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Abstract:

The relationship between genotype and phenotype, or the fitness landscape, is the foundation of
genetic engineering and evolution. However, mapping fitness landscapes poses a major technical
challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic
in the study of fitness landscapes, due to its relatively small sequence space combined with its
importance in synthetic biology. The combination of in vitro selection and high-throughput
sequencing has recently provided empirical maps of both complete and local RNA fitness
landscapes, but the astronomical size of sequence space limits purely experimental
investigations. Next steps are likely to involve data-driven interpolation and extrapolation over
sequence space using various machine learning techniques. We discuss recent progress in
understanding RNA fitness landscapes, particularly with respect to protocells and machine
representations of RNA. The confluence of technical advances may significantly impact

synthetic biology in the near future.



Introduction

Molecular evolution is often likened to a hill-climbing process in sequence space. In this
conceptualization, molecular sequences (e.g., DNA, RNA or protein) inhabit a potential space of
all possible sequences. A landscape may be drawn in this space, such that each point represents a
possible genotype and the height of that point represents the fitness associated with that genotype
(Figure 1a). The ‘fitness landscape’ describes the relationship between genotypes (the genetic
makeup of an individual) and its reproductive success, or fitness (25, 109). Valleys represent
genotypes with low fitness, while peaks represent genotypes with high fitness. The fitness of
similar genotypes may be highly correlated (smooth landscape) or poorly correlated (rugged
landscape) (14). The features of the fitness landscape determine the potential for adaptation and
evolvability (36, 86) given genetic variation as the raw material (43, 109). Organisms can move
through the landscape via mutations, and natural selection tends to push populations uphill,
towards higher fitness (14). It is important to recognize that a full sequence space is extremely
high-dimensional, since the number of dimensions equals the number of variable sites (i.e., the
sequence length). The large number of dimensions allows for a very large number of potential

evolutionary pathways, making exploration of these pathways quite challenging.
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Figure 1. Conceptual drawings of a fitness landscape. (a) The x- and y-axis represent sequence
space (which is L-dimensional in reality), and the z-axis shows fitness (also illustrated by color).
Peaks represent high-fitness families. (b) In vitro selection establishes a threshold activity (a ‘sea

level’, shown in gray) required for survival, eliminating sequences of low fitness. Only features

of the fitness landscape above this threshold can be experimentally determined.

Although a fitness landscape ‘map’ may be inadequate for describing evolution in complex
organisms evolving dynamically with significant interplay and feedback between genetic and
environmental factors, the fitness landscape is a powerful metaphor for molecules. In particular,
molecular activity (e.g., catalytic power or binding affinity) may be equated to ‘fitness’, the
environments are typically kept constant, and the activity of a sequence is essentially determined
only by its genotype. Molecular fitness landscapes are an extensive topic, including much
theoretical work, and have been reviewed elsewhere (for examples, see (25, 82)). The simplest
exploration of the fitness landscape is a biased random walk, where a genotype may move to a
neighboring sequence (e.g., a single mutation) with a probability that is related to the fitness of
that sequence. This process models a low mutation rate, in which new copies have only a single

mutation. Additional mechanisms (e.g., high mutation rates, recombination, rearrangements)



would generate greater diversity and thus more expansive exploration of the fitness landscape.
However, biological mechanisms generally explore only a very small fraction of potential
sequence space. Here, we discuss recent and emerging data-driven techniques to map fitness
landscapes of catalytic RNA. The RNA molecule presents a unique duality in biochemistry: it
can both store genetic information, as in the case of RNA viruses, and catalyze chemical
reactions, in the case of ribozymes, through complex three-dimensional structures. RNA
molecules with catalytic activity, often selected in vitro (10, 19), are of special interest to study
both the functional diversity of RNA and the RNA world hypothesis (11, 54, 91), which posits
that RNA would comprise the metabolic architecture of the earliest cells. RNA is therefore a
particularly intriguing molecule for studying the fitness landscape, and thus understanding how

life could evolve in sequence space.
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Figure 2. Conceptual drawings of possible experimentally explored sequence space. (a)
Complete coverage of sequence space, limited to the regime of approximately L < 26 for RNA.
The space is finite but very large, with L dimensions; this drawing is an abstract visualization.

Virtually all points in sequence space at this L can be synthesized in a random pool. (b) Local



coverage of sequence space near a wild-type (WT) sequence, usually a known ribozyme. Many
mutants (M) of the ribozyme are synthesized, exploring the local volume of sequence space

immediately surrounding the WT.

Fitness Landscape Cartography

Although the size of sequence space increases exponentially with length (4* sequences of length
L), there exists an intermediate regime for L in which L is small enough that it is possible to
create a library containing almost all possible sequences through random synthesis, and at the
same time L is large enough to have sequence-specified chemical activities (Figure 2a). In this
regime (approximately L = 5, based on the function exhibited by very small ribozymes (102), up
to perhaps 26, due to experimental laboratory scales), one may take advantage of the fact that the
vast majority of sequence space lacks activity in a given environment. Therefore, a two-step
process can be employed to map the fitness landscape: 1) isolating the small fraction of active
sequences from a random library covering sequence space, effectively separating the ‘wheat
from the chaff’ (Figure 3a), and then 2) assaying those sequences in a high-throughput method
(Figure 3b). In this two-step process (also called SCAPE, for sequencing to measure catalytic
activity paired with in vitro evolution (92)), in vitro selection is used for the first step of
enriching active sequences. For example, active variants can be captured on solid phase support
to select based on binding affinity (for aptamers) or chemical conjugation to a ligand (for
ribozymes). In vitro selection thus reduces the complexity of the RNA library from 4 down to
an assayable number, perhaps in the thousands. This strategy is not limited to down-selection of
random libraries, but can also be applied to designed libraries, such as a library based on a
ribozyme where only specific positions have been randomized (77) (also called “mutate-select-

and-sequence” (112)), or a library of recombinants derived from known ribozyme sequences



(20), with the caveat that the sequence space being mapped is a specially biased subset of full

sequence space (Figure 2b).
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Figure 3. Two-part procedure for mapping fitness landscapes by SCAPE. (a) First, an initial
pool of sequences is designed to cover a defined sequence space. Fitness of different sequences
is shown by color, with red being highest fitness and blue being low fitness. Most sequences in
the initial pool are likely to have low fitness. During rounds of in vitro selection, the low fitness
sequences are eliminated while high fitness sequences are enriched. At some point (Round y),
the complexity of the pool has been reduced to an assayable number of sequences having fitness
above the threshold value (gray). (b) Second, the selected pool (Round y) is assayed with a
technique such as high-throughput sequencing (HTS). For a ribozyme, kinetic characterization of
the pool is performed with reactions at multiple time points (or substrate concentrations, etc.), to

assay all of the sequences in parallel. Reacted molecules (indicated by the purple marker) are



separated biochemically from unreacted molecules and sequenced. For each unique sequence,
data on the number of reads is translated into the reacted fraction across time points and fit to a

kinetic model.

