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We study the landscape of lower-dimensional vacua of the standard model (SM) coupled to gravity in the
presence of the so-called “dark dimension” of size R⊥ in the micron range, focusing on the validity of the
swampland conjecture forbidding the presence of nonsupersymmetric anti–de Sitter (AdS) vacua in a
consistent quantum gravity theory. We first adopt the working assumption that right-handed neutrinos
propagate in the bulk, so that neutrino Yukawa couplings become tiny due to a volume suppression, leading
to naturally light Dirac neutrinos. We show that the neutrino Kaluza-Klein (KK) towers compensate for the
graviton tower to maintain stable de Sitter (dS) vacua found in the past, but neutrino oscillation data set
restrictive bounds on R⊥ and therefore the first KK neutrino mode is too heavy to alter the shape of the
radion potential or the required maximum mass for the lightest neutrino to carry dS rather than AdS vacua
found in the absence of the dark dimension, m1;max ≲ 7.63 meV. We also show that a very light gravitino
(with mass in the meV range) could help relax the neutrino mass constraint m1;max ≲ 50 meV. The
differences for the predicted total neutrino mass

P
mν among these two scenarios are within reach of next-

generation cosmological probes that may measure the total neutrino mass with an uncertainty
σð
P

mνÞ ¼ 0.014 eV. We also demonstrate that the KK tower of a very light gravitino can compensate
for the graviton tower to sustain stable dS vacua and thus right-handed neutrinos can (in principle) be
locked on the brane. For this scenario, Majorana neutrinos could develop dS vacua, which is not possible in
the SM coupled to gravity. Finally, we investigate the effects of bulk neutrino masses in suppressing
oscillations of the zero modes into the first KK modes to relax the oscillation bound on R⊥.
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I. INTRODUCTION

Far off in the infrared, well below the electron mass
threshold me, the structure of the standard model (SM) is
really simple: it can be characterized by 4 bosonic degrees of
freedom (2 from the photon and 2 from the graviton) plus 6
or 12 fermionic degrees of freedom depending on whether
neutrinos are Majorana or Dirac, respectively. The other
mass scale pertinent to the SM infrared world is the
cosmological constant, Λ∼10−120M4

p∼ ð0.25×10−2 eVÞ4,
where Mp ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass.

Even though we do not know yet the transformation
properties of the neutrinos under particle-antiparticle con-
jugation (i.e., whether neutrinos are Majorana or Dirac),

other sectors of the worldwide neutrino program have
reached precision stage. Data analyses from short- and
long-baseline neutrino oscillation experiments, together
with observations of neutrinos produced by cosmic ray
collisions in the atmosphere and by nuclear fusion
reactions in the Sun, provide the most sensitive insights
to determine the extremely small mass-squared differen-
ces. Neutrino oscillation data can be well fitted in terms of
two nonzero differences Δm2

ij ¼ m2
i −m2

j between the
squares of the masses of the three (i ¼ 1, 2, 3) mass
eigenstates mi; namely, Δm2

21 ¼ ð7.53$ 0.18Þ × 10−5 and
Δm2

32¼ð2.453$0.033Þ×10−3 eV2 or Δm2
32¼ð−2.536$

0.034Þ×10−3 eV2 [1]. In addition, the total neutrino massP
mν ≡

P
3
i¼1mi can be determined (or more restrictively

bounded) by analyzing the impact of cosmological relic
neutrinos on the growth of structure formation. Assuming a
Λ cold dark matter (CDM) cosmology, Planck temperature
and polarization data lead to

P
mν < 0.26 eV, but when

the observations of the cosmic microwave background
(CMB) are complemented with those of baryon acoustic
oscillations (BAO) the bound becomes more restrictive
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P
mν < 0.13 eV [2]. Moreover, when CMBþ BAO data

are supplemented with supernovae type Ia luminosity
distances and confronted with determinations of the growth
rate parameter, the upper limit translates to

P
mν <

0.09 eV [3]; see also [4,5]. Putting all of this together,
we arrive at an intriguing experimental fact: the scale of
neutrino masses, mi ≲ 10−2 eV, is not far from that of the
observed vacuum energy Λ ∼m4

i . This happenstance could
be the carrier of fundamental information on the possible
connections between particle physics, cosmology, and
quantum gravity.
The SM coupled to gravity has a unique four-dimensional

vacuum (although possible metastable), but it has long been
known that there may also exist lower-dimensional vacua
stabilized by the Casimir energies of particles with masses
≪ me [6]. Such vacua can have both de Sitter (dS) as well as
anti–de Sitter (AdS) geometries and their nitty gritty
depends sensitively on the value of neutrino masses. In
particular, if all neutrinoswereMajorana andwe compactify
the low-energy effective theory down to three or two
dimensions, then AdS SM vacua would appear for any
values of neutrino masses consistent with experiment.
It is noteworthy that these lower-dimensional vacua are
virtually indistinguishable from the SM vacuum at distan-
ces ≳30 μm.
A seemingly different, but in fact closely related, subject

has been the development of the Swampland program that
lays out a set of constraints to distinguish effective theories
which can be consistently coupled to quantum gravity in
the ultraviolet (UV) from those which cannot [7]. These
constraints have been formulated in the form of swamp-
land conjectures [8–10]. A well-known swampland con-
jecture is the absence of nonsupersymmetric (SUSY) AdS
vacua supported by fluxes in a consistent quantum gravity
theory [11]. This conjecture, if correct, implies that if
AdS SM lower dimensional vacua exist and are stable, then
the four-dimensional SM itself could not be completed in
the UV. Automatically, the conjecture then also implies
that the minimal SM setting with Majorana neutrinos
would be excluded. If neutrinos are Dirac, however, the
conjecture constrains the mass of the lightest neutrino
state, mi ≲ Λ1=4 [12].1 But of course, to avoid AdS vacua
one can always extend the mass spectrum of the low-
energy effective theory by adding fermionic degrees of
freedom in the deep infrared region, e.g., from a very light
gravitino [12]. In plain English, Majorana neutrinos, which
in the SM are not consistent with the bounds from absence
of AdS vacua, can be rescued by a very light gravitino,
keeping the attractive seesaw mechanism for neutrino
masses active. The requirements to avoid the instability

of non-SUSYAdS vacua have been established in the so-
called light fermion conjecture [14].
Another interesting aspect of the Swampland program is

considerations regarding the behavior of effective theories
with a cosmological constant. In particular, the distance
conjecture [15] when generalized to dS space [16] suggests
that the smallness of dark energy could signal a universe
living at the boundary of the field space in quantum gravity
with a proper distance given by − ln jΛj, in Planck units. A
universal feature of these asymptotic corners in the string
landscape of vacua is that they predict a light infinite tower
of Kaluza-Klein (KK) states whose mass mKK is correlated
to Λ. Actually, by combining the generalized distance
conjecture for dS with observational data, the smallness of
the cosmological constant and astrophysical constraints led
to a scenario with one mesoscopic dimension of micron
scale [17]. This extra dimension, dubbed the dark dimen-
sion, opens up at the scale mKK ∼ λ−1Λ1=4 of the tower,
where the proportionality factor is estimated to be within
the range 10−4 ≲ λ≲ 10−1. Within this setup, the five-
dimensional Planck scale (or species scale where gravity
becomes strong [18,19]) is ΛQG ∼m1=3

KKM
2=3
p ≃ 109 GeV.

