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A B S T R A C T   

Over the past few decades, Piaget’s forms of abstraction have proved productive for developing 
explanatory models of student and teacher knowledge, yet the broader applicability of his 
abstraction forms to mathematics education remains an open question. In this paper, we adopt the 
Piagetian forms of abstraction to accomplish two interrelated goals. Firstly, we analyze instruc-
tional tasks to develop hypothetical accounts of the abstractions that might occur during students’ 

engagement with them. Secondly, we draw on middle- and secondary-grades classroom data to 
discuss the abstractions that occurred during the implementation of those instructional tasks. 
Because this paper represents an initial attempt at extending the applicability of Piagetian forms 
of abstraction, we close with potential implications of such use and possible avenues for future 
research. Most notably, we highlight the complexities involved in supporting abstraction through 
curriculum and instruction.   

1. Introduction 

Piaget’s (1970, 2001) genetic epistemology has played a critical role in mathematics education research. Researchers have adopted 
his theory to develop models of students’ mathematics, teachers’ mathematics, and student-teacher interactions. In doing so, re-
searchers have identified meanings that prove productive for students’ mathematical development, as well as meanings that constrain 
students’ mathematical development (e.g., Carlson et al., 2002; Ellis et al., 2020; Ellis et al., 2015; Hackenberg, 2010; Norton & 
Wilkins, 2009; Paoletti, 2020; Steffe & Olive, 2010; Thompson, 1994a; Tillema, 2014). These researchers have also provided useful 
ways to characterize teaching in terms of how teachers’ meanings influence their instruction and student interactions, including the 
ways in which teachers construct, learn from, and build upon students’ ways of thinking (e.g., Liang, 2021; Silverman & Thompson, 
2008; Simon, 1995; Steffe & D’Ambrosio, 1995; Tallman, 2015; Tallman & Frank, 2020; Teuscher et al., 2016). 

Abstraction has emerged from Piaget’s genetic epistemology as a useful construct to formulate differentiated accounts of knowledge 
development in a diverse number of contexts (e.g., Battista, 2007; Ellis, Lockwood, & Ozaltun-Celik, 2022; Ellis, Paoletti et al., 2024; 
Moore, 2014; Simon et al., 2010; Tallman & O’Bryan, 2024; Thompson, 1994a). Given the usefulness of Piaget’s perspective on 
abstraction for developing accounts of student and teacher cognition, we hypothesized that these constructs may prove productive for 
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analyzing other factors that contribute to students’ mathematical experiences. A key aspect of mathematics education work is, after all, 
pushing and extending theory into new areas in order to see what insights might be formed. 

Curricular materials represent one of the more critical artifacts, resources, or objects that affect teaching and, hence, student 
learning (Howson et al., 1981; Kilpatrick, 2011; Remillard, 2005; Thompson, 2013). We thus extend Piaget’s forms of abstraction in 
order to provide accounts rooted in a mental action framing for curricular materials and their implementation. We investigate the 
research question, “In what ways does abstraction provide a viable tool to characterize potential learning as it relates to instructional 
tasks and their implementation?” We first provide a brief discussion of mathematical tasks and introduce Piaget’s forms of abstraction 
as a framework for analyzing task design and implementation. After this synthesis, we describe the project setting in which we 
collected instructional tasks and their implementations. We also describe our analysis process for using Piaget’s forms of abstraction to 
characterize the materials and their implementation. We discuss analysis results by focusing on a subset of the collected instructional 
tasks and presenting their implementation. Our results illustrate how the forms of abstraction provide a grounding by which to 
differentiate potential learning outcomes, as well as the potential intricacies involved in supporting students’ abstraction processes. 

2. Background 

Doyle (1988) introduced the notion of an academic task to provide a “treatment theory to account for how students learn from 
teaching” (p. 167). Doyle’s (1983) framing of academic tasks revolved around products to be produced by students, the operations 
students might use to produce those products, and the resources available to students to support that production. Since Doyle laid the 
foundation for viewing curriculum as a collection of academic tasks, mathematics educators have pursued linkages between teaching 
and learning as it relates through task design and implementation (e.g., Remillard et al., 2009). 

2.1. Task analysis and implementation 

Stein et al. (1996) introduced the notion of a mathematical task as an academic task that is situated around a particular mathe-
matical idea or concept. Stein et al. (1996) summarized the importance of tasks and their implementation by describing them as “the 
proximal causes of student learning from teaching” (p. 459), and they presented Fig. 1 as a way to frame the different phases of a 
mathematical task. Fig. 1 captures that a mathematical task is best viewed as a dynamic object, evolving from design to imple-
mentation with a collection of influencing factors that have since formed focal points for researchers. No single account of a math-
ematical task can capture all factors contributing to student learning, yet mathematical tasks (and more broadly curricular resources) 
are worthy of study due to their significant influence on students’ learning opportunities and mathematical experiences (Kilpatrick, 
2011; Remillard, 2005; Remillard et al., 2009; Stein et al., 2007; Stylianides & Stylianides, 2008). 

Fig. 1. Different phases and aspects contributing to mathematical tasks. Reproduced from Stein et al., (1996, p. 459).  
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The phases of mathematical tasks and the influencing factors captured in Fig. 1 each play an important role in students’ experi-
ences. Tasks, however, do not directly influence student learning, nor does teaching. Rather, we adopt the perspective that the acts of a 
teacher and material resources in the form of curriculum and tasks influence the experiential environment of a student. This envi-
ronment, in turn, mediates reasoning and learning (Carpenter et al., 1996; Remillard, 2005; Wittrock, 1987). Compatible with a 
constructivist perspective on teaching and learning (e.g., Simon, 1995; Steffe & D’Ambrosio, 1995), a mediated perspective on tasks 
and their implementation allows for viewing any particular learner’s (or teacher’s) experience in the classroom as idiosyncratic. The 
learner defines a task’s influence. 

The relationship between different phases of a mathematical task and individuals’ experiences are captured by distinctions between 
formal, intended, implemented, and experienced curricula (Gehrke et al., 1992; Chap. 2; Kilpatrick, 2011; Remillard, 2005). Formal 
curriculum refers to the goals of an activity per its designers, while intended curriculum incorporates a teacher’s intentions for the 
materials (Gehrke, Chap. 2 et al., 1992). The former aligns with Stein et al.’s first phase in Fig. 1, while the latter can be thought of as a 
transitional phase between Stein et al.’s first and second phase. This transitional phase involves a teacher building a personal image of 
a task and associated instructional goals. Implemented and experienced curricula—with the latter sometimes termed enacted, attained, 
or realized curriculum—each refer to classroom experience, but they differ in perspective. Implemented curriculum refers to the 
teacher’s perspective (Kilpatrick, 2011), while experienced curriculum refers to a student’s perspective (Gehrke et al., 1992; Chap. 2; 
Remillard, 2005). The former somewhat aligns with Stein et al.’s second phase in Fig. 1, and the latter with the third phase. 

Informed by these collective perspectives on tasks and curriculum, we approach a researcher’s account of a task and its imple-
mentation as the process of developing a hypothetical account that requires being selective and transparent with respect to focus. In 
this paper, we take a two-part focus. Firstly, we characterize mathematical tasks in terms of their mathematical goals and the ways in 
which students might engage with the tasks as presented. We incorporate both formal and intended aspects of curriculum by taking 
into account the participating teachers’ stated goals when we develop our characterizations. Secondly, we draw on classroom data to 
describe the implementation of the mathematical tasks. We do this by developing hypothetical accounts of experienced curriculum as 
inferred from the ways in which the teacher and students set up and engage (or implement per Stein et al., 1996) with a task. We 
connect these two foci—that of design and that of implementation—by adopting a cognitively-based framework as described in the 
following section. 