Once the selected variants are isolated, a high-throughput assay is then employed for the second
step of determining activity values for the selected sequences (Figure 3). High-throughput
sequencing (HTS) technology provides the ability to collect a large amount of data (~108
sequence reads). By using the number of reads as a means to quantify sequences before and after
a reaction, the relative activities of different sequences within a pool can be determined in a
massively parallel assay. What is required from the experimenter is a method to separate reacted
and unreacted RNAs, such as by affinity chromatography or gel electrophoresis, resulting in a
sample of reactive RNAs that can be sequenced and counted through reads. With appropriate
normalization standards, sequence read abundances can also be translated into absolute activity
values (e.g., rate constants or binding affinities). HTS was first applied by Pitt and Ferré-
D’Amaré to a heavily mutagenized library of the class I RNA ligase ribozyme (mutation rate of
21% per position in 45 nt) subjected to in vitro selection (90). The study yielded the local fitness
landscape of this laboratory-evolved ribozyme, with relative abundance of reads, which
correlated with ribozyme activity, used as a proxy for fitness for individual sequences. An
advance on HTS assay techniques is to perform the reaction while sampling at multiple time
points or substrate concentrations to obtain data for fitting to a kinetic model (as opposed to a
single reaction point) (28, 92). These techniques can be extended beyond nucleic acid sequences,
as long as the molecules are uniquely labeled by nucleic acids. For example, binding kinetics
were measured for over twenty thousand peptide sequences in parallel, by using mRNA display

to read out the identity of bound peptides (48). HTS assays also have utility outside of the goal of



mapping fitness landscapes, and can be applied to a designed library without selection (“mutate-
and-sequence”) (58-60, 112). Additional technical variations could be envisioned, such as
characterization of inhibitors and substrate specificity (49). These methods have emerged from
the synergy between HTS and the tradition of using nucleic acids as ‘barcodes’ while screening

synthetic chemical (or biomolecular) libraries (31).

How many sequences can be assayed by these methods depends on the depth of sequencing as
well as the evenness of the pool being assayed. A general rule of thumb from our experience is
that at least 100 (and preferably 1000) sequence reads are needed to obtain a reliable estimate of
activity (99). If the sequence variants are evenly represented in the pool, then a sequencing depth
of 10® reads would give 100 reads of 10° sequences. Thus, in principle, up to about a million
sequences might be assayed at this depth, but any deviation from an even distribution would
reduce this number. In particular, pools resulting from in vitro selection are likely to be highly
uneven, such that the assayable number of sequences is more likely to be on the order of tens of
thousands. As with any other experimental protocol, HTS experiments should be conducted with
replicates to evaluate reproducibility. Overall, for a limited scope, SCAPE can experimentally

determine comprehensive or local maps of fitness (i.e., activity) landscapes for functional RNAs.

The Chemical Environment

Environmental conditions can greatly affect fitness landscapes. For instance, a mutation in
bacteria that confers resistance to an antibiotic would increase fitness in the presence of the
antibiotic, but might decrease fitness in the absence of the antibiotic, due to the added metabolic

load (22). Environmental factors that can influence molecular RNA fitness include pH, ion



concentration, temperature, availability of substrates and nutrients, interactions with other
biopolymers, and more. While a full discussion of the variety of environmental inputs is beyond

the scope of this review, a few examples are given here to illustrate their importance.

The pH of an environment plays a pivotal role in influencing the structure, function, and stability
of RNA molecules by altering the protonation states of heteroatoms in the nucleobases,
hydroxyls, and phosphates (66). Under acidic conditions, the protonation of G:C base pairs may
reduce hydrogen bonding, decreasing the stability of the duplex, and noncanonical A:C and C:C
base pairings may occur (12). Basic pH promotes hydrolysis of the RNA backbone through
deprotonation of the 2'-OH group, among other effects. These changes can significantly disrupt
base-pairing and tertiary interactions, in addition to impacting the interactions of RNA with
metal 1ons and organic molecules. Cations, particularly divalent cations such as magnesium
(Mg?"), can interact with the negatively charged phosphate backbone of RNA, allowing the RNA
molecule to fold into a compact structure and sometimes participating in the catalytic
mechanism. One study on mutational variants of the Azoarcus group I self-splicing intron over a
MgCl2 concentration series (1-48 mM) showed that fitness in the library increased with
increasing magnesium concentration (88). Likewise, changes in temperature can significantly
influence the folding rate and equilibrium ensemble of RNA structures. High temperatures
generally denature nucleic acids, but some catalytic nucleic acids, such as a G-rich peroxidase
DNAzyme that forms a four-stranded guanine-quadruplex, can retain activity at temperatures as
high as 95 degrees C (40). At the other extreme, temperatures nearing the freezing point may be

advantageous in reducing the rate of hydrolysis while concentrating reactants as water
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crystallizes (8). These effects are not always predictable, and experimental study is therefore

required.

In addition to the effects of ions and small molecules, the interior of cells is widely appreciated
to be ‘crowded’ with macromolecules (Figure 4a). Thus, the volume available to a
macromolecule is nonspecifically constrained by the volumes of other macromolecules present,
affecting dynamics such as diffusion, binding, and conformational changes (i.e., excluded
volume effects) (93, 96). For example, the highly stable G-quadruplex motif in RNA is known to
play essential roles in biological reactions such as translational regulation and alternative splicing
(34, 35, 41, 62). The model crowding agent polyethylene glycol (PEG200) stabilized G-
quadruplexes having 3-4 G-quartets (71). Crowding also appears to compensate for the loss of
other ribozyme interactions. For example, the addition of PEG enhances the activity of Azoarcus
group I ribozyme and reduces its Mg** requirement (27, 56, 57), and PEG also enhances the
activity of a ligase ribozyme in disfavorable conditions for folding and activity (e.g., high urea
concentration, alkaline pH) (23, 68). At the same time, crowding agents may also have effects
aside from the excluded volume effect, e.g., due to chemical interactions with the RNA, so

mechanistic studies are often important (21, 57, 103).
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Figure 4. Conceptual illustrations (not to scale) showing (a) crowded environment of biological
cells, (b) a complex coacervate droplet formed due to electrostatic interaction between oppositely

charged molecules, and (c) a bilayer membrane vesicle.

Given the fluctuations of natural environments and the dependence of fitness on the
environment, fitness landscapes are inherently dynamic. Such shifts could facilitate the
exploration and selection of novel motifs, which might remain undiscovered under standard or
constant conditions. Many conditions, particularly pH, temperature and ionic conditions, affect
both catalytic activity and hydrolytic stability, illustrating that molecular fitness includes
multiple components. For an RNA polymerase ribozyme, increasing Mg?* concentration results
in greater polymerization activity but also greater hydrolysis, ultimately limiting the extent of
polymerization (65, 74). This example illustrates that different aspects of fitness can experience

opposing effects in a changing environment. The fitness landscape is a complex, dynamic object.