Thedarkdimension scenario enjoys a richphenomenology:
(i) It provides a natural set up for right-handed neu-

trinos propagating in the bulk [17]. Within this
framework we expect neutrino masses to occur in
the range 10−4 < mi=eV < 10−1, despite the lack of
any fundamental scale higher than ΛQG. The sup-
pressed neutrino masses are not the result of a
seesaw mechanism, but rather because the bulk
modes have couplings suppressed by the volume
of the dark dimension (akin to the weakness of
gravity at long distances) [20–24].

(ii) It encompasses a framework for primordial black
holes [25,26] and KK gravitons [27] to emerge as
interesting dark matter candidates.

(iii) It also encompasses an interesting framework
for studying cosmology [28,29] and astroparticle
physics [30,31].

(iv) It provides a profitable arena to accommodate a very
light gravitino [32].

In light of this rich phenomenology that connects the
various topics described above, in this paper we examine
the landscape of three-dimensional vacua obtained from
compactifying the SM to three dimensions in the presence
of the dark dimension. The precise geometry (dS, AdS, or
Minkowski) is driven by competing contributions to the
effective lower-dimensional potential. The classical con-
tributions include the four-dimensional cosmological con-
stant and the curvature terms resulting from dimensional
reduction, while the quantum contributions are determined
by the Casimir energies of SM particles, as well as of KK
excitations of fields propagating in the dark dimension. The
fermionic degrees of freedom we consider in our study are
those of left- and right-handed neutrinos with and without

1We note in passing that other swampland conjectures applied
to the same class of lower-dimensional SM vacua lead to similar
constraints on neutrino masses [13].

ANCHORDOQUI, ANTONIADIS, and CUNAT PHYS. REV. D 109, 016028 (2024)

016028-2



bulk masses, a very light gravitino, and the KK towers
associated to the bulk fields.
The layout of the article is as follows. In Sec. II we

review the 3D vacua obtained in the SM coupled to gravity
from the interplay of Casimir forces and the cosmological
constant. In Sec. III we describe the general structure of the
dark dimension scenario, focusing on the 5D gravity sector
along with the degrees of freedom associated to the zero
modes and their corresponding KK towers that pop up in
the 4D low-energy effective theory. After that, assuming
bulk right-handed neutrinos, in Sec. IV we discuss upper
limits on the lightest neutrino mass obtained by balancing
bosonic and fermionic degrees of freedom of the effective
radion potential, while imposing at the same time the
absence of AdS vacua. In Sec. V we analyze how the
presence of a very light gravitino could help modify
the upper limit on the mass of the lightest neutrino state.
In Sec. VI we analyze the effects of bulk neutrino masses in
suppressing oscillations of the zero modes into the first KK
modes, while equalizing the KK bosonic towers to those
associated with the neutrino fields. We reserve Sec. VII for
our conclusions.

II. COMPACTIFYING THE SM ON A CIRCLE

Consider the action of general relativity (GR) compacti-
fied on a circle of radius R,

SGR ¼
Z

d3xdϕ
ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

p
"
1

2
M2

pRð4Þ − Λ4

#

→
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

p ð2πrÞ
$
1

2
M2

pRð3Þ −
1

4

"
R
r

#
4

VμνVμν

−M2
p

"
∂R
R

#
2

− Λ4

"
r
R

#
2
%
; ð1Þ

where gðdÞ is the determinant of the d-dimensional metric
tensor, RðdÞ the d-dimensional Ricci scalar, Vμν the field
strength of the graviphoton, 0 ≤ ϕ < 2π, Λ4 is the 4D
cosmological constant, and where r is an arbitrary scale that
we fix to the expectation value of the radion field R. For
distances larger than R, there is an effective 3D theory with
metric parametrized by

ds2ð4Þ ¼
r2

R2
ds2ð3Þ þ R2

&
dϕ2 −

ffiffiffi
2

p
MprVμdxμ

'
; ð2Þ

where Vμ is the graviphoton. From (1) it is straightforward
to see that the classical potential of the radion coming from
the 4D cosmological constant,

VCðRÞ ¼ 2πr
"
r
R

#
2

M2
pΛ4 ¼ 2πr

"
r
R

#
2

Λ; ð3Þ

is runaway, and makes the circle decompactify.

Nevertheless, Λ4 is so tiny that quantum corrections to
the vacuum energy from the lightest SM modes could
become important to stabilize the radion potential. The one-
loop corrections to VCðRÞ are driven by the Casimir energy
(inferred from loops wrapping the circle) of the lightest SM
particles, which are UV insensitive and have been calcu-
lated in [6].
Altogether, if we compactify the SMþ GR on a circle,

the radion gets an effective potential of the form

VðRÞ ¼ VCðRÞ þ
X

i

ViðRÞ; ð4Þ

where Vi denotes the contribution from the one-loop
Casimir energy of the particle i. For a particle of mass
mi with Ni degrees of freedom, the contribution to the
potential is given by

ViðRÞ ¼ ð−1Þsi Nir3m2
i

4π3R4

X∞

n¼1

K2ð2πRminÞ
n2

cosðnθiÞ; ð5Þ

where si ¼ 0ð1Þ for fermions (bosons), θi is an angle
defining the periodicity around the circle by a phase e2πiθ,
and

Kν ¼
1

2

Z
∞

0
dβ βν−1 exp

$
−
z
2

"
β þ 1

β

#%
ð6Þ

is the Bessel function.
For massless particles,

ViðRÞ ¼ 2πrρiðRÞ
"
r
R

#
2

; ð7Þ

with

ρiðRÞ ¼ ð−1Þsi 1

16π6R4
Re½Li4ðeiθiÞ'; ð8Þ

where

LinðzÞ ¼
X∞

k¼1

zk

kn
ð9Þ

is the polilogarithm. Throughout we consider particles with
periodic boundary conditions; namely θi ¼ 0. A relevant
relation is then Linð1Þ ¼ ζðnÞ, where ζðzÞ is the Riemann
zeta-function. Note that for a massive particle mi, the
Casimir energy density is exponentially suppressed by a
factor of the form expð−2πRmiÞ at large mi, and therefore
only the light particles have to be considered in the sum
of (4). All in all, in the case of the SM spectrum, we have:

(i) 2 massless bosonic degrees of freedom for the
photon,
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(ii) 2 massless bosonic degrees of freedom for the
graviton,

(iii) 4 (2) fermionic degrees of freedom for each of the
three Dirac (Majorana) neutrinos of masses m1, m2

and m3.
The effective potential (4) can be recast as

VðRÞ ≃ VCðRÞ − 4

"
r3

720πR6

#
þ
X

i

Ni

720π
r3

R6
ΘðRi − RÞ;

ð10Þ

where Ri ¼ 1=mi and ΘðxÞ is the step function, with i ¼ 1,
2, 3. Note that in (10) we only take into account (nearly)
massless 4D states and look for a 3D vacuum of toroidal
compactification, where the 4D graviphoton is projected
out. Note also that if we only consider the first two terms in
the potential, VðRÞ develops a maximum at

Rmax ¼
"