2.2. Abstraction as a theoretical framework 

Abstraction is a term commonly used within both mathematics and mathematics education. In common mathematics lexicon, an 
abstraction refers to a generalized structure that is applicable to a class of real-world objects or instantiations of it, yet it is not 
dependent on any particular object or instantiation. The mathematical practice of conceiving and applying the same structure across 
different objects and contexts is sometimes referred to as decontextualization (Dreyfus, 2014). Pushing past this vague notion of 
decontextualization, mathematics educators have considered the process of abstraction itself and the type of generalized knowledge 
structures resulting from abstraction processes (Dreyfus, 2014). This has led to abstraction perspectives that vary in their epistemology 
and in what is considered to comprise an abstraction. For instance, the Concrete-Representational-Abstract (CRA) sequence (Fig. 2), 
which captures Bruner’s (1966) three modes of representation, frames abstraction in terms of a representational context in tandem 
with decontextualization (Flores, 2009; Hinton & Flores, 2019; Miller et al., 2011; Peterson et al., 1988; Witzel et al., 2012). As another 
example of an abstraction perspective, Schoenfeld (1991) characterized the problem-solving process in terms of a translation between 
real-world situations and a formal system. He considered the latter as abstract structures to be applied to decontextualized aspects 
pulled from real-world situations (Fig. 3). In Schoenfeld’s words, “formal systems in mathematics are not about anything. Formal 
systems consist of sets of symbols and rules for manipulating them” (1991, p. 311). 

Traditional approaches to abstraction like those above foreground decontextualization and representational translations, while 
(implicitly or explicitly) treating formal or abstract structures as things to apply or represent symbolically when solving mathematical 
tasks or problems. A formal or abstract structure is entangled with its symbolic form and application. Other approaches to abstraction 
have attempted to depart from such entanglements, including that of Piaget. 

Piaget’s notion of abstraction has informed the work of mathematics educators across the K-16 spectrum. As a non-exhaustive list, 
notable contributions have occurred in fractional reasoning (Simon et al., 2016; Steffe & Olive, 2010), rate of change and accumulation 
(Thompson, 1994a, 1994b), function classes (Ellis et al., 2024), function (Dubinsky, 1991; Sfard, 1992), notation use (Tillema & 
Hackenberg, 2011), combinatorics (Antonides & Battista, 2022; Ellis, Lockwood, & Ozaltun-Celik, 2022), and limit concepts 
(Oehrtman, 2008). Researchers have built on Piaget’s notion of abstraction to propose numerous knowledge constructs. Tzur and 
Simon (2004) proposed two stages of learning, participatory and anticipatory, to distinguish the nature of activity supported by pro-
cesses of abstraction. Battista (2007) introduced a theory of levels of abstraction to explain spatial-geometric reasoning. Silverman and 
Thompson (2008) provided an account for mathematical knowledge for teaching rooted in repeated processes of abstraction that support 
a teacher in developing a knowledge base that has pedagogical power. Both Liang (2021) and Tallman (2015) built on this perspective 
to identify nuanced mechanisms involved in teachers’ construction, abstraction, and enactment of such knowledge. 

At the most general level, Piaget viewed abstraction as the mechanism or process of learning (Ellis et al., 2024; Piaget, 2001; 
Tallman & O’Bryan, 2024). Piaget viewed learning to involve aspects of assimilation, accommodation, equilibration, and perturbation. 
Assimilation is the process by which an individual conceives a present experience via their current conceptual structures (von Gla-
sersfeld, 1995). A perturbation occurs when assimilation to extant conceptual structures results in an unexpected experience. Ac-
commodation is then the elimination of a perturbation through a cognitive construction or reorganization, which establishes a 
cognitive state of equilibrium (Piaget, 2001; von Glasersfeld, 1995). With learning defined in this way, Piaget conceived abstraction as 
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a way to characterize and differentiate between various forms of stabilized knowledge structures, including how they might develop 
over time. In this paper, we choose to focus on Piaget’s forms of abstraction in order to provide generalized characterizations of the 
learning processes and outcomes associated with tasks and implementations. 

For the purpose of providing operational definitions of abstraction, we draw on two chapters (Ellis et al., 2024; Tallman & O’Bryan, 
2024) that summarize Piaget’s forms of abstraction and their application in mathematics education.1 Piaget identified five varieties of 
abstraction: empirical, pseudo-empirical, reflecting, reflected, and meta-reflection.2 We restrict our primary focus to pseudo-empirical 
abstraction and reflecting abstraction. We do so because empirical abstraction, reflected abstraction, and meta-reflection are less 
relevant to our focus. Empirical abstractions primarily concern observables and sensory-motor experience, and are thus more relevant 
to early developmental levels of mathematical reasoning (Ellis et al., 2024; Piaget, 2001). Reflected abstractions rest on a subject’s 
consciousness of their ways of operating, and its form is thus more relevant to sequences of activities and reflection across those 
activities for the purpose of becoming conscious of generalized properties of various mental operations. Similarly, meta-reflection 
addresses the process of reflecting on one’s own thinking and reflecting processes, and is also more relevant to sequences of activ-
ities and reflection across those activities. Each of these forms of abstraction can occur during a task, but pseudo-empirical abstraction 

Fig. 2. The CRA approach for an addition problem involving 3 + 5, using marbles for the concrete, drawn circles for the representational, and 
numerical inscriptions for the abstract. 

Fig. 3. The problem-solving process as a translation between real-world situations and a formal system composed of abstract structures and tools 
involving sets of symbols (Schoenfeld, 1991, p. 313). 

1 We direct the reader to each chapter for a detailed synthesis of the history of Piaget’s forms of abstraction including their use in mathematics 
education.  

2 We use reflective abstraction as a categorical reference to pseudo-empirical, reflecting, and reflected abstraction (Piaget, 2001). 
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and reflecting abstractions are more organic to the enactment of mathematical reasoning during initial learning experiences or isolated 
activity (Ellis et al., 2024; Moore, 2014; Piaget, 2001; Tallman & O’Bryan, 2024). 

Speaking on pseudo-empirical abstraction, Piaget (1977) explained, 

When the object has been modified by the subject’s actions and enriched by the properties drawn from their coordinations…the 
abstraction bearing upon these properties is called ‘pseudo- empirical’ because, while it concerns the object and its actual 
observable traits as in empirical abstraction, the facts it reveals concern, in reality, the products of the coordination of the 
subject’s actions…” (p. 303). 

To Piaget, a critical aspect of pseudo-empirical abstraction is that it foregrounds actions that require the presence of perceptual 
material. For instance, in order to count a collection of objects or determine the sum of two collections of objects, the individual might 
need the objects visually present or, at the least, rely on tactile taps or an imagined array to count and combine. Or, in the context of 
measurement, an individual may require a unit segment be present and useable to partition a given length and determine its measure. 

Drawing on the work of Moore and colleagues (Liang & Moore, 2021; Moore, 2014; Moore et al., 2019), Ellis et al. (2024) argued 
for extending the construct of pseudo-empirical abstraction so that it does not hinge on the presence of “perceptual material” or 
“observables.” They presented a framing of pseudo-empirical abstraction that foregrounds the products of activity, even if these 
products are purely cognitive and thus do not rely on the presence of figurative material. Ellis et al. (2024) illustrated that such an 
extension of pseudo-empirical abstraction is productive for developing viable models of students’ mathematics at levels beyond that of 
elementary school. An example of pseudo-empirical abstraction includes students’ construction of graphing meanings that foreground 
the sensorimotor or perceptual properties of drawn graphs (Moore, 2014, 2021; Moore et al., 2019). For instance, Moore et al. (2019) 
illustrated examples of students holding graphing meanings that necessitated the physical act of drawing graphs right-to-left, starting a 
graph on the y-axis, or exclusively associating slope properties with particular directional movements (Fig. 4). Such abstractions are 
consistent with Harel’s (2001) notion of a result-pattern generalization, in which the knowledge structures a student constructs are 
emergent properties of results. 

Fig. 4. A graph of y = 3x that a student conceived as having a negative slope due to its right-to-left upward movement (Moore et al., 2019, p. 9).  
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Piaget’s distinction between pseudo-empirical abstraction and reflecting abstraction rested on the extent to which perceptual 
material or observables are required. Ellis et al. (2024) noted that a broader interpretation of pseudo-empirical abstraction requires an 
alternative framing of reflecting abstraction that maintains its central tenet but does not center the availability or requirement of 
perceptual material. They addressed this issue by noting that a primary difference between these two forms of abstraction is that while 
the source material for pseudo-empirical abstractions is perceptual material or the result of actions, the source material for reflecting 
abstractions is the coordination of a subject’s actions themselves. Reflecting abstractions involve differentiating an action from its 
effect so that the action itself can be projected to a level of representation and taken as an object of thought (Ellis et al., 2024; Tallman 
& O’Bryan, 2024; Thompson, 1994a). As we illustrate with our results, these differences in the source material for a student’s ab-
stractions have important implications for their learning. 