Fitness Landscapes for Protocells

While fitness is usually considered to be a property of an individual organism, natural selection
actually occurs at multiple levels, often simultaneously (39, 69). For example, selection at the
level of the gene within the genome may lead to the evolution of apparently parasitic sequences,
such as transposons (107), while higher-level selection may drive the evolution of cooperative
traits (81). Given the complex integration of distinct molecules that is required for metabolism,
levels of selection above the molecular must have been essential to the emergence of cellular life.

Thus, understanding the fitness of the earliest molecular ensembles, including how RNA fitness
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is affected by other components of the ensemble, is important for understanding the origin of

life.

Protocells are experimental models of primitive cells (13, 63, 101). Regardless of their physical
form, protocells are essentially a nonrandom grouping of individual molecules, creating a
potential level of selection above the ribozyme (3). Cooperative phenotypes, which may be
disadvantageous (i.e., selected against) at the level of individual molecules, can evolve in
protocells (9, 101). Protocells that create physical compartments for RNA have gained particular
attention for the origin of life (45, 89). Understanding how protocells affect the functional
behavior of RNAs and mapping the fitness landscape of protocells themselves are current goals

in this area. Two types of protocells, coacervates and membrane vesicles, are considered here.

The formation of coacervates is now a well-recognized process in cell biology (44). Complex
coacervates form when a charged macromolecule interacts with oppositely charged molecules,
creating a separate, still liquid, macromolecule-rich phase (Figure 4b). The interactions are
generally nonspecific, highly dynamic and of moderate strength, with the associations being
driven by electrostatic interactions and the entropic gain from counterion release (106).
Combinations of neutral molecules, such as dextran and PEG, may also form aqueous two-phase
systems (ATPS) with the liquid phases having distinct polymer compositions. Although the
equilibrium state is bulk separation of the phases, individual droplets can form as a metastable
state. In the context of a cell, these droplets may act as membraneless organelles. It has long been

postulated that coacervate droplets could organize prebiotic molecules together to form a
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protocell (83), a hypothesis that has recently gained experimental interest following advances in

coacervate cell biology.

Within a coacervate, the altered microenvironment increases local concentrations and may
change relative energy levels for ground and transition states, affecting the rate of chemical
reactions (76). An early demonstration showed that compartmentalization in an ATPS increased
the reaction rate of the hammerhead ribozyme by nearly two orders of magnitude, largely due to
the increased RNA concentration (100). Complex coacervates made of negatively charged RNA
and positively charged peptides may be particularly interesting from the standpoint of RNA-
peptide coevolution (30, 73). Recently, a complex coacervate made of poly-L-lysine and the
hairpin ribozyme was found to enhance ribozyme activity by 1-2 orders of magnitude. The
hairpin ribozyme catalyzes both cleavage and ligation, given the appropriate substrates.
Interestingly, the coacervate environment was found to shift the equilibrium toward ligation,
likely due to the high RNA concentration, suggesting that this effect might be harnessed in
protocells to create longer RNAs from shorter oligonucleotides (67). Furthermore, the ligation
products altered the physical properties of the droplets, including reduced rates of RNA release
from the droplets (104). Coacervates containing out-of-equilibrium chemical systems exhibit
phenotypes at the droplet level, such as changes in growth and fusion rates (75). Droplet
properties are also influenced by the sequences of the peptide component, with one study
illustrating that charged-interspaced heteropeptides (Arg-Gly-Gly repeats compared to poly-Arg)
favored the liquid rather than gel phase and also showed better sequestration of Mg?*, enabling
ligase ribozyme activity (46). These studies lay the groundwork for potential genotype-

phenotype coupling that could lead to natural selection at the level of the protocell. Along with
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this progress, important challenges also remain in the field of coacervate protocells, including the
colloidal stability of droplets as compartments for multiple generations of selection and
replication (2, 26), and exchange of biopolymers among droplets that may interfere with

individuation of compartments (50).

Mimicking the bilayers of contemporary biological cells, membrane vesicles have become
established as an experimental model for protocells (Figure 4c). In particular, fatty acids with
eight or more carbons form bilayer vesicles at a pH near their pKa in the membrane (38), and are
envisioned as a transition stage for protocells before the appearance of the more robust
diacylphospholipid membranes found in modern cells (51). Fatty acids can be synthesized under
simulated prebiotic conditions (70, 95), can grow and divide (1, 42, 105, 115), and allow
permeation of RNA building blocks such as nucleoside phosphorimidazoles and cations such as
Mg?" (2). Vesicles also appear to form a kinetically stable microenvironment suitable for
multiple generations of selection and replication (50). The lability of fatty acid vesicles to high
Mg*? makes ribozyme compatibility challenging, but this sensitivity may be mitigated by partial
chelation (2) or with ribozymes having low Mg?* requirement (17, 24). Thus, RNA fitness within

fatty acid protocells would involve tolerance to low Mg?" or chelating conditions.

In additional to chemical compatibility, another effect of protocells on RNA fitness landscape
occurs due to an excluded volume effect, specifically due to the physical confinement presented
by the membrane itself, which restricts the volume of the encapsulated macromolecules. By
altering the energies of different conformations (114), confinement stabilizes compact structures

in RNA. This results in effects such as higher ligand binding affinity for an RNA aptamer (97),
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enhanced RNA-RNA association (both intermolecular and intramolecular), and increased
docking interactions for the hairpin ribozyme, leading to the increased catalytic activity (87).
Encapsulation restored activity for folding-deficient mutants of the hairpin ribozyme (87),
similar to an effect of macromolecular crowding (85), suggesting significant impacts to the
ribozyme fitness landscape. These findings motivated evaluation of how encapsulation inside
vesicles altered the local fitness landscapes of several self-aminoacylating ribozymes (64, 92). In
a high-throughput study, thousands of ribozyme sequences showed consistently higher activity
when encapsulated. At the same time, epistatic effects (i.e., “ruggedness” on the landscape) were
amplified. Interestingly, encapsulation also increased the variance of fitness, such that the RNA
population adapted more quickly during in vitro evolution, in accordance with Fisher’s
Fundamental Theorem of Natural Selection (37). This study illustrated how protocells could alter
the fitness landscape, and its exploration, in significant ways. Combined with other studies
demonstrating mechanisms for genotype-phenotype coupling at the protocell level (1, 16, 33),
these lines of work show how membrane vesicles yield complex system-level behaviors. While
vertical transmission of genetic information could occur through growth and division, horizontal
transfer has also been implemented. Giant unilamellar vesicles (GUVs) encapsulating RNA and
subjected to a freeze-thaw process showed mixing of contents among individuals (98).
Understanding the higher-level fitness landscape of vesicle protocells, in terms of both its
fundamental structure and how populations explore the landscape through genetic transmission,

is an important future challenge.

