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Abstract

This paper addresses the recent body of research in algebra and algebraic thinking from 2018 to 2022. We reviewed 74 

journal articles and identified four clusters of content areas: (a) literal symbols and symbolizing, (b) equivalence and the 

equal sign, (c) equations and systems, and (d) functions and graphing. We present the research on each of these content 

clusters, and we discuss insights on effective teaching practices and the social processes supporting algebraic reasoning. The 

research base shows that incorporating algebraic thinking into the elementary grades, emphasizing analytic and structural 

thinking processes, and emphasizing covariational reasoning supports students’ meaningful learning of core algebraic ideas. 

We close with a discussion of the major theoretical contributions emerging from the past five years, offering suggestions 

for future research.

1  Trends, insights, and developments 
in research on the teaching and learning 
of algebra

Within the last two decades there has been a shift from the 

dichotomy of arithmetic and algebra, with scholars advocat-

ing for a longitudinal approach to teaching and learning alge-

bra beginning with formal schooling. This shift also marked 

a departure from researching students’ shortcomings in alge-

braic thinking to instead adopting a competency perspective 

that explores what students can do and understand (Stephens 

et al., 2017). Accordingly, we approach algebra as a continu-

ous progression up the grade bands with increased sophisti-

cation. Considering research on the teaching, learning, and 

theory of algebra in grades 3—12 from 2018—2022, we 

identify (a) trends in what the body of research has investi-

gated over the past five years; (b) what major findings and 

insights were gained, and consequently; (c) what changes 

emerged in the teaching and learning of algebra. We close 

by providing suggestions for future research.

2  Theoretical frameworks for algebraic 
reasoning and thinking

In 2008 Kaput proposed a framework for algebraic reasoning 

that included two core aspects: (a) systematically symbol-

izing generalizations of regularities and constraints, and (b) 

syntactically guided reasoning and actions on generaliza-

tions expressed in conventional symbol systems. These core 

aspects are expressed in three strands: (1) algebra as the 

study of structures and systems abstracted from computa-

tions and relations; (2) algebra as the study of functions, 

relations, and joint variation, and (3) algebra as the applica-

tion of a cluster of modeling languages. Strand (1) addresses 

generalized arithmetic, including generalizing about number 

properties, relationships, and computation strategies. Strand 

(2) acknowledges the central role functions play in algebra, 

and strand (3) entails three types of modeling: number or 

quantity-specific modeling, modeling generalizations, typi-

cally with variables, and making comparisons with other 

models and situations.

In recent years, there has been increased attention to 

algebraic reasoning, thinking, and early algebra. This 

work began in earnest with a PME Research Forum and an 

ICMI thematic working group dedicated to early algebra 

(Kieran, 2022), and was followed by researchers advanc-

ing definitions of early algebraic thinking (e.g., Britt & 

Irwin, 2011; Carraher & Schliemann, 2007; Kieran, 2004). 

In 2022, Kieran published a framework for early algebraic 
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thinking. Although it addresses early algebra, whereas this 

review includes secondary studies on formal algebra, it nev-

ertheless offers a way to structure the studies in the field. 

Kieran’s framework articulates three types of algebraic 

thinking—analytic, structural, and functional—with gener-

alization being the common thread across the types. The 

first two types, analytic and structural thinking, are rooted 

in generalized arithmetic. Analytic thinking entails think-

ing about indeterminate quantities as if they were known, 

and its main focus is equations, equalities, and equivalence. 

Kieran’s second type, structural thinking, entails making use 

of relationships as instantiations of properties, and includes 

seeing relations, properties, and structure within numbers, 

operations, and expressions. These two types of thinking 

intersect with, but also differentiate, aspects of Kaput's first 

strand of algebra as the study of structures and systems 

abstracted from computations and relations. Kieran’s third 

type is functional thinking, like Kaput’s second strand (the 

study of functions, relations, and joint variation). The func-

tional thinking type addresses recursive, covariational, and 

correspondence thinking. These distinctions reflect more 

recent trends in the field which differentiate covariational 

from correspondence approaches. In the next section, we 

describe how we leveraged the ideas in these frameworks to 

identify relevant articles for review.

3  The process of identifying articles

Aiming to explore the state of the research conducted on the 

teaching and learning of algebra over the past five years, we 

began with a set of inclusion and exclusion criteria to iden-

tify articles for review. We included articles (a) published in 

peer-reviewed, high-quality journals; (b) published between 

2018 and 2022; (c) situated at the K-12 level; and (d) whose 

focus was the teaching and learning of algebra. Our exclu-

sion criteria were (a) literature reviews or policy documents; 

(b) practitioner papers, book chapters, or proceedings; (c) 

studies conducted at the college level; (d) articles in which 

algebra was the context, but that did not address the teaching 

or learning of algebra; (d) studies about teachers’ beliefs or 

knowledge, rather than teaching practices; and (e) textbook 

analyses without accompanying student data.