To demonstrate the difference between pseudo-empirical and reflecting abstraction, we return to the graphing example above. 
Moore et al. (2019) shared a case (Annika) we consider to indicate reflecting abstraction. In response to being provided a linear graph 
but without a labeled coordinate system (Fig. 5a), Annika identified several label options that yield a viable graph of y = 3x (Fig. 5b-c). 
As opposed to foregrounding perceptual material including sensorimotor actions, Annika’s actions for slope involved not only coor-
dinating two quantities’ values or magnitudes to understand their covariation, but she also coordinated the relationships represented 
by each graph with each other so that she perceived each graph as equivalent in terms of the represented relationship (Carlson et al., 
2002; Saldanha & Thompson, 1998). Her coordination of the quantities’ covariation in tandem with multiple representations being 
produced by that covariation is consistent with reflecting abstraction. Her reasoning foregrounds the coordination of mental actions 
with results (including any perceptual or sensorimotor properties) so that the results are a consequence of those mental actions.3 Her 
actions are also consistent with Harel’s (2001) notion of a process-pattern generalization, in which the knowledge structures a student 
constructs are emergent properties of repeated processes. 

Researchers often position reflecting abstractions as yielding more productive or expansive generalizations than pseudo-empirical 
abstractions. This can be the case due to reflecting abstractions involving both the results of actions and the actions themselves so that 
those actions are coordinated and projected to a higher-level of knowledge (Ellis, Lockwood & Tillema, & Moore, 2022; Ellis et al., 
2024; Moore, 2014; Moore et al., in press; Piaget, 2001; von Glasersfeld, 1991). However, pseudo-empirical abstractions can also be 
productive and of developmental importance. Steffe’s (Steffe & Olive, 2010) research on counting and fractional reasoning, for 
instance, includes numerous examples of children’s productive pseudo-empirical abstraction. Steffe illustrated that these schemes 
represent critical and necessary developmental stages of learning. Pseudo-empirical abstractions can also provide the foundation for 
reflecting abstractions via providing insights and source material for further reflection that involves coordinating those abstractions 
with prior actions (Ellis et al., 2024; Piaget, 2001). Relatedly, the products of reflecting abstractions can become the source material for 
subsequent pseudo-empirical abstractions as a student identifies patterns in their own knowledge structures and abstractions. Our 
empirical examples below suggest that reflecting abstraction is the more powerful form of abstraction, but we underscore that 
pseudo-empirical abstractions are often important to a student’s mathematical development (Ellis, Lockwood, & Ozaltun-Celik, 2022; 
Ellis et al., 2024). 

3. Methods 

3.1. Project setting 

This present work is situated in a multi-year project investigating students’ generalizing, including the ways in which teachers 
support generalizing in their teaching (Ellis, Lockwood & Tillema, & Moore, 2022; Ellis et al., 2017; Ellis, Waswa et al., 2024). Here, we 
focus on two in-service teacher participants, one at the high school level (grades 9–12) and one at the middle school level (grades 6–8). 
We chose the participating teachers by contacting nearby districts asking for teachers interested in participating in a study on sup-
porting generalization in their classrooms. From the initial response of 6 teachers, we conducted classroom observations during a 
lesson of their choice. We observed the lessons to identify those teachers whose current classroom practices entailed student-centered 
activity and opportunities for student generalizations. These initial observations resulted in our narrowing the participant pool to three 
teachers. This paper focuses on Ms. N and Ms. R. The two teachers taught in different schools, with each school serving diverse student 
populations discussed in Ellis et al. (2024). 

3.2. Data collection and analysis 

In total, we observed two lessons in each teacher’s classroom. The lessons in Ms. R’s classroom spanned four and two days, 
respectively. The lessons in Ms. N’s classroom spanned four and three days, respectively. Members of the research team recorded each 
lesson using two video cameras, one moving camera and one stationary camera. The moving camera was aimed at the teacher during 
whole-class discussion and small groups during group work time, and its audio recording was generated by a microphone worn by the 
teacher. The stationary camera focused on a group of three to four students chosen by the teacher. It captured their conversations, 

3 We note that another form of coordination could involve a student coordinating quantities of a phenomenon (e.g., rotating gears) to understand 
their covariation and subsequently coordinating aspects of a mathematical representation (e.g., the values of a graph or table) with those quan-
titative referents and the understood covariational relationship. Such cases, which foreground coordinating representational activity with the 
covariation of quantitative referents form the primary focus of this paper. 
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written work, and gestures. We provide a summary of the lesson data collected in Table 1. 
We analyzed the instructional tasks and classroom interactions using conceptual analysis (Thompson, 2008) with a guiding 

framework of the forms of abstraction identified above. Conceptual analysis involves answering the question, “What mental operations 
must be carried out to see the presented situation in the particular way one is seeing it?” (von Glasersfeld, 1995, p. 78). With respect to 
analyzing instructional tasks or classroom interactions, conceptual analysis involves developing hypothetical accounts of realized or 
experienced curriculum. Such an approach rests on the stance that there is no objective curriculum or classroom interaction, and thus a 
researcher can only develop hypothetical accounts of those constructed meanings. Underscoring the cognitive orientation of our 
curricular analysis, this requires that the researcher persistently work to analyze data using models of student thinking they are aware 
of, either through their own research or the research of others. A researcher balances their first-order and second-order knowledge 
(Steffe & Thompson, 2000) for the purpose of explaining tasks materials and classroom interactions as potentially experienced by the 
students. 

With respect to the instructional tasks, our conceptual analysis first involved generating “typical” solutions to the instructional 
tasks and accounts of the potential mental actions driving those solutions. We drew on our own research expertize in developing 
cognitive models of individuals’ meanings for major middle and secondary grades topics. This expertize included our own studies (e.g., 
Ellis, 2011; Ellis & Grinstead, 2008; Fonger et al., 2020; Moore et al., 2022; Moore et al., 2019; Tasova, 2021), as well as our knowledge 
of cognitive models built by researchers outside of our research group (e.g., Byerley & Thompson, 2017; Carlson et al., 2002; Knuth, 
2000; Thompson, 1993). With those accounts developed, we constructed hypothetical abstractions by considering the different ways in 
which students might reflect on their solutions and associated actions. 

With respect to the instructional implementation of the analyzed materials, we first coded each classroom interaction in ways that 
captured the mathematical activity of the students and class. This round of coding is consistent with that reported in (Ellis et al., 2024), 
and it formed an important foundation for understanding the student activity and potential reasoning processes driving that activity (i. 
e., conceptual analysis). We subsequently coded for instances of student or teacher actions that suggested students engaged in potential 
pseudo-empirical or reflecting abstraction processes. We used a generic abstraction code to capture any other instance that might be 
relevant to developing hypothetical accounts of student abstractions, which reflects that the processes involved in abstraction can 

Fig. 5. (a) An unlabeled linear graph given to a student and (b-c) two labeled orientations that yield a viable graph of y = 3x.  

Table 1 
Lessons observed in Ms. R’s and Ms. N’s classrooms.  

Teacher Number of lessons Length of each class Class Mathematical topics 
Ms. R  2 80 min Alg. 1 Linear equations and inequalities 

Writing & manipulating linear equations 
Graphing linear inequalities 
Solving systems of equations and inequalities 
Linear and quadratic growth* 
Multiple representations of quadratic functions 

Ms. N  2 55 min 6th Grade Math Plotting points in the coordinate plane 
Properties of the coordinate plane, scaling axes 
Horizontal and vertical distance between points 
Reflection of points across x- and y-axis 
Proportions, scale factors, equivalent ratios*  

* Focus lessons for the present paper 
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occur over a time span greater than a single class or lesson. For instance, we coded instances in which an instructional move was made 
by the teacher that might influence the students’ abstraction activity, such as a teacher presenting a solution in a way that privileges 
the process of generating a solution versus that of foregrounding the final state of a solution. We then used the results of this coding 
process to organize a narrative of the progress of the lesson as it relates to potential abstractions (whether realized or in progress). 

