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Abstract:  

The relationship between genotype and phenotype, or the fitness landscape, is the foundation of 

genetic engineering and evolution. However, mapping fitness landscapes poses a major technical 

challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic 

in the study of fitness landscapes, due to its relatively small sequence space combined with its 

importance in synthetic biology. The combination of in vitro selection and high-throughput 

sequencing has recently provided empirical maps of both complete and local RNA fitness 

landscapes, but the astronomical size of sequence space limits purely experimental 

investigations. Next steps are likely to involve data-driven interpolation and extrapolation over 

sequence space using various machine learning techniques. We discuss recent progress in 

understanding RNA fitness landscapes, particularly with respect to protocells and machine 

representations of RNA. The confluence of technical advances may significantly impact 

synthetic biology in the near future. 
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Introduction 

Molecular evolution is often likened to a hill-climbing process in sequence space. In this 

conceptualization, molecular sequences (e.g., DNA, RNA or protein) inhabit a potential space of 

all possible sequences. A landscape may be drawn in this space, such that each point represents a 

possible genotype and the height of that point represents the fitness associated with that genotype 

(Figure 1a). The ‘fitness landscape’ describes the relationship between genotypes (the genetic 

makeup of an individual) and its reproductive success, or fitness (25, 109). Valleys represent 

genotypes with low fitness, while peaks represent genotypes with high fitness. The fitness of 

similar genotypes may be highly correlated (smooth landscape) or poorly correlated (rugged 

landscape) (14). The features of the fitness landscape determine the potential for adaptation and 

evolvability (36, 86) given genetic variation as the raw material (43, 109). Organisms can move 

through the landscape via mutations, and natural selection tends to push populations uphill, 

towards higher fitness (14). It is important to recognize that a full sequence space is extremely 

high-dimensional, since the number of dimensions equals the number of variable sites (i.e., the 

sequence length). The large number of dimensions allows for a very large number of potential 

evolutionary pathways, making exploration of these pathways quite challenging. 
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Figure 1. Conceptual drawings of a fitness landscape. (a) The x- and y-axis represent sequence 

space (which is L-dimensional in reality), and the z-axis shows fitness (also illustrated by color). 

Peaks represent high-fitness families. (b) In vitro selection establishes a threshold activity (a ‘sea 

level’, shown in gray) required for survival, eliminating sequences of low fitness. Only features 

of the fitness landscape above this threshold can be experimentally determined. 

 

 

Although a fitness landscape ‘map’ may be inadequate for describing evolution in complex 

organisms evolving dynamically with significant interplay and feedback between genetic and 

environmental factors, the fitness landscape is a powerful metaphor for molecules. In particular, 

molecular activity (e.g., catalytic power or binding affinity) may be equated to ‘fitness’, the 

environments are typically kept constant, and the activity of a sequence is essentially determined 

only by its genotype. Molecular fitness landscapes are an extensive topic, including much 

theoretical work, and have been reviewed elsewhere (for examples, see (25, 82)). The simplest 

exploration of the fitness landscape is a biased random walk, where a genotype may move to a 

neighboring sequence (e.g., a single mutation) with a probability that is related to the fitness of 

that sequence. This process models a low mutation rate, in which new copies have only a single 

mutation. Additional mechanisms (e.g., high mutation rates, recombination, rearrangements) 
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would generate greater diversity and thus more expansive exploration of the fitness landscape. 

However, biological mechanisms generally explore only a very small fraction of potential 

sequence space. Here, we discuss recent and emerging data-driven techniques to map fitness 

landscapes of catalytic RNA. The RNA molecule presents a unique duality in biochemistry: it 

can both store genetic information, as in the case of RNA viruses, and catalyze chemical 

reactions, in the case of ribozymes, through complex three-dimensional structures. RNA 

molecules with catalytic activity, often selected in vitro (10, 19), are of special interest to study 

both the functional diversity of RNA and the RNA world hypothesis (11, 54, 91), which posits 

that RNA would comprise the metabolic architecture of the earliest cells. RNA is therefore a 

particularly intriguing molecule for studying the fitness landscape, and thus understanding how 

life could evolve in sequence space. 

 

Figure 2. Conceptual drawings of possible experimentally explored sequence space. (a) 

Complete coverage of sequence space, limited to the regime of approximately L < 26 for RNA. 

