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1. Introduction

The notion of principal bundle connection is ubiquitous in differential geometry and 
its applications. In this work we study a far reaching extension of this notion. In order to 
explain it, recall that given a principal G-bundle p : P → M one has an associated gauge 
groupoid G := P×GP ⇒ M and its anchor is a groupoid submersion Φ := (t, s) : G → H
onto the pair groupoid H := M ×M ⇒ M . Then there is a 1-to-1 correspondence:

⎧
⎨

⎩
principal bundle

connections for p : P → M

⎫
⎬

⎭ ←̃→

⎧
⎨

⎩
multiplicative Ehresmann
connections for Φ : G → H

⎫
⎬

⎭

Here, by a multiplicative Ehresmann connection we mean a distribution E in G such that 
TG = E ⊕ ker d Φ, which is a subgroupoid of the tangent groupoid TG ⇒ TM .

We study in this paper multiplicative Ehresmann connections for any surjective, sub-
mersive, Lie groupoid map Φ : G → H covering the identity. We will see that such 
connections share many properties with principal bundle connections. One reason for this 
similarity is that given such a groupoid map its kernel K = kerΦ is a bundle of Lie groups 
and one obtains for each x ∈ M a principal bundle Φ : s−1

G (x) → s−1
H (x) with structure 

group Kx. We will see that a multiplicative Ehresmann connection E for Φ gives rise to 
a family of principal connections, one for each principal bundle Φ : s−1

G (x) → s−1
H (x). 

One should think of this family as a leafwise component of E.
Recall that a Cartan connection on a Lie groupoid G ⇒ M is an Ehresmann connection 

for the source map s : G → M , which is at the same time a multiplicative distribution. 
Such connections have been studied extensively, sometimes under different names (see, 
e.g., [1,3,4,2,13,32]). For a bundle of Lie groups p : K → M , they coincide with our 
notion of multiplicative Ehresmann connection, if we think of the bundle projection p
as a groupoid morphism onto the identity groupoid. We will see that a multiplicative 
Ehresmann connection for Φ : G → H also gives rise to a Cartan connection EK on the 
kernel K = kerΦ. We think of EK as the kernel component of E.

The existence of Cartan connections is, in general, rather mysterious. There are ex-
amples of proper groupoids (even transitive!) groupoids which do not admit any Cartan 
connection. By contrast, we will see that multiplicative Ehresmann connections for a 
morphism Φ : G → H often (but not always!) exist. For example, they always exist for 
the anchor map (t, s) : G → M ×M of a transitive Lie groupoid, because of the 1-to-1 
correspondence with principal connections, explained in the first paragraph. Also, we 
will prove the following:
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Theorem 1.1. If G is a proper Lie groupoid, then any surjective, submersive groupoid 
morphism Φ : G → H admits a multiplicative Ehresmann connection.

The reason why this result holds is that multiplicative Ehresmann connections, un-
like Cartan connections, can be transported along Morita equivalences. However, this 
requires to consider multiplicative Ehresmann connections for slightly more general ob-
jects than groupoid morphisms. Given a Lie groupoid G with Lie algebroid A we will 
define multiplicative Ehresmann connections for any bundle of ideals k ⊂ A which are 
invariant under the conjugation action of G. When Φ : G → H is a morphism as above 
and k is the bundle of ideals induced by its kernel K (i.e., the Lie algebroid of K), the 
two notions coincide.

A bundle of ideals k for a Lie groupoid G is called partially split if it admits a multi-
plicative Ehresmann connection E. Note that this more general notion appears naturally 
in applications. We were originally led to introduce them in the study of local models 
around Poisson submanifolds in Poisson geometry. There one finds a constant rank mul-
tiplicative 2-form ω ∈ Ω2

M (G) whose kernel defines a bundle of ideals. A multiplicative 
Ehresmann connection for this bundle of ideals is necessary to construct a groupoid 
coisotropic embedding of (G, ω) into a symplectic groupoid. The infinitesimal version of 
this embedding is precisely a local model for a Poisson submanifold. We will not discuss 
any of these applications here and we instead refer the reader to [19].

