traceback operations and the maintenance of an
ordered list of path metrics required by both DLDs. We use
CDLD to denote the total complexity of the dual list decoder
without defaulting to SSV.

CTrellis = CSSV,1 + CSSV,2 (10)
CTraceback+Insertion = Ctrace,1 + Clist,1 + Ctrace,2 + Clist,2 (11)
CDLD = CTrellis + CTraceback+Insertion . (12)

3 3.5 4 4.5 5 5.5 6

Eb=N0 (dB)

0

20

40

60

O
pt

im
al

 M
ax

 L
is

t S
iz

e

CPE-SP Enhanced DLD Optimal Max List Size

Fig. 7. The optimal constrained maximum list size vs. Eb/N0 for DLD-
ML/SSV that uses a rate - 1/2 code produced by puncturing a rate - 1/3 code
given by (2267, 3613, 2353). At each Eb/N0, a selection of list sizes (1 -
1000) is considered and the best list size is the one that results in the lowest
runtime. As Eb/N0 increases, the optimal max list size converges to 1.

In order to compare the complexity of DLD and that of SSV,
the normalized complexity C̄ is defined as the complexity
divided by the complexity of performing SSV, i.e.,

C̄DLD = C̄Trellis + C̄Traceback+Insertion . (13)

The complexity of a DLD-ML/SSV decoder is CDLD plus
the complexity of running SSV whenever DLD declares
NACK. The time measured for each component in (13) were
normalized by TSSV to get T̄ . The run-time of the afore-
mentioned components were recorded on an Intel E5 2670
using Visual Studio C++14. Fig. 5 shows the normalized
complexity derived from (10) - (13) and the normalized
runtime. Normalization is done by dividing by the complexity
or runtime associated with SSV, which includes performing
ACS operations on the trellis and a single traceback. Fig. 5
shows that the normalized complexity and normalized runtime
matches. In addition, the complexity of CPE-DLD is shown
to be dominated by the complexity of maintaining an ordered
list of path metric differences with high constrained maximum
list size.

In Fig. 6, we show that DLD-ML/SSV for CPE-SP has a
much lower complexity at Eb/N0 = 3.0 and further converges
to ∼ 0.07 at high Eb/N0. The DLD-ML/SSV for CPE, on
the other hand, started with a complexity higher than that of
SSV decoding and decreased quickly after Eb/N0 = 4.5. In
Fig. 7, we show that the optimal constrained maximal list
size converges to 1 as Eb/N0 increases for DLD-ML/SSV for
CPE-SP. This is because we tend to find the ML and correct
decoding very early in both lists at high Eb/N0.

V. CONCLUSION

This paper decomposes an overall convolutional encoders
C0 into component encoders C1 and C2 that allow an ELF to
be factored from each component. Parallel list decoding of the
component encoders allows a significant complexity reduction
as compared to regular Viterbi decoding applied to the original
encoder. New encoders with constraints that further reduce
the complexity of DLD by increasing the redundancy of the
component codes reduce complexity by an order of magnitude
while still yielding excellent FER performance.



REFERENCES

[1] G. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61,
no. 3, pp. 268–278, March 1973.

[2] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, April 1967.

[3] C.-Y. Lou, B. Daneshrad, and R. D. Wesel, “Convolutional-code-specific
crc code design,” IEEE Transactions on Communications, vol. 63,
no. 10, pp. 3459–3470, October 2015.

[4] H. Yang, S. V. S. Ranganathan, and R. D. Wesel, “Serial list viterbi
decoding with crc: Managing errors, erasures, and complexity,” in 2018
IEEE Global Communications Conference (GLOBECOM), December
2018, pp. 1–6.

[5] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.

[6] R. D. Wesel, A. Antonini, L. Wang, W. Sui, B. Towell, and H. Grissett,
“ELF codes: Concatenated codes with an expurgating linear function as
the outer code,” 2023 12th International Symposium on Topics in Coding
(ISTC), pp. 287–291, June 2023.

[7] A. Antonini, W. Sui, B. Towell, D. Divsalar, J. Hamkins, and R. D.
Wesel, “Suppressing error floors in SCPPM via an efficient CRC-aided
list viterbi decoding algorithm,” 2023 12th International Symposium on
Topics in Coding (ISTC), pp. 221–225, October 2023.

[8] W. Sui, B. Towell, A. Asmani, H. Yang, H. Grissett, and R. D. Wesel,
“CRC-aided high-rate convolutional codes with short blocklengths for
list decoding,” IEEE Transactions on Communications, vol. 72, no. 1,
pp. 63–74, December 2022.

[9] R. Schiavone, R. Garello, and G. Liva, “Performance improvement of
space missions using convolutional codes by CRC-aided list viterbi
algorithms,” IEEE Access, vol. 11, pp. 55 925–55 937, June 2023.

[10] N. Seshadri and C.-E. Sundberg, “List viterbi decoding algorithms with
applications,” IEEE Transactions on Communications, vol. 42, no. 234,
pp. 313–323, April 1994.

[11] M. Roder and R. Hamzaoui, “Fast tree-trellis list viterbi decoding,” IEEE
Transactions on Communications, vol. 54, no. 3, pp. 453–461, March
2006.

[12] A. Hasham, “A new class of priority queue organizations,” Master’s
thesis, 1986, aAI0662089.

[13] H. Yang, E. Liang, and R. D. Wesel, “Joint design of convolutional code
and crc under serial list viterbi decoding,” November 2018.

[14] H. Yang, E. Liang, M. Pan, and R. D. Wesel, “CRC-aided list decoding
of convolutional codes in the short blocklength regime,” IEEE Trans.
Inf. Theory, vol. 68, no. 6, pp. 3744–3766, February 2022, early access.
[Online]. Available: https://doi.org/10.1109/TIT.2022.3150717

[15] S. Lin and D. J. Costello, Error Control Coding: fundamentals and
applications. New Jersey, USA: Pearson Prentice Hall, May 2004.

https://doi.org/10.1109/TIT.2022.3150717

	Introduction
	Contributions
	Organization

	Complementary Polynomial Exclusion (CPE)
	Dual List Decoding (DLD)
	DLD for Complementary Polynomial Exclusion (CPE)
	Verification (or not) and falling back to SSV
	DLD for CPE with a Shared Polynomial (SP)

	Results
	FER Performance
	Complexity Decrease of DLD over SSV

	Conclusion
	References