The space is finite but very large, with L dimensions; this drawing is an abstract visualization. 

Virtually all points in sequence space at this L can be synthesized in a random pool. (b) Local 
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coverage of sequence space near a wild-type (WT) sequence, usually a known ribozyme. Many 

mutants (M) of the ribozyme are synthesized, exploring the local volume of sequence space 

immediately surrounding the WT. 

 

Fitness Landscape Cartography 

Although the size of sequence space increases exponentially with length (4L sequences of length 

L), there exists an intermediate regime for L in which L is small enough that it is possible to 

create a library containing almost all possible sequences through random synthesis, and at the 

same time L is large enough to have sequence-specified chemical activities (Figure 2a). In this 

regime (approximately L = 5, based on the function exhibited by very small ribozymes (102), up 

to perhaps 26, due to experimental laboratory scales), one may take advantage of the fact that the 

vast majority of sequence space lacks activity in a given environment. Therefore, a two-step 

process can be employed to map the fitness landscape: 1) isolating the small fraction of active 

sequences from a random library covering sequence space, effectively separating the ‘wheat 

from the chaff’ (Figure 3a), and then 2) assaying those sequences in a high-throughput method 

(Figure 3b). In this two-step process (also called SCAPE, for sequencing to measure catalytic 

activity paired with in vitro evolution (92)), in vitro selection is used for the first step of 

enriching active sequences. For example, active variants can be captured on solid phase support 

to select based on binding affinity (for aptamers) or chemical conjugation to a ligand (for 

ribozymes). In vitro selection thus reduces the complexity of the RNA library from 4L down to 

an assayable number, perhaps in the thousands. This strategy is not limited to down-selection of 

random libraries, but can also be applied to designed libraries, such as a library based on a 

ribozyme where only specific positions have been randomized (77) (also called “mutate-select-

and-sequence” (112)), or a library of recombinants derived from known ribozyme sequences 
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(20), with the caveat that the sequence space being mapped is a specially biased subset of full 

sequence space (Figure 2b).  

 

 

 

Figure 3. Two-part procedure for mapping fitness landscapes by SCAPE. (a) First, an initial 

pool of sequences is designed to cover a defined sequence space. Fitness of different sequences 

is shown by color, with red being highest fitness and blue being low fitness. Most sequences in 

the initial pool are likely to have low fitness. During rounds of in vitro selection, the low fitness 

sequences are eliminated while high fitness sequences are enriched. At some point (Round y), 

the complexity of the pool has been reduced to an assayable number of sequences having fitness 

above the threshold value (gray). (b) Second, the selected pool (Round y) is assayed with a 

technique such as high-throughput sequencing (HTS). For a ribozyme, kinetic characterization of 

the pool is performed with reactions at multiple time points (or substrate concentrations, etc.), to 

assay all of the sequences in parallel. Reacted molecules (indicated by the purple marker) are 
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separated biochemically from unreacted molecules and sequenced. For each unique sequence, 

data on the number of reads is translated into the reacted fraction across time points and fit to a 

kinetic model. 

 

Once the selected variants are isolated, a high-throughput assay is then employed for the second 

step of determining activity values for the selected sequences (Figure 3). High-throughput 

sequencing (HTS) technology provides the ability to collect a large amount of data (108 

sequence reads). By using the number of reads as a means to quantify sequences before and after 

a reaction, the relative activities of different sequences within a pool can be determined in a 

massively parallel assay. What is required from the experimenter is a method to separate reacted 

and unreacted RNAs, such as by affinity chromatography or gel electrophoresis, resulting in a 

sample of reactive RNAs that can be sequenced and counted through reads. With appropriate 

normalization standards, sequence read abundances can also be translated into absolute activity 

values (e.g., rate constants or binding affinities). HTS was first applied by Pitt and Ferré-

D’Amaré to a heavily mutagenized library of the class II RNA ligase ribozyme (mutation rate of 