1

120π2Λ

#
1=4

≃ 11 μm; ð11Þ

corresponding to a mass scale

mmax ¼
1

2πRmax
≃ 2.11 meV; ð12Þ

which is below about the neutrino mass scale. Then, as the
value of R decreases the various neutrino thresholds open
up and sooner or later overwhelm the bosonic contribution
to VðRÞ. Thus, provided Ri < Rmax the effective radion
potential would develop minima. As can be seen from
Eqs. (3) and (10), r is an overall normalization scale which
does not influence the nature of AdS or dS vacua, and so
following [6] in our calculations we set 2πr ¼ 1 GeV−1.
Before proceeding, we pause to note that matter effects

provide the only means by which we can determine the sign
of Δm2

ij. Indeed, because of matter effects in the Sun, we
know that Δm2

21 > 0. However, the atmospheric mass
splitting Δm2

32 is essentially measured only via neutrino
oscillations in vacuum and, as noted in the Introduction, its

sign is unknown. This implies that as of today it is not
possible to decidewhether the ν3 neutrinomass eigenstate is
heavier or lighter than the ν1 and ν2 eigenstates. The
scenario, in which the ν3 is heavier, is referred to as the
normal mass hierarchy or normal ordering (NO). The
other scenario, in which the ν3 is lighter, is referred to as
the inverted mass hierarchy or inverted ordering (IO). It
has been argued that the latest cosmological constraint,P

mν<0.09 eV, provides Bayesian evidence for the
NO [33]. However, whether Bayesian suspiciousness is
enough to disfavor the IO is still a matter of debate, see
e.g. [34,35]. Moreover, some cosmological parameters are
correlated with the total neutrino mass, and so in beyond
ΛCDM models that tend to ameliorate the Hubble constant
tension the bound on

P
mν could be relaxed, see e.g. [36].

Herein, we will consider the two possibilities: for NO, we
havem1<m2 <m3, whereas for IO,we havem3<m1<m2.
Now, depending on the nature and on the masses of the

neutrinos we can obtain different types of SM vacua. As an
illustration, in Fig. 1 we show the landscape of vacua for
Dirac neutrinos with normal ordering. The required maxi-
mummass on the lightest neutrino state to avoid AdS vacua
is m1;max ¼ 7.63 meV. If neutrinos were Majorana par-
ticles, then AdS vacua would appear for any values of
neutrino masses consistent with experiment. Hence, the
AdS non-SUSY conjecture rejects the case of Majorana
neutrinos if the low-energy effective theory is SMþ GR.
It is well known that models in which the observed

weakness of gravity at long distances is due to the existence
of compact spatial dimensions [37,38] provide a compel-
ling framework to explain Dirac neutrino masses [20–24].
Hence, it is of interest to investigate how new degrees of
freedom that open up in 5D models of neutrino physics
would modify the shape of VðRÞ.

III. EXTENDING THE LOW-ENERGY
EFFECTIVE THEORY

We consider the compactification framework of [37,38],
in which it is natural to assume that, in the case of an

FIG. 1. Effective radion potential with Dirac neutrinos and NO.
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orbifold compactification, the particles charged under the
SM gauge group are locked on a 3-brane. Because SM
gauge and matter fields live on the brane, the only long-
range interaction which sees the extra dimensions is
gravity. Herein, we restrict ourselves to the case of one
mesoscopic extra dimension characterized by a length scale
in the micron range, dubbed the dark dimension [17].
Actually, null results from searches of deviations from
Newton’s gravitational inverse-square law place an upper
bound on the compactification radius, R⊥ < 30 μm [39].
A point worth noting at this juncture is that a connection

has been made elsewhere [32] between the dark dimension
and the scale of SUSY breaking. As shown in [32], the
gravitino mass m3=2 and the scale of SUSY breaking can
directly be determined from the dark energy density.
Furthermore, as also shown in [32], the dark dimension
provides a cost-effective background to host a very light
gravitino. Since this gravitino would modify the mass
spectrum of the effective theory in the deep infrared region,
it is of interest to study how the extra degrees of freedom
modify the maximum and minima of the effective radion
potential.
With this in mind, herein we consider 5D supergravity,

which contains 8 bosonic degrees of freedom (5 for the
graviton and 3 for a gauge field) and 8 fermionic degrees of
freedom (2 × 4 for two gravitinos). From a 4D perspective,
the degrees of freedom in the bosonic sector are: 2 for the
graviton þ2 for the graviphoton þ1 for the radion þ2 for
the gauge field þ1 for an extra scalar. This corresponds to
N ¼ 2 SUSY: gravitonþ vector multiplet, each containing
one Dirac spinor (2 gravitinos þ2 Weyl fermions) + their
KK excitations. The orbifold breaks SUSY to N ¼ 1. At
the massive level the spectrum is divided by 2 (with cosine
and sine wave functions). At the massless level there is a
projection to N ¼ 1 leading to 4 bosonic and 4 fermionic
degrees of freedom: spin 2 multipletþ a chiral multiplet
counting the radion, its pseudoscalar partner, and the
goldstino. SUSY breaking makes the gravitino massive
by absorbing the goldstino and yields two scalars with
different masses (of course all are set bym3=2). The content
of the gravity multiplet is summarized in Table I.
In our analysis we first drop the extra scalar assuming it

becomes heavier and keep only the radion. We analyze two
scenarios, one in which the radion is very light and another
in which the radion is heavy and does not partake in
carving VðRÞ. Then we consider that the pseudoscalar
partner of the radion (the axion) is also light. The
graviphotons Zμ and Að0Þ

μ are taken into account at the
massive level, because they have a sine wave function that
vanishes at the brane position and therefore there is no
contribution of the zero modes to VðRÞ. In Sec. IV we will
consider that the gravitino is heavy and plays no role in the
shape of VðRÞ. After that in Sec. V we study the impact of
a very light gravitino on the determination of the effective
radion potential.

IV. BULK RIGHT-HANDED NEUTRINOS

Throughout this section we proceed on the working
assumptions that gravitinos (and the SUSY mass spectrum)
are heavy and that neutrino masses derive from three 5D
fermion fieldsΨα ≡ ðψαL;ψαRÞ, which are SM singlets and
interact on our brane with the three active left-handed
neutrinos ναL and the Higgs doublet preserving lepton
number,where the indicesα ¼ e,μ, τ indicate the generation

]20–24 ]. From the viewpoint of 4D observers on the brane,
each of the singlet fermion fields can be decomposed into an
infinite tower of KK states, ψκ

LðRÞ, with κ ¼ 0;$1;…;$∞.
The right-handed fields ψκ

R combine with the left-handed
bulk states ψκ

L to assemble Dirac mass terms, which come
from the quantized internal momenta in the dark dimension.
In addition, there is a mixing between the bulk states and the
active left-handed neutrinos through Dirac-like mass terms.
Note that the bulk fields can be redefined as νð0ÞαR ≡ ψ ð0Þ

αR and
νðnÞαLðRÞ ≡ ðψ ðnÞ

αLðRÞ þ ψ ð−nÞ
αLðRÞÞ=

ffiffiffi
2

p
, and so after electroweak

TABLE I. Gravity multiplet content.

