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Abstract

This paper addresses the recent body of research in algebra and algebraic thinking from 2018 to 2022. We reviewed 74
journal articles and identified four clusters of content areas: (a) literal symbols and symbolizing, (b) equivalence and the
equal sign, (c) equations and systems, and (d) functions and graphing. We present the research on each of these content
clusters, and we discuss insights on effective teaching practices and the social processes supporting algebraic reasoning. The
research base shows that incorporating algebraic thinking into the elementary grades, emphasizing analytic and structural
thinking processes, and emphasizing covariational reasoning supports students’ meaningful learning of core algebraic ideas.
We close with a discussion of the major theoretical contributions emerging from the past five years, offering suggestions

for future research.

1 Trends, insights, and developments
in research on the teaching and learning
of algebra

Within the last two decades there has been a shift from the
dichotomy of arithmetic and algebra, with scholars advocat-
ing for a longitudinal approach to teaching and learning alge-
bra beginning with formal schooling. This shift also marked
a departure from researching students’ shortcomings in alge-
braic thinking to instead adopting a competency perspective
that explores what students can do and understand (Stephens
et al., 2017). Accordingly, we approach algebra as a continu-
ous progression up the grade bands with increased sophisti-
cation. Considering research on the teaching, learning, and
theory of algebra in grades 3—12 from 2018—2022, we
identify (a) trends in what the body of research has investi-
gated over the past five years; (b) what major findings and
insights were gained, and consequently; (c) what changes
emerged in the teaching and learning of algebra. We close
by providing suggestions for future research.
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2 Theoretical frameworks for algebraic
reasoning and thinking

In 2008 Kaput proposed a framework for algebraic reasoning
that included two core aspects: (a) systematically symbol-
izing generalizations of regularities and constraints, and (b)
syntactically guided reasoning and actions on generaliza-
tions expressed in conventional symbol systems. These core
aspects are expressed in three strands: (1) algebra as the
study of structures and systems abstracted from computa-
tions and relations; (2) algebra as the study of functions,
relations, and joint variation, and (3) algebra as the applica-
tion of a cluster of modeling languages. Strand (1) addresses
generalized arithmetic, including generalizing about number
properties, relationships, and computation strategies. Strand
(2) acknowledges the central role functions play in algebra,
and strand (3) entails three types of modeling: number or
quantity-specific modeling, modeling generalizations, typi-
cally with variables, and making comparisons with other
models and situations.

In recent years, there has been increased attention to
algebraic reasoning, thinking, and early algebra. This
work began in earnest with a PME Research Forum and an
ICMI thematic working group dedicated to early algebra
(Kieran, 2022), and was followed by researchers advanc-
ing definitions of early algebraic thinking (e.g., Britt &
Irwin, 2011; Carraher & Schliemann, 2007; Kieran, 2004).
In 2022, Kieran published a framework for early algebraic
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thinking. Although it addresses early algebra, whereas this
review includes secondary studies on formal algebra, it nev-
ertheless offers a way to structure the studies in the field.
Kieran’s framework articulates three types of algebraic
thinking—analytic, structural, and functional—with gener-
alization being the common thread across the types. The
first two types, analytic and structural thinking, are rooted
in generalized arithmetic. Analytic thinking entails think-
ing about indeterminate quantities as if they were known,
and its main focus is equations, equalities, and equivalence.
Kieran’s second type, structural thinking, entails making use
of relationships as instantiations of properties, and includes
seeing relations, properties, and structure within numbers,
operations, and expressions. These two types of thinking
intersect with, but also differentiate, aspects of Kaput's first
strand of algebra as the study of structures and systems
abstracted from computations and relations. Kieran’s third
type is functional thinking, like Kaput’s second strand (the
study of functions, relations, and joint variation). The func-
tional thinking type addresses recursive, covariational, and
correspondence thinking. These distinctions reflect more
recent trends in the field which differentiate covariational
from correspondence approaches. In the next section, we
describe how we leveraged the ideas in these frameworks to
identify relevant articles for review.

3 The process of identifying articles

Aiming to explore the state of the research conducted on the
teaching and learning of algebra over the past five years, we
began with a set of inclusion and exclusion criteria to iden-
tify articles for review. We included articles (a) published in
peer-reviewed, high-quality journals; (b) published between
2018 and 2022; (c) situated at the K-12 level; and (d) whose
focus was the teaching and learning of algebra. Our exclu-
sion criteria were (a) literature reviews or policy documents;
(b) practitioner papers, book chapters, or proceedings; (c)
studies conducted at the college level; (d) articles in which
algebra was the context, but that did not address the teaching
or learning of algebra; (d) studies about teachers’ beliefs or
knowledge, rather than teaching practices; and (e) textbook
analyses without accompanying student data.

We then compiled a comprehensive list of journals in
which mathematics education research articles are pub-
lished, as taken from five sources: (1) The Vanderbilt Uni-
versity Library list of key journals in mathematics edu-
cation,! (2) the Mathematics Education Research Group
(MERG) journal list,? (3) the Education Bureau of Hong

! https://researchguides.library.vanderbilt.edu/mathed/journals.