21% per position in 45 nt) subjected to in vitro selection (90). The study yielded the local fitness 

landscape of this laboratory-evolved ribozyme, with relative abundance of reads, which 

correlated with ribozyme activity, used as a proxy for fitness for individual sequences. An 

advance on HTS assay techniques is to perform the reaction while sampling at multiple time 

points or substrate concentrations to obtain data for fitting to a kinetic model (as opposed to a 

single reaction point) (28, 92). These techniques can be extended beyond nucleic acid sequences, 

as long as the molecules are uniquely labeled by nucleic acids. For example, binding kinetics 

were measured for over twenty thousand peptide sequences in parallel, by using mRNA display 

to read out the identity of bound peptides (48). HTS assays also have utility outside of the goal of 
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mapping fitness landscapes, and can be applied to a designed library without selection (“mutate-

and-sequence”) (58-60, 112). Additional technical variations could be envisioned, such as 

characterization of inhibitors and substrate specificity (49). These methods have emerged from 

the synergy between HTS and the tradition of using nucleic acids as ‘barcodes’ while screening 

synthetic chemical (or biomolecular) libraries (31). 

 

How many sequences can be assayed by these methods depends on the depth of sequencing as 

well as the evenness of the pool being assayed. A general rule of thumb from our experience is 

that at least 100 (and preferably 1000) sequence reads are needed to obtain a reliable estimate of 

activity (99). If the sequence variants are evenly represented in the pool, then a sequencing depth 

of 108 reads would give 100 reads of 106 sequences. Thus, in principle, up to about a million 

sequences might be assayed at this depth, but any deviation from an even distribution would 

reduce this number. In particular, pools resulting from in vitro selection are likely to be highly 

uneven, such that the assayable number of sequences is more likely to be on the order of tens of 

thousands. As with any other experimental protocol, HTS experiments should be conducted with 

replicates to evaluate reproducibility. Overall, for a limited scope, SCAPE can experimentally 

determine comprehensive or local maps of fitness (i.e., activity) landscapes for functional RNAs.  

 

The Chemical Environment 

Environmental conditions can greatly affect fitness landscapes. For instance, a mutation in 

bacteria that confers resistance to an antibiotic would increase fitness in the presence of the 

antibiotic, but might decrease fitness in the absence of the antibiotic, due to the added metabolic 

load (22). Environmental factors that can influence molecular RNA fitness include pH, ion 
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concentration, temperature, availability of substrates and nutrients, interactions with other 

biopolymers, and more. While a full discussion of the variety of environmental inputs is beyond 

the scope of this review, a few examples are given here to illustrate their importance. 

 

The pH of an environment plays a pivotal role in influencing the structure, function, and stability 

of RNA molecules by altering the protonation states of heteroatoms in the nucleobases, 

hydroxyls, and phosphates (66). Under acidic conditions, the protonation of G:C base pairs may 

reduce hydrogen bonding, decreasing the stability of the duplex, and noncanonical A:C and C:C 

base pairings may occur (12). Basic pH promotes hydrolysis of the RNA backbone through 

deprotonation of the 2-OH group, among other effects. These changes can significantly disrupt 

base-pairing and tertiary interactions, in addition to impacting the interactions of RNA with 

metal ions and organic molecules. Cations, particularly divalent cations such as magnesium 

(Mg2+), can interact with the negatively charged phosphate backbone of RNA, allowing the RNA 

molecule to fold into a compact structure and sometimes participating in the catalytic 

mechanism. One study on mutational variants of the Azoarcus group I self-splicing intron over a 

MgCl2 concentration series (1-48 mM) showed that fitness in the library increased with 

increasing magnesium concentration (88). Likewise, changes in temperature can significantly 

influence the folding rate and equilibrium ensemble of RNA structures. High temperatures 

generally denature nucleic acids, but some catalytic nucleic acids, such as a G-rich peroxidase 

DNAzyme that forms a four-stranded guanine-quadruplex, can retain activity at temperatures as 

high as 95 degrees C (40). At the other extreme, temperatures nearing the freezing point may be 

advantageous in reducing the rate of hydrolysis while concentrating reactants as water 



 11 

crystallizes (8). These effects are not always predictable, and experimental study is therefore 

required. 