Bosons Fermions

5D
Field gMN AM ψ1;M ψ2;M
Spin 2 1 3/2 3/2
dof 5 3 4 4
m 0 0 0 0

↓ compactification on S1↓

4D zero modes (N ¼ 2)

Field gð0Þμν
Zμ R⊥ Að0Þ

μ
A⊥ ψ ð0Þ

1;μ
ψ1;⊥ ψ ð0Þ

2;μ
ψ2;⊥

Spin 2 1 0 1 0 3=2 1=2 3=2 1=2
dof 2 2 1 2 1 2 2 2 2
m 0 0 0 0 0 0 0 0 0

4D KK modes ðn∈N(Þ
Field gðnÞμν AðnÞ

μ ψ ðnÞ
1;μ ψ ðnÞ

2;μ

Spin 2 1 3=2 3=2
dof 5 3 4 4
m n=R⊥ n=R⊥ n=R⊥ n=R⊥

↓ with the action of Z2 and SUSY breaking ↓

4D zero modes (N ¼ 1)

Field gð0Þμν
R⊥ A⊥ ψ ð0Þ

1;μ

Spin 2 0 0 3=2
dof 2 1 1 4
m 0 mR⊥ mA⊥ m3=2

4D KK modes ðn∈N(Þ
Field gðnÞμν AðnÞ

μ ψ ðnÞ
1;μ ψ ðnÞ

2;μ

Spin 2 1 3=2 3=2
dof 5 3 4 4
m n=R n=R n=Rþm3=2 n=Rþm3=2
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symmetry breaking the mass terms of the Lagrangian read

Lmass ¼
X

α;β

mD
αβ

$
ν̄ð0ÞαLν

ð0Þ
βR þ

ffiffiffi
2

p X∞

n¼1

ν̄ð0ÞαLν
ðnÞ
βR

%

þ
X

α

X∞

n¼1

mnν̄
ðnÞ
αLν

ðnÞ
αR þ H:c:

¼
X3

i¼1

N̄iRMiNiL þ H:c:; ð13Þ

where mD
αβ is a Dirac mass matrix, mn ¼ n=R⊥ ¼ nmKK,

NiLðRÞ ¼
(
νð0Þi ; νð1Þi ; νð2Þi ; ) ) )

)
T

LðRÞ
; and

Mi ¼

0

BBBBB@

mD
i 0 0 0 ) ) )

ffiffiffi
2

p
mD

i 1=R⊥ 0 0 ) ) )
ffiffiffi
2

p
mD

i 0 2=R⊥ 0 ) ) )

..

. ..
. ..

. ..
. . .

.

1

CCCCCA
; ð14Þ

and where mD
i are the elements of the diagonalized Dirac

mass matrix ¼ diagðmD
1 ; m

D
2 ; m

D
3 Þ. Greek indices from the

beginning of the alphabet run over the three active flavors
(α; β ¼ e, μ, τ), Roman lower case indices over the three
SM families (i ¼ 1, 2, 3), and n over the KK modes
(n ¼ 1; 2; 3;…;þ∞). Note that ψ ð0Þ

αL is projected out from
the orbifold. For the configuration at hand,

mD
i ¼ yivffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πR⊥ΛQG
p ; ð15Þ

where yis are the five-dimensional Yukawa couplings
localized on the SM brane and where v ¼ 246=

ffiffiffi
2

p
GeV ¼

174 GeV is the Higgs vacuum expectation value. For the
neutrinos, we therefore have 4 fermionic degrees of freedom
for eachn∈N and for each i ¼ 1, 2, 3 leading to three towers
of neutrinos of masses mðnÞ

i ¼ λðnÞi =R⊥ where λðnÞi are
solutions of the transcendental equation [20–24],

λðnÞi − π
(
mD

i R⊥
)
2
cot

(
πλðnÞi

)
¼ 0: ð16Þ

Next, we make contact with experiment to develop some
sense for the orders of magnitude involved. Bearing that in
mind, we impose the cosmological constraint on the sum of
neutrinos masses. More precisely, on the sum of the three
zero modes of the three neutrino towers,

λð0Þ1

R⊥
þ λð0Þ2

R⊥
þ λð0Þ3

R⊥
<

X
mν: ð17Þ

In addition, we consider the Δm2
ij measured by neutrino

oscillation experiments. We remind the reader thatΔm2
ij are

the mass squared differences between the three zero modes
of the three neutrinos towers. For NO, we can write

(
λð0Þ2

)
2 ¼ R2

⊥Δm2
21 þ

(
λð0Þ1

)
2 ð18Þ

and

(
λð0Þ3

)
2 ¼ R2

⊥Δm2
32 þ R2

⊥Δm2
21 þ

(
λð0Þ1

)
2
: ð19Þ

Note that the Δm2
ijs constrain the parameter space due to

the fact that we need the λð0Þi s to be smaller than 1=2 in
order to have solutions of (16). By imposing the Δm2

ij

constraint we arrive at

(
λð0Þ1

)
2
<

1

4
; ð20Þ

R2
⊥Δm2

21 þ
(
λð0Þ1

)
2
<

1

4
; ð21Þ

and

R2⊥Δm2
32 þ R2⊥Δm2

21 þ
(
λð0Þ1

)
2
<

1

4
: ð22Þ

Combining (17) with (20)–(22) we obtain

λð0Þ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊥Δm2

21þ
(
λð0Þ1

)
2

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊥Δm2

32þR2
⊥Δm2

21þ
(
λð0Þ1

)
2

r
<R⊥

X
mν: ð23Þ

For the IO case, it is more convenient to keep λð0Þ3 instead
of λð0Þ1 (because ν3 is then the lightest neutrino) and the
oscillation constraint is now

(
λð0Þ3

)
2
<

1

4
; ð24Þ

−R2
⊥Δm2

21 − R2
⊥Δm2

32 þ
(
λð0Þ3

)
2
<

1

4
; ð25Þ

and

−R2
⊥Δm2

21 þ
(
λð0Þ3

)
2
<

1

4
: ð26Þ

Combining (17) with (24)–(26) we obtain
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λð0Þ3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−R2

⊥Δm2
32þ

(
λð0Þ3

)
2

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−R2

⊥Δm2
21−R2

⊥Δm2
32þ

(
λð0Þ3

)
2

r
<R⊥

X
mν: ð27Þ

Constraints on the λð0Þ1 − R⊥ plane for the NO are encap-
sulated in Fig. 2. To estimate the allowed region of the
parameter space we have adopted the ΛCDM cosmological
constraint,

P
mν < 0.09 eV. As previously noted, the

ΛCDM cosmological constraint is in tension with the IO.
A more restrictive constraint arises from oscillations of

the active zero modes into the first KK states of the towers.
Such a disappearance effect has not been observed
by neutrino oscillation experiments and so experimental
data place a bound on the compactification radius,
R⊥ < 0.1 μm [40,41]. This in turn implies that the first
KK modes in the towers have a mass of at least Oð10 eVÞ.
Consequently, the KK excitations are too massive to
counterbalance the effect of the massless bosons, only
affecting the radion potential for very small R. As a result,
within this setup we would expect that the constraints on
the maximum mass of the lightest neutrino coincide with
those predicted by the SMþ GR. Actually, the constraint
on the neutrino mass should become stronger in the
presence of a light radion field.
We have scanned the parameter space varying the radion

mass mR⊥ andm1 assuming the NO of neutrino masses and
assuming the axion is heavy. If we further assume that the
radion is heavy and does not partake in carving VðRÞ, then
form1 > 7.63 meV an AdS vacuum is formed, whereas for
6.50 < m1=meV < 7.63 a dS vacuum is obtained, and if

m1 < 6.50 meV there is no vacuum. If we instead consider
the opposite limit in which the radion is almost massless,
we find that if m1 > 5.28 meV an AdS vacuum is formed,
while for 4.36 < m1=meV < 5.28 a dS vacuum is
obtained, and if m1 < 4.36 meV there is no vacuum. At
this point a reality check is in order. Substituting the
maximum mass of the lightest neutrino that can avoid
an AdS vacuum (m1;max ¼ 7.63 meV) and the upper limit
of the compactification radius (R⊥ ¼ 10 eV) into (15)
and (16) we obtain y1 ∼ 10−4.
We have also scanned the parameter space varying mR⊥

and m3, but considering the IO of neutrino masses. In this
case, if the radion is heavy the values ofm3 demarcating the
transitions between geometries with no vacuum, with
dS vacua, and with AdS vacua are as follows: (i) for
m3 > 2.51 meV an AdS vacuum is formed; (ii) for 2.04 <
m3=meV < 2.51 a dS vacuum is obtained; (iii) for
m1 < 2.04 meV there is no vacuum. On the other hand,
if the radion is light and becomes relevant in the determi-
nation of the critical points of VðRÞ, then the lightest
neutrino must be massless, and the minimum radion mass
to avoid an AdS vacuum is mR⊥ ¼ 25.09 meV, whereas to
support a dS vacuum mR⊥ < 27.88 meV.
Next, in line with our stated plan, we consider the case of