Just like for principal connections, rather than specifying a multiplicative Ehresmann 
connection via a distribution E ⊂ TG one can give instead a multiplicative connection 
1-form. This is a multiplicative 1-form α ∈ Ω1

M(G; k) with coefficients in the bundle of 
ideals k which additionally must satisfy:

α(ξL) = ξ, (ξ ∈ Γ(k)),

where ξL ∈ X(G) is the left-invariant vector field associated to the section ξ. The cur-
vature of the connection is then a multiplicative 2-form with coefficients in k, denoted 
Ω = Dα ∈ Ω2

M(G; k). It measures the failure in E being an involutive distribution. One 
advantage of specifying a multiplicative Ehresmann connection via a connection 1-form 
is that is leads immediately to its infinitesimal version. Namely, given a Lie algebroid 
A ⇒ M , integrable or not, and a bundle of ideals k ⊂ A, an IM (infinitesimal multiplica-
tive) Ehresmann connection is given by an IM 1-form on A with coefficients in k (see, 
e.g., [14]), whose symbol l : A → k satisfies:

l(ξ) = ξ, (ξ ∈ Γ(k)).

The multiplicative Ehresmann connections studied in this paper have been studied 
before in [25], for the special case of a groupoid extension in the context of the theory 
of non-abelian gerbes. There, by a groupoid extension the authors mean a groupoid 
map Φ : G → K between Hausdorff Lie groupoids which is locally trivial. It implies, in 
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particular, that whenever it admits a connection, its kernel is a locally trivial bundle of 
Lie groups. Many of the results we obtain in Section 2 recover, in this special case, results 
of [25]. Our result mentioned above concerning transporting multiplicative connections 
along Morita equivalences also extends a theorem from [25], which establishes Morita 
invariance of the existence of connections. Note that the notion of Morita equivalence of 
groupoid extensions, used in [25], is more restrictive than the Morita equivalence of Lie 
groupoids used here. In particular, Theorem 1.1 does not follow from the results of [25].

In [9, Section 6.5] the authors consider multiplicative tensors K ∈ Ω1(G, TG) satisfying 
K2 = K, which they call multiplicative projections. These include, as a special case, 
multiplicative Ehresmann connections, and the so-called Frölicher-Nijenhuis bracket of 
K (see [9]) coincide with our curvature 2-forms. Also, the notion of matched pair of Lie 
algebroid from [9] can be interpreted as a version of our IM connections.

There are many questions related to our theory of connections and its applications that 
we do not discuss in this paper. Besides the applications to Poisson geometry [19] and 
to gerbes [25] already mentioned, it is also natural to consider Ehresmann connections 
for morphisms of groupoids over different bases or more general types of bundles of 
ideals [23]. Another intriguing question is to define appropriate moduli spaces of flat 
multiplicative connections. We plan to return to some these questions in future work.

This paper is organized as follows. In Section 2 we introduce multiplicative Ehresmann 
connections, and we discuss:

• alternative characterizations of connections;
• obstructions to their existence;
• necessary and sufficient criteria for completeness;
• curvature, structure equation and Bianchi’s identity;
• various notions of flatness and relationship to semi-direct products.

In Section 3, we give many classes of Lie groupoids and morphisms that admit multiplica-
tive Ehresmann connections. Section 4 is dedicated to the proof of Morita invariance and 
to show the existence of multiplicative Ehresmann connections for proper groupoids. In 
this section, we also illustrate our results with an application to the theory of S1-gerbes 
over a manifold, recovering the classical result of Murray about representing the Dixmier-
Douady class in real cohomology. In Section 5, we introduce IM Ehresmann connections, 
and we discuss:

• alternative characterizations of IM connections;
• obstructions to their existence;
• a theory of coupling forms for IM connections, generalizing the classical coupling 

description of symplectic fibrations;
• curvature of IM connections;
• various notions of flatness and relationship to semi-direct products of Lie algebroids.
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In Section 6, we give many classes of Lie algebroids and morphisms that admit IM 
Ehresmann connections, including non-integrable algebroids. At the end of the paper, 
we have included an appendix with background and results on multiplicative forms and 
IM forms with coefficients, needed throughout the paper. The results in Section A.3
concerning covariant differentiation of such forms seem to be new.