Considerations for Machine Learning
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Catalytic RNA fitness landscapes are amenable to data-driven discovery using machine
learning (ML) due to the large quantities of available sequencing data that enable analysis of
underlying trends. Early kinetic sequencing studies (78) investigated the kinetics of catalytic
RNA substrate specificity, evaluating a pool of ~10° sequences. Fluorescence-based
measurements then enlarged the possible space to ~10* sequences (6). Since then, deep
sequencing (28, 60, 79, 113), including k-Seq (49, 92, 99), has unlocked large (10°-10°) RNA
sequence spaces to identify high fitness sequences for different types of reactivity. Analysis of
the active sequences could unveil underlying motif commonalities that likely give rise to
catalytic behavior (92). The presence of these relationships indicates that ML could be used for
quantitative sequence-function mapping. In vitro evolution, or sequential evolution of ligands by
exponential enrichment (108) (SELEX), over large sequence spaces, used in many sequencing
studies (4, 5), represents a frontier where ML-acceleration for RNA discovery remains largely
untapped. The data from in vitro evolution can be used to construct quantitative ML models that
map sequence and conditions to function. This data can be used to identify common
characteristics in high-fitness motifs and ideal conditions (61) (i.e. temperature, pH, ion identity)
for selection during one round. Correspondingly, subsequent rounds of in vitro evolution may
use improved conditions and thus reduce the number of rounds needed to identify the best-
performing sequences.

A critical challenge for ML-accelerated discovery is representing RNA sequences in a
form that ML models are able to learn. The way that an RNA sequence is represented to a model
is called a “representation” or “featurization” and influences the types of models that are used,
the way in which a model learns the underlying trends, and the interpretability of model

€C_9

predictions. In the context of linear regression, this representation is the “x” variable in y =
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W*x+b, with “IW”’ being the weights and “b” being the biases. In ML models, instead of a linear
mapping between the “x” and “y” variables, a nonlinear mapping is performed instead, adding
flexibility to the fitting function (f) that maps x and y (y = f(x)). Often, representation choice
influences whether or not a model is able to generalize to new chemical spaces beyond the
training data. Whether constructing models that harness labeled data (i.e. supervised models),
those that cluster data without labels (i.e. unsupervised models), or those that use a subset of
labeled points (i.e. semi-supervised models), representation choice is crucial for successful ML
model development. When selecting a representation, it is important to consider the data, the
problem at hand, and the objectives of the ML model. Some essential considerations include: 1)
whether the sequences are of consistent length, 2) whether modified nucleotides (i.e. methylated
or xeno-nucleic acids) are used, and 3) whether future objectives are inherently extrapolative or
interpolative based on the input data. Although there have been advances in ribozyme structure
determination, many catalytic RNA fitness-landscape problems are naturally posed as sequence-
function mappings. With the exception of ML-accelerated directed evolution (111), this
sequence-function approach is in contrast to the sequence-structure and subsequent structure-
function mappings that are typically used to understand enzymatic catalysis. This difference
might be attributed to factors such as: 1) few RNA structures display quarternary structures (52)
that commonly occur in proteins, and 2) the use of high-throughput sequencing (14) and
mutational analysis (60, 113) for RNA provides direct insights into sequence-function maps,
enabling structures to be forgone.

One-hot encoding is the simplest representation for RNA sequences. One-hot encoding is
a binary vector representation where "1" is used to represent the presence of a value (‘hot’ if

present, ‘cold’ if absent with value set to "0"). In this representation, sequences of length N are
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represented by an N by 4 sized bit vector (32). One-hot encodings do not readily generalize to

larger or shorter sequence lengths; the length N must be set by the largest sequence, with

remaining positions filled with 0 (in a process called zero padding) if no nucleotide exists. Each

of the four columns represents the four RNA nucleotides (e.g. A, U, G, C) and contains a 1 if a

nucleotide is present at that sequence position or a 0 if it is not (84) (Figure 5). Due to its nature,

one-hot encoding is sparse and encodes the presence of certain nucleotides in specific positions,

but not their relationships or positional dependencies relative to other nucleotides.

Correspondingly, this primitive representation will fail to generalize effectively for nearly all

sequence-property relationships, which depend on motifs of many nucleotides as opposed to a

single nucleotide in a specific sequence position. Because they are sparse, one-hot

representations require more data to learn from.
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Figure 5. Various representations for RNA sequences for use in machine learning models with a
7-nucleotide long training sequence given as an example: 1) one-hot encoding, using "1" to
indicate the presence of a given nucleotide at a given position, 2) k-mer encoding, developing a
histogram of subsequence counts based on a given sliding window, 3) word2vec encoding,
learning a distribution of RNA sequences, 4) a molecular graph encoding, incorporating
information from different bonds and atoms into a connectivity graph, and 5) an abstracted
molecular graph encoding, incorporating secondary structure between RNA strands. For each
encoding, a representative training sequence and corresponding encoding is denoted. Then, three
test sequences (with differences noted in orange in the top row) are presented. A green check
mark indicates if the training data are natively able to handle the test sequence and how that test
sequence would be encoded, with changes to the representation in orange. A red cross indicates
that the representation and given training sequence would not readily generalize to the presented
test set sequence. In this case, the changes required to the training data representation are

denoted in orange, along with a caption that identifies the corresponding challenges.

The k-mer representation encodes relationships to adjacent nucleotides by defining a
window size (i.e. k) and sliding the window along the sequence, leading to a histogram of
subsequence fragments (7). As an example, for a sequence “AUCGCGA” to be represented as a
2-mer (k=2), we represent the sequence as follows: [AU: 1, UC: 1, CG: 2, GC: 1, GA: 1]. In this
histogram, “CG” appears twice in the sequence and is thus counted twice (Figure 5). The k-mer
representation is highly sensitive to window size: high k-values generate a more global
representation relative to small k-values, which generate a local representation. As the k-values
increase, the number of features also increases, thus generating an increasingly sparse
representation and presenting similar challenges to one-hot encodings. Due to its window-size,
the k-mer representation enables extraction of trends that depend on subsets of sequences,

although the histogram-like nature removes positional dependence.
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Although one-hot and k-mer representations convert text-based sequences into numerical
representations for use in ML models, these representations suffer from a curse of dimensionality
that can make them too sparse (e.g. too many features). Similarly, the k&-mer representation can
fail to encode critical relationships that are not readily captured by a sliding window. Here, ideas
from natural language processing (NLP) facilitate improved text-based representations.
Word2vec (72) is a numerical NLP representation that is learned from a distribution of words in
a corpus (i.e. a collection of text). In this representation, words are obtained from a corpus and
stored with their neighboring words (Figure 5). A model then learns to predict the next word
given a set of words and generates a set of probabilities for what the next word will be. This
unsupervised approach learns patterns from the distribution of words in the corpus. From these
distributions, these word2vec models encode context because they predict the next word given a
set of words. For RNA, the “words” are the nucleotides and similar sequences are grouped
together. The word2vec representation can then be fine-tuned for downstream tasks such as
sequence-function mapping. This representation can be particularly valuable for encoding long-
range dependencies that are more challenging to encode in a k-mer representation.