2 https://sites.google.com/site/ditmerg/journals.
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Kong,? (4) the University of Central Florida Library list of
key journals for mathematics education, and (5) the Center
for Research and Training in Mathematics Education journal
list.> From those sources, we compiled a list of 40 possible
journals for inclusion, and then searched for each journal
in the Web of Science to identify its Impact Factor (IF)
and its Journal Citation Indicator (JCI). Impact Factors are
measures of the frequency with which an average article
in a journal has been cited in a particular year, and the JCI
measures the average citation impact for papers published
in the prior three-year period. It is normed against 1.0, so
values greater than 1 indicate a higher-than-average impact
(Crea et al., 2023). Thirteen of the journals were not indexed
by the Web of Science. For the remaining 27 journals, we
included those that had either an IF, a JCI> 1.0, or both,
which yielded 18 journals. We also included three of the
13 journals not indexed by the Web of Science, due to their
prominence in mathematics education: For the Learning of
Mathematics, the Journal of Urban Mathematics Education,
and the Australian Journal of Education. The resulting 21
journals (see Table 1 in Electronic Supplementary Material)
constituted the database for our article search.

Restricting our search results to our journal list, we then
searched on the Web of Science, ERIC, Google Scholar, and
the individual journal indices, running four searches with
the following terms: (a) algebra + learning (202 results); (b)
algebra+learning AND equals OR function OR graph OR
equation OR variable (1038 results); (c) algebra + teaching
(91 results); and (d) algebra+ teaching AND equals OR
function OR graph OR equation OR variable (239 results).
We then eliminated duplicates, and excluded any article
that did not meet our inclusion criteria or met our exclusion
criteria. This yielded 73 articles. To further cull, we then
excluded articles situated at the K-2 level (corresponding
to ages 5—7), as well as articles that were published by the
same author(s) and reported close to identical results. Apply-
ing these additional criteria yielded a total of 60 articles for
our review. To ensure that articles about algebraic thinking
processes were also included in the sample, we then ran
additional searches with the following terms: (a) algebraic
thinking (11 new results); (b) algebraic reasoning (9 new
results); and (c) algebraic thinking processes (1 new result).
After eliminating the studies that did not meet our inclu-
sion criteria, our final sample included 74 articles, which
appeared in a total of 13 journals (Table 1).

3 https://www.edb.gov.hk/attachment/en/curriculum-development/
kla/ma/res/journal_e.pdf.
* https://guides.ucf.edu/education-mathematics/journals.

3 https://ued.uniandes.edu.co/portfolio/ranking-of-mathematics-
education-journals/.
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4 What has the body of literature
investigated over the past 5 years?

The reviewed articles report findings from 22 countries,
providing a rich international perspective, with five stud-
ies offering cross-national comparisons. Thirty-two studies
were early algebra studies, situated in grades 3-5 (cor-
responding to ages 8—11), and 44 studies were algebra
studies, situated in grades 6-12 (corresponding to ages
11 — 18). We found four clusters of content areas: (a) lit-
eral symbols and symbolizing, (b) equivalence and the
equal sign, (c) equations and systems, and (d) functions
and graphing. Table 2 in the Electronic Supplementary
Materials depicts the studies according to grade level and
algebra content; note that some studies addressed more
than one content cluster, and a few studies did not fall
within any specific content cluster; thus, the totals do not
add to 74.

We considered the studies through three lenses. The
first distinguishes studies addressing the conditions sup-
porting algebraic reasoning, such as curricular treatments,
task features, or technology use, versus studies addressing
instructional features, such as social interaction or teacher
practices. We also distinguished studies investigating rea-
soning or performance as measured at one point in time,
through written assessments, interviews, or observations,
from studies characterizing change over time. These lat-
ter studies employed interventions, design experiments, or
learning trajectories. The third lens distinguishes studies
characterizing reasoning from those measuring perfor-
mance. Few articles explicitly defined reasoning or learn-
ing, but we found many studies characterizing students’
concepts, meanings, and mental operations. These articles
relied on a variety of theoretical frameworks, including
semiotics, constructivism, objectification, and quantitative
reasoning, among others. Attempts to understand students’
reasoning requires methods that offer access to student
thinking, such as clinical or task-based interviews, often
combined with classroom observation or design-experi-
ment data. Given the in-depth nature of the qualitative
analysis required to create models of student reasoning,
these studies often had small participant sizes. Moreover,
finding evidence of learning can be difficult to achieve
methodologically, and may require both access to students’
thinking over extended periods of time and multiple trian-
gulated forms of evidence.