Acknowledgments. We would like to thank Henrique Bursztyn for bringing to our 
attention his work [9]. We specially would like to thank Camille Laurent Gengoux for 
many comments on a first version of this paper posted in the arXiv, and for pointing 
out the connections to his joint work with Mathieu Stiénon and Ping Xu [25], which we 
were unaware of.

Conventions and notations. We denote a Lie groupoid by G ⇒ M , with source/target 
s, t : G → M and multiplication m : G ×s t G → G. We denote a Lie algebroid by A ⇒ M , 
with Lie bracket [·, ·]A : Γ(A) ×Γ(A) → Γ(A) and anchor ρA : A → TM . Our conventions 
are as in [11], so the Lie algebroid of G is the vector bundle A = ker(d t)|M with Lie 
bracket induced from the bracket of left-invariant vector fields and anchor ρ = d s. 
Also, Proper Lie groupoids are assumed Hausdorff, while general Lie groupoids are not 
necessarily Hausdorff, unless stated otherwise.

2. Multiplicative Ehresmann connections

2.1. Ehresmann connection for a Lie groupoid submersion

Let G ⇒ M and H ⇒ M be two Lie groupoids, and

Φ : G → H

be a Lie groupoid map covering IdM which is a surjective submersion. We are investi-
gating the existence problem for the following objects.

Definition 2.1. A multiplicative Ehresmann connection for Φ is a “horizontal” distribu-
tion

TG = ker(d Φ) ⊕ E

which is also a Lie subgroupoid E ⇒ TM of the tangent groupoid TG ⇒ TM .

Notice that the kernel of a Lie groupoid map Φ : G → H as above

K := ker Φ = Φ−1(units) ⊂ G

is a bundle of Lie subgroups of G which is normal, i.e., conjugation by any g ∈ G gives 
a Lie group isomorphism:
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Adg : Ks(g)
∼−→ Kt(g), k *→ gkg−1.

Let A ⇒ M and B ⇒ M denote the Lie algebroids of G ⇒ M and H ⇒ M , 
respectively, and let φ : A → B be the Lie algebroid map induced by Φ. Then the Lie 
algebroid k ⇒ M of K is a bundle of Lie algebras that fits into the short exact sequence 
of Lie algebroids:

0 k A
φ

B 0 .

The “conjugation action” induces an action on the isotropies:

Adg : ker ρ|s(g) ∼−→ ker ρ|t(g), g · α = d
d t

∣∣∣
t=0

g exps(g)(tα) g−1, (2.1)

where expx : ker ρ|x → Gx is the Lie group exponential. Since K is invariant under 
conjugation, we obtain a representation of G on k.

Finally, note that the subbundle K := ker(d Φ) can be recovered from k by using (left 
or right) translations:

Kg = (ker dΦ)|g = dLg(k|s(g)) = dRg(k|t(g)) ⊂ ker(d s) ∩ ker(d t).

Remark 2.2. Connections in the sense of Definition 2.1 were introduced in [25] under the 
extra assumption that Φ is a locally trivial fibration. The authors call them “connections 
for Lie groupoid extensions”.

2.2. Partially split bundles of ideals

It turns out that multiplicative Ehresmann connections can be defined in a more 
general setting, without the presence of a Lie groupoid morphism.

Definition 2.3. Given a Lie groupoid G ⇒ M with Lie algebroid A ⇒ M , we call a vector 
subbundle k ⊂ A a bundle of ideals of G if k ⊂ ker ρ and k is invariant under the G-action 
by conjugation (2.1).

The fact that k is invariant under conjugation implies that

α ∈ Γ(A),β ∈ Γ(k) =⇒ [α,β] ∈ Γ(k).

When G ⇒ M is source-connected, this condition is equivalent to k ⊂ ker ρ being a bundle 
of ideals (see, e.g., Appendix B [27]). So this condition defines the notion of a bundle of 
ideals for any Lie algebroid A, integrable or not. We will explore this in Section 5, where 
we study the infinitesimal analog of multiplicative Ehresmann connections.

Given a bundle of ideals k ⊂ A for G, by using (left or right) translations we obtain 
the involutive distribution on G:
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Kg := dLg(ks(g)) = dRg(kt(g)) ⊂ ker(d s) ∩ ker(d t). (2.2)

Note that K ⇒ 0M is a subgroupoid of the tangent groupoid TG ⇒ TM .