When non-natural nucleotides or chemically functionalized nucleotides are used in
sequencing experiments, they produce a challenge to the one-hot, k-mer, or word2vec
representations if not handled carefully. Here, the modified nucleobases are chemically distinct
from the canonical nucleobases, but share similarities. Therefore, we suggest that encoding
chemical information about the nucleobases via a molecular graph (i.e. the atoms and bonds of
the nucleobase) can provide a novel strategy to learn the underlying trends with quantitative
sequence-function maps. With this strategy, similarity to other nucleobases (i.e. adenine and

hypoxanthine, the nucleobase in inosine, have similar structural characteristics) could be utilized
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while distinguishing the two compounds (Figure 5). We anticipate that this strategy will be
challenged by the large connectivity graph sizes for long RNA sequences that have hundreds or
thousands of atoms. More abstract graph-based representations (where nodes represent
nucleotides) are essential for encoding secondary structure such as base-pairing (80, 110) (Figure
5). These base-pairing interactions, essential for forming structures such as hairpins, may be
essential for catalytic activity; a graph-based representation allows a model to harness this
information.

A recent study applying ML to an F1*U ligase ribozyme has successfully introduced
deep learning (i.e. deep neural networks) into RNA sequence exploration to find peaks on the
fitness landscape, as quantified by relative ligation activity (94) . In particular, this study used in
silico selection, recombination, and mutation to find paths that are free of epistasis, which
challenge ML models. These data were then successfully used to train a deep neural network to
predict and identify functional mutational variants that have comparable activity to the wild type.
These models enable evaluation of the paths between the fitness peaks, enabling a comparison
between genotype (sequence) and corresponding phenotype (fitness). Due to the rarity of high
fitness regions and the presence of epistatic (i.e. nonadditive) effects that can lead to activity
cliffs (15), supervised ML models are challenged by data bias, since the majority of data will be
from low- or moderate-fitness regions of the fitness landscape. By incorporating information
from rounds of in vitro selection, the underlying data is not biased solely towards deleterious
mutants, enabling predictive ML model training. Aside from ribozymes, similar approaches have
been used for DNA sequences that bind carbon nanotubes (55). Here, ML models were trained to
identify the binding response of a sequence to serotonin. These models were subsequently used

to identify low- and high-fitness sequences for serotonin binding. This ML-driven approach led
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to the discovery of five new DNA-carbon nanotube conjugates that had higher intensity response
to serotonin than the best previously identified combinations.

Generative models have seen recent use for RNA sequence discovery due to their ability
to learn the underlying trends and generate novel sequences for testing. In particular, the recent
use of Restricted Boltzmann Machines (29) (RBMs) and Hidden Markov Models (47) (HMM) in
neural networks has seen increased use due to interpretability and sequence suggestions. Here,
architectures used are similar to traditional variational autoencoders (VAEs), which are
unsupervised models (i.e. models that do not require data labels) that encode sequences into an
information-rich, low-dimensional “latent space” (i.e. an abstract vector space of arbitrary
dimension that positions chemically similar sequences near each other) and then decode the
latent space back into a sequence. If the latent space accurately maps the fitness landscape,
decoding peaks on the landscape can lead to the discovery of high fitness regions. While training
semi-supervised (i.e. with a subset of sequences labeled with properties) variants of VAEs
known as a conditional VAEs (CVAEs), this approach has led to the discovery of new catalytic
sequences. In recent work (18), CVAEs successfully identified novel RNA-like polymers called
highly functionalized nucleic acid polymers (HFNAPs) by using the binding affinity to
daunomycin as a proxy for fitness. As generative models improve, they can improve sampling of

RNA sequence space to accelerate the discovery of highly active catalytic ribozymes.

Concluding Remarks
Studies of fitness landscapes of RNA molecules were recently revolutionized by high-throughput
sequencing, which enabled quantitative assays of large numbers of sequences. When coupled

with in vitro selection, significant insights can be gained about these fitness landscapes.
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Important areas for future study in this area include probing how the environment, especially
dynamic environments, change the fitness landscape, and understanding the structure of
protocellular fitness landscapes and their relationship with molecular fitness landscapes. Given
the absolute need for interpolation and extrapolation to map fitness landscapes for molecules
with greater than a couple dozen nucleotides, machine learning, like HTS before it, may be
poised to enable major discoveries in this area. New representations, such as molecular graphs,
could help advance these methods by encoding relevant features. Along with close attention to
opportunities to gain not only predictive power but also scientific understanding, the field may
soon realize the molecular cartographer’s dream (53): maps of fitness landscapes to guide

synthetic biology.

Disclosure Statement
The authors are not aware of any affiliations, memberships, funding, or financial holdings that

might be perceived as affecting the objectivity of this review.

Acknowledgments

The authors thank Ulrich Miiller for insights on ribozyme fitness landscapes. Funding from the
Simons Foundation Collaboration on the Origin of Life (290356FY 18), NASA
(8ONSSC21K0595), NSF (EF-1935372, EF-1935087), Sloan Foundation (G-2022-19518), and
Moore Foundation (11479) is acknowledged. AN gratefully acknowledges the support of the
Eric and Wendy Schmidt Al in Science Postdoctoral Fellowship, a Schmidt Futures program.
AVS’s research was supported by an appointment to the NASA Postdoctoral Program,

administered by Oak Ridge Associated Universities under contract with NASA.

24



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Adamala K, Szostak JW. 2013. Competition between model protocells driven by an
encapsulated catalyst. Nat. Chem. 5: 495-501

Adamala K, Szostak JW. 2013. Nonenzymatic template-directed RNA synthesis inside
model protocells. Science 342: 1098-100

Adamski P, Eleveld M, Sood A, Kun A, Szilagyi A, et al. 2020. From self-replication to
replicator systems en route to de novo life. Nat. Rev. Chem. 4: 386-403

Agresti JJ, Kelly BT, Jaschke A, Griffiths AD. 2005. Selection of ribozymes that catalyse
multiple-turnover Diels—Alder cycloadditions by using in vitro compartmentalization.
Proc. Natl. Acad. Sci. U.S.A. 102: 16170-75

Ameta S, Winz M-L, Previti C, Jaschke A. 2014. Next-generation sequencing reveals
how RNA catalysts evolve from random space. Nucleic Acids Res. 42: 1303-10
Andreasson JOL, Savinov A, Block SM, Greenleaf WJ. 2020. Comprehensive sequence-
to-function mapping of cofactor-dependent RNA catalysis in the GLMS ribozyme. Nat.
Commun. 11: 1663

Angenent-Mari NM, Garruss AS, Soenksen LR, Church G, Collins JJ. 2020. A Deep
learning approach to programmable RNA switches. Nat. Commun. 11: 5057

Attwater J, Wochner A, Pinheiro VB, Coulson A, Holliger P. 2010. Ice as a protocellular
medium for RNA replication. Nat. Commun. 1: 76