NO Dirac neutrinos, assuming a massless radion and
massless axion. For m1 > 2.82 meV an AdS vacuum is
formed, while for 1.90 < m1=meV < 2.82 a dS vacuum is
obtained, and for m1 < 1.90 meV there is no stable
vacuum.
In summary, if we assume that right-handed neutrinos

propagate in the bulk (so that the Yukawa couplings
become tiny because of a volume suppression) then their
KK towers can compensate for the graviton tower to avoid
AdS vacua. However, neutrino oscillation data set restric-
tive bounds on R⊥ and therefore the first KK neutrino mode
is too heavy to alter the shape of the radion potential or
m1;max from those predicted by the SMþ GR when
compactified down to 3D.
In closing, we note that in Table I and in our general

presentation of the mass spectrum in Sec. III, we made the
assumption that the modulino is the goldstino; i.e., it is part
of the massive zero mode of the gravitino. At this stage, it is
worthwhile to point out that the above consideration is
actually model dependent as, e.g., the goldstino could be
the fermion of a chiral multiplet if we have F-term SUSY
breaking. In models with high-scale SUSY breaking the
gravitino and the modulino are heavy [42]. However, in
models with low-scale SUSY breaking, the modulino could
be very light. An interesting scenario emerges if the
modulino is almost massless. On the one hand, if the
radion and the axion are also almost massless, the modulino
fermionic degrees of freedom get canceled by the bosonic
degrees of freedom of the radion and axion, and the shape
of the potential is the same as that considering a heavy
goldstino with the radion and axion also as heavy particles.

FIG. 2. Constraints imposed by measurements of Δm2
ij in

oscillation experiments and the inferred
P

mν for NO via
cosmological observations.
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On the other hand, it could be that the radion and the axion
are heavy. If this were the case, for NO of Dirac neutrinos
the existence of AdS vacua would be avoided if m1 <
14.49 meV and for IO if m3 < 11.14 meV. This scenario
(with a massless modulino and heavy radion and axion)
also allows to avoid AdS vacua if neutrinos are Majorana
particles: for NO the presence of AdS vacua can be avoided
if m1 < 9.61 meV and for IO if m3 < 3.43 meV.

V. A VERY LIGHT GRAVITINO

In line with our stated plan, we now turn to consider the
addition of a very light gravitino in the mass spectrum.
Before proceeding, we pause to note that various mecha-
nisms have been suggested for SUSYbreaking, which span a
wide range of gravitinomasses: very light, light, and heavy; a
review can be found, e.g., in [43]. For gauge-mediated SUSY
breaking [44], with scale MSUSY ¼ 10 TeV, the minimum
gravitino mass is m3=2 ∼ 0.1 eV [32]. However, scenarios
with tiny masses have also been considered in the literature,
see e.g. [45]. Herein we adopt the lower bound on the
gravitino mass coming from the LHC experiment, m3=2 ≳
1 meV [46]. Whichever point of view one may find more
convincing, it seems most conservative at this point to
depend on experiment (if possible) to resolve the issue.

A. Cosmological inference of the
long-distance effective field theory

If the gravitino is very light then it would contribute with
fermionic degrees of freedom to the sum in (10) and can
help relaxing the bound on m1;max. The different mass
scales of m1 (or m3), m3=2, and mR⊥ are summarized in
Table II. It is of interest to see whether the modifications

induced on VðRÞ by the gravitino contribution can be
discerned by future cosmological probes measuring

P
mν.

Future observations from the Simons Observatory [47],
when complemented with BAO from DESI [48] and
Rubin LSST weak lensing data [49], will allow a deter-
mination of the total neutrino mass with an uncertainty
σð
P

miÞ ¼ 40 meV, and with expected improvements in
the determination of the optical depth the sensitivity will
refine to σð

P
miÞ ¼ 20 meV [50]. Future measurements of

the lensing power spectrum (or cluster abundances) by
CMB-S4 [51], when supplemented with BAO from DESI
and the Planck measurement of the optical depth, will
provide a constraint on the sum of neutrino masses at the
level σð

P
mνÞ ¼ 24 meV, and with expected improve-

ments in the determination of the optical depth the
sensitivity will refine to σð

P
mνÞ ¼ 14 meV [52]. The

proposed probe of inflation and cosmic origins (PICO), in
combination with BAO from DESI (or Euclid) will reach a
sensitivity of σð

P
mνÞ ¼ 14 meV [53]. This implies that

CMB-S4 and the proposed CMB satellite PICO will be
sensitive to a 4σ detection of the minimum sum predicted
by the NO. Far into the future, measurements of the
gravitational lensing of the CMB and the thermal and
kinetic Sunyaev-Zel’dovich effect on small scales by the
millimeter-wave survey CMB-HD may reach a sensitivity
of σð

P
mνÞ ¼ 13 meV, corresponding to a 5σ detection on

the sum of the neutrino masses [54].
Altogether, this suggests that future cosmological obser-

vations will be able to pin down whether the mass of the
lightest neutrino is m1 > 7.63 meV and at the same time
will inform us about the possible existence of a very light
gravitino or other fermionic degrees of freedom in the deep
infrared region.

TABLE II. Maximum gravitino mass necessary to avoid an AdS vacuum for Dirac neutrinos.a

NO IO

m1 mR⊥ m3=2 m3 mR⊥ m3=2

50 meV No radion 2.51 meV 30 meV No radion 3.42 meV
40 meV No radion 2.98 meV 25 meV No radion 3.94 meV
30 meV No radion 3.77 meV 20 meV No radion 4.72 meV
20 meV No radion 5.39 meV 15 meV No radion 6.02 meV
15 meV No radion 7.19 meV 10 meV No radion 8.77 meV
10 meV No radion 12.16 meV 5 meV No radion 18.65 meV
5 meV No radion Whatever 1 meV No radion Whatever
0 meV No radion Whatever 0 meV No radion Whatever
50 meV Massless Impossible 30 meV Massless Impossible
40 meV Massless Impossible 25 meV Massless Impossible
30 meV Massless Impossible 20 meV Massless Impossible
20 meV Massless 1.86 meV 15 meV Massless 2.67 meV
15 meV Massless 4.12 meV 10 meV Massless 5.38 meV
10 meV Massless 7.56 meV 5 meV Massless 10.59 meV
5 meV Massless Whatever 1 meV Massless 17.94 meV
0 meV Massless Whatever 0 meV Massless 18.60 meV

aImpossible means that there is always a stable AdS vacuum and whatever that there is no constraint.
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B. Neutrinos locked on the brane