Definition 2.4. A bundle of ideals k of G is said to be partially split if it admits a multi-
plicative Ehresmann connection, that is, if there is a wide Lie subgroupoid E ⊂ TG such 
that

TG = E ⊕K

where K is the subgroupoid (2.2).

Remark 2.5. Note that, given a bundle of ideals k ⊂ A, we still have a short exact 
sequence of Lie algebroids:

0 k A B 0 .

where B := A/k. However, at the groupoid level, there may not exist a closed embedded 
subgroupoid K ⊂ G integrating k and even B may fail to be integrable (see Example 3.7). 
So in this more general setup a Lie groupoid morphism Φ : G → H as in Definition 2.1
may not exist. If it exists, then K = ker dΦ.

Remark 2.6. We will be using the following nomenclature:

• A multiplicative Ehresmann connection for a morphism Φ : G → H, as in Defi-
nition 2.1. We will always assume that it is a surjective, submersive, Lie groupoid 
morphism covering the identity, without explicitly mentioning it;

• A multiplicative Ehresmann connection for a bundle of ideals k of a groupoid G, as 
in Definition 2.4;

• A Cartan connection for a groupoid G: by this we mean a multiplicative distribution 
E ⊂ TG such that

TG = ker d s ⊕E.

The last notion has been discussed and used extensively in the literature, sometimes 
under different names (see, e.g., [1,3,4,2,13,32]). For a general groupoid, the source map 
s : G → M cannot be viewed as groupoid morphism, and this notion is distinct from 
the notions introduced above. However, for a bundle of Lie groups p : G → M , where 
s = t = p, one can view the projection as a groupoid morphism onto the identity 
groupoid M ⇒ M . The corresponding bundle of ideals is the Lie algebroid A of G. So a 
Cartan connection for a bundle of Lie groups p : G → M is the same as a multiplicative 
Ehresmann connection for the morphism p, or a multiplicative Ehresmann connection 
for the bundle of ideals A.
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2.3. The partially split condition

We will now look for alternative characterizations of partially split bundles of ideals. 
We start by observing that K is a actually a semi-direct product:

Lemma 2.7. The subgroupoid K ⇒ 0M of TG ⇒ TM is canonically isomorphic to the 
semi-direct product G ×M k ⇒ M , with multiplication:

(g, v) · (h,w) = (gh, h−1 · v + w), if s(g) = t(h), v ∈ ks(g), w ∈ ks(h).

KG ×M k ≃ TG

G

0M TM

M

Proof. One checks immediately that the map:

G ×M k → K, (g, v) *→ dLg(v),

is a groupoid isomorphism. !

The Lie groupoids TG ⇒ TM and K ⇒ 0M are examples of VB groupoids with cores 
A → M and k → M , respectively. Under the duality operation in the category of VB 
groupoids (see [26,7,21]), these have duals the VB groupoids T ∗G ⇒ A∗ and K∗ ⇒ k∗, 
with cores T ∗M → M and 0M → M , respectively. The groupoid K∗ ⇒ k∗ is isomorphic 
to the action groupoid G ! k∗ ⇒ k∗ resulting from the dual action of G on k∗. Moreover, 
by applying duality to the inclusion map, the restriction map T ∗G → K∗ is a groupoid 
morphism:

K∗G ! k∗ ≃ T ∗G

G

k∗ A∗

M

The following proposition gives useful characterizations of the partially split condition 
(for the terminology, see the appendix):

Proposition 2.8. Let k be a bundle of ideals for G. The following structures are in 1-to-1 
correspondence:
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(i) VB subgroupoids E ⊂ TG that are complementary to K:

TG = K ⊕ E;

(ii) VB groupoid morphisms Θ : G ! k∗ → T ∗G that are splittings of the projection 
p : T ∗G → G ! k∗:

p ◦ Θ = Id;

(iii) k-valued, multiplicative, 1-forms α ∈ Ω1
M(G, k) that restrict to the identity on k ⊂

TMG:

α|k = Id;

(iv) linear, closed, multiplicative, 2-forms ω ∈ Ω2
M(G ! k∗) (see Definition A.14) that 

restrict to the canonical symplectic form on k ×M k∗ ⊂ TM (G ! k∗):

ω((v1, ξ1), (v2, ξ2)) = ξ2(v1) − ξ1(v2), if (vk, ξk) ∈ k ×M k∗.