Bansho Y, Furubayashi T, Ichihashi N, Yomo T. 2016. Host—parasite oscillation
dynamics and evolution in a compartmentalized RNA replication system. Proc. Natl.
Acad. Sci. U. S. A. 113: 4045-50

Benner SA. 2023. Rethinking nucleic acids from their origins to their applications.
Philos. Trans. R. Soc. Lond., B, Biol. Sci. 378: 20220027

Bernhardt HS. 2012. The RNA world hypothesis: the worst theory of the early evolution
of life (except for all the others). Biol. Direct 7: 23

Bernhardt HS, Tate WP. 2012. Primordial soup or vinaigrette: did the RNA world evolve
at acidic pH? Biol. Direct 7: 4

Blain JC, Szostak JW. 2014. Progress toward synthetic cells. Annu. Rev. Biochem. 83:
615-40

Blanco C, Janzen E, Pressman A, Saha R, Chen IA. 2019. Molecular fitness landscapes
from high-coverage sequence profiling. Annu. Rev. Biophys. 48: 1-18

Charest N, Shen Y, Lai Y-C, Chen IA, Shea J-E. 2023. Discovering pathways through
ribozyme fitness landscapes using information theoretic quantification of epistasis.
bioRxiv: 10.1101/2023.05.22.541765

Chen IA, Roberts RW, Szostak JW. 2004. The emergence of competition between model
protocells. Science 305: 1474-76

Chen IA, Salehi-Ashtiani K, Szostak JW. 2005. RNA catalysis in model protocell
vesicles. J. Am. Chem. Soc. 127: 13213-19

Chen JC, Chen JP, Shen MW, Wornow M, Bae M, et al. 2022. Generating
experimentally unrelated target molecule-binding highly functionalized nucleic-acid
polymers using machine learning. Nat. Commun. 13: 4541

Curtis EA. 2022. Pushing the limits of nucleic acid function. Chem. Eur. J. 28:
€202201737

25



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Curtis EA, Bartel DP. 2013. Synthetic shuffling and in vitro selection reveal the rugged
adaptive fitness landscape of a kinase ribozyme. RNA 19: 1116-28

Daher M, Widom JR, Tay W, Walter NG. 2018. Soft interactions with model crowders
and non-canonical interactions with cellular proteins stabilize RNA folding. J. Mol. Biol.
430: 509-23

Das SG, Direito SOL, Waclaw B, Allen RJ, Krug J. 2020. Predictable properties of
fitness landscapes induced by adaptational tradeoffs. eLife 9: 55155

DasGupta S, Zhang S, Szostak JW. 2023. Molecular crowding facilitates ribozyme-
catalyzed RNA assembly. bioRxiv: 2023.04.30.538884

DasGupta S, Zhang SJ, Smela MP, Szostak JW. 2023. RNA-catalyzed RNA ligation
within prebiotically plausible model protocells. Chem.Eur. J.: €202301376

de Visser JAGM, Krug J. 2014. Empirical fitness landscapes and the predictability of
evolution. Nat. Rev. Genet. 15: 480-90

Deck C, Jauker M, Richert C. 2011. Efficient enzyme-free copying of all four
nucleobases templated by immobilized RNA. Nat. Chem. 3: 603-08

Desai R, Kilburn D, Lee H-T, Woodson SA. 2014. Increased ribozyme activity in
crowded solutions. J. Biol. Chem. 289: 2972-77

Dhamodharan V, Kobori S, Yokobayashi Y. 2017. Large scale mutational and kinetic
analysis of a self-hydrolyzing deoxyribozyme. ACS Chem. Biol. 12: 2940-45

Di Gioacchino A, Procyk J, Molari M, Schreck JS, Zhou Y, et al. 2022. Generative and
interpretable machine learning for aptamer design and analysis of in vitro sequence
selection. PLoS Comput. Biol. 18: ¢1010561

Di Giulio M. 1997. On the RNA world: evidence in favor of an early ribonucleopeptide
world. J. Mol. Evol. 45: 571-78

Dockerill M, Winssinger N. 2023. DNA-encoded libraries: towards harnessing their full
power with Darwinian evolution. Angew. Chem., Int. Ed. 62: €202215542

El Allali A, Elhamraoui Z, Daoud R. 2021. Machine learning applications in RNA
modification sites prediction. Comput. Struct. Biotechnol. J 19: 5510-24

Engelhart AE, Adamala KP, Szostak JW. 2016. A simple physical mechanism enables
homeostasis in primitive cells. Nat. Chem. 8: 448-53

Fay MM, Lyons SM, Ivanov P. 2017. RNA G-quadruplexes in biology: principles and
molecular mechanisms. J. Mol. Biol. 429: 2127-47

Fisette J-F, Montagna DR, Mihailescu M-R, Wolfe MS. 2012. A G-Rich element forms a
G-quadruplex and regulates BACE1 mRNA alternative splicing. J. Neurochem. 121: 763-
73

Fragata I, Blanckaert A, Dias Louro MA, Liberles DA, Bank C. 2019. Evolution in the
light of fitness landscape theory. Trends Ecol. Evol. 34: 69-82

Frank SA, Slatkin M. 1992. Fisher's fundamental theorem of natural selection. Trends
Ecol. Evol. 7: 92-95

Gebicki JM, Hicks M. 1976. Preparation and properties of vesicles enclosed by fatty acid
membranes. Chem. Phys. Lipids 16: 142-60

Gould SJ. 2002. The structure of evolutionary theory. Cambridge, MA: Harvard
University Press

Guo Y, Chen J, Cheng M, Monchaud D, Zhou J, Ju H. 2017. A thermophilic
tetramolecular G-quadruplex/hemin dnazyme. Angew. Chem., Int. Ed. 56: 16636-40

26



41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Halder K, Wieland M, Hartig JS. 2009. Predictable suppression of gene expression by 5'-
UTR-based RNA quadruplexes. Nucleic Acids Res. 37: 6811-17

Hanczyc MM, Fujikawa SM, Szostak JW. 2003. Experimental models of primitive
cellular compartments: Encapsulation, growth, and division. Science 302: 618-22
Hershberg R. 2015. Mutation—the engine of evolution: studying mutation and its role in
the evolution of bacteria. Cold Spring Harb. Perspect. Biol. 7: a018077

Hyman AA, Weber CA, Jiilicher F. 2014. Liquid-liquid phase separation in biology.
Annu. Rev. Cell Dev. Biol. 30: 39-58

Ichihashi N, Usui K, Kazuta Y, Sunami T, Matsuura T, Yomo T. 2013. Darwinian
evolution in a translation-coupled RNA replication system within a cell-like
compartment. Nat. Commun. 4: 2494

Iglesias-Artola JM, Drobot B, Kar M, Fritsch AW, Mutschler H, et al. 2022. Charge-
density reduction promotes ribozyme activity in RNA—peptide coacervates via RNA
fluidization and magnesium partitioning. Nat. Chem. 14: 407-16