In terms of executing the coding process, we first chose two tasks—one from each teacher participant—and each research team 
member independently coded these instructional tasks for abstraction. We then met as a group to collectively compare and reconcile 
our codes. This process enabled us to explore the viability of coding instructional tasks for potential abstractions while also working 
toward compatible meanings for the various forms of abstraction as they relate to the instructional tasks. We then had at least three 
research team members independently code the remaining instructional tasks, meeting as a subgroup to compare and reconcile their 
codes. They brought all remaining discrepancies to the entire research group for consideration, and a senior member of the research 
group reviewed all final codes. We repeated this process for coding the task implementation. 

4. Results 

We present two tasks that afford a representative range of potential abstractions. We first present an analysis of a task and its 
implementation from Ms. N’s class, followed by an analysis of a task and its implementation from Ms. R’s class. Each class introduced a 
key concept for their respective grade bands, with Ms. N exploring ratios and Ms. R addressing patterns of quadratic (and linear) 
growth. For the task analyses, we organize our results using the two forms of abstraction. For the classroom implementation analyses, 
we provide a narrative synthesizing the evolution of the lesson while highlighting salient moments with respect to abstraction forms. 

4.1. Ms. N, gears, and ratios 

4.1.1. Task analysis 
Ms. N’s instructional task used the context of pairs of different sized gears to explore ideas of ratio and proportion, and it was an 

adaptation from Ellis (2007a) (2007b) (2007c). Students were asked to reason about gear pairs in order to determine and explore 
equivalent ratios. Ms. N first prompted students to think about the relationship between the number of big gear rotations and the 
number of small gear rotations (Fig. 6). To support their exploration, students had two physical gears with eight and 12 teeth (Fig. 7), 
respectively, and were tasked with finding a way to record the number of rotations that each gear made. 

Students then engaged in a series of tasks that explored rotation pairs, which first focused on equivalent ratios with only whole 
number rotations and then moved on to generalize to fractional rotations. For example, students had to determine whether given pairs 
of rotations were “correct” (see Fig. 8). By correct, the teacher meant that each of the rotation pairs in a table came from the same pair 
of gears. The tasks also asked students to imagine hypothetical gear pairings with particular rotation relationships (see Fig. 9). Ms. N 
intended that the students leverage equivalent ratios and related ideas (e.g., scaling), with the physical gears providing concrete 
materials to use as necessary. 

There are various ways that a student might approach the rotation pair activities, with one being to simply take the initial rotation 
pair as a composed unit (Lamon, 1994) and iterate it to see whether the iterations would eventually yield all of the rotation pairs in the 
table (Fig. 10a). Another related strategy would be to determine if the same scale factor determines the number of rotations of the small 
gear and big gear based on the initial pair of rotations (Fig. 10b). Another solution could entail determining if the number of big gear 
rotations is a constant multiple of the small gear rotations. 

With respect to a task like the one in Fig. 9, a student might explicitly attend to each gear’s number of teeth. The student might 
imagine that as the two gears turn, their teeth meet up in a zipper fashion and thus both gears turn through the same number of teeth 
regardless of how many full rotations they make. This observation, when combined with understanding that the number of teeth 
rotated is a proxy for number of rotations, could lead the student to conclude that for the big gear to turn twice as many turns for a 
rotation of the small gear, then the small gear will need twice as many teeth. More generally, to make the 12-tooth gear rotate N times 
as many turns as it did originally, the number of teeth in the second gear must increase by a factor of N. 

Alternatively, a solution to a task like that in Fig. 9 could involve using the relationship between rotations of the original two gears. 
For example, a student could imagine that every time the eight-tooth gear completes a full rotation, it will have rotated through eight 
teeth. Thus, the 12-tooth gear will also have rotated through eight teeth, which is 8

12 or 23 of a full rotation. Because the new gear pairing 

Fig. 6. The opening context for the task.  
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must be such that when the small gear’s replacement rotates one time, the 12-tooth gear rotates 2 ∗ 2
3, or

4
3 of a full rotation, which is 

4
3 ∗ 12, or 16 teeth. Thus, the new gear must have 16 teeth. Similarly, for the second question a student could imagine that in order to 
have the 12-tooth gear turn half as many times, then it must rotate 1

2 ∗
2
3, or

1
3 of a rotation and thus through 1

3 ∗ 12, or 4 teeth. The 
second gear must have four teeth. A student could then generalize that if the 12-tooth gear turns N times as many turns as it did to start, 
then it will turn N ∗ 2

3 full rotations and therefore go through N ∗ 2
3 ∗ 12 teeth. 

Pseudo-Empirical Abstraction.Because these tasks involved the use of physical gears to explore the relationships between gears’ 

rotations, with the initial task prompting students to explore using the gears to determine paired rotations, there is ample opportunity 
for students to develop pseudo-empirical abstractions. For example, when students reason about the table in Fig. 8a, they can phys-
ically rotate their small gear three times and notice that their large gear rotates twice, and that if they rotate their small gear another 
three times, the large gear will again rotate an additional two times, giving six and four total rotations respectively. As the student 
checks each entry in the table, they can either carry out or imagine the small gear rotating three times and the large gear rotating twice 
each time they move down a row. This reasoning would involve pseudo-empirical abstraction because the student is reliant on the 

Fig. 7. The physical gears Ms. N provided to the students.  

Fig. 8. Two different tasks (a-b) to determine whether the entries are “correct”.  

Fig. 9. An example task prompting students to extend their reasoning to hypothetical gears.  
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perceptual material or their mental image of that material in order to solve the task. 
The tables themselves, in tandem with the produced pairs from the physical gears, also offer opportunity for the development of 

pseudo-empirical abstractions, as students can notice patterns in the table values and use these identified patterns to confirm that each 
pair of values satisfies that pattern. Using the table in Fig. 8a, a student might notice that each row is obtained by simply adding three to 
the value in the lefthand column in the previous row, and two to the value on the right. Although this reasoning does not require the 
rotation of physical gears, it is a pseudo-empirical abstraction because the student does rely on the table (i.e., the results of activity), 
which becomes the figurative material that is the basis for the abstraction. Without the table, the student would be unable to determine 
possible rotation pairs because their abstraction is based on extending the pattern from the produced pairs of values. This strategy 
works for that particular table, but it could lead students to assume that a rotation pair would not be from the same set of gears if it did 
not continue the iteration pattern (e.g., a table skipping from 12 and eight rotations to 21 and 14 rotations as in Fig. 11). Similarly, it 
could lead students to assume that two tables stem from different paired gears due to the patterns having different values. Moving to 
the task in Fig. 9, a student might extend their previously abstracted patterns to conclude that any change to the small gear yields the 
same change in the big gear (e.g., if the big gear turns two times as much, then the small gear must have two times the number of teeth), 
thus preserving the properties of the numerical patterns (e.g., if I double a number with the big gear, I double a number with the small 
gear). 

Reflecting Abstraction. Returning to the tables in Fig. 8, a student could instead develop a reflecting abstraction that no longer 
relies on using or imagining their gears, or extends beyond tabular numerical patterns so that identified patterns are coordinated with 
invariant properties of the physical gears. With the table in Fig. 8a, a student might recognize that every time the small gear rotates 
three times the large gear will rotate twice, and thus for any additional sets of three rotations of the small gear, there will be an equal 
number of sets of two rotations of the large gear. In this case, the student can think about this relationship without having to imagine 
the gears rotating three and two times, and at the same time maintain a persistent realization of the invariant relationship between the 
gears. This same abstraction can be used to reason about the gear pairing in Fig. 8b as well, with a student recognizing that every time 
the small gear rotates four times, the large gear will rotate three times. Therefore, if the small gear rotates 4 ∗ n times, the large gear 
will rotate 3 ∗ n times. This would require a student to coordinate the rotations of the large gear and the rotations of the small gear and 
recognize that as one gear rotates, the other gear will rotate as well according to this invariant relationship. Because this abstraction 
situates patterns so that they entail the coordination of actions that would produce the patterns, as opposed to merely observing the 
numerical patterns themselves, it could also lead students to conceive that a rotation pair is from the same set of gears in the presence 
of those tables in Fig. 11. Here, the student could anticipate that the invariant relationship between the gears is reflected in any 
numerical pattern that preserves that invariant relationship. 