If the gravitino is very light, neutrinos could, in principle,
be locked on the brane. If this were the case, it is of interest
to investigate whether the gravitino could help Majorana
neutrinos to avoid the existence of AdS vacua. As a first
step of this investigation we assume neutrinos are Majorana
and duplicate the scanning procedure carried out for Dirac
neutrinos to establish the mass scales of m1 (or m3), m3=2,
and mR⊥ that can avoid AdS vacua. The results are
summarized in Table III.
Now, within this scenario neutrinos do not have KK

towers, but to avoid AdS vacua we still have to compensate
for the bosonic towers from the gravity multiplet (whose
components propagate into the bulk). As noted in Sec. III
we have adopted N ¼ 2 (broken) SUSY in the bulk,
namely 8 degrees of freedom for each layer of the gravity
towers; see Table I. Note that the gravitino tower is shifted
from the bosonic towers by m3=2. As a consequence, if this
shift is too big, the bosonic modes could create stable AdS
vacua. Now, because of the orbifold compactification, some
of the zero modes can be projected out. The most natural
choice is to consider only the graviton and the radion zero
modes among the bosons, and of course the gravitino. We
also assume that the scalar superpartners of neutrinos are
heavy to contribute to the potential.
For convenience, we define X ¼ R⊥m3=2. We begin by

assuming neutrinos are Dirac. On the one hand, if X ¼ 1,
then the gravitino tower (including the zero mode) exactly
cancels the bosonic towers except for the first layer.
Therefore, we are left with 9 bosonic degrees of freedom
against 12 fermionic ones. This implies that if X ¼ 1, the
fermions will always “win” at the end. The region of the
parameter space which can develop an AdS vacuum is

determined by the mass of the neutrinos (and of the radion).
On the other hand, if X ¼ 2, then the gravitino tower
(including the zero mode) exactly cancels the bosonic
towers except for the first two layers. We therefore have 17
bosonic degrees of freedom against 12 fermionic ones. This
implies that if X ¼ 2 the bosons will always win at the end
and so the potential is unbounded from below. Of course
X < 1 would also work and even relax the constraint on
m1;max like in the analysis of Sec. VA. Consequently, it
seems that the interesting range of the gravitino mass to
compensate for the bosonic towers is 0 ≤ X < 2.
In the case of three Majorana neutrinos however, we

already know that we need to add new light fermionic
degrees of freedom to avoid the AdS vacua. Therefore, for
Majorana neutrinos the interesting range is 0 ≤ X < 1.
Using the results of Tables II and III we can obtain the
maximal values of X needed to avoid a stable AdS vacuum.
These values are given in Table IV. By comparing Tables III
and IV we conclude that in the presence of a very light
gravitino Majorana neutrinos can support stable dS vacua.
In summary, if the gravitino is very light, then its KK

tower can counterbalance the bosonic towers to avoid AdS
vacua in 4D → 3D compactifications. This implies that the
right-handed neutrinos and their left-handed counterparts
can be both localized on the brane. Besides, the gravitino
zero mode could help modify the 3D Casimir vacua for the
case of Majorana neutrinos to become viable. The maxi-
mum gravitino mass needed to avoid the AdS vacuum for
Majorana and Dirac neutrinos, assuming NO and IO, is
summarized in Fig. 3.

VI. BULK NEUTRINO MASSES

It has been pointed out that bulk neutrino masses allow
relaxing the bounds on R⊥ [55–57]. Considering that fact,

TABLE III. Maximum gravitino mass necessary to avoid an AdS vacuum for Majorana neutrinos.a

NO IO

m1 mR⊥ m3=2 m3 mR⊥ m3=2

50 meV No radion 2.31 meV 30 meV No radion 3.05 meV
40 meV No radion 2.72 meV 25 meV No radion 3.45 meV
30 meV No radion 3.36 meV 20 meV No radion 4.02 meV
20 meV No radion 4.56 meV 15 meV No radion 4.87 meV
15 meV No radion 5.67 meV 10 meV No radion 6.28 meV
10 meV No radion 7.71 meV 5 meV No radion 8.76 meV
5 meV No radion 12.21 meV 1 meV No radion 10.97 meV
0 meV No radion 18.86 meV 0 meV No radion 11.14 meV
50 meV Massless Impossible 30 meV Massless Impossible
40 meV Massless Impossible 25 meV Massless Impossible
30 meV Massless Impossible 20 meV Massless Impossible
20 meV Massless Impossible 15 meV Massless Impossible
15 meV Massless 2.13 meV 10 meV Massless 2.69 meV
10 meV Massless 4.49 meV 5 meV Massless 5.17 meV
5 meV Massless 7.67 meV 1 meV Massless 6.81 meV
0 meV Massless 10.84 meV 0 meV Massless 6.93 meV

aImpossible means that there is always a stable AdS vacuum.
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we now add Dirac masses for the three 5D neutrino fields.
For simplicity, we swap to an intermediate mass basis Ψi in
which the flavor mixing has been already diagonalized. The
kinetic and mass terms in the Lagrangian take the form

L ⊃
X3

i¼1

½iΨ̄iΓA∂A

↔
Ψi − ciΨ̄iΨi'; ð28Þ

where cis are the bulk mass parameters and ΓA ¼ ðγμ; iγ5Þ.
For convenience, we consider real ci and define the mass
matrix Mi by

Mi ¼

0

BBBBB@

vYi
0 0 ) ) ) 0

vYi
1 mi

1 ) ) ) 0

..

.
0 . .

.
0

vYi
N 0 ) ) ) mi

N

1

CCCCCA
; ð29Þ

where

Yi
0 ¼ yi

ffiffiffiffiffiffiffiffiffi
2

ΛQG

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci

e2ciR⊥π − 1

r
ð30Þ

and

Yi
n ¼ yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ΛQGπR⊥

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

n2 þ c2i R
2⊥

s

ð31Þ

are the 4D Yukawa couplings (localized on the SM brane),
with ðmi

nÞ2 ¼ ðn=R⊥Þ2 þ c2i [57]. We can then compute

lim
N→∞

det
"
M†

iMi −
α2i;n
R2⊥

1
#

¼
$

ciξ2i
e2ciR⊥π − 1

−
α2i;n
R2⊥

þ ξ2i
2πR⊥

ðπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2i;n − c2i R

2
⊥

q
cotðπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2i;n − c2i R

2
⊥

q
Þ

− ciR⊥π cothðciR⊥πÞÞ
%Y∞

j¼1

"
ðmi

jÞ2 −
α2i;n
R2
⊥

#

¼
$
−
ciξ2i
2

−
α2i;n
R2
⊥
þ ξ2i
2R⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2i;n − c2i R

2
q

cot
"
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2i;n − c2i R

2
⊥

q #%Y∞

j¼1

"
ðmi

jÞ2 −
α2i;n
R2
⊥

#
; ð32Þ

where ξi ¼ vyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ΛQG

p
. Note that the α2i;n=R

2
⊥ solutions of this equation are also the eigenvalues of MiM

†
i . In the limit

ci → 0, we recover from the bracket the usual transcendental equation:

αi;n − πðmD
i R⊥Þ2 cot ðπαi;nÞ ¼ 0: ð33Þ

TABLE IV. Maximum m3=2 and X necessary to avoid an AdS vacuum.a

NO IO

R⊥ m3=2 X R⊥ m3=2 X

Dirac 5 μm 54.26 meV 1.375 5 μm 18.14 meV 0.460
10 μm 22.35 meV 1.133 10 μm 10.15 meV 0.514
15 μm 12.72 meV 0.967 15 μm 6.13 meV 0.466
20 μm 8.71 meV 0.883 20 μm 4.36 meV 0.442
25 μm 6.56 meV 0.831 25 μm 3.38 meV 0.428
30 μm 5.25 meV 0.798 30 μm 2.77 meV 0.421