We then compiled a comprehensive list of journals in 

which mathematics education research articles are pub-

lished, as taken from five sources: (1) The Vanderbilt Uni-

versity Library list of key journals in mathematics edu-

cation,1 (2) the Mathematics Education Research Group 

(MERG) journal list,2 (3) the Education Bureau of Hong 

Kong,3 (4) the University of Central Florida Library list of 

key journals for mathematics education,4 and (5) the Center 

for Research and Training in Mathematics Education journal 

list.5 From those sources, we compiled a list of 40 possible 

journals for inclusion, and then searched for each journal 

in the Web of Science to identify its Impact Factor (IF) 

and its Journal Citation Indicator (JCI). Impact Factors are 

measures of the frequency with which an average article 

in a journal has been cited in a particular year, and the JCI 

measures the average citation impact for papers published 

in the prior three-year period. It is normed against 1.0, so 

values greater than 1 indicate a higher-than-average impact 

(Crea et al., 2023). Thirteen of the journals were not indexed 

by the Web of Science. For the remaining 27 journals, we 

included those that had either an IF, a JCI > 1.0, or both, 

which yielded 18 journals. We also included three of the 

13 journals not indexed by the Web of Science, due to their 

prominence in mathematics education: For the Learning of 

Mathematics, the Journal of Urban Mathematics Education, 

and the Australian Journal of Education. The resulting 21 

journals (see Table 1 in Electronic Supplementary Material) 

constituted the database for our article search.

Restricting our search results to our journal list, we then 

searched on the Web of Science, ERIC, Google Scholar, and 

the individual journal indices, running four searches with 

the following terms: (a) algebra + learning (202 results); (b) 

algebra + learning AND equals OR function OR graph OR 

equation OR variable (1038 results); (c) algebra + teaching 

(91 results); and (d) algebra + teaching AND equals OR 

function OR graph OR equation OR variable (239 results). 

We then eliminated duplicates, and excluded any article 

that did not meet our inclusion criteria or met our exclusion 

criteria. This yielded 73 articles. To further cull, we then 

excluded articles situated at the K-2 level (corresponding 

to ages 5—7), as well as articles that were published by the 

same author(s) and reported close to identical results. Apply-

ing these additional criteria yielded a total of 60 articles for 

our review. To ensure that articles about algebraic thinking 

processes were also included in the sample, we then ran 

additional searches with the following terms: (a) algebraic 

thinking (11 new results); (b) algebraic reasoning (9 new 

results); and (c) algebraic thinking processes (1 new result). 

After eliminating the studies that did not meet our inclu-

sion criteria, our final sample included 74 articles, which 

appeared in a total of 13 journals (Table 1).

1 https:// resea rchgu ides. libra ry. vande rbilt. edu/ mathed/ journ als.
2 https:// sites. google. com/ site/ ditme rg/ journ als.

3 https:// www. edb. gov. hk/ attac hment/ en/ curri culum- devel opment/ 

kla/ ma/ res/ journ al_e. pdf.
4 https:// guides. ucf. edu/ educa tion- mathe matics/ journ als.
5 https:// ued. unian des. edu. co/ portf olio/ ranki ng- of- mathe matics- 

educa tion- journ als/.

https://researchguides.library.vanderbilt.edu/mathed/journals
https://sites.google.com/site/ditmerg/journals.
https://www.edb.gov.hk/attachment/en/curriculum-development/kla/ma/res/journal_e.pdf.
https://www.edb.gov.hk/attachment/en/curriculum-development/kla/ma/res/journal_e.pdf.
https://guides.ucf.edu/education-mathematics/journals.
https://ued.uniandes.edu.co/portfolio/ranking-of-mathematics-education-journals/.
https://ued.uniandes.edu.co/portfolio/ranking-of-mathematics-education-journals/.
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4  What has the body of literature 
investigated over the past 5 years?

The reviewed articles report findings from 22 countries, 

providing a rich international perspective, with five stud-

ies offering cross-national comparisons. Thirty-two studies 

were early algebra studies, situated in grades 3–5 (cor-

responding to ages 8–11), and 44 studies were algebra 

studies, situated in grades 6–12 (corresponding to ages 

11 – 18). We found four clusters of content areas: (a) lit-

eral symbols and symbolizing, (b) equivalence and the 

equal sign, (c) equations and systems, and (d) functions 

and graphing. Table 2 in the Electronic Supplementary 

Materials depicts the studies according to grade level and 

algebra content; note that some studies addressed more 

than one content cluster, and a few studies did not fall 

within any specific content cluster; thus, the totals do not 

add to 74.

We considered the studies through three lenses. The 

first distinguishes studies addressing the conditions sup-

porting algebraic reasoning, such as curricular treatments, 

task features, or technology use, versus studies addressing 

instructional features, such as social interaction or teacher 

practices. We also distinguished studies investigating rea-

soning or performance as measured at one point in time, 

through written assessments, interviews, or observations, 

from studies characterizing change over time. These lat-

ter studies employed interventions, design experiments, or 

learning trajectories. The third lens distinguishes studies 

characterizing reasoning from those measuring perfor-

mance. Few articles explicitly defined reasoning or learn-

ing, but we found many studies characterizing students’ 

concepts, meanings, and mental operations. These articles 

relied on a variety of theoretical frameworks, including 

semiotics, constructivism, objectification, and quantitative 

reasoning, among others. Attempts to understand students’ 

reasoning requires methods that offer access to student 

thinking, such as clinical or task-based interviews, often 

combined with classroom observation or design-experi-

ment data. Given the in-depth nature of the qualitative 

analysis required to create models of student reasoning, 

these studies often had small participant sizes. Moreover, 

finding evidence of learning can be difficult to achieve 

methodologically, and may require both access to students’ 

thinking over extended periods of time and multiple trian-

gulated forms of evidence.