Moving to the task in Fig. 9, a reflecting abstraction would involve a student coordinating the rotations of the 12-tooth gear and the 

Fig. 10. Hypothetical examples of student work (a-b) to determine whether entries from each of the tables could be made from the same set 
of gears. 

Fig. 11. A table (a) that is not ordered by incremental increases in the small gear, and a table (b) that is from the same pair, yet would provide a 
different numerical pattern. 
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hypothetical gears, but without the need to actually imagine rotating (or physically rotating) the 12-tooth gear a given number of times 
and then counting the teeth rotated through. Furthermore, the student would come to anticipate that the invariant relationship be-
tween the two gears rests on the relative relationship between the number of teeth forming each gear, and any numerical pattern 
between number of rotations stems from that relationship; the student coordinates the relationship between the gears so that numerical 
patterns are a product of that relationship. For instance, a student could realize that if a gear A has x number of teeth and gear B has y 
number of teeth, then gear A rotates y/x times for each single rotation of gear B due to the gears rotating the same number of teeth 
regardless of rotation amount. They could then use this relationship to solve problems with any gear pairing without needing to use 
manipulatives or even to imagine the rotations occurring (e.g., producing twice as much turn in gear A requires going through twice 
the number of teeth, thus requiring B to double in number of teeth). 

4.1.2. Implementation analysis 
The students’ actions during the tasks suggested both potential pseudo-empirical and reflecting abstractions. Regarding pseudo- 

empirical abstraction, there were several instances in which the students used tables of values to construct and use numerical pat-
terns, but without evidence that these patterns were coordinated with properties of the rotating gears. Notably, there were instances in 
which students experienced perturbations from their table use, and it was in their reengagement with the gear contexts that their 
actions were suggestive of reflecting abstractions. 

As an example of pseudo-empirical abstraction, consider the first activity day. Ms. N presented a table (Fig. 12) and asked the 
students to decide whether the rotation pairs came from a single pair of gears. One student, Jackson, first suggested a method of 
executing the spins, and then Kyle noticed a doubling pattern as he moved down the rows (Excerpt 1). 

Excerpt 1.  

Speaker Transcript 
Jackson: I don’t think I can do 190 spins. 
Ms. N: So I would, I would recommend not trying that. I agree. How could you figure it out without spinning it that many times? 
Jackson: [To Kyle] You got 192? No 
Ms. N: [To Kyle] How did you fill that? Did you spin it that many times or what else did you do to get those numbers on there? 
Kyle: Multiplied 
Ms. N: Multiplied what? 
Kyle: By two. 
Ms. N: Moving down your table. You multiplied what side of the table by two? 
Kyle: Three times two is six. 
Ms. N: Okay. 
Kyle: Six times two is twelve 
Ms. N: Okay. 
Kyle: twelve times two is 24 
Ms. N: Great. 
Kyle: 24 times two is 48. 
Ms. N: Yeah 
Kyle: 48 times two is 96. 
Ms. N: So so far, you totally agree with Dottie’s table? 
Kyle: Yeah. 
Ms. N: Awesome. What do you do to your big side?  

Throughout this interaction, Kyle attended to one side of the table at a time, focusing first on the column of the small gear’s ro-
tations, and then, once prompted, addressing the big gear’s rotations in a similar way. He identified that the subsequent row of the 
table is the previous row multiplied by two, which he used to conclude that the table of values was from a single set of gears. Thus, 
Kyle’s actions are at least suggestive of a pseudo-empirical abstraction involving constructing and using a numerical pattern using the 
table of values. We do not have evidence in this interaction that Kyle was coordinating his tabular activity with properties of the gears 
(e.g., every time the number of rotations of the small gear doubles, the number of rotations of the big gear must also double), instead 

Fig. 12. A task from the first day of the activity.  
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leaving to possibility that his reasoning and inferences were restricted to perceived properties of the table. The likelihood of this 
possibility is strengthened by the fact that his attention focused on one side of the table at a time, which is a contraindication that he 
was coordinating pattern seeking with properties of relationships between the two gears. 

As a related example of pseudo-empirical abstraction, at other times students compared entries across rows in tables. For instance, a 
student reasoned about a rotation pairs table (Fig. 13) to identify that he could divide the number of rotations of the small gear by three 
and multiply the resulting number by two to determine the number of big gear rotations. Through identifying this pattern, he 
concluded that the paired values were correct because each entry maintained the pattern. Like above, when discussing his strategy, the 
student maintained an exclusive focus on the table and he did not provide evidence of coordinating constructed patterns with the 
physical properties of the gears. Thus, it is possible that the constructed pattern and the fact it held throughout the table was the 
foundation for his conclusion without an intrinsic connection to the fact that one gear must always rotate some constant number of 
times as the other gear in a paired gears scenario. 

The examples above illustrate that a difficulty in analyzing classroom interactions for potential abstractions is that those in-
teractions can provide limited evidence for analysis due to the substance of questioning and dialog. This is particularly true with 
respect to evidence for reflecting abstractions. In both cases above, the interaction proceeded without the student or teacher drawing 
explicit attention to the gear situation as it relates to their tabular activity. Thus, we did not have evidence of their tabular activity 
being coordinated with that of the physical gears and potential invariant properties of them. But, absence of evidence is not evidence of 
absence. We can thus claim evidence for pseudo-empirical abstractions, but we cannot claim evidence for the absence of reflecting 
abstractions. 

As a comparison, consider Dan’s solution to a third task (Fig. 14). Dan used analogous reasoning to Kyle with the task in Fig. 12 to 
conclude that the table was not produced by a viable set of gears (Excerpt 2). 

Excerpt 2.  

Speaker Transcript 
Ms. N: Which ones do you not think are correct? 
Dan: 24 and 18. 
Ms. N: Ok, why not? 
Dan: It goes from doubling, and then it just switches to this.  

In this case, the student attempted to extend a doubling pattern from the (16, 12) pair to the (24, 18) pair. Because the latter pair 
was not the result of doubling the prior pair, the student concluded that the latter pair could not be produced by the same pair of gears. 
The student’s reasoning is suggestive of a pseudo-empirical abstraction similar to those above, and their rejection of the (24,18) pair 
provides a contraindication of a reflecting abstraction. A reflecting abstraction would involve coordinating their patterns with an 
invariant relationship in the actual gears’ rotations. 

Ms. N next pushed Dan to reason using the gears rather than the table (Excerpt 3). 
Excerpt 3.  

Speaker Transcript 
Ms. N: What if I didn’t want to double it? What if I just wanted to do four rotations on the small gear? Is that not allowed? Do you have to always double it each 

time, or do you think that you could do 24 small rotations and the big gear would still move? 
Dan: I think we could do 24. 
Ms. N: So how do you know if it would actually match up at 18 if I did that?  

As further evidence that Dan had engaged in pseudo-empirical abstraction, Ms. N’s proposal to the student led to a perturbation 
that stemmed from their tabular activity not being connected to their actions with the gears. Dan was unable to resolve their 
perturbation, but Ms. N’s encouragement to return to the context of the gears had the potential to support him in more powerful 
reasoning. We inferred an example of this type of reasoning in an interaction from the first day of the activities, when two students 
working together explained how they reasoned about the table in Fig. 12. Ms. N had asked what students thought about the big gear 
rotating 16 times when the small gear had rotated 24 times. Tom said that the 16 rotations would be correct, and explained his 

Fig. 13. A potential rotation pairs task.  
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reasoning (Excerpt 4). 
Excerpt 4.  

Speaker Transcript 
Tom: … I just look at this number [the number of rotations of the big gear] if it is telling me how many one and a halves it is supposed to have. 
Ms. N: Cool 
Tom: Like here one and a half and one and a half would be three [referring to the first row of the table]. 
Ms. N: Oh, yeah. 
Tom: And here four would be six [referring to the second row]. 
Ms. N: How do you know that you can think about in terms of how many one and a halfs? 
Tom: I just did. 
Ms. N: Well, what did we write on this side? How does that relate to this? 
Julia: Because this one is gone one time, while this one is half way there.  