Iwano N, Adachi T, Aoki K, Nakamura Y, Hamada M. 2022. Generative aptamer
discovery using RaptGen. Nat. Comput. Sci. 2: 378-86

Jalali-Yazdi F, Huong Lai L, Takahashi TT, Roberts RW. 2016. High-throughput
measurement of binding kinetics by mRNA display and next-generation sequencing.
Angew. Chem., Int. Ed. 55: 4007-10

Janzen E, Shen Y, Vazquez-Salazar A, Liu Z, Blanco C, et al. 2022. Emergent properties
as by-products of prebiotic evolution of aminoacylation ribozymes. Nat. Commun. 13:
3631

Jia TZ, Hentrich C, Szostak JW. 2014. Rapid RNA exchange in aqueous two-phase
system and coacervate droplets. Orig. Life Evol. Biosph. 44: 1-12

Jin L, Kamat NP, Jena S, Szostak JW. 2018. Fatty acid/phospholipid blended
membranes: a potential intermediate state in protocellular evolution. Small 14: 1704077
Jones CP, Ferré-D’Amaré AR. 2015. RNA quaternary structure and global symmetry.
Trends Biochem. Sci. 40: 211-20

Joyce GF, Orgel LE. 1993. Prospects for understanding the origin of the RNA world. In
The RNA world, ed. RF Gesteland, JF Atkins, pp. 1-25. New York: Cold Spring Harbor
Laboratory Press

Joyce GF, Szostak JW. 2018. Protocells and RNA Self-replication. Cold Spring Harb.
Perspect Biol. 10

Kelich P, Jeong S, Navarro N, Adams J, Sun X, et al. 2021. Discovery of DNA—carbon
nanotube sensors for serotonin with machine learning and near-infrared fluorescence
spectroscopy. ACS Nano 16: 736-45

Kilburn D, Roh JH, Behrouzi R, Briber RM, Woodson SA. 2013. Crowders perturb the
entropy of RNA energy landscapes to favor folding. J. Am. Chem. Soc. 135: 10055-63
Kilburn D, Roh JH, Guo L, Briber RM, Woodson SA. 2010. Molecular crowding
stabilizes folded RNA structure by the excluded volume effect. J. Am. Chem. Soc. 132:
8690-96

Kobori S, Nomura Y, Miu A, Yokobayashi Y. 2015. High-throughput assay and
engineering of self-cleaving ribozymes by sequencing. Nucleic Acids Res. 43: ¢85-e85
Kobori S, Takahashi K, Yokobayashi Y. 2017. Deep sequencing analysis of aptazyme
variants based on a Pistol ribozyme. ACS Synth. Biol. 6: 1283-88

27



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Kobori S, Yokobayashi Y. 2016. High-throughput mutational analysis of a twister
ribozyme. Angew. Chem. Int. Ed. Engl. 55: 10354-7

Kohlberger M, Gadermaier G. 2021. SELEX: critical factors and optimization strategies
for successful aptamer selection. Biotechnol. Appl. Biochem. 69: 1771-92

Kumari S, Bugaut A, Huppert JL, Balasubramanian S. 2007. An RNA G-quadruplex in
the 5" UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 3: 218-
21

Lai Y-C, Chen IA. 2020. Protocells. Curr. Biol. 30: R482-R85

Lai Y-C, Liu Z, Chen IA. 2021. Encapsulation of ribozymes inside model protocells
leads to faster evolutionary adaptation. Proc. Natl. Acad. Sci. U. S. A. 118: 2025054118
Lawrence MS, Bartel DP. 2005. New ligase-derived RNA polymerase ribozymes. RNA
11: 1173-80

Le Vay K, Salibi E, Song EY, Mutschler H. 2020. Nucleic acid catalysis under potential
prebiotic conditions. Chem. Asian J. 15: 214-30

Le Vay K, Song EY, Ghosh B, Tang T-YD, Mutschler H. 2021. Enhanced ribozyme-
catalyzed recombination and oligonucleotide assembly in peptide-RNA condensates.
Angew. Chem., Int. Ed. 60: 26096-104

Lee H-T, Kilburn D, Behrouzi R, Briber RM, Woodson SA. 2015. Molecular crowding
overcomes the destabilizing effects of mutations in a bacterial ribozyme. Nucleic Acids
Res. 43: 1170-76

Lewontin RC. 1970. The units of selection. Annu. Rev. Ecol. Evol. Syst. 1: 1-18

Mansy SS. 2010. Membrane transport in primitive cells. Cold Spring Harb. Perspect.
Biol. 2: 2002188

Matsumoto S, Tateishi-Karimata H, Takahashi S, Ohyama T, Sugimoto N. 2020. Effect
of molecular crowding on the stability of RNA G-quadruplexes with various numbers of
quartets and lengths of loops. Biochemistry 59: 2640-49

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. 2013. Distributed representations of
words and phrases and their compositionality. Presented at Adv. Neural Inf. Process.
Miiller F, Escobar L, Xu F, Wegrzyn E, Nainyté M, et al. 2022. A prebiotically plausible
scenario of an RNA—peptide world. Nature 605: 279-84

Miiller UF, Bartel DP. 2008. Improved polymerase ribozyme efficiency on hydrophobic
assemblies. RNA 14: 552-62

Nakashima KK, van Haren MHI, André AAM, Robu I, Spruijt E. 2021. Active
coacervate droplets are protocells that grow and resist Ostwald ripening. Nat. Commun.
12: 3819

Nakashima KK, Vibhute MA, Spruijt E. 2019. Biomolecular chemistry in liquid phase
separated compartments. Front. Mol. Biosci. 6: 21

Nehdi A, Perreault J-P. 2006. Unbiased in vitro selection reveals the unique character of
the self-cleaving antigenomic HDV RNA sequence. Nucleic Acids Res. 34: 584-92
Niland CN, Jankowsky E, Harris ME. 2016. Optimization of high-throughput sequencing
kinetics for determining enzymatic rate constants of thousands of RNA substrates. Anal.
Biochem. 510: 1-10

Nomura Y, Yokobayashi Y. 2019. Systematic minimization of RNA ligase ribozyme
through large-scale design-synthesis-sequence cycles. Nucleic Acids Res. 47: 8950-60

28



80.

81.

82.

83.
84.

85.

86.

87.

88.