A separate group of studies collapsed learning and
performance, treating performance on written measures
as a proxy for learning. Certainly, learning and perfor-
mance are related, and improvements in performance may
reflect changes in students’ concepts or operations. How-
ever, changes in performance may not always mean that

students’ operations have undergone metamorphic accom-
modations (Steffe, 1991); such changes could also reflect a
local behavior shift that might not always entail meaning-
ful concept change, much less persist or be generalizable
to other contexts (De Bock et al., 2011). A couple of the
studies concerned with performance did draw on theo-
retical frameworks such as structural mapping theories or
Kaput’s conceptual framework for algebra, but the major-
ity did not articulate a theory of learning. These studies
treated learning as observable, demonstrated through
increased correctness on written measures. Evidence to
support claims of improved performance rely on experi-
mental or quasi-experimental designs and statistically sig-
nificant gains from pretest to posttest (Fig. 1).

Figure 1 shows that the body of empirical research is
heavily weighted towards studies investigating the condi-
tions supporting understanding and learning, with fewer
investigating the features of instruction. The number of stud-
ies on each arrow only addresses those that intersect across
the categories, and thus do not include all 74 papers. The
majority addressed students’ change over time, even though
in some of these studies the duration of the intervention
was as short as one or two sessions. About a third of those
studies assessed students’ performance prior to and after
an intervention to evaluate its effectiveness. These findings
are consistent with Inglis and Foster’s (2018) description
of the “experimental migration”, in which a sizable amount
of research is still being conducted within the experimental
psychology research program. Few studies examined the role
of social interaction or effective teaching practices, and they
were mostly conducted at the secondary level in the content
of functions and graphing.

Next, we present the major findings and insights gained
from the research reviewed. We organize these findings first
by the four content areas, and within each area we consider
the studies in light of a) Kieran’s (2022) types of algebraic
thinking, b) whether they were situated in early algebra or
algebra, c) whether they addressed extant reasoning versus
change over time, d) their focus on learning versus per-
formance, e) their contributions to theory, and f) practical
findings for instruction. We then consider the field’s recent
findings on effective teaching practices and social processes
for supporting reasoning, before turning to a summary of the
field’s theoretical advancements.

5 Major findings and insights gained
5.1 Findings about literal symbols and symbolizing
Literal symbols play several roles in algebra, including

understanding a literal symbol as a generalized number, as
a fixed unknown, and as a varying quantity; these roles are
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subsumed under the term indeterminates (as per Radford,
2018). Many of these studies either address Kieran’s (2022)
analytic thinking type, as they considered students’ abilities
to treat indeterminate quantities as if they were known, or
Kieran’s (2022) structural thinking type, through investiga-
tions of students’ abilities to consider and express proper-
ties of number and operation. For instance, the two stud-
ies we found investigating students’ extant reasoning about
literal symbols in early algebra took the structural thinking
approach. Xolocotzin et al. (2022) examined how students
expressed rules and operations, finding that their “intui-
tions about symbolic notations were diverse and did not
necessarily focus on using letters” (p. 1375). Lenz (2022)
investigated children’s relational thinking in tasks with the
literal symbol as unknown, finding that even young children
can indicate relationships between indeterminate quantities
when they have physical materials as supports.

More studies addressed learning or improved perfor-
mance in early algebra. These findings are mixed but point
to the promise of interventions to support students’ abilities
to use and interpret literal symbols to represent indetermi-
nate quantities, attending to Kieran’s analytic thinking type
(Ayala-Altamirano & Molina, 2020; Blanton et al., 2019a;
Pang & Sunwoo, 2022; Papadopoulus & Patsiala, 2019).
For instance, Ayala-Altamirano and Molina (2020) found
that third graders can represent indeterminates symbolically,
mirroring Blanton et al.’s (2019a) findings that children can
use literal symbols to represent fixed unknowns, varying
quantities, and generalized patterns. Blanton and colleagues
implemented a longitudinal intervention, but researchers
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have found that even brief interventions can help students
learn to represent relationships symbolically (Papadopoulus
& Patsiala, 2019; Xie & Cai, 2022). In contrast to these
findings, however, others found no progression in students’
use of literal symbols; students either rejected literal sym-
bols or held meanings for them as labels or objects (Ayala-
Altamirano & Molina, 2020; Ayala-Altamirano et al., 2022).

Most of the secondary studies addressed students’ reason-
ing or performance and can be situated in Kieran’s structural
thinking type. They identified the presence of the natural
number bias, or considered how the presence of indexical
expressions affected students’ use of literal symbols (Chris-
tou et al., 2022; Soneira et al., 2018). In one learning study,
Hackenberg et al. (2021) took both an analytic and struc-
tural thinking approach to have middle-school students relate
two quantitative unknowns, finding that this supported their
abilities to make sense of indeterminacy. First introducing
literal symbols as measured and indeterminate supported the
construction of variable before then reasoning structurally
about varying quantities. However, even without interven-
tion, students can improve in their abilities to correctly use
variables (Sharpe, 2019).