This interaction suggests that Tom and Julia had abstracted that each time the big gear rotated once, the small gear rotated one full 
rotation, plus an additional half of a rotation. This meant that however many times the big gear rotated, the small gear would have 
rotated 1.5 times that number of rotations. In contrast to the previously discussed examples, this excerpt suggests that these students 
had engaged in reflecting abstraction. While their discussion was situated within the context of the gears, they were not reliant on 
physically or mentally manipulating the materials to determine whether the entries in the table were correct. They instead had 
extracted the invariant relationship between the rotations of the two gears and then coordinated that relationship with the con-
struction of the table and numerical patterns in values. Tom and Julia engaged in pattern recognition, but maintained a recognition 
that the invariant properties of the gears were at the root of any recognized patterns. 

4.2. Ms. R, patterns of growth, and formulas 

4.2.1. Task analysis 
Ms. R’s instructional task explored quadratic growth compared to linear growth via a sequence of discretely growing shapes 

(Fig. 15). The first two shapes introduced a logo of varying sizes (Fig. 15a-b), the second two shapes introduced posters of different 
sizes (Fig. 15c-d), and the third two shapes introduced sails of different sizes (Fig. 15e-f). A primary goal of the lesson was to identify 
that quadratic relationships are such that equal increases in the values of the independent quantity (e.g., sail size) result in the values of 
the dependent quantity (e.g., sail area) increasing by constantly increasing amounts (i.e., a constant second difference). In service of 
this goal, each task prompted the students to determine the area for the 10th size and generate a formula for the area of the nth size. For 
length purposes, we situate our discussion within the sail shapes (Fig. 15e and Fig. 15f). 

We discuss each form of abstraction using a typical student solution presented in Fig. 16. The solution involves a student generating 
a table of size and area values for growing figure sizes 1–4. With those values, a predominant student action involves identifying both 
first and second differences in the area values, ultimately identifying constant first (Fig. 15e) or second differences (Fig. 15f). The 
student could then engage in a variety of actions to determine the sail areas for size 10, as well as a formula relating the sail size to sail 
area for each case. With respect to the sail areas for size 10, common student actions involve using the patterns of first differences in 
each case to identify the additional area needed from size 4 to size 10 (6 *1.5 for Figs. 15e or 18 +22 +26 +30 +34 +38 for Fig. 15f). 
Or, and in tandem with determining a formula, a student might identify a pattern between size and area values. With respect to the 
values in Fig. 16 (left), a student might conceive the area value is always 1.5 times as large as the size value, yielding A = 1.5s. With 
respect to the values in Fig. 16 (right), a student might conceive the area value is always 2 times as large as the squared size value, 
yielding A = 2s2.4 After working a series of activities like those presented in Fig. 15, and producing solutions like those in Fig. 16, a 
student might abstract the constant first (e.g., Fig. 15a, c, and e) or second (e.g., Fig. 15b, d, and f) difference patterns in a quantity’s 

Fig. 14. A second potential rotation pairs task.  

4 The actions involved in constructing these conceptions also involve potential abstractions. For the purposes of this paper, we focus on ab-
stractions related to the more general goal of the lesson, rather than abstractions that are related to a singular context or task. These localized 
abstractions can contribute to the abstractions that span actions occurring over a sequence of contexts and a lesson. 
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values in association with linear and quadratic relationships. We discuss potential abstractions with respect to those patterns. 
Pseudo-Empirical Abstraction. In the case of the hypothetical solution presented above (Fig. 16), the products of activity include 

a table of calculated values and difference amounts. In the case of properties of first or second differences, an example of a pseudo- 
empirical abstraction is a student forming an association strictly based on noticing that constant first differences and constant sec-
ond differences are accompanied by a linear formula and quadratic formula, respectively. In such a case, the abstraction consists of 
observing and remembering the co-occurrences of constant first or second differences and features of a formula. The actions that 
produced the table of values and formula are inconsequential to the abstraction except in that they yielded results that become the 
source material for the student’s abstraction. 

Based on our experiences with students, such an abstraction often results in the student associating a quadratic formula with 
constant second differences in the values of the dependent quantity regardless of how the other quantity’s values are ordered in a table. 
For example, students may only attend to differences in the y-values of a table without coordinating that growth with the corre-
sponding growth in x-values (as seen in Ellis, 2011; Fonger et al., 2020; Waswa, 2023). Because the abstracted association is stripped of 
the actions that produced the table of values, the mathematical properties of those actions (e.g., constant first differences) are not 
intrinsically tied to the abstraction. It follows that the association is not understood as a consequence of those mathematical properties. 

Fig. 15. The sequence a.-f. of discretely growing shapes implemented by Ms. R.  

Fig. 16. A potential example of student work consistent with Ms. R’s intentions for Fig. 15e (left) and Fig. 15f (right).  
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As we illustrate in the following section, a different form of association entails a structure of mental actions that involves coordinating 
the co-occurrence of first and second difference properties with growth of the sail. 

Reflecting Abstraction. In the case of the hypothetical solution presented above (Fig. 16), a reflecting abstraction that foregrounds 
the coordination of actions and their results would involve a student reflecting upon the quantitative referents of their tabular activity. 
Whereas the pseudo-empirical abstraction described above foregrounds using the tabular area values for calculational purposes, a 
reflecting abstraction involves being persistently aware that first differences represent the amount by which a quantity’s values in-
creases (or decreases) and second differences represent the amount by which the increase or decrease of a quantity increases (or 
decreases). Central to reflecting abstraction is coordinating these changes in quantities’ values with their quantitative referents as 
shown in Fig. 17 so that abstracted patterns are coordinated with quantitative operations. Furthermore, central to reflecting 
abstraction is the awareness that the constant “+ 1” increases in size and side dimension(s) are necessarily tied to the area increasing 
by constant amounts (Fig. 17, top) and area increasing by constantly increasing amounts (Fig. 17, bottom); variation in one quantity 
occurs simultaneously with variation in the other quantity, and if size (or, technically, side) change is not constant, then those same 
first and second difference patterns do not hold. Importantly, such an abstraction involves conceiving numerical patterns as rates of 
growth so that those patterns are coordinated with their quantitative referents (see Fonger et al., 2020 for a detailed learning trajectory 
for quadratic growth). 

4.2.2. Implementation analysis 
Similar to Ms. N’s implementation, Ms. R’s implementation included contextual settings (e.g., pictures of discretely growing fig-

ures) and tables of values representing different quantities such as length and height. As Ms. R implemented the tasks, the students’ 

actions, combined with how she dictated the direction of the classroom conversation, were suggestive of pseudo-empirical abstrac-
tions. For instance, students used tables to calculate first and second differences in triangle areas as the size of the triangles increased in 
a discrete manner. If the students determined there was a constant first difference, they then wrote a linear function. Similarly, if 
students determined there was a constant second difference, they then wrote a quadratic function. In each case, numerical patterns and 
writing formulas formed the primary classroom focus. 

Due to the consistency of activity in her classroom, we describe one example of classroom activity in order to illustrate an image of 
the interactions and focus in Ms. R’s classroom. Ms. R engaged students in a task in which they explored patterns of growth as both the 
width and the height of the sail grew proportionately in the ratio 1:4 (see Fig. 18). Ms. R asked students to determine “the area of the 
sail of size 10,” and then write an “equation” to represent the growing area of the sails. Fig. 19 captures Ms. R’s board annotation as she 
facilitated the whole class discussion. An excerpt of the whole class discussion is presented in Excerpt 5. 

Excerpt 5.  