 

In addition to the effects of ions and small molecules, the interior of cells is widely appreciated 

to be ‘crowded’ with macromolecules (Figure 4a). Thus, the volume available to a 

macromolecule is nonspecifically constrained by the volumes of other macromolecules present, 

affecting dynamics such as diffusion, binding, and conformational changes (i.e., excluded 

volume effects) (93, 96). For example, the highly stable G-quadruplex motif in RNA is known to 

play essential roles in biological reactions such as translational regulation and alternative splicing 

(34, 35, 41, 62). The model crowding agent polyethylene glycol (PEG200) stabilized G-

quadruplexes having 3-4 G-quartets (71). Crowding also appears to compensate for the loss of 

other ribozyme interactions. For example, the addition of PEG enhances the activity of Azoarcus 

group I ribozyme and reduces its Mg2+ requirement (27, 56, 57), and PEG also enhances the 

activity of a ligase ribozyme in disfavorable conditions for folding and activity (e.g., high urea 

concentration, alkaline pH) (23, 68). At the same time, crowding agents may also have effects 

aside from the excluded volume effect, e.g., due to chemical interactions with the RNA, so 

mechanistic studies are often important (21, 57, 103). 
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Figure 4. Conceptual illustrations (not to scale) showing (a) crowded environment of biological 

cells, (b) a complex coacervate droplet formed due to electrostatic interaction between oppositely 

charged molecules, and (c) a bilayer membrane vesicle. 

 

Given the fluctuations of natural environments and the dependence of fitness on the 

environment, fitness landscapes are inherently dynamic. Such shifts could facilitate the 

exploration and selection of novel motifs, which might remain undiscovered under standard or 

constant conditions. Many conditions, particularly pH, temperature and ionic conditions, affect 

both catalytic activity and hydrolytic stability, illustrating that molecular fitness includes 

multiple components. For an RNA polymerase ribozyme, increasing Mg2+ concentration results 

in greater polymerization activity but also greater hydrolysis, ultimately limiting the extent of 

polymerization (65, 74). This example illustrates that different aspects of fitness can experience 

opposing effects in a changing environment. The fitness landscape is a complex, dynamic object.   

 

Fitness Landscapes for Protocells 

While fitness is usually considered to be a property of an individual organism, natural selection 

actually occurs at multiple levels, often simultaneously (39, 69). For example, selection at the 

level of the gene within the genome may lead to the evolution of apparently parasitic sequences, 

such as transposons (107), while higher-level selection may drive the evolution of cooperative 

traits (81). Given the complex integration of distinct molecules that is required for metabolism, 

levels of selection above the molecular must have been essential to the emergence of cellular life. 

Thus, understanding the fitness of the earliest molecular ensembles, including how RNA fitness 
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is affected by other components of the ensemble, is important for understanding the origin of 

life. 

 

Protocells are experimental models of primitive cells (13, 63, 101). Regardless of their physical 

form, protocells are essentially a nonrandom grouping of individual molecules, creating a 

potential level of selection above the ribozyme (3). Cooperative phenotypes, which may be 

disadvantageous (i.e., selected against) at the level of individual molecules, can evolve in 

protocells (9, 101). Protocells that create physical compartments for RNA have gained particular 

attention for the origin of life (45, 89). Understanding how protocells affect the functional 

behavior of RNAs and mapping the fitness landscape of protocells themselves are current goals 

in this area. Two types of protocells, coacervates and membrane vesicles, are considered here. 

 

The formation of coacervates is now a well-recognized process in cell biology (44). Complex 

coacervates form when a charged macromolecule interacts with oppositely charged molecules, 

creating a separate, still liquid, macromolecule-rich phase (Figure 4b). The interactions are 

generally nonspecific, highly dynamic and of moderate strength, with the associations being 

driven by electrostatic interactions and the entropic gain from counterion release (106). 

Combinations of neutral molecules, such as dextran and PEG, may also form aqueous two-phase 

systems (ATPS) with the liquid phases having distinct polymer compositions. Although the 

equilibrium state is bulk separation of the phases, individual droplets can form as a metastable 

state. In the context of a cell, these droplets may act as membraneless organelles. It has long been 

postulated that coacervate droplets could organize prebiotic molecules together to form a 
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protocell (83), a hypothesis that has recently gained experimental interest following advances in 

coacervate cell biology. 