These studies offer both theoretical and practical out-
comes. Building on Tall et al.’s (2001) process and concept
views of symbols and Hoch and Dreyfus’s (2004) notion
of structure sense, Lenz (2022) differentiated a number-ori-
ented approach from a structure-oriented approach, in which
the former focuses on specific numbers while the latter con-
siders the entire task, its subsets, and their interrelationships.
This mirrors Kieran’s (2022) structural thinking type and
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shows the power of this type of thinking for developing rela-
tionships between variables. Hackenberg et al. (2021) also
offered a contribution to theory by articulating the role that
students’ multiplicative concepts play in their understand-
ing and use of literal symbols. Leveraging Steffe’s (1992)
construct of units coordination, which involves inserting
the units of one composite unit across the units of another
composite unit, the authors identified the importance of rea-
soning with three levels of units to construct meaning for
quantitative unknowns.

Taken as a whole, the studies show that children can
think in sophisticated ways about literal symbols and vari-
able notation. It is important to emphasize the connections
between numbers and literal symbols early (Christou et al.,
2022), and then provide sustained experiences over time
(Papadopoulos & Patsiala, 2019; Xie & Cai, 2022). Rec-
ommendations for supporting students’ understanding of
literal symbols include using natural language terms such
as “many” to help develop general expressions (Ayala-
Altamirano & Molina, 2022), using problem statements with
implicit indexicality (Soneira et al., 2018), making implicit
variables explicit (Kilhamm et al., 2022), and using con-
texts with varying quantities, not just unknowns (Christou
et al., 2022). Tasks that involve true/false sentences (Ayala-
Altamirano & Molina, 2020) and that ask students to draw
and relate unknowns appear to be useful (Hackenberg et al.,
2021), and students should have opportunities to consider
non-natural unknowns (Christou et al., 2022).

6 Findings about equivalence and the equal
sign

A central component of early algebra addresses children’s
understanding of the equals sign and its role in equations.
Research in this area is grounded in Kieran’s (2022) ana-
lytic thinking type, in which equations and equalities are
the focus. Students’ conceptions about the equals sign have
been well documented, with research distinguishing between
an operational understanding (in which the equals sign is
seen as indicating a computation to be made) from a rela-
tional understanding (in which the equals sign indicates the
numeric equivalence of two expressions) (e.g., Carpenter
et al., 2003). More recently, research suggests that elemen-
tary students can simultaneously hold both meanings (Lee
& Pang, 2021; Madej, 2022).

Studies investigating students’ acquisition of the relational
meaning of the equals sign is optimistic, suggesting that brief
interventions can be effective (e.g., Bajwa & Perry, 2021;
Radford, 2022). For instance, Donovan and colleagues (2022)
found that an online intervention focused on the sameness
(relational) and substitution (the replacement of one repre-
sentation with another) meanings enhanced students’ abilities

to produce equals sign definitions that relied on those mean-
ings. However, this finding should be tempered with Madej’s
(2022) caution that students may struggle to think relationally
even when able to provide a relational definition. Kieran and
Martinez-Hernandez (2022) investigated students’ evolution
from calculational to structural transformations of equality.
When asked to rewrite equalities without calculating the total
of each side, they began to decompose numerical expressions
and describe truth values in terms of sameness. The authors
realized that computational underpinnings may be central to
structure-based transformational work, a finding that straddles
both the analytic and structural thinking types (Kieran, 2022).
Similarly, Tondorf and Prediger (2022) found that fifth-grade
students could engage in structural transformations after a
short intervention. In doing so, they introduced a new theo-
retical construct, that of restructuring equivalence, as a way of
transferring relational understanding to transformations.

The bulk of research on equality is situated in early algebra.
One secondary study identified high school students’ lack of
relational meaning for the equals sign (Soneira, 2022), and
another found that seventh-grade students could produce a
relational definition, but that this did not necessarily imply
a relational understanding (Sumpter & Sowenhielm, 2022).
These findings suggest a continuum between the operational
and relational understandings, rather than a binary distinction
between the two, and echo’s Lee and Pang’s (2021) findings
that students can hold both conceptions simultaneously.

These studies suggest that sameness-relational and sub-
stitutive-relational meanings should be continually elabo-
rated during and after elementary school. The substitution
meaning is important for understanding the equals sign,
and although Sumpter and Lowenhielm (2022) found that
it could be treated alongside sameness, Donovan and col-
leagues (2022) suggested that a sameness conception may
be a necessary precursor. Merely highlighting the relational
meaning of the equals sign is not sufficient; students should
also reason in contexts that necessitate relational meanings
(Lee & Pang, 2021). Teachers can leverage story problems,
concrete or visual contexts, appropriate representations, and
tasks requiring students to rewrite equalities to encourage
relational meanings (Kieran & Martinez-Herandez, 2022;
Radford, 2022; Schifter & Russell, 2022). However, contex-
tual supports should not be too grounded; they should leave
room for discussion, interpretation, and productive struggle
(Bajwa & Perry, 2021).