Proof. The equivalence between (i) and (ii) follows from the discussion above.
Let A be the Lie algebroid of G. A bundle map

G ! k∗
Θ

T ∗G

G Id G

k∗ A∗

M M

is a VB groupoid morphism if and only if its dual is a VB groupoid morphism:

TG Θ∨

G ×M k

G Id G

TM 0M

M M

But a VB groupoid morphism Θ∨ : TG → G ×M k covering the identity is the same 
thing as a k-valued, multiplicative 1-form α ∈ Ω1

M(G, k) (see Example A.5). This gives 
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a correspondence Θ ↔ α, where the conditions p ◦ Θ = Id and α|k = Id correspond to 
each other, proving the equivalence between (ii) and (iii).

By Lemma A.13, there is a 1-to-1 correspondence between linear, closed forms ω ∈
Ω2

M(G ! k∗) and vector bundle maps Θ : G! k∗ → T ∗G covering the identity, determined 
by the relation:

ω = Θ∗(ωcan).

Clearly, if Θ is a groupoid map, it follows that ω is multiplicative. Conversely, if ω is 
multiplicative, then we have a VB groupoid morphism:

T (G ! k∗) ω♭

T ∗(G ! k∗)

T k∗ (A! k∗)∗

Via the assignment of Lemma A.13, the map Θ is the composition:

G ! k∗ ↪→ TG(G ! k∗) ω♭

−→ T ∗
G(G ! k∗) −→ T ∗G.

Hence, Θ is a groupoid morphism. Under the correspondence Θ ↔ ω, the extra conditions 
in (ii) and (iv) correspond to each other, proving the equivalence between these two 
items. !

The characterization of multiplicative Ehresmann connections in terms of multiplica-
tive 1-forms (item (iii) in the previous proposition) also appears in [25, Thm 4.12] for 
the case of Lie groupoid extensions (cf. Remark 2.2). We will be making extensive use 
of it.

Definition 2.9. Given a partially split bundle of ideals k with a multiplicative Ehres-
mann connection E ⊂ TG, the corresponding k-valued 1-form α ∈ Ω1

M(G, k), given by 
Proposition 2.8 (iii), is called the multiplicative connection 1-form.

Next we deduce two obstructions for a bundle of ideals to be partially split. We start 
by observing that for bundles of Lie groups multiplicative connections induce ordinary 
connections, a remark that will also be useful in future sections. This remark follows, 
e.g., by observing that a multiplicative connection on a bundle of Lie groups is an ex-
ample of a Cartan connection (see Remark 2.6), hence it induces an infinitesimal Cartan 
connection on its Lie algebroid (see [5] for more details and further references). We give 
an independent proof:
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Proposition 2.10. Let p : K → M be a bundle of Lie groups endowed with a multiplicative 
Ehresmann connection: TK = EK⊕ker d p. Then the corresponding bundle of Lie algebras 
k → M has an induced linear connection ∇ which preserves the Lie bracket:

∇X [ξ, η]k = [∇Xξ, η]k + [ξ,∇Xη]k,

for all X ∈ X(M), ξ, η ∈ Γ(k). The corresponding linear Ehresmann connection Ek ⊂ T k

is related to EK via the exponential map exp : k → K on a neighborhood U ⊂ k of the 
zero section:

(d exp)(Ek|U ) = EK|exp(U). (2.3)

Proof. The connection is defined by:

∇Xξ = [X̃, ξL]|M , X ∈ X(M), ξ ∈ Γ(k), (2.4)

where X̃ is the horizontal lift with respect to EK and ξL ∈ X(K) is the left-invariant 
vector field corresponding to ξ. Multiplicativity of EK implies that [X̃, ξL] is a left-
invariant vector field, so the Jacobi identity shows that the connection preserves the Lie 
bracket on k.