 

Within a coacervate, the altered microenvironment increases local concentrations and may 

change relative energy levels for ground and transition states, affecting the rate of chemical 

reactions (76). An early demonstration showed that compartmentalization in an ATPS increased 

the reaction rate of the hammerhead ribozyme by nearly two orders of magnitude, largely due to 

the increased RNA concentration (100). Complex coacervates made of negatively charged RNA 

and positively charged peptides may be particularly interesting from the standpoint of RNA-

peptide coevolution (30, 73). Recently, a complex coacervate made of poly-L-lysine and the 

hairpin ribozyme was found to enhance ribozyme activity by 1-2 orders of magnitude. The 

hairpin ribozyme catalyzes both cleavage and ligation, given the appropriate substrates. 

Interestingly, the coacervate environment was found to shift the equilibrium toward ligation, 

likely due to the high RNA concentration, suggesting that this effect might be harnessed in 

protocells to create longer RNAs from shorter oligonucleotides (67). Furthermore, the ligation 

products altered the physical properties of the droplets, including reduced rates of RNA release 

from the droplets (104). Coacervates containing out-of-equilibrium chemical systems exhibit 

phenotypes at the droplet level, such as changes in growth and fusion rates (75). Droplet 

properties are also influenced by the sequences of the peptide component, with one study 

illustrating that charged-interspaced heteropeptides (Arg-Gly-Gly repeats compared to poly-Arg) 

favored the liquid rather than gel phase and also showed better sequestration of Mg2+, enabling 

ligase ribozyme activity (46). These studies lay the groundwork for potential genotype-

phenotype coupling that could lead to natural selection at the level of the protocell. Along with 
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this progress, important challenges also remain in the field of coacervate protocells, including the 

colloidal stability of droplets as compartments for multiple generations of selection and 

replication (2, 26), and exchange of biopolymers among droplets that may interfere with 

individuation of compartments (50). 

 

Mimicking the bilayers of contemporary biological cells, membrane vesicles have become 

established as an experimental model for protocells (Figure 4c). In particular, fatty acids with 

eight or more carbons form bilayer vesicles at a pH near their pKa in the membrane (38), and are 

envisioned as a transition stage for protocells before the appearance of the more robust 

diacylphospholipid membranes found in modern cells (51). Fatty acids can be synthesized under 

simulated prebiotic conditions (70, 95), can grow and divide (1, 42, 105, 115), and allow 

permeation of RNA building blocks such as nucleoside phosphorimidazoles and cations such as 

Mg2+ (2). Vesicles also appear to form a kinetically stable microenvironment suitable for 

multiple generations of selection and replication (50). The lability of fatty acid vesicles to high 

Mg+2 makes ribozyme compatibility challenging, but this sensitivity may be mitigated by partial 

chelation (2) or with ribozymes having low Mg2+ requirement (17, 24). Thus, RNA fitness within 

fatty acid protocells would involve tolerance to low Mg2+ or chelating conditions.   

 

In additional to chemical compatibility, another effect of protocells on RNA fitness landscape 

occurs due to an excluded volume effect, specifically due to the physical confinement presented 

by the membrane itself, which restricts the volume of the encapsulated macromolecules. By 

altering the energies of different conformations (114), confinement stabilizes compact structures 

in RNA. This results in effects such as higher ligand binding affinity for an RNA aptamer (97), 
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enhanced RNA-RNA association (both intermolecular and intramolecular), and increased 

docking interactions for the hairpin ribozyme, leading to the increased catalytic activity (87). 

Encapsulation restored activity for folding-deficient mutants of the hairpin ribozyme (87), 

similar to an effect of macromolecular crowding (85), suggesting significant impacts to the 

ribozyme fitness landscape. These findings motivated evaluation of how encapsulation inside 

vesicles altered the local fitness landscapes of several self-aminoacylating ribozymes (64, 92). In 

a high-throughput study, thousands of ribozyme sequences showed consistently higher activity 

when encapsulated. At the same time, epistatic effects (i.e., “ruggedness” on the landscape) were 

amplified. Interestingly, encapsulation also increased the variance of fitness, such that the RNA 

population adapted more quickly during in vitro evolution, in accordance with Fisher’s 

Fundamental Theorem of Natural Selection (37). This study illustrated how protocells could alter 

the fitness landscape, and its exploration, in significant ways. Combined with other studies 

demonstrating mechanisms for genotype-phenotype coupling at the protocell level (1, 16, 33), 

these lines of work show how membrane vesicles yield complex system-level behaviors. While 

vertical transmission of genetic information could occur through growth and division, horizontal 

transfer has also been implemented. Giant unilamellar vesicles (GUVs) encapsulating RNA and 

subjected to a freeze-thaw process showed mixing of contents among individuals (98). 