7 Findings about equations, equation
solving, and systems of equations
Understanding and solving equations and systems is analytic

thinking, but studies addressing these issues could conceiv-
ably entail all three of Kieran’s (2022) types of algebraic
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thinking. For instance, students can use and generalize prop-
erties of number and operations to make sense of equations
and their solutions, which entails structural thinking, and
when students consider equations as representations of, for
instance, the roots of a function, they may be leveraging
functional thinking. The bulk of the research we reviewed
in this area occurred at the secondary level, except for two
studies that we have already mentioned. Xie and Cai (2022)
investigated the effect of early arithmetic strategies on fifth
grade students’ equation solving strategies and found that
students performed better when unknowns were represented
with brackets instead of letters. After formal instruction
on equation solving, some students were able to apply an
inversing and formal (performing the same operation on
both sides) combined strategy, but only a minority obtained
the correct answer. They suggested that arithmetic invers-
ing strategies could interfere with students’ learning of the
formal strategy. Radford (2022) also found that children can
solve simple equations, and that naming operations with
terms such as “removing” can support concept formation.

The secondary studies addressed students’ strategies and
performance in solving equations and systems, taking both
analytic and structural thinking approaches (e.g., Chval
etal., 2021). Jiang and colleagues (2022) studied strategies
across Sweden, Finland, and Spain and found that a cur-
ricular emphasis on standard strategies influenced students’
approaches to equations. If students saw the standard algo-
rithm to be more important than strategy flexibility, they
were more likely to apply it even if it was less appropriate.
Those studying strategies for solving systems of equations
found connections between students’ arithmetic and alge-
braic reasoning; students with more sophisticated arithme-
tic strategies could transcend guess-and-check methods to
develop algebraic strategies (Dematte & Furinghetti, 2022;
Zwanch, 2022).

Studies investigating students’ learning have considered
the effects of digital games and tools, such as Dragonbox,
computer algebra systems, and guided interactive diagrams.
These studies are promising, suggesting that supporting stu-
dents in making translations across representational systems
can support equation solving (Fonger, 2019; Naftaliev &
Yerushalmy, 2022). However, it is important to provide
instruction that scaffolds connections between algebraic
objects and the objects in digital tools, games, or represen-
tations (Kapon et al., 2019).

This body of work offers new theoretical constructs, such
as a framework for meaningfulness in representational flu-
ency (Fonger, 2019), the introduction of the notion of repre-
sentational sense (Lepak et al., 2018), and, similar to Hack-
enberg et al.’s (2021) extension of the units coordination
construct into literal symbols, an examination of the need
for coordinating three levels of units to solve word prob-
lems that can be modeled by systems of equations (Zwanch,
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2022). These studies also suggest implications for instruc-
tion. At the elementary level, emphasizing flexibility can
support the use of appropriate solution methods (Jiang et al.,
2022). Learning to solve equations as acts of sensemaking is
critical, which can be encouraged by building on students’
existing understanding of arithmetic operations (Chval
et al., 2021; Xie & Cai, 2022), having students discuss and
compare solutions (Jiang et al., 2022), fostering attention to
connections across representations (Fonger, 2019; Naftaliev
& Yerushalmy, 2022), encouraging reflection on relation-
ships between unknowns (Zwanch, 2022), and leveraging
meaningful contexts (Jiang et al., 2022; Kapon et al., 2019;
Zwanch, 2022).

8 Findings about functions and graphing

Studies about functions and their graphs fall within Kieran’s
(2022) functional thinking type and Kaput’s (2008) strand
of algebra as the study of functions, relations, and joint
variation. However, as in the other sections, many studies
also addressed aspects of analytic and structural thinking.
The work on functions occurred in both early algebra and
algebra, which is a shift from older work situated mostly
at the secondary level. Stephens et al. (2017) argued that
not only is there a growing body of evidence that children
can successfully reason about functional relationships,
but that introducing functional thinking in the elementary
grades can support more successful reasoning in secondary
school. Since then, researchers have considered elementary
students’ abilities to generalize functional relationships and
to develop and interpret graphs of functions. These studies
show promise for supporting children’s function reason-
ing, but also point to some challenges. Studies have dem-
onstrated students’ success in generalizing function rules
(Pang & Sunwoo, 2022), as well as difficulties (Pinto et al.,
2022; Xolocotzin et al., 2022). Correspondence approaches
(developing a rule relating x and y) with function tables were
more common than covariational approaches (coordinating
changes in y with associated changes in x) (Pinto et al., 2022;
Xolocotzin et al., 2022). Numerical representation can be a
useful bridge to developing an awareness of mathematical
structure to generalize function relationships, a perspective
consistent with Kieran’s structural thinking type (Pinto et al.,
2022; Pittalis, 2022; Stephens et al., 2021), as can pattern-
ing tasks (Montenegro et al., 2018; Stephens et al., 2021;
Walkoe & Levin, 2020).

At the secondary level, a related group of studies compar-
ing outcomes across countries have investigated how cur-
ricular and pedagogical treatments affect students’ abilities
to understand and generalize function relationships, either
by examining curricular frameworks (Hemmi et al., 2021)
or student work (Ayalon & Wilkie, 2019, 2020; Watson



Trends, insights, and developments in research on the teaching and learning of algebra 205

et al., 2018). Three studies in particular examined student
responses from Israel, Australia, and England and docu-
mented Israeli students’ strong performance in figural pat-
tern generalization, conceptions of function, and ability to
relate correspondence and covariation (Ayalon & Wilkie,
2019, 2020; Watson et al., 2018). Introducing the function
concept formally in middle school, which occurs in the
Israeli curriculum, appears to support students’ pattern gen-
eralization and functional thinking, as well as help students
avoid some of the difficulties highlighted in earlier litera-
ture, such as attending only to y-values in tables, remaining
stuck in recursive approaches, and engaging in inappropri-
ate proportional reasoning (e.g., Stacey, 1989; Orton et al.,
1999; Van Dooren et al., 2005). These findings show that an
explicit emphasis on functional approaches, beginning in
middle school, can foster an understanding of function as a
relation between variables.

Other studies addressing generalization show some chal-
lenges at the middle-school level, with students confusing,
for instance, linear and quadratic variables (Ramirez et al.,
2022). However, interventions aimed at helping students
identify structural similarity can foster generalization of
function relationships (Hunter et al., 2022; Wilkie, 2020,
2022). Figural patterns are particularly useful for support-
ing students’ development of symbolic generalizations, as
are encouraging multiple ways to represent relationships
(Hunter et al., 2022; Wilkie, 2022). As a whole, these stud-
ies show us the value of approaching functional reasoning in
a manner that emphasizes structural thinking (Kieran, 2022).

Secondary studies also addressed student’s construction
and interpretation of graphs, learning about function fami-
lies, and covariational reasoning. They found that students’
symbol sense was connected to correctness in graphing (Kop
et al., 2020, 2021), and that students can hold both iconic
and scientific meanings for graphs (Lingefjard & Farahani,
2018; Patterson & McGraw, 2018). Worked examples and
digital technologies are effective in supporting students’
graphing skills (Barbiere et al., 2019; Giinster & Weigand,
2020).

Several of the studies examined functions from a covari-
ation perspective (Ellis et al., 2020; Fonger et al., 2020;
Johnson & McClintock, 2018). For instance, Ellis and
colleagues (2020) introduced the theoretical construct of
scaling-continuous reasoning, a form of covariation rely-
ing on an image of zooming, which supported productive
thinking about rates of change. There have also been other
theoretical contributions to come from this body of litera-
ture, including Pittalis’s (2022) theoretical framework for
arithmetic-algebraic structure sense, Giinster and Weigand’s
(2020) Function-Operation-Matrix for task construction to
develop students’ functional thinking, and Diaz-Berrios
and Martinez-Planell’s (2022) genetic decomposition of
exponential and logarithmic functions. This body of work

also introduced learning trajectories documenting students’
learning of quantitative and covariational relationships (e.g.,
Kafetzopoulos & Psycharis, 2022), as well as quadratic
functions (Fonger et al., 2020), exponential and logarith-
mic functions (Diaz-Berrios & Martinez-Planell, 2022), and
finite-to-finite functions (Eames et al., 2021).

These studies point to the value of introducing functional
thinking early, informally in elementary school with formal
definitions in middle school (Ayalon & Wilkie, 2019, 2020;
Pinto et al., 2022). Natural language, embodied activities,
and visual patterns can serve as vehicles for generalizing
function relations (Ayalon & Wilkie, 2019; Duijzer et al.,
2019; Pinto et al., 2022; Wilkie, 2020). Input—output models
can also support the construction of function rules from data
(Watson et al., 2018), and encouraging students to create
rather than just interpret graphs can support their graphical
reasoning (Duijzer et al., 2019). Recent studies emphasize
covariation as a promising route for developing an under-
standing of function (Ellis et al., 2020; Fonger et al., 2020;
Peck, 2020). Dynamic contexts are useful for helping stu-
dents think about rates as coordinated changes, and digital
tools can help students correlate changes in linked quanti-
ties (Ellis et al., 2020; Fonger et al., 2020; Kafetzopoulos &
Psycharis, 2022; Patterson & McGraw, 2018).

9 Findings on effective teaching practices
and social processes supporting
reasoning

Although a substantial body of research has accrued over the
past five years examining the effects of curriculum, tasks,
and digital tools on students’ learning and performance,
there is less research on teaching practices and social pro-
cesses. One exception is a pair of studies by Litke (2020a,
2020b). Drawing on large data sets of videos of ninth grade
US algebra lessons, Litke (2020a) identified five types of
learning opportunities teachers enacted: giving meaning to
procedures, moving towards procedural flexibility, making
connections across representations, building connections
across topics, and making connections explicit between
more and less familiar ideas. Litke (2020b) also found that,
consistent with prior research, most of the lessons were
teacher-led and emphasized procedures, with few opportuni-
ties for student exploration and few connections across top-
ics or representations. However, many teachers did support
procedural flexibility, and taken together, these findings sug-
gest that identifying and building on existing instructional
features to gradually improve their quality and prevalence
could be one potentially fruitful avenue for improving alge-
bra instruction.

Others have addressed links between reasoning and
instruction. Fonger et al. (2020) examined how instructional
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supports engendered students’ learning of quadratic growth,
identifying productive moves such as pressing for justifica-
tion, but also emphasizing the importance of attending to the
interaction between task design, teacher moves, and group
norms. Hohensee and colleagues (2022) investigated how
teachers’ instructional approaches to quadratic functions
influenced students’ backwards transfer to linear functions.
They linked changes in students’ reasoning to the teachers’
practices, such as reversing the steps of quadratic functions
or reasoning about landmark features. Kop et al. (2021)
showed that teachers can help students gain insight into
algebraic formulas through graphing by focusing on recogni-
tion and qualitative reasoning, modeling expert thinking and
providing examples, and offering overviews and reflection
questions. Collaborating with teachers following a lesson
sequence focused on (a) noticing regularities, (b) articulat-
ing conjectures, (c) representing examples, (d) construct-
ing representation-based arguments, and (e) comparing and
contrasting operations, Schifter and Russell (2022) found
that students could deepen their understanding of mathe-
matical structure through opportunities to create and analyze
representations.

A second under-researched topic is the role of social inter-
action in supporting learning. Wilkie (2022) studied a pair
of students generalizing quadratic figural patterns and iden-
tified several productive interactions, including explaining
one’s reasoning, building on a partner’s idea, disagreeing,
amending responses, and verifying another’s generalization.
Taking the classroom as the unit of analysis, others have
attended to interaction to detail how learning is mediated
through task design, discourse, multimodal communication,
artifact use, and representations (Hunter, 2022; Montenegro
et al., 2018; Lee & Pang, 2021; Peck, 2020; Radford, 2022).
These studies offer insight into the social processes support-
ing students’ reasoning, insights that could not be garnered
from studies focused solely on cognitive data.

Although the above studies highlight the complexity of
investigating relationships between instruction, classroom
interaction, and student learning, future research needs
to attend to these features if we are to improve algebra
instruction in classrooms at scale. In particular, the extent
to which improving the quality and prevalence of specific
instructional moves affects student learning remains an open
question.

10 Theoretical advances in research
on algebraic thinking

In addition to the above-described empirical contributions,
the recent body of research also offered significant theoreti-
cal advancements. In addition to Kieran’s (2022) conceptu-
alization of early algebraic thinking across the dimensions of
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analytic thinking, structural thinking, and functional think-
ing, other studies have also extended research to the early
grades and include a variety of perspectives, approaches, and
tools. Focusing on children’s pre-instructional experiences,
Walkoe and Levin (2020) offered a complementary concep-
tualization of the development of algebraic thinking. They
theorized that children construct algebra-relevant cognitive
resources, called seeds of algebraic thinking, through their
repeated experiences with the world. These seeds are then
refined and reorganized across contexts and levels of formal
schooling (Levin & Walkoe, 2022).

Computational thinking has emerged as an important
skill, and Brating and Kilhamn (2021) explored the inter-
section between computational and algebraic thinking in
terms of their respective representation systems. Examining
three examples of programming activities, they discussed
the similarities and differences in how variables, equality,
functions, and algorithms are represented in computer pro-
grams and algebraic notation. Despite the syntactic similari-
ties between programming languages and algebraic notation,
they revealed differences in the meaning of several concepts,
giving rise to possible difficulties these differences might
present to students.

Quantitative reasoning has also gained prominence in
recent years. Thompson (2011) defined quantitative rea-
soning as constructing and operating with quantities and
their relationships. Quantities are schemes composed of
one’s conception of an attribute of an object, such as a per-
son’s height, an appropriate unit, such as centimeters, and
a process for assigning a numerical value to the attribute.
Quantitative operations entail conceiving a new quantity
in relation to other already-conceived quantities, such as
comparing how much taller one person is than another (an
additive comparison). Researchers have since considered
students’ conceptions of literal symbols as unknown and
varying quantities (Blanton et al., 2019a; Hackenberg et al.,
2021; Lenz, 2022), students’ construction of graphs as rep-
resentations of changes in quantities (Patterson & McGraw,
2018), and have shown the promise of supporting an emerg-
ing understanding of function relationships through quantita-
tive reasoning approaches (Ellis et al., 2020; Fonger et al.,
2020; Kafetzopoulos & Psycharis, 2022).

Much of the research reported in our four content areas
have addressed algebraic thinking processes, such as reason-
ing with mathematical structure and relationships, generaliz-
ing, representing, and justifying. In particular, an interest in
using and representing structure has led to a variety of theo-
retical contributions, and speaks to the utility of Kieran’s
(2022) framework for both early algebra and algebra. For
instance, Pittalis (2022) developed and validated a model
of young students’ arithmetic-algebraic structure sense, and
Coles and Ahn (2022) proposed an extension to Radford’s
(2014) third aspect of algebraic thinking (analyticity), the
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notion of structuring a mathematical space, as a form of
proto-analytical thinking that includes elements of deduc-
tive reasoning.

Extending the structural dimension beyond natural num-
bers, Pearn and colleagues (2022) linked the fractional
competence of young students and their progressive shift to
algebraic thinking through two frameworks, the classifica-
tion framework for reverse fraction tasks and the emerg-
ing algebraic reasoning framework. Relatedly, Vlassis and
Demonty (2022) extended the structural dimension to nega-
tive integers and found that an ability to view the subtraction
operation as a ‘transformation’ involving the single use of
the minus sign accounts for students’ success in operations
with negatives. Tondorf and Prediger (2022), on the other
hand, bridged relational and transformational characteriza-
tions of restructuring equivalence, connecting the equiva-
lence of numerical-symbolic and figural representations.
Theoretical developments about representing and general-
izing include the meaningfulness in representational fluency
framework (Fonger, 2019) and a learning progression for
algebraic generalization developed and validated by Ste-
phens et al. (2021).

11 Discussion: emerging changes
and future directions

The literature over the past five years shows that a dec-
ades-long effort to incorporate early algebraic thinking
into the elementary grades, emphasize analytic and struc-
tural thinking processes, and emphasize quantitative and
covariational reasoning is beginning to pay off. The body of
research we reviewed reflects a rich international perspec-
tive and includes several cross-national comparison studies
that offer valuable insights about the effects of curricular
and instructional shifts on student understanding (Ayalon
& Wilkie, 2019, 2020; Jiang et al., 2022; Watson et al.,
2018). Together, these studies show that commonly docu-
mented difficulties decrease when curriculum and instruc-
tion emphasize covariation beginning in elementary school,
introduce formal function concepts in middle school, and
emphasize linear relationships with non-zero constants.
These findings are encouraging, showing the effectiveness
of a curricular shift to a greater emphasis on functions in the
early grades. Relatedly, we also found a stronger emphasis
on function research compared to the other three content
area clusters, with 45% of the articles (33 out of 74) address-
ing functions and graphing. This distinction was particularly
noteworthy in the algebra articles, compared to a more bal-
anced distribution across the four content clusters in early
algebra, which is unsurprising given the greater emphasis
on function in secondary mathematics.

Additionally, longitudinal studies show that an emphasis
on attention to the core algebraic thinking processes supports
significant performance gains for elementary students (e.g.,
Blanton et al., 2019a, 2019b). A greater focus on nuances
in understandings of equivalence, on function relationships,
and on generalization are also yielding promising outcomes
for students’ reasoning. Research into students’ acquisition
of the relational meaning of the equal sign, for instance,
shows that even brief interventions can support power-
ful understandings of equivalence (Donovan et al., 2022;
Radford, 2022). The field has also seen a greater empha-
sis on covariation and on quantitative reasoning (Thomp-
son, 2011), the latter representing an approach to algebraic
thinking not addressed in either Kaput’s (2008) or Kieran’s
(2022) frameworks. Covariation was a particular focus in
the secondary studies in our sample, and together they sug-
gest benefits for students’ reasoning about linear, quadratic,
and exponential functions, rates of change, slope and other
features of graphs, and the development of correspondence
rules. The literature also shows increased attention to learn-
ing trajectories and progressions, which historically have
been situated at the elementary level (Ellis, 2022). In the
past five years we have seen learning trajectories document-
ing students’ learning about slope (Peck, 2020), quantitative
and covariational relationships (Kafetzopoulos & Psycharis,
2022), quadratic growth (Fonger et al., 2020), finite-to-finite
functions (Eames et al., 2021), and generalization (Stephens
et al., 2021). Future research could extend this work into
other algebra topics.

The findings from this body of literature suggest a num-
ber of potential directions for future research. Given the
increased emphasis on early algebra, future longitudinal
studies should examine the effects of these interventions on
students’ reasoning and performance in middle school and
beyond. We also need studies that, while not longitudinal,
nevertheless examine student learning over longer periods
of time. Several articles in our sample called for longer-
term interventions (e.g., Ayala-Altamirano & Molina, 2020;
Donovan et al., 2022), as interventions of just a few sessions
are often not sufficient for engendering lasting change. Such
studies could also triangulate more data sources, including
clinical interviews and classroom data, for richer models of
student thinking. A drawback of many of the studies in our
sample was that the data were limited to written responses,
sometimes only from one task, limiting the generalizability
of outcomes. In particular, there is a need for more class-
room studies to scale up findings on the effects of task fea-
tures, digital tools, and instructional techniques. Finally, the
field needs a greater emphasis on teaching studies, particu-
larly the instruction of specific algebra topics and studies
that address the social aspects of learning, so that we can
better understand how to support teachers in implementing
high-quality algebra instruction.
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