We now claim that if U ⊂ k is a neighborhood of the zero section where exp is a 
diffeomorphism, then (2.3) holds. For this, we will show that the left-hand side is a 
multiplicative distribution. It then follows that both sides are (local) Lie subgroupoids 
of TK with the same Lie algebroid, so they must coincide. Hence, we assume that K = k

and multiplication is given by the (fiberwise) Baker-Campbell-Hausdorff series BCH(·, ·).
Notice that:

Ek
u =

{
(dx s)(v) : v ∈ TxM, s ∈ Γ(k), s(x) = u, (∇s)|x = 0

}
.

So it is enough to check that for s1, s2 ∈ Γ(k):

(∇s1)|x = (∇s2)|x = 0 =⇒ (∇BCH(s1, s2))|x = 0.

This follows from the expression of BCH(·, ·) as a sum of commutators because ∇ pre-
serves the brackets. !

Corollary 2.11. Given a partially split bundle of ideals k for a Lie groupoid G each mul-
tiplicative Ehresmann connection E ⊂ TG determines a linear connection ∇E on the 
bundle of Lie algebras k → M which preserves the Lie bracket.

Proof. Let G(k) be the bundle of simply connected Lie groups integrating k and i :
G(k) ↪→ G the immersion integrating the inclusion. Given a multiplicative Ehresmann 
connection E on G for k the pullback (d i)−1(E) ⊂ TG(k) is a multiplicative Ehresmann 
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connection for the bundle of Lie groups p : G(k) → M . Hence, the result follows from the 
proposition. !

Corollary 2.12. If a bundle of ideals k ⊂ A for G is partially split, then k is a locally 
trivial bundle of Lie algebras.

The corollary implies that G(k) is a Hausdorff manifold (recall that bundles of Lie 
algebras may fail to have Hausdorff integrations).

The partial split condition also places restrictions on the isotropy Lie algebras:

Corollary 2.13. If a bundle of ideals k ⊂ A for G is partially split, then for each x ∈ M

the isotropy Lie algebra splits into a direct sum of ideals:

gx = kx ⊕ lx.

Proof. Observe that if k ⊂ A is partially split for G then for each x ∈ M the ideal kx ⊂ gx
is partially split for G0

x, the connected component of the isotropy Lie group. This follows, 
e.g., by restricting a multiplicative connection 1-form α ∈ Ω1

M(G, k) to G0
x. The corollary 

now follows from the fact that an ideal k ⊂ g for a connected Lie group G is partially 
split if and if only it admits a complementary ideal in g, as discussed in the example 
from Subsection 3.1. !

Remark 2.14. In the case of connections for Lie groupoid extensions, the associated linear 
connection ∇ and Proposition 2.10 was also deduced in [25] (see Corollary 4.5, Lemma 
4.6 and Proposition 4.21 there).

2.4. Completeness

In this section we will assume that all Lie groupoids are Hausdorff. Given a multi-
plicative Ehresmann connection for a groupoid homomorphism Φ : G → H covering the 
identity we can ask if it is complete, i.e., if one can lift any path in H to an horizontal 
path in G. In this section we prove the following result which completely settles this 
question.

Theorem 2.15. Let Φ : G → H be a surjective, submersive, Lie groupoid homomorphism 
covering the identity. A multiplicative Ehresmann connection for Φ is complete if and 
only if the kernel K = kerΦ is a locally trivial bundle of Lie groups.

Remark 2.16. Given a surjective submersion Φ : M → N between two manifolds one has 
(see, e.g., [17,20]):

(i) Φ is locally trivial if and only if Φ : M → N admits a complete Ehresmann 
connection;
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(ii) Φ is proper if and only if every Ehresmann connection on Φ : M → N is complete.

One can think of the theorem as a multiplicative version of (i). On the other hand, it is 
not hard to see that a surjective, submersive, groupoid morphism Φ : G → H covering 
the identity is proper if and only if its kernel K is proper (i.e., p : K → M is a proper 
map).

The rest of this section is devoted to the proof of the theorem. As before, set

K := ker(d Φ) ⊂ TG.

We also denote by p := sK = tK the common source and target of the bundle of Lie 
groups K → M . Denoting by i : K ↪→ G the inclusion, notice that

EK := (d i)−1(E) = E ∩