A separate group of studies collapsed learning and 

performance, treating performance on written measures 

as a proxy for learning. Certainly, learning and perfor-

mance are related, and improvements in performance may 

reflect changes in students’ concepts or operations. How-

ever, changes in performance may not always mean that 

students’ operations have undergone metamorphic accom-

modations (Steffe, 1991); such changes could also reflect a 

local behavior shift that might not always entail meaning-

ful concept change, much less persist or be generalizable 

to other contexts (De Bock et al., 2011). A couple of the 

studies concerned with performance did draw on theo-

retical frameworks such as structural mapping theories or 

Kaput’s conceptual framework for algebra, but the major-

ity did not articulate a theory of learning. These studies 

treated learning as observable, demonstrated through 

increased correctness on written measures. Evidence to 

support claims of improved performance rely on experi-

mental or quasi-experimental designs and statistically sig-

nificant gains from pretest to posttest (Fig. 1).

Figure 1 shows that the body of empirical research is 

heavily weighted towards studies investigating the condi-

tions supporting understanding and learning, with fewer 

investigating the features of instruction. The number of stud-

ies on each arrow only addresses those that intersect across 

the categories, and thus do not include all 74 papers. The 

majority addressed students’ change over time, even though 

in some of these studies the duration of the intervention 

was as short as one or two sessions. About a third of those 

studies assessed students’ performance prior to and after 

an intervention to evaluate its effectiveness. These findings 

are consistent with Inglis and Foster’s (2018) description 

of the “experimental migration”, in which a sizable amount 

of research is still being conducted within the experimental 

psychology research program. Few studies examined the role 

of social interaction or effective teaching practices, and they 

were mostly conducted at the secondary level in the content 

of functions and graphing.

Next, we present the major findings and insights gained 

from the research reviewed. We organize these findings first 

by the four content areas, and within each area we consider 

the studies in light of a) Kieran’s (2022) types of algebraic 

thinking, b) whether they were situated in early algebra or 

algebra, c) whether they addressed extant reasoning versus 

change over time, d) their focus on learning versus per-

formance, e) their contributions to theory, and f) practical 

findings for instruction. We then consider the field’s recent 

findings on effective teaching practices and social processes 

for supporting reasoning, before turning to a summary of the 

field’s theoretical advancements.

5  Major �ndings and insights gained

5.1  Findings about literal symbols and symbolizing

Literal symbols play several roles in algebra, including 

understanding a literal symbol as a generalized number, as 

a fixed unknown, and as a varying quantity; these roles are 
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subsumed under the term indeterminates (as per Radford, 

2018). Many of these studies either address Kieran’s (2022) 

analytic thinking type, as they considered students’ abilities 

to treat indeterminate quantities as if they were known, or 

Kieran’s (2022) structural thinking type, through investiga-

tions of students’ abilities to consider and express proper-

ties of number and operation. For instance, the two stud-

ies we found investigating students’ extant reasoning about 

literal symbols in early algebra took the structural thinking 

approach. Xolocotzin et al. (2022) examined how students 

expressed rules and operations, finding that their “intui-

tions about symbolic notations were diverse and did not 

necessarily focus on using letters” (p. 1375). Lenz (2022) 

investigated children’s relational thinking in tasks with the 

literal symbol as unknown, finding that even young children 

can indicate relationships between indeterminate quantities 

when they have physical materials as supports.

More studies addressed learning or improved perfor-

mance in early algebra. These findings are mixed but point 

to the promise of interventions to support students’ abilities 

to use and interpret literal symbols to represent indetermi-

nate quantities, attending to Kieran’s analytic thinking type 

(Ayala-Altamirano & Molina, 2020; Blanton et al., 2019a; 

Pang & Sunwoo, 2022; Papadopoulus & Patsiala, 2019). 

For instance, Ayala-Altamirano and Molina (2020) found 

that third graders can represent indeterminates symbolically, 

mirroring Blanton et al.’s (2019a) findings that children can 

use literal symbols to represent fixed unknowns, varying 

quantities, and generalized patterns. Blanton and colleagues 

implemented a longitudinal intervention, but researchers 

have found that even brief interventions can help students 

learn to represent relationships symbolically (Papadopoulus 

& Patsiala, 2019; Xie & Cai, 2022). In contrast to these 

findings, however, others found no progression in students’ 

use of literal symbols; students either rejected literal sym-

bols or held meanings for them as labels or objects (Ayala-

Altamirano & Molina, 2020; Ayala-Altamirano et al., 2022).

Most of the secondary studies addressed students’ reason-

ing or performance and can be situated in Kieran’s structural 

thinking type. They identified the presence of the natural 

number bias, or considered how the presence of indexical 

expressions affected students’ use of literal symbols (Chris-

tou et al., 2022; Soneira et al., 2018). In one learning study, 

Hackenberg et al. (2021) took both an analytic and struc-

tural thinking approach to have middle-school students relate 

two quantitative unknowns, finding that this supported their 

abilities to make sense of indeterminacy. First introducing 

literal symbols as measured and indeterminate supported the 

construction of variable before then reasoning structurally 

about varying quantities. However, even without interven-

tion, students can improve in their abilities to correctly use 

variables (Sharpe, 2019).