Speaker Transcript 
Ms. R: So the hard challenge is to make an equation [writes y = , and sketches a table of size and area]. 
Kate: Well, it’s squared cause it’s quadratic. 
Ms. R: Alright. So, so make an equation and then we’ll be done. So size, I’m gonna write my table to help me out. So, [referring to size and area pairs] one 

matches with two, two matches with eight, three matches with the 18. So four, what will four be? Did y’all figure that one out? 
(continued on next page) 

Fig. 17. Conceiving first and second differences quantitatively.  
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(continued ) 
Matt: 32, or what was it? 
Kate: Yeah, 32. 
Ms. R: 32? 
Kate: Yeah, I knew that one for sure. 
Ms. R: Okay. You think? Alright, so if I look at my first difference [writes the first differences in area below the area], I’m adding six, adding 10, then what am 

I adding right there? 
Student: 14 
Ms. R: 14. Alright, then my second difference [writes the second differences in area below the first differences]. 
Kate: Is plus 4. 
Ms. R: Plus four, plus four. Okay, so Kate said it’s quadratic [referring to Kate’s earlier claim]. So what do I need when it’s quadratic? 
Jake: [Cross talk] You need a squared. You need the square. 
Other 

student: 
[Cross talk] Square. 

Ms. R: Yep. We need a square [writes y = x2; see Figure 19]. So we know there’s gonna be an x2 in here. I don’t know if there’s a space in the front or not. So 
how can I manipulate these inputs [referring to size] to spit out those outputs [referring to area], when I know I need a squared? So that’s, that’s what 
you’re trying to do. Do it in your groups, see if you can figure it out and then we’ll be done.  

This interaction is emblematic of Ms. R’s classroom interactions throughout the lesson. Firstly, Ms. R and her students focused on 
calculating first and second differences using a table of values. They then used those values to identify patterns. As can be inferred from 
Kate’s contributions, Ms. R intended that the students associate those constructed numerical patterns with linear and quadratic 
function forms. Secondly, Ms. R encouraged using trial and error to construct formulas representing their produced table of values, and 
by extension the growing sails. In the above interaction, she specifically encouraged students to “manipulate these inputs” so that the 
formula produced the corresponding surface area. Thirdly, the interaction captures that during the lesson, Ms. R moved the students 
forward after they obtained a correct formula that served as a record of the produced values and nothing more. 

As it relates to abstraction, the interactions that occurred during Ms. R’s classroom provided evidence of pseudo-empirical 

Fig. 18. Two-dimensional growing triangles.  

Fig. 19. Ms. R’s annotations on the board for the two-dimensional growth case.  
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abstractions. Namely, her lesson and classroom interaction focused nearly exclusively on producing tables of values, performing 
calculations using those values, determining formulas sometimes through trial and error, and forming associations between patterns in 
the values and formula forms. Stated more generally, her questioning and guidance, as well as her students’ contributions, were 
focused on producing and calculating values, executing actions for the purpose of determining formulas, drawing associations between 
the results of activity, and then basing progress on obtaining a correct solution. Consistent with our analysis of Ms. N’s classroom 
interactions, we are compelled to note the difficulty in analyzing classroom interactions for potential abstractions, especially as it 
relates to evidence for reflecting abstractions. As suggested in our task analysis, evidence of reflecting abstractions might include 
explicit attention to the growth situations as they relate to the tabular activity and noted associations. Whereas Ms. R’s classroom often 
moved forward when correct values and formulas were obtained, evidence for reflecting abstraction would involve coordinating their 
produced values with the growth of the sails including how the growth of the sails result in either constant rate of growth or constantly 
changing rates of growth (see Fig. 17). Based on the students’ observable behaviors and products, we did not have evidence of their 
coordinating their tabular or formula activity with those operations involved in constructing quantitative growth. 

5. Discussion 

The purpose of the present work is to explore the question, “In what ways does abstraction provide a viable tool to characterize 
potential learning as it relates to instructional tasks and their implementation?” We adopted Piagetian forms of abstraction to analyze 
two teachers’ instructional tasks and subsequent implementation. Although we are not aware of studies that have used the afore-
mentioned forms of abstraction to develop hypothetical accounts of student activity in the context of teachers’ instructional tasks, 
mathematics education researchers have been sensitive to the role of abstraction in instructional design. For example, Oehrtman 
(2008) provided a more general description of how Piaget’s notion of abstraction can inform a layered sequence of activities so that 
students have an opportunity to reflect upon and identify common structures in their actions across a variety of contexts. We find it 
important to include a complementary focus on extending a construct that emerged from modeling cognition in order to characterize 
practicing teachers’ instructional tasks, as those materials have a profound influence on students’ educational experiences. 

At its most general level, our work illustrates that adopting Piaget’s forms of abstraction enables analyzing instructional tasks and 
their implementation in ways sensitive to a theory of learning and situated within mental actions. By adopting a grounding sensitive to 
the coordination of mental actions, it enables looking past surface level similarities and differences in student activity and solution 
products to provide differentiated accounts of student reasoning that generates those products. These differentiated accounts are not 
strictly alternative explanations of reasoning that might occur during engagement in and implementation of a task. Rather, these 
differentiated accounts can include an eye toward development via articulating pseudo-empirical abstractions, reflecting abstractions, 
and how pseudo-empirical abstractions might provide grounding for subsequent reflecting abstractions via designed learning envi-
ronments. We return to this point throughout this discussion section and the subsequent future work section. 

Reflecting on our analysis across the instructional tasks, the abstraction framing provides a guiding lens to produce differentiated 
accounts of anticipated knowledge development. In each of the two tasks we analyzed, we were able to use the different forms of 
abstraction to generate generalizations that students might construct as they reflect on their solutions and activity. Echoing Harel’s 
(2001) distinction between result-pattern and process-pattern generalizations, distinguishing pseudo-empirical from reflecting 
abstraction helps us consider how a student might reflect on their solution activity. Analyzing instructional tasks with 
pseudo-empirical abstraction in mind enabled considering the different ways students might reflect on the results of their activity, such 
as identifying numerical patterns in produced tables or constructing associations between produced objects such as formulas and 
diagrams. Analyzing instructional tasks with reflecting abstraction in mind enabled identifying various ways in which students might 
coordinate the results of their activity with the actions driving their solution activity, such as coordinating patterns in a table of values 
with constructed invariant relationships in a context. The forms of abstraction thus provide guiding constructs to consider not only the 
cognitive actions that drive solution activity, but also the nature of reflection on that activity. 

With respect to each implementation, the two forms of abstraction enabled analyzing classroom participant interactions including 
their produced artifacts in order to hypothesize their constructed abstractions or generalizations. This use of abstraction to analyze 
classrooms thus offers a framing for what Lobato et al. (2003) termed focusing phenomena. Focusing phenomena are the “features of the 
classroom environment that regularly direct attention to certain mathematical properties or patterns” (Lobato et al., 2003, p. 2). In this 
paper, the forms of abstraction enabled characterizing the cognitive activity potentially behind acts of identifying mathematical 
properties or patterns in the classroom, which yields two differentiated ways to frame focusing phenomena in a classroom. On one 
hand, the focusing phenomena occurring in a classroom might direct students toward reflecting on the results of their activity, such as 
emphasizing produced solutions or artifacts and properties thereof. On the other hand, the focusing phenomena occurring in a 
classroom might direct students toward a persistent focus on coordinating produced artifacts with the actions driving the production of 
those artifacts. With respect to the former, Ms. R’s classroom sustained a focus on using produced tables and formulas to form as-
sociations between them. With respect to the latter, Ms. N’s classroom interactions also included a focus on the ways in which observed 
patterns in produced tables were reflecting of properties of the physical gears and the students’ actions with them. 

Comparing the task analysis to the implementation analysis, the limitations that occur in analyzing classroom implementation are 
notable as compared to analyzing instructional tasks. With respect to the instructional tasks, the forms of abstraction proved useful and 
viable in several ways. Firstly, our analysis illustrates that the forms of abstraction enable operationalizing research-based models of 
student reasoning to articulate differentiated forms of anticipated student engagement and learning during instructional tasks. Our use 
of research-based models of student reasoning and associated theoretical constructs thus provides one response to calls for incorpo-
rating research and theory on student thinking in ways that are more attuned to the teaching and learning of mathematics as it occurs 
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in the classroom (e.g., Ellis, 2022; Simon, 1995; Steffe & D’Ambrosio, 1995; Thompson, 2013). Secondly, our task analysis proved 
viable independent of the implementation analysis. We were intentional to analyze the tasks using our expertize and relevant research 
before analyzing implementation data so as to not have our task analysis influenced by implementation. For this reason, we anticipated 
a need to revise, perhaps significantly, our task analysis based on implementation analysis. This was not the case, as there was 
compatibility between the results of our task analysis and that of the implementation analysis. This outcome contributes to the viability 
of using forms of abstraction to analyze instructional tasks for the purpose of anticipating student reasoning and learning. We note, 
however, that this viability is fragile in one particular way. 