Majorana 5 μm 10.79 meV 0.273 5 μm 6.83 meV 0.173
10 μm 8.08 meV 0.409 10 μm 3.63 meV 0.184
15 μm 4.89 meV 0.372 15 μm 2.17 meV 0.165
20 μm 3.46 meV 0.351 20 μm 1.54 meV 0.156
25 μm 2.67 meV 0.338 25 μm 1.19 meV 0.151
30 μm 2.17 meV 0.330 30 μm 0.98 meV 0.149

aWe have assumed that the radion and lightest neutrino are massless.
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Note that the equation

−
ciξ2i
2

−
α2i;n
R2⊥

þ ξ2i
2R⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2i;n−c2i R

2
⊥

q
cot

"
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2i;n−c2i R

2
⊥

q #
¼0

ð34Þ

has two different behaviors. If ðαi;n=R⊥Þ2 ≥ c2i it has an
infinite number of solutions (the KK tower) but if we look
for solutions lighter than the mass in the bulk, namely
ðαi;n=R⊥Þ2 < c2i , it becomes

−
ciξ2i
2

−
α2i;n
R2
⊥
þ ξ2i
2R⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i R

2⊥−α2i;n

q
coth

"
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i R

2⊥−α2i;n

q #
¼0;

ð35Þ

which can have at most one solution. Actually, the function
defined by

fðαi;nÞ¼−
ciξ2i
2

þ ξ2i
2R⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i R

2
⊥−α2i;n

q
coth

"
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i R

2
⊥−α2i;n

q #

ð36Þ

is monotonically decreasing on ½0; jcijR⊥Þ, whereas
α2i;n=R

2
⊥ is monotonically increasing. Moreover, we have

fð0Þ¼ ξ2i
2

&
jcijcoth

&
πjcijR⊥

'
−ci

'
>
ξ2i
2

&
jcij−ci

'
≥ 0

ð37Þ

and

lim
αi;n→jcijR

fðαi;nÞ ¼ ðmD
i Þ2ð1 − πciR⊥Þ; ð38Þ

so that Eq. (35) has a unique solution if and only if

ðmD
i Þ2ð1 − πciR⊥Þ < c2i ; ð39Þ

namely, if

ci∉
$
1

2
ðmD

i Þ2πR⊥

"
−1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4

ðmD
i Þ2π2R2

⊥

s #
;

1

2
ðmD

i Þ2πR⊥

"
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4

ðmD
i Þ2π2R2

⊥

s #%

and has no solution otherwise. This means that even if the
spectrum is shifted by adding a mass in the bulk, we can
still have a light zero mode. The eigenvectors of M†

iMi are
given by

Ṽ i;βn ¼ γ̃i;βn

"
1 vYi

1
mi

1

βn−ðmi
1
Þ2 vYi

2
mi

2

βn−ðmi
2
Þ2 ) ) )

#⊺
; ð40Þ

and the eigenvectors of MiM
†
i are given by

V i;βn ¼ MiṼ i;βn ¼ γi;βn

"
vYi

0 vYi
1

"
1þ ðmi

1Þ
2

βn−ðmi
1Þ

2

#
vYi

2

"
1þ ðmi

2Þ
2

βn−ðmi
2Þ

2

#
) ) )

#⊺
; ð41Þ

where βn ¼ α2i;n=R
2⊥ is the associated eigenvalue and where γ̃i;βn and γi;βn are normalization factors. We are interested in

eigenvectors satisfying Ṽ⊺
i;βn

Ṽ i;βn ¼ 1 and V⊺
i;βn

V i;βn ¼ 1, which lead to

γ̃2i;βn ¼
2ΛQG

2ΛQG þ v2y2i

$
− cotðπR⊥

ffiffiffiffiffiffiffiffiffi
βn−c2i

p
Þffiffiffiffiffiffiffiffiffi

βn−c2i
p þ πR⊥csc2

"
πR⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βn − c2i

p #% ; ð42Þ

and

γ2i;βn ¼
4ΛQG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βn − c2i

p

v2y2i
h
cscðπR⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βn − c2i

p
Þ
i
2

$
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βn − c2i

q
ðπR⊥βn − ciÞ þ 2ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βn − c2i

q

× cos
"
πR⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βn − c2i

q #
þ ðβn − 2c2i Þ sin

"
πR⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βn − c2i

q #%−1
: ð43Þ

FIG. 3. Maximum gravitino mass needed to avoid the AdS
vacuum.
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With this in mind, the masses and mixing between the zero
mode of neutrino species i and the nth KK mode are
characterized by2

jL0nj2¼ γ̃2i;βn ; n∈N: ð44Þ

Using (34) we can express γ̃2i;βn as

γ̃2i;βn ¼
8ðmD

i Þ2πR⊥ðc2i −βnÞ
4ciðmD

i Þ4π2R2
⊥þ8ðmD

i Þ2πR⊥ðc2i −βnÞ−A−4πR⊥β2n
;

ð45Þ

with A ¼ 2ðmD
i Þ2πR⊥f−2þ πR⊥½4ci þ 2ðmD

i Þ2πR⊥'gβn.
In Fig. 4 we show possible examples of the oscillation

pattern of KK masses and mixings for fiducial values ci, yi,
and R⊥. We can see that for c1 ¼ 0.1 eV there is a strong
suppression of the mixing with the first two KKmodes, and
jL0nj peaks is at α1;3=R⊥ ¼ 156 meV, with jL03j2 ¼ 0.014.
This is in sharp contrast with the case for c1 ¼ 0, in which
jL0nj peaks in the first KK at α1;1=R⊥ ¼ 46 meV, with
jL01j2 ¼ 0.22. For higher values of c1, there is suppression
of a larger number of KK modes and at the peak jL0nj2
becomes even smaller. For the neutrino towers to be able to
compensate the bosonic towers, the mass of the lightest
neutrino zero mode should be very small, e.g., for c1 ¼
0.1 eV andR⊥ ¼ 5 μmwe have α1;0=R⊥∼2.5×10−2 meV.
As shown in Fig. 5, the second and third zero modes also
have a strong suppression on the mixing with the first two
and tenKKmodes, respectively. For ν2 and ν3, jL0nj peaks in
the third and eleventh KK mode at α2;3=R⊥ ¼ 169 and
α3;11=R⊥ ¼ 625 meV,with jL03j2 ¼ 0.00013 and jL011j2 ¼
0.0000849. This corresponds to Δm2

21 ∼ 7.2 × 10−5 eV2,
Δm2

32 ∼ 2.4 × 10−3 eV2, and
P

mν ∼ 58 meV in good

agreement with observations. See the Appendix for further
details.
Now, for R⊥ ≳ 10 μm, the masses of the bosonic KK

become of the order of the neutrino zero modes, and
therefore close to jcj if we need to enforce a suppression of
zero-mode oscillations into the first few KK states. If this
were the case, the neutrino towers (whose masses can be
approximated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=R⊥Þ2 þ c2i

p
, n > 0) would be sig-

nificantly shifted from the bosonic towers (whose masses
can be approximated by n=R⊥). This implies that the
neutrino towers would not be sufficient to cancel the
influence of the bosonic towers in carving VðRÞ. But
again, to balance the bosonic towers a very light gravitino
may come to the rescue.