Understanding the higher-level fitness landscape of vesicle protocells, in terms of both its 

fundamental structure and how populations explore the landscape through genetic transmission, 

is an important future challenge. 

 

Considerations for Machine Learning 

 



 17 

 Catalytic RNA fitness landscapes are amenable to data-driven discovery using machine 

learning (ML) due to the large quantities of available sequencing data that enable analysis of 

underlying trends. Early kinetic sequencing studies (78) investigated the kinetics of catalytic 

RNA substrate specificity, evaluating a pool of ~103 sequences. Fluorescence-based 

measurements then enlarged the possible space to ~104 sequences (6). Since then, deep 

sequencing (28, 60, 79, 113), including k-Seq (49, 92, 99), has unlocked large (103-106) RNA 

sequence spaces to identify high fitness sequences for different types of reactivity. Analysis of 

the active sequences could unveil underlying motif commonalities that likely give rise to 

catalytic behavior (92). The presence of these relationships indicates that ML could be used for 

quantitative sequence-function mapping. In vitro evolution, or sequential evolution of ligands by 

exponential enrichment (108) (SELEX), over large sequence spaces, used in many sequencing 

studies (4, 5), represents a frontier where ML-acceleration for RNA discovery remains largely 

untapped. The data from in vitro evolution can be used to construct quantitative ML models that 

map sequence and conditions to function. This data can be used to identify common 

characteristics in high-fitness motifs and ideal conditions (61) (i.e. temperature, pH, ion identity) 

for selection during one round. Correspondingly, subsequent rounds of in vitro evolution may 

use improved conditions and thus reduce the number of rounds needed to identify the best-

performing sequences. 

 A critical challenge for ML-accelerated discovery is representing RNA sequences in a 

form that ML models are able to learn. The way that an RNA sequence is represented to a model 

is called a “representation” or “featurization” and influences the types of models that are used, 

the way in which a model learns the underlying trends, and the interpretability of model 

predictions. In the context of linear regression, this representation is the “x” variable in y = 



 18 

W*x+b, with “W” being the weights and “b” being the biases. In ML models, instead of a linear 

mapping between the “x” and “y” variables, a nonlinear mapping is performed instead, adding 

flexibility to the fitting function (f) that maps x and y (y = f(x)). Often, representation choice 

influences whether or not a model is able to generalize to new chemical spaces beyond the 

training data. Whether constructing models that harness labeled data (i.e. supervised models), 

those that cluster data without labels (i.e. unsupervised models), or those that use a subset of 

labeled points (i.e. semi-supervised models), representation choice is crucial for successful ML 

model development. When selecting a representation, it is important to consider the data, the 

problem at hand, and the objectives of the ML model. Some essential considerations include: 1) 

whether the sequences are of consistent length, 2) whether modified nucleotides (i.e. methylated 

or xeno-nucleic acids) are used, and 3) whether future objectives are inherently extrapolative or 

interpolative based on the input data. Although there have been advances in ribozyme structure 

determination, many catalytic RNA fitness-landscape problems are naturally posed as sequence-

function mappings. With the exception of ML-accelerated directed evolution (111), this 

sequence-function approach is in contrast to the sequence-structure and subsequent structure-

function mappings that are typically used to understand enzymatic catalysis. This difference 

might be attributed to factors such as: 1) few RNA structures display quarternary structures (52) 

that commonly occur in proteins, and 2) the use of high-throughput sequencing (14) and 

mutational analysis (60, 113) for RNA provides direct insights into sequence-function maps, 

enabling structures to be forgone. 