9.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Noviello TMR, Ceccarelli F, Ceccarelli M, Cerulo L. 2020. Deep learning predicts short
non-coding RNA functions from only raw sequence data. PLoS Comput. Biol. 16:
e1008415

Nowak MA, Highfield R. 2011. SuperCooperators : altruism, evolution, and why we
need each other to succeed. New York: Free Press

Obolski U, Ram Y, Hadany L. 2018. Key issues review: evolution on rugged adaptive
landscapes. Rep. Prog. Phys. 81: 012602

Oparin Al 1938. The origin of life (English Translation). New Y ork: Macmillan

Pan X, Yang Y, Xia CQ, Mirza AH, Shen HB. 2019. Recent methodology progress of
deep learning for RNA—protein interaction prediction. WIREs RNA 10

Paudel BP, Rueda D. 2014. Molecular crowding accelerates ribozyme docking and
catalysis. J. Am. Chem. Soc. 136: 16700-03

Payne JL, Wagner A. 2019. The causes of evolvability and their evolution. Nat. Rev.
Genet. 20: 24-38

Peng H, Lelievre A, Landenfeld K, Miiller S, Chen IA. 2022. Vesicle encapsulation
stabilizes intermolecular association and structure formation of functional RNA and
DNA. Curr. Biol. 32: 86-96.¢6

Peri G, Gibard C, Shults NH, Crossin K, Hayden EJ. 2022. Dynamic RNA fitness
landscapes of a group I ribozyme during changes to the experimental environment. Mol.
Biol. Evol. 39

Pinheiro VB, Arangundy-Franklin S, Holliger P. 2014. Compartmentalized self-tagging
for in vitro-directed evolution of XNA polymerases. Curr. Protoc. Nucleic Acid Chem.
57:9.9.1-9.9.18

Pitt JN, Ferré-D’ Amaré AR. 2010. Rapid construction of empirical RNA fitness
landscapes. Science 330: 376-79

Pressman A, Blanco C, Chen IA. 2015. The RNA world as a model system to study the
origin of life. Curr. Biol. 25: R953-R63

Pressman AD, Liu Z, Janzen E, Blanco C, Miiller UF, et al. 2019. Mapping a systematic
ribozyme fitness landscape reveals a frustrated evolutionary network for self-
aminoacylating RNA. J. Am. Chem. Soc. 141: 6213-23

Rivas G, Minton AP. 2016. Macromolecular crowding in vitro, in vivo, and in between.
Trends Biochem. Sci. 41: 970-81

Rotrattanadumrong R, Yokobayashi Y. 2022. Experimental exploration of a ribozyme
neutral network using evolutionary algorithm and deep learning. Nat. Commun. 13: 4847
Rushdi A, Simoneit BT. 2001. Lipid formation by aqueous Fischer-Tropsch-type
synthesis over a temperature range of 100 to 400 °C. Orig. Life Evol. Biosph 31: 103-18
Saha R, Pohorille A, Chen IA. 2015. Molecular crowding and early evolution. Orig. Life
Evol. Biosph. 44: 319-24

Saha R, Verbanic S, Chen IA. 2018. Lipid vesicles chaperone an encapsulated RNA
aptamer. Nat. Commun. 9: 2313

Salibi E, Peter B, Schwille P, Mutschler H. 2023. Periodic temperature changes drive the
proliferation of self-replicating RNAs in vesicle populations. Nat. Commun. 14: 1222
Shen Y, Pressman A, Janzen E, Chen IA. 2021. Kinetic sequencing (k-Seq) as a
massively parallel assay for ribozyme kinetics: utility and critical parameters. Nucleic
Acids Res. 49: e67-e67

29



100.

101.
102.

103.

104.

105.

106.

107.

108.

109.

110.

I11.

112.

113.

114.

115.

Strulson CA, Molden RC, Keating CD, Bevilacqua PC. 2012. RNA catalysis through
compartmentalization. Nat. Chem. 4: 941-46

Szostak JW, Bartel DP, Luisi PL. 2001. Synthesizing life. Nature 409: 387-90

Turk RM, Chumachenko NV, Yarus M. 2010. Multiple translational products from a
five-nucleotide ribozyme. Proc. Natl. Acad. Sci. U.S.4. 107: 4585-89

Tyrrell J, Weeks KM, Pielak GJ. 2015. Challenge of mimicking the influences of the
cellular environment on RNA structure by PEG-induced macromolecular crowding.
Biochemistry 54: 6447-53

Vay KL, Salibi E, Ghosh B, Tang T-YD, Mutschler H. 2022. Ribozyme-phenotype
coupling in peptide-based coacervate protocells. bioRxiv: 2022.10.25.513667

Walde P, Wick R, Fresta M, Mangone A, Luisi PL. 1994. Autopoietic self-reproduction
of fatty acid vesicles. J. Am. Chem. Soc. 116: 11649-54

Wang Q, Schlenoff JB. 2014. The polyelectrolyte complex/coacervate continuum.
Macromolecules 47: 3108-16

Werren JH. 2011. Selfish genetic elements, genetic conflict, and evolutionary innovation.
Proc. Natl. Acad. Sci. U. S. 4. 108: 10863-70

Wilson DS, Szostak JW. 1999. In vitro selection of functional nucleic acids. Annu. Rev.
Biochem. 68: 611-47

Wright S. 1932. The roles of mutation, inbreeding, crossbreeding and selection in
evolution. Presented at Proceedings of the sixth international congress of genetics

Yan Z, Hamilton WL, Blanchette M. 2020. Graph neural representational learning of
RNA secondary structures for predicting RNA-protein interactions. Bioinformatics 36:
276-84

Yang KK, Wu Z, Arnold FH. 2019. Machine-learning-guided directed evolution for
protein engineering. Nat. Methods 16: 687-94

Yokobayashi Y. 2019. Applications of high-throughput sequencing to analyze and
engineer ribozymes. Methods 161: 41-45

Yokobayashi Y. 2020. High-throughput analysis and engineering of ribozymes and
deoxyribozymes by sequencing. Acc. Chem. Res. 53: 2903-12

Zhou H-X, Dill KA. 2001. Stabilization of proteins in confined spaces. Biochemistry 40:
11289-93

Zhu TF, Szostak JW. 2009. Coupled growth and division of model protocell membranes.
J. Am. Chem. Soc. 131: 5705-13

30



Reference Annotations

18. Chen et al. Semi-supervised generative models learned from experimental labels to discover
novel daunomycin-binding sequences.

48. Jalali-Yazdi et al. Demonstrated how to use HTS to measure binding constants for many
peptides in parallel.

55. Kelich et al. ML models learned from analytical responses (not just selection abundance) to
improve DNA-nanotube biosensors.

64. Lai et al. Vesicle encapsulation increased fitness differences between ribozyme sequences,
‘sharpening’ the landscape and accelerating evolutionary adaptation.

67. Le Vay et al. Peptide/RNA coacervates enabled ribozyme catalysis, illustrating an RNA
world function for peptides.

68. Lee et al. Macromolecular crowding increased mutational tolerance, ‘flattening’ the
ribozyme fitness landscape.

69. Lewontin. Classic work explaining natural selection at multiple levels, from molecules and
coacervates to populations.

88. Peri et al. Explores effect of environmental changes on a ribozyme fitness landscape.
92. Pressman et al. First complete map of a fitness landscape for ribozymes.

99. Shen et al. Addresses rigor and reproducibility of HTS assay technique and suggests best
practices.

31