VII. CONCLUSIONS

The Swampland program has made the striking proposal
that if the low-energy effective theory is the minimal SM
extension accommodating neutrino masses, then neutrinos
cannot be Majorana particles. This is because the sharp-
ened version of the weak gravity conjecture forbids the
existence of non-SUSYAdS vacua supported by fluxes in a
consistent quantum gravity theory, and if neutrinos are
Majorana, when the SMþ GR are compactified down to
3D, then AdS vacua appear for any values of neutrino
masses consistent with experiment. However, this is not the
case if neutrinos are Dirac particles, for which the SMþ
GR compactification down to 3D sets a limit on the
required maximum mass of the lightest neutrino to carry
dS rather than AdS vacua. Motivated by these astonishing
results we have studied the landscape of lower-dimensional
vacua that arise in the SM coupled to gravity enriched with
the dark dimension. The results of our investigation can be
summarized as follows:

(i) If right-handed neutrinos propagate in the bulk (so
that their Yukawa couplings become tiny due to a
volume suppression) then their KK towers can

FIG. 5. Pattern of KK masses and mixings for the heaviest zero
modes assuming NO and a compactification radius R⊥ ¼ 5 μm.
We have taken c2 ¼ −0.12 eV, c3 ¼ −0.45 eV, y2 ¼ 0.0001,
and y3 ¼ 0.0003.

FIG. 4. Pattern of KK masses and mixings for the lightest zero
mode assuming y1 ¼ 0.001 and fiducial values of ci and
R⊥ ¼ 5 μm.

2Note that contrary to what is stated in [57], the left rotation
that diagonalizes the mass matrix Mi in the intermediate basis
relates to M†

iMi rather than MiM
†
i .
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compensate for the graviton tower to avoid AdS
vacua. However, data from neutrino oscillation
experiments set restrictive bounds on the compacti-
fication radius and so the first KK neutrino modes
are too heavy to alter the shape of the radion
potential or the maximum mass of the lightest
neutrino state from those predicted by the SMþ
GR when compactified down to 3D.

(ii) A very light gravitino (with mass in the meV range)
could help relax the neutrino mass constraint. The
difference between the predicted total neutrino massP

mν by SMþ GR and SMþ GR in the presence
of a very light gravitino propagating through the
dark dimension is within reach of next-generation
cosmological probes that will measure the total
neutrino mass with an uncertainty σð

P
mνÞ ¼

0.014 eV.
(iii) If the gravitino is very light, then its KK tower can

compensate for the graviton tower to avoid AdS
vacua and thus right-handed neutrinos can (in
principle) be locked on the brane. For this scenario,
Majorana neutrinos could develop dS vacua.

(iv) Bulk neutrino masses can suppress the mixing with
the first KK mode in the neutrino towers and relax
the oscillation bound on the compactification radius,
but at the expense of shifting the KK neutrino towers
to higher masses. However, there is a neutrino zero
mode that can stay light in each tower to accom-
modate neutrino oscillation data and the cosmologi-
cal bound.

As a by-product of our investigation focusing on the
validity of the non-SUSY AdS instability conjecture we
end up with a prediction of Swampland phenomenology
within the framework of the dark dimension: either the
gravitino is very light or else neutrinos have to be Dirac
with the right-handed states propagating into the bulk, so
that the neutrino towers can compensate the contribution of
the graviton KK modes to the potential.
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APPENDIX

For completeness, in this Appendix we calculate the
survival probability in the presence of bulk masses. In order
to be able to compare the cases with and without bulk
masses and clearly see the strong suppression of the mixing
with the first few KK modes, we have to look at a value of
R⊥ in which the scenario without bulk masses is excluded.
Indeed, because of the constraint from oscillation data, it is
not possible to build a coherent spectrum without bulk
masses for R⊥ ≲ 0.4 μm for NO [28]. We will therefore

build an explicit example for NO with R⊥ ¼ 1 μm, and a
choice of realistic and simple parameters. Namely, we
choose mð0Þ

1 ¼ 1 meV which together with the value of R⊥
fully determine the Yukawa couplings, and then the whole
spectrum, when there are no masses in the bulk. Namely, it
gives y1 ≃ 2 × 10−5, y2 ≃ 2 × 10−4 and y3 ≃ 1.3 × 10−3, or
equivalently mD

1 ≃mð0Þ
1 ≃ 1, mD

2 ≃ 9 and mD
3 ≃ 57 meV.

When we turn on the masses in the bulk, the choice of R⊥
and of the values of the zero mode masses do not determine
the spectrum as we still have two correlated parameters ci
and yi for each i. Here we make the simple choice of
y1 ¼ y2 ¼ y3 ¼ 10−4. The bulk masses are thus determined
and are found to be c1 ≃ 140 meV, c2 ≃ −124 meV and
c3 ≃ −4.177 eV. The spectrum is therefore fully deter-
mined and is presented in Fig. 6.
We can now compare the survival probability in the three

cases: no neutrino in the bulk (SM case), and neutrinos in
the bulk with and without bulk masses, all as functions of
L=E, where L is the experiment baseline, E is the neutrino
energy. To this end, we first define the relation between the
flavor and intermediate bases:

νLα;0 ¼ UαiνLi;0; Ψα ¼ RαiΨi; ðA1Þ

where Uαi is the usual Pontecorvo-Maki-Nagakawa-Sakata
matrix [58–60] for the standard three flavor neutrino model
and R is a matrix that diagonalizes the bulk masses and
Yukawa couplings. The oscillation amplitude (in vacuum)
among active neutrinos is given by

Aðνα;0 → νβ;0;LÞ ¼
X

i;n

U0n
αi ðU0n

βi Þ( exp
"
i
m2

i;nL
2E

#
; ðA2Þ

where U0n
αi ¼ UαiL0n

i , and where and the superscripts
indicating left handedness have been dropped. It is note-
worthy that the other entries of Unm

αi [57] are not observable,
because the sterile neutrinos do not couple to the electro-
weak gauge bosons. The survival probability of flavor α a
distance L is given by

FIG. 6. Neutrino spectrum.
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Pαα ≡ Pðνα;0 → να;0Þ ¼ jAðνα;0 → να;0;LÞj2: ðA3Þ

In Figs. 7 and 8 we show the survival probability of the
different flavors as a function of L=E showing different
scales. We can see that the case with bulk masses is way
more similar to the SM case than the case without bulk
masses. In order to refine this statement, in Figs. 9 and 10
we show the differences of probabilities with respect to
the SM (without bulk neutrinos) scenario. We can see
that even though the case without bulk masses has huge

differences with respect to the SM case, this is no
longer true once we include bulk masses. Moreover, we
remind the reader that when we include bulk masses,
choosing R⊥ and the masses of the zero modes does not
fully determine the spectrum. We decided to display
simple and generic values of the parameters here to see
the natural behavior of the system, but it is definitely
possible to adjust the values of yi and ci to have the same
zero modes spectrum, but to reduce even more the effect of
the KK towers.

FIG. 7. Probability amplitudes Pee, Pμμ, and Pττ for L=E < 2000 km=GeV.
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FIG. 8. Probability amplitudes Pee, Pμμ, and Pττ for L=E < 35000 km=GeV.
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FIG. 9. Deviations of the probability amplitudes from the scenario without bulk neutrinos for L=E < 2000 km=GeV.
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FIG. 10. Deviations of the probability amplitudes from the scenario without bulk neutrinos for L=E < 35000 km=GeV.
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