 One-hot encoding is the simplest representation for RNA sequences. One-hot encoding is 

a binary vector representation where "1" is used to represent the presence of a value (‘hot’ if 

present, ‘cold’ if absent with value set to "0"). In this representation, sequences of length N are 
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represented by an N by 4 sized bit vector (32). One-hot encodings do not readily generalize to 

larger or shorter sequence lengths; the length N must be set by the largest sequence, with 

remaining positions filled with 0 (in a process called zero padding) if no nucleotide exists. Each 

of the four columns represents the four RNA nucleotides (e.g. A, U, G, C) and contains a 1 if a 

nucleotide is present at that sequence position or a 0 if it is not (84) (Figure 5). Due to its nature, 

one-hot encoding is sparse and encodes the presence of certain nucleotides in specific positions, 

but not their relationships or positional dependencies relative to other nucleotides. 

Correspondingly, this primitive representation will fail to generalize effectively for nearly all 

sequence-property relationships, which depend on motifs of many nucleotides as opposed to a 

single nucleotide in a specific sequence position. Because they are sparse, one-hot 

representations require more data to learn from.  
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Figure 5. Various representations for RNA sequences for use in machine learning models with a 

7-nucleotide long training sequence given as an example: 1) one-hot encoding, using "1" to 

indicate the presence of a given nucleotide at a given position, 2) k-mer encoding, developing a 

histogram of subsequence counts based on a given sliding window, 3) word2vec encoding, 

learning a distribution of RNA sequences, 4) a molecular graph encoding, incorporating 

information from different bonds and atoms into a connectivity graph, and 5) an abstracted 

molecular graph encoding, incorporating secondary structure between RNA strands. For each 

encoding, a representative training sequence and corresponding encoding is denoted. Then, three 

test sequences (with differences noted in orange in the top row) are presented. A green check 

mark indicates if the training data are natively able to handle the test sequence and how that test 

sequence would be encoded, with changes to the representation in orange. A red cross indicates 

that the representation and given training sequence would not readily generalize to the presented 

test set sequence. In this case, the changes required to the training data representation are 

denoted in orange, along with a caption that identifies the corresponding challenges. 

 

 The k-mer representation encodes relationships to adjacent nucleotides by defining a 

window size (i.e. k) and sliding the window along the sequence, leading to a histogram of 

subsequence fragments (7). As an example, for a sequence “AUCGCGA” to be represented as a 

2-mer (k=2), we represent the sequence as follows: [AU: 1, UC: 1, CG: 2, GC: 1, GA: 1]. In this 

histogram, “CG” appears twice in the sequence and is thus counted twice (Figure 5). The k-mer 

representation is highly sensitive to window size: high k-values generate a more global 

representation relative to small k-values, which generate a local representation. As the k-values 

increase, the number of features also increases, thus generating an increasingly sparse 

representation and presenting similar challenges to one-hot encodings. Due to its window-size, 

the k-mer representation enables extraction of trends that depend on subsets of sequences, 

although the histogram-like nature removes positional dependence.  
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 Although one-hot and k-mer representations convert text-based sequences into numerical 

representations for use in ML models, these representations suffer from a curse of dimensionality 

that can make them too sparse (e.g. too many features). Similarly, the k-mer representation can 

fail to encode critical relationships that are not readily captured by a sliding window. Here, ideas 

from natural language processing (NLP) facilitate improved text-based representations. 

Word2vec (72) is a numerical NLP representation that is learned from a distribution of words in 

a corpus (i.e. a collection of text). In this representation, words are obtained from a corpus and 

stored with their neighboring words (Figure 5). A model then learns to predict the next word 

given a set of words and generates a set of probabilities for what the next word will be. This 

unsupervised approach learns patterns from the distribution of words in the corpus. From these 

distributions, these word2vec models encode context because they predict the next word given a 

set of words. For RNA, the “words” are the nucleotides and similar sequences are grouped 

together. The word2vec representation can then be fine-tuned for downstream tasks such as 

sequence-function mapping. This representation can be particularly valuable for encoding long-

range dependencies that are more challenging to encode in a k-mer representation. 