A mathematics classroom is a complex, dynamic system that makes developing characterizations of cognitive activity a compli-
cated pursuit. The complexity of a classroom yields significant limitations as it relates to gaining insights into and developing evidence 
for particular abstractions. In our analysis, we were constrained to drawing inferences from the observable behaviors and utterances in 
the classroom, and these are imperfect in their representation of cognitive activity. As a case-in-point, our analysis of Ms. R’s 
implementation suggests the classroom interactions foregrounded pseudo-empirical abstractions involving associations between nu-
merical patterns and features of formulas. However, it could have been the case that the students held in mind particular structured 
patterns of growth and the enactment of those structures in the associated geometric contexts. Unfortunately, the nature of the in-
teractions between the students and teacher did not afford us such insights. Our inferences with respect to the classroom interactions 
were largely informed by our expertize and extant research, and it is possible that numerous alternative abstractions were in process or 
occurred during the class. 

Based on the classroom implementations we analyzed, we interpret the aforementioned limitation to not solely be a methodological 
one. The limitation also underscores the difference between pseudo-empirical and reflecting abstractions as it relates to supporting the 
latter in the classroom. Pseudo-empirical abstractions can form critical springboards to student’s mathematical development and they 
can be useful meanings themselves (Ellis, Lockwood, & Ozaltun-Celik, 2022; Ellis et al., 2024; Steffe & Olive, 2010), yet they can be 
less productive or generative than reflecting abstractions. This is because the focus of pseudo-empirical abstractions is primarily on the 
results of activity and potentially tied to carrying out the activity itself, while reflecting abstractions necessitate coordinating the 
results of activity with the operations driving that activity. For this reason, pseudo-empirical abstractions can become a natural focus in 
the classroom, whether intended or not, due to the natural inclination to focus on results of activity; results are often the more salient 
aspect of activity. Supporting reflecting abstractions requires that students not only engage in actions that warrant reflecting ab-
stractions, but that their classroom experiences push them past a focus on results so that they take their actions as objects of reasoning 
(Simon, 2014; Simon et al., 2010). This is far from a trivial phenomenon, and thus unlikely to occur haphazardly across a majority of 
students in a classroom. It is also difficult (and often unfeasible) to give attention to each student’s reasoning in a way that a teacher can 
have confidence in their assessment of their students’ abstractions. 

Before closing, we underscore that the reader should not interpret our analysis as a criticism of the teachers who participated in this 
study, nor is our analysis a criticism of their instruction or tasks. Teaching is a complicated activity mitigated by a number of factors 
extending beyond that of targeted abstractions. Returning to Ms. R, her curriculum and implementation is typical not only of algebra 
instruction, but also most curricula do not encourage the construction of a constantly-changing rate of change and coordinating that 
with geometric properties of growth. We have no evidence of Ms. R being intentionally negligent with respect to abstraction, and our 
use of abstraction and subsequent analysis is best viewed as a researcher’s guide for developing characterizations for learning in a 
classroom. 

6. Future work 

Our results indicate the difficulty of supporting reflecting abstraction, particularly in a classroom with a typical number of students. 
Based on our educational experiences and careers, we do not believe such difficulties are unique to the classrooms we observed. Our 
results indicate the need for future work that yields insights into the ways in which to support reflecting (and reflected) abstractions in 
the classroom. In alternative work we have engaged in a related pursuit with respect to classroom supports for generalization (Ellis 
et al., 2024), and we envision a compatible line of future work that directly targets abstraction and its viability for investigating task 
design and implementation in a few ways. 

Firstly, the current report is limited to two content areas. Future work should look to extend the framing to other content areas. 
Secondly, our analysis of the instructional tasks consists of hypotheses and, as mentioned in the discussion section, the classroom 
implementation data made it difficult to gain insights into students’ realized abstractions. A more holistic account should include a 
focus on students’ realized abstractions, as well as the potential role of teacher knowledge, teacher beliefs, and instructional moves in 
students’ construction of those abstractions. For instance, we envision researchers pairing classroom data collection with clinical 
interviews (Ginsburg, 1997) for the purpose of developing more fine-grained characterizations of students’ realized abstractions. 
These realized abstractions can then be compared to those inferred from classroom data. Furthermore, we envision researchers 
exploring alternative methodologies in the classroom that might be more amenable to analyzing student abstraction. Whereas we 
intended to have minimal influence on the classroom environment, other methods exist that involve researchers or coaches working 
side-by-side with teachers (e.g., Munson & Dyer, 2023). These methods can vary in their balance between probing and intervention, 
and we envision they offer an opportunity to gain deeper insights into students’ realized abstractions via working with a teacher to 
elicit evidence for those abstractions. 

Thirdly, we envision that the forms of abstraction can provide a cognitive-focused approach to modifying instructional tasks and 
their implementation. On the surface, pseudo-empirical and reflecting abstraction provide binary constructs in that they offer two 
forms by which to differentiate student reasoning, whether anticipated or realized. Reflecting abstraction and pseudo-empirical 
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abstraction need not be positioned as binary constructs acting as alternatives to each other. As mentioned above, pseudo-empirical 
abstractions can provide the source material for subsequent reflecting abstractions, and reflecting abstractions can be supportive of 
pseudo-empirical abstractions during subsequent learning (Ellis et al., 2024; Piaget, 2001). Thus, a critical next step to the work 
presented here is to consider both task and implementation analyses in a way that is sensitive to how learning might unfold over time 
through iterative abstraction processes. For instance, based on analysis like that provided here and then subsequent investigations into 
students’ realized abstractions and aspects of instruction contributing to those abstractions, researchers and teachers can look to 
modify instructional tasks to better reflect students’ realized abstractions and associated processes. In the presence of a particular 
pseudo-empirical abstraction, future work might identify ways to generate the perturbations and accommodations necessary for the 
realization of reflecting abstractions. We envision that more exhaustive descriptions of tasks in terms of students’ iterative abstraction 
processes can also provide a guide for investigating fidelity as it relates to the implementation of those tasks and supporting productive 
abstraction in the classroom. 
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construction. In G. Karagöz Akar, İ.Ö. Zembat, S. Arslan, & P. W. Thompson (Eds.), Quantitative reasoning in mathematics and science education (pp. 35–69). 
Springer International Publishing. https://doi.org/10.1007/978-3-031-14553-7_3.  

Moore, K. C., Stevens, I. E., Paoletti, T., Hobson, N. L. F., & Liang, B. (2019). Pre-service teachers’ figurative and operative graphing actions. The Journal of 
Mathematical Behavior, 56. https://doi.org/10.1016/j.jmathb.2019.01.008 

Munson, J., & Dyer, E. B. (2023). Pedagogical sensemaking during side-by-side coaching: Examining the in-the-moment discursive reasoning of a teacher and coach. 
Journal of the Learning Sciences, 32(2), 171–210. https://doi.org/10.1080/10508406.2022.2132863 

Norton, A., & Wilkins, J. L. M. (2009). A quantitative analysis of children’s splitting operations and fraction schemes. The Journal of Mathematical Behavior, 28(2–3), 
150–161. https://doi.org/10.1016/j.jmathb.2009.06.002 

Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. In M. P. Carlson, & C. L. Rasmussen (Eds.), Making the connection: 
Research and teaching in undergraduate mathematics education (pp. 65–80). Mathematical Association of America.  

Paoletti, T. (2020). Reasoning about relationships between quantities to reorganize inverse function meanings: The case of Arya. The Journal of Mathematical Behavior, 
57, Article 100741. https://doi.org/10.1016/j.jmathb.2019.100741 

Peterson, S. K., Mercer, C. D., & O’Shea, L. (1988). Teaching learning disabled students place value using the concrete to abstract sequence. Learning Disabilities 
Research, 4, 52–56. 

Piaget, J. (1970). Genetic epistemology. W. W. Norton & Company, Inc,.  
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