These studies offer both theoretical and practical out-

comes. Building on Tall et al.’s (2001) process and concept 

views of symbols and Hoch and Dreyfus’s (2004) notion 

of structure sense, Lenz (2022) differentiated a number-ori-

ented approach from a structure-oriented approach, in which 

the former focuses on specific numbers while the latter con-

siders the entire task, its subsets, and their interrelationships. 

This mirrors Kieran’s (2022) structural thinking type and 

Fig. 1  Relationships between 

conditions supporting under-

standing and learning, features 

of instruction, and reasoning 

and performance
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shows the power of this type of thinking for developing rela-

tionships between variables. Hackenberg et al. (2021) also 

offered a contribution to theory by articulating the role that 

students’ multiplicative concepts play in their understand-

ing and use of literal symbols. Leveraging Steffe’s (1992) 

construct of units coordination, which involves inserting 

the units of one composite unit across the units of another 

composite unit, the authors identified the importance of rea-

soning with three levels of units to construct meaning for 

quantitative unknowns.

Taken as a whole, the studies show that children can 

think in sophisticated ways about literal symbols and vari-

able notation. It is important to emphasize the connections 

between numbers and literal symbols early (Christou et al., 

2022), and then provide sustained experiences over time 

(Papadopoulos & Patsiala, 2019; Xie & Cai, 2022). Rec-

ommendations for supporting students’ understanding of 

literal symbols include using natural language terms such 

as “many” to help develop general expressions (Ayala-

Altamirano & Molina, 2022), using problem statements with 

implicit indexicality (Soneira et al., 2018), making implicit 

variables explicit (Kilhamm et al., 2022), and using con-

texts with varying quantities, not just unknowns (Christou 

et al., 2022). Tasks that involve true/false sentences (Ayala-

Altamirano & Molina, 2020) and that ask students to draw 

and relate unknowns appear to be useful (Hackenberg et al., 

2021), and students should have opportunities to consider 

non-natural unknowns (Christou et al., 2022).

6  Findings about equivalence and the equal 
sign

A central component of early algebra addresses children’s 

understanding of the equals sign and its role in equations. 

Research in this area is grounded in Kieran’s (2022) ana-

lytic thinking type, in which equations and equalities are 

the focus. Students’ conceptions about the equals sign have 

been well documented, with research distinguishing between 

an operational understanding (in which the equals sign is 

seen as indicating a computation to be made) from a rela-

tional understanding (in which the equals sign indicates the 

numeric equivalence of two expressions) (e.g., Carpenter 

et al., 2003). More recently, research suggests that elemen-

tary students can simultaneously hold both meanings (Lee 

& Pang, 2021; Madej, 2022).

Studies investigating students’ acquisition of the relational 

meaning of the equals sign is optimistic, suggesting that brief 

interventions can be effective (e.g., Bajwa & Perry, 2021; 

Radford, 2022). For instance, Donovan and colleagues (2022) 

found that an online intervention focused on the sameness 

(relational) and substitution (the replacement of one repre-

sentation with another) meanings enhanced students’ abilities 

to produce equals sign definitions that relied on those mean-

ings. However, this finding should be tempered with Madej’s 

(2022) caution that students may struggle to think relationally 

even when able to provide a relational definition. Kieran and 

Martinez-Hernandez (2022) investigated students’ evolution 

from calculational to structural transformations of equality. 

When asked to rewrite equalities without calculating the total 

of each side, they began to decompose numerical expressions 

and describe truth values in terms of sameness. The authors 

realized that computational underpinnings may be central to 

structure-based transformational work, a finding that straddles 

both the analytic and structural thinking types (Kieran, 2022). 

Similarly, Tondorf and Prediger (2022) found that fifth-grade 

students could engage in structural transformations after a 

short intervention. In doing so, they introduced a new theo-

retical construct, that of restructuring equivalence, as a way of 

transferring relational understanding to transformations.

The bulk of research on equality is situated in early algebra. 

One secondary study identified high school students’ lack of 

relational meaning for the equals sign (Soneira, 2022), and 

another found that seventh-grade students could produce a 

relational definition, but that this did not necessarily imply 

a relational understanding (Sumpter & Sowenhielm, 2022). 

These findings suggest a continuum between the operational 

and relational understandings, rather than a binary distinction 

between the two, and echo’s Lee and Pang’s (2021) findings 

that students can hold both conceptions simultaneously.

These studies suggest that sameness-relational and sub-

stitutive-relational meanings should be continually elabo-

rated during and after elementary school. The substitution 

meaning is important for understanding the equals sign, 

and although Sumpter and Lowenhielm (2022) found that 

it could be treated alongside sameness, Donovan and col-

leagues (2022) suggested that a sameness conception may 

be a necessary precursor. Merely highlighting the relational 

meaning of the equals sign is not sufficient; students should 

also reason in contexts that necessitate relational meanings 

(Lee & Pang, 2021). Teachers can leverage story problems, 

concrete or visual contexts, appropriate representations, and 

tasks requiring students to rewrite equalities to encourage 

relational meanings (Kieran & Martinez-Herandez, 2022; 

Radford, 2022; Schifter & Russell, 2022). However, contex-

tual supports should not be too grounded; they should leave 

room for discussion, interpretation, and productive struggle 

(Bajwa & Perry, 2021).

7  Findings about equations, equation 
solving, and systems of equations

Understanding and solving equations and systems is analytic 

thinking, but studies addressing these issues could conceiv-

ably entail all three of Kieran’s (2022) types of algebraic 



204 A. B. Ellis, Z. Özgür 

thinking. For instance, students can use and generalize prop-

erties of number and operations to make sense of equations 

and their solutions, which entails structural thinking, and 

when students consider equations as representations of, for 

instance, the roots of a function, they may be leveraging 

functional thinking. The bulk of the research we reviewed 

in this area occurred at the secondary level, except for two 

studies that we have already mentioned. Xie and Cai (2022) 

investigated the effect of early arithmetic strategies on fifth 

grade students’ equation solving strategies and found that 

students performed better when unknowns were represented 

with brackets instead of letters. After formal instruction 

on equation solving, some students were able to apply an 

inversing and formal (performing the same operation on 

both sides) combined strategy, but only a minority obtained 

the correct answer. They suggested that arithmetic invers-

ing strategies could interfere with students’ learning of the 

formal strategy. Radford (2022) also found that children can 

solve simple equations, and that naming operations with 

terms such as “removing” can support concept formation.

The secondary studies addressed students’ strategies and 

performance in solving equations and systems, taking both 

analytic and structural thinking approaches (e.g., Chval 

et al., 2021). Jiang and colleagues (2022) studied strategies 

across Sweden, Finland, and Spain and found that a cur-

ricular emphasis on standard strategies influenced students’ 

approaches to equations. If students saw the standard algo-

rithm to be more important than strategy flexibility, they 

were more likely to apply it even if it was less appropriate. 

Those studying strategies for solving systems of equations 

found connections between students’ arithmetic and alge-

braic reasoning; students with more sophisticated arithme-

tic strategies could transcend guess-and-check methods to 

develop algebraic strategies (Demattè & Furinghetti, 2022; 

Zwanch, 2022).

Studies investigating students’ learning have considered 

the effects of digital games and tools, such as Dragonbox, 

computer algebra systems, and guided interactive diagrams. 

These studies are promising, suggesting that supporting stu-

dents in making translations across representational systems 

can support equation solving (Fonger, 2019; Naftaliev & 

Yerushalmy, 2022). However, it is important to provide 

instruction that scaffolds connections between algebraic 

objects and the objects in digital tools, games, or represen-

tations (Kapon et al., 2019).

This body of work offers new theoretical constructs, such 

as a framework for meaningfulness in representational flu-

ency (Fonger, 2019), the introduction of the notion of repre-

sentational sense (Lepak et al., 2018), and, similar to Hack-

enberg et al.’s (2021) extension of the units coordination 

construct into literal symbols, an examination of the need 

for coordinating three levels of units to solve word prob-

lems that can be modeled by systems of equations (Zwanch, 

2022). These studies also suggest implications for instruc-

tion. At the elementary level, emphasizing flexibility can 

support the use of appropriate solution methods (Jiang et al., 

2022). Learning to solve equations as acts of sensemaking is 

critical, which can be encouraged by building on students’ 

existing understanding of arithmetic operations (Chval 

et al., 2021; Xie & Cai, 2022), having students discuss and 

compare solutions (Jiang et al., 2022), fostering attention to 

connections across representations (Fonger, 2019; Naftaliev 

& Yerushalmy, 2022), encouraging reflection on relation-

ships between unknowns (Zwanch, 2022), and leveraging 

meaningful contexts (Jiang et al., 2022; Kapon et al., 2019; 

Zwanch, 2022).

8  Findings about functions and graphing

Studies about functions and their graphs fall within Kieran’s 

(2022) functional thinking type and Kaput’s (2008) strand 

of algebra as the study of functions, relations, and joint 

variation. However, as in the other sections, many studies 

also addressed aspects of analytic and structural thinking. 

The work on functions occurred in both early algebra and 

algebra, which is a shift from older work situated mostly 

at the secondary level. Stephens et al. (2017) argued that 

not only is there a growing body of evidence that children 

can successfully reason about functional relationships, 

but that introducing functional thinking in the elementary 

grades can support more successful reasoning in secondary 

school. Since then, researchers have considered elementary 

students’ abilities to generalize functional relationships and 

to develop and interpret graphs of functions. These studies 

show promise for supporting children’s function reason-

ing, but also point to some challenges. Studies have dem-

onstrated students’ success in generalizing function rules 

(Pang & Sunwoo, 2022), as well as difficulties (Pinto et al., 

2022; Xolocotzin et al., 2022). Correspondence approaches 

(developing a rule relating x and y) with function tables were 

more common than covariational approaches (coordinating 

changes in y with associated changes in x) (Pinto et al., 2022; 

Xolocotzin et al., 2022). Numerical representation can be a 

useful bridge to developing an awareness of mathematical 

structure to generalize function relationships, a perspective 

consistent with Kieran’s structural thinking type (Pinto et al., 

2022; Pittalis, 2022; Stephens et al., 2021), as can pattern-

ing tasks (Montenegro et al., 2018; Stephens et al., 2021; 

Walkoe & Levin, 2020).

At the secondary level, a related group of studies compar-

ing outcomes across countries have investigated how cur-

ricular and pedagogical treatments affect students’ abilities 

to understand and generalize function relationships, either 

by examining curricular frameworks (Hemmi et al., 2021) 

or student work (Ayalon & Wilkie, 2019, 2020; Watson 
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et al., 2018). Three studies in particular examined student 

responses from Israel, Australia, and England and docu-

mented Israeli students’ strong performance in figural pat-

tern generalization, conceptions of function, and ability to 

relate correspondence and covariation (Ayalon & Wilkie, 

2019, 2020; Watson et al., 2018). Introducing the function 

concept formally in middle school, which occurs in the 

Israeli curriculum, appears to support students’ pattern gen-

eralization and functional thinking, as well as help students 

avoid some of the difficulties highlighted in earlier litera-

ture, such as attending only to y-values in tables, remaining 

stuck in recursive approaches, and engaging in inappropri-

ate proportional reasoning (e.g., Stacey, 1989; Orton et al., 

1999; Van Dooren et al., 2005). These findings show that an 

explicit emphasis on functional approaches, beginning in 

middle school, can foster an understanding of function as a 

relation between variables.

Other studies addressing generalization show some chal-

lenges at the middle-school level, with students confusing, 

for instance, linear and quadratic variables (Ramírez et al., 

2022). However, interventions aimed at helping students 

identify structural similarity can foster generalization of 

function relationships (Hunter et al., 2022; Wilkie, 2020, 

2022). Figural patterns are particularly useful for support-

ing students’ development of symbolic generalizations, as 

are encouraging multiple ways to represent relationships 

(Hunter et al., 2022; Wilkie, 2022). As a whole, these stud-

ies show us the value of approaching functional reasoning in 

a manner that emphasizes structural thinking (Kieran, 2022).

Secondary studies also addressed student’s construction 

and interpretation of graphs, learning about function fami-

lies, and covariational reasoning. They found that students’ 

symbol sense was connected to correctness in graphing (Kop 

et al., 2020, 2021), and that students can hold both iconic 

and scientific meanings for graphs (Linge�ärd & Farahani, 

2018; Patterson & McGraw, 2018). Worked examples and 

digital technologies are effective in supporting students’ 

graphing skills (Barbiere et al., 2019; Günster & Weigand, 

2020).

Several of the studies examined functions from a covari-

ation perspective (Ellis et al., 2020; Fonger et al., 2020; 

Johnson & McClintock, 2018). For instance, Ellis and 

colleagues (2020) introduced the theoretical construct of 

scaling-continuous reasoning, a form of covariation rely-

ing on an image of zooming, which supported productive 

thinking about rates of change. There have also been other 

theoretical contributions to come from this body of litera-

ture, including Pittalis’s (2022) theoretical framework for 

arithmetic-algebraic structure sense, Günster and Weigand’s 

(2020) Function-Operation-Matrix for task construction to 

develop students’ functional thinking, and Díaz-Berrios 

and Martínez-Planell’s (2022) genetic decomposition of 

exponential and logarithmic functions. This body of work 

also introduced learning trajectories documenting students’ 

learning of quantitative and covariational relationships (e.g., 

Kafetzopoulos & Psycharis, 2022), as well as quadratic 

functions (Fonger et al., 2020), exponential and logarith-

mic functions (Díaz-Berrios & Martínez-Planell, 2022), and 

finite-to-finite functions (Eames et al., 2021).

These studies point to the value of introducing functional 

thinking early, informally in elementary school with formal 

definitions in middle school (Ayalon & Wilkie, 2019, 2020; 

Pinto et al., 2022). Natural language, embodied activities, 

and visual patterns can serve as vehicles for generalizing 

function relations (Ayalon & Wilkie, 2019; Duijzer et al., 

2019; Pinto et al., 2022; Wilkie, 2020). Input–output models 

can also support the construction of function rules from data 

(Watson et al., 2018), and encouraging students to create 

rather than just interpret graphs can support their graphical 

reasoning (Duijzer et al., 2019). Recent studies emphasize 

covariation as a promising route for developing an under-

standing of function (Ellis et al., 2020; Fonger et al., 2020; 

Peck, 2020). Dynamic contexts are useful for helping stu-

dents think about rates as coordinated changes, and digital 

tools can help students correlate changes in linked quanti-

ties (Ellis et al., 2020; Fonger et al., 2020; Kafetzopoulos & 

Psycharis, 2022; Patterson & McGraw, 2018).

9  Findings on e�ective teaching practices 
and social processes supporting 
reasoning

Although a substantial body of research has accrued over the 

past five years examining the effects of curriculum, tasks, 

and digital tools on students’ learning and performance, 

there is less research on teaching practices and social pro-

cesses. One exception is a pair of studies by Litke (2020a, 

2020b). Drawing on large data sets of videos of ninth grade 

US algebra lessons, Litke (2020a) identified five types of 

learning opportunities teachers enacted: giving meaning to 

procedures, moving towards procedural flexibility, making 

connections across representations, building connections 

across topics, and making connections explicit between 

more and less familiar ideas. Litke (2020b) also found that, 

consistent with prior research, most of the lessons were 

teacher-led and emphasized procedures, with few opportuni-

ties for student exploration and few connections across top-

ics or representations. However, many teachers did support 

procedural flexibility, and taken together, these findings sug-

gest that identifying and building on existing instructional 

features to gradually improve their quality and prevalence 

could be one potentially fruitful avenue for improving alge-

bra instruction.

Others have addressed links between reasoning and 

instruction. Fonger et al. (2020) examined how instructional 
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supports engendered students’ learning of quadratic growth, 

identifying productive moves such as pressing for justifica-

tion, but also emphasizing the importance of attending to the 

interaction between task design, teacher moves, and group 

norms. Hohensee and colleagues (2022) investigated how 

teachers’ instructional approaches to quadratic functions 

influenced students’ backwards transfer to linear functions. 

They linked changes in students’ reasoning to the teachers’ 

practices, such as reversing the steps of quadratic functions 

or reasoning about landmark features. Kop et al. (2021) 

showed that teachers can help students gain insight into 

algebraic formulas through graphing by focusing on recogni-

tion and qualitative reasoning, modeling expert thinking and 

providing examples, and offering overviews and reflection 

questions. Collaborating with teachers following a lesson 

sequence focused on (a) noticing regularities, (b) articulat-

ing conjectures, (c) representing examples, (d) construct-

ing representation-based arguments, and (e) comparing and 

contrasting operations, Schifter and Russell (2022) found 

that students could deepen their understanding of mathe-

matical structure through opportunities to create and analyze 

representations.

A second under-researched topic is the role of social inter-

action in supporting learning. Wilkie (2022) studied a pair 

of students generalizing quadratic figural patterns and iden-

tified several productive interactions, including explaining 

one’s reasoning, building on a partner’s idea, disagreeing, 

amending responses, and verifying another’s generalization. 

Taking the classroom as the unit of analysis, others have 

attended to interaction to detail how learning is mediated 

through task design, discourse, multimodal communication, 

artifact use, and representations (Hunter, 2022; Montenegro 

et al., 2018; Lee & Pang, 2021; Peck, 2020; Radford, 2022). 

These studies offer insight into the social processes support-

ing students’ reasoning, insights that could not be garnered 

from studies focused solely on cognitive data.

Although the above studies highlight the complexity of 

investigating relationships between instruction, classroom 

interaction, and student learning, future research needs 

to attend to these features if we are to improve algebra 

instruction in classrooms at scale. In particular, the extent 

to which improving the quality and prevalence of specific 

instructional moves affects student learning remains an open 

question.

10  Theoretical advances in research 
on algebraic thinking

In addition to the above-described empirical contributions, 

the recent body of research also offered significant theoreti-

cal advancements. In addition to Kieran’s (2022) conceptu-

alization of early algebraic thinking across the dimensions of 

analytic thinking, structural thinking, and functional think-

ing, other studies have also extended research to the early 

grades and include a variety of perspectives, approaches, and 

tools. Focusing on children’s pre-instructional experiences, 

Walkoe and Levin (2020) offered a complementary concep-

tualization of the development of algebraic thinking. They 

theorized that children construct algebra-relevant cognitive 

resources, called seeds of algebraic thinking, through their 

repeated experiences with the world. These seeds are then 

refined and reorganized across contexts and levels of formal 

schooling (Levin & Walkoe, 2022).

Computational thinking has emerged as an important 

skill, and Brating and Kilhamn (2021) explored the inter-

section between computational and algebraic thinking in 

terms of their respective representation systems. Examining 

three examples of programming activities, they discussed 

the similarities and differences in how variables, equality, 

functions, and algorithms are represented in computer pro-

grams and algebraic notation. Despite the syntactic similari-

ties between programming languages and algebraic notation, 

they revealed differences in the meaning of several concepts, 

giving rise to possible difficulties these differences might 

present to students.

Quantitative reasoning has also gained prominence in 

recent years. Thompson (2011) defined quantitative rea-

soning as constructing and operating with quantities and 

their relationships. Quantities are schemes composed of 

one’s conception of an attribute of an object, such as a per-

son’s height, an appropriate unit, such as centimeters, and 

a process for assigning a numerical value to the attribute. 

Quantitative operations entail conceiving a new quantity 

in relation to other already-conceived quantities, such as 

comparing how much taller one person is than another (an 

additive comparison). Researchers have since considered 

students’ conceptions of literal symbols as unknown and 

varying quantities (Blanton et al., 2019a; Hackenberg et al., 

2021; Lenz, 2022), students’ construction of graphs as rep-

resentations of changes in quantities (Patterson & McGraw, 

2018), and have shown the promise of supporting an emerg-

ing understanding of function relationships through quantita-

tive reasoning approaches (Ellis et al., 2020; Fonger et al., 

2020; Kafetzopoulos & Psycharis, 2022).

Much of the research reported in our four content areas 

have addressed algebraic thinking processes, such as reason-

ing with mathematical structure and relationships, generaliz-

ing, representing, and justifying. In particular, an interest in 

using and representing structure has led to a variety of theo-

retical contributions, and speaks to the utility of Kieran’s 

(2022) framework for both early algebra and algebra. For 

instance, Pittalis (2022) developed and validated a model 

of young students’ arithmetic-algebraic structure sense, and 

Coles and Ahn (2022) proposed an extension to Radford’s 

(2014) third aspect of algebraic thinking (analyticity), the 
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notion of structuring a mathematical space, as a form of 

proto-analytical thinking that includes elements of deduc-

tive reasoning.

Extending the structural dimension beyond natural num-

bers, Pearn and colleagues (2022) linked the fractional 

competence of young students and their progressive shift to 

algebraic thinking through two frameworks, the classifica-

tion framework for reverse fraction tasks and the emerg-

ing algebraic reasoning framework. Relatedly, Vlassis and 

Demonty (2022) extended the structural dimension to nega-

tive integers and found that an ability to view the subtraction 

operation as a ‘transformation’ involving the single use of 

the minus sign accounts for students’ success in operations 

with negatives. Tondorf and Prediger (2022), on the other 

hand, bridged relational and transformational characteriza-

tions of restructuring equivalence, connecting the equiva-

lence of numerical-symbolic and figural representations. 

Theoretical developments about representing and general-

izing include the meaningfulness in representational fluency 

framework (Fonger, 2019) and a learning progression for 

algebraic generalization developed and validated by Ste-

phens et al. (2021).

11  Discussion: emerging changes 
and future directions

The literature over the past five years shows that a dec-

ades-long effort to incorporate early algebraic thinking 

into the elementary grades, emphasize analytic and struc-

tural thinking processes, and emphasize quantitative and 

covariational reasoning is beginning to pay off. The body of 

research we reviewed reflects a rich international perspec-

tive and includes several cross-national comparison studies 

that offer valuable insights about the effects of curricular 

and instructional shifts on student understanding (Ayalon 

& Wilkie, 2019, 2020; Jiang et al., 2022; Watson et al., 

2018). Together, these studies show that commonly docu-

mented difficulties decrease when curriculum and instruc-

tion emphasize covariation beginning in elementary school, 

introduce formal function concepts in middle school, and 

emphasize linear relationships with non-zero constants. 

These findings are encouraging, showing the effectiveness 

of a curricular shift to a greater emphasis on functions in the 

early grades. Relatedly, we also found a stronger emphasis 

on function research compared to the other three content 

area clusters, with 45% of the articles (33 out of 74) address-

ing functions and graphing. This distinction was particularly 

noteworthy in the algebra articles, compared to a more bal-

anced distribution across the four content clusters in early 

algebra, which is unsurprising given the greater emphasis 

on function in secondary mathematics.

Additionally, longitudinal studies show that an emphasis 

on attention to the core algebraic thinking processes supports 

significant performance gains for elementary students (e.g., 

Blanton et al., 2019a, 2019b). A greater focus on nuances 

in understandings of equivalence, on function relationships, 

and on generalization are also yielding promising outcomes 

for students’ reasoning. Research into students’ acquisition 

of the relational meaning of the equal sign, for instance, 

shows that even brief interventions can support power-

ful understandings of equivalence (Donovan et al., 2022; 

Radford, 2022). The field has also seen a greater empha-

sis on covariation and on quantitative reasoning (Thomp-

son, 2011), the latter representing an approach to algebraic 

thinking not addressed in either Kaput’s (2008) or Kieran’s 

(2022) frameworks. Covariation was a particular focus in 

the secondary studies in our sample, and together they sug-

gest benefits for students’ reasoning about linear, quadratic, 

and exponential functions, rates of change, slope and other 

features of graphs, and the development of correspondence 

rules. The literature also shows increased attention to learn-

ing trajectories and progressions, which historically have 

been situated at the elementary level (Ellis, 2022). In the 

past five years we have seen learning trajectories document-

ing students’ learning about slope (Peck, 2020), quantitative 

and covariational relationships (Kafetzopoulos & Psycharis, 

2022), quadratic growth (Fonger et al., 2020), finite-to-finite 

functions (Eames et al., 2021), and generalization (Stephens 

et al., 2021). Future research could extend this work into 

other algebra topics.

The findings from this body of literature suggest a num-

ber of potential directions for future research. Given the 

increased emphasis on early algebra, future longitudinal 

studies should examine the effects of these interventions on 

students’ reasoning and performance in middle school and 

beyond. We also need studies that, while not longitudinal, 

nevertheless examine student learning over longer periods 

of time. Several articles in our sample called for longer-

term interventions (e.g., Ayala-Altamirano & Molina, 2020; 

Donovan et al., 2022), as interventions of just a few sessions 

are often not sufficient for engendering lasting change. Such 

studies could also triangulate more data sources, including 

clinical interviews and classroom data, for richer models of 

student thinking. A drawback of many of the studies in our 

sample was that the data were limited to written responses, 

sometimes only from one task, limiting the generalizability 

of outcomes. In particular, there is a need for more class-

room studies to scale up findings on the effects of task fea-

tures, digital tools, and instructional techniques. Finally, the 

field needs a greater emphasis on teaching studies, particu-

larly the instruction of specific algebra topics and studies 

that address the social aspects of learning, so that we can 

better understand how to support teachers in implementing 

high-quality algebra instruction.
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