 When non-natural nucleotides or chemically functionalized nucleotides are used in 

sequencing experiments, they produce a challenge to the one-hot, k-mer, or word2vec 

representations if not handled carefully. Here, the modified nucleobases are chemically distinct 

from the canonical nucleobases, but share similarities. Therefore, we suggest that encoding 

chemical information about the nucleobases via a molecular graph (i.e. the atoms and bonds of 

the nucleobase) can provide a novel strategy to learn the underlying trends with quantitative 

sequence-function maps. With this strategy, similarity to other nucleobases (i.e. adenine and 

hypoxanthine, the nucleobase in inosine, have similar structural characteristics) could be utilized 



 22 

while distinguishing the two compounds (Figure 5). We anticipate that this strategy will be 

challenged by the large connectivity graph sizes for long RNA sequences that have hundreds or 

thousands of atoms. More abstract graph-based representations (where nodes represent 

nucleotides) are essential for encoding secondary structure such as base-pairing (80, 110) (Figure 

5). These base-pairing interactions, essential for forming structures such as hairpins, may be 

essential for catalytic activity; a graph-based representation allows a model to harness this 

information.  

 A recent study applying ML to an F1*U ligase ribozyme has successfully introduced 

deep learning (i.e. deep neural networks) into RNA sequence exploration to find peaks on the 

fitness landscape, as quantified by relative ligation activity (94) . In particular, this study used in 

silico selection, recombination, and mutation to find paths that are free of epistasis, which 

challenge ML models. These data were then successfully used to train a deep neural network to 

predict and identify functional mutational variants that have comparable activity to the wild type. 

These models enable evaluation of the paths between the fitness peaks, enabling a comparison 

between genotype (sequence) and corresponding phenotype (fitness). Due to the rarity of high 

fitness regions and the presence of epistatic (i.e. nonadditive) effects that can lead to activity 

cliffs (15), supervised ML models are challenged by data bias, since the majority of data will be 

from low- or moderate-fitness regions of the fitness landscape. By incorporating information 

from rounds of in vitro selection, the underlying data is not biased solely towards deleterious 

mutants, enabling predictive ML model training. Aside from ribozymes, similar approaches have 

been used for DNA sequences that bind carbon nanotubes (55). Here, ML models were trained to 

identify the binding response of a sequence to serotonin. These models were subsequently used 

to identify low- and high-fitness sequences for serotonin binding. This ML-driven approach led 
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to the discovery of five new DNA-carbon nanotube conjugates that had higher intensity response 

to serotonin than the best previously identified combinations. 

 Generative models have seen recent use for RNA sequence discovery due to their ability 

to learn the underlying trends and generate novel sequences for testing. In particular, the recent 

use of Restricted Boltzmann Machines (29) (RBMs) and Hidden Markov Models (47) (HMM) in 

neural networks has seen increased use due to interpretability and sequence suggestions. Here, 

architectures used are similar to traditional variational autoencoders (VAEs), which are 

unsupervised models (i.e. models that do not require data labels) that encode sequences into an 

information-rich, low-dimensional “latent space” (i.e. an abstract vector space of arbitrary 

dimension that positions chemically similar sequences near each other) and then decode the 

latent space back into a sequence. If the latent space accurately maps the fitness landscape, 

decoding peaks on the landscape can lead to the discovery of high fitness regions. While training 

semi-supervised (i.e. with a subset of sequences labeled with properties) variants of VAEs 

known as a conditional VAEs (CVAEs), this approach has led to the discovery of new catalytic 

sequences. In recent work (18), CVAEs successfully identified novel RNA-like polymers called 

highly functionalized nucleic acid polymers (HFNAPs) by using the binding affinity to 

daunomycin as a proxy for fitness. As generative models improve, they can improve sampling of 

RNA sequence space to accelerate the discovery of highly active catalytic ribozymes.  

 

Concluding Remarks 

Studies of fitness landscapes of RNA molecules were recently revolutionized by high-throughput 

sequencing, which enabled quantitative assays of large numbers of sequences. When coupled 

with in vitro selection, significant insights can be gained about these fitness landscapes. 



 24 

Important areas for future study in this area include probing how the environment, especially 

dynamic environments, change the fitness landscape, and understanding the structure of 

protocellular fitness landscapes and their relationship with molecular fitness landscapes. Given 

the absolute need for interpolation and extrapolation to map fitness landscapes for molecules 

with greater than a couple dozen nucleotides, machine learning, like HTS before it, may be 

poised to enable major discoveries in this area. New representations, such as molecular graphs, 

could help advance these methods by encoding relevant features. Along with close attention to 

opportunities to gain not only predictive power but also scientific understanding, the field may 

soon realize the molecular cartographer’s dream (53): maps of fitness landscapes to guide 

synthetic biology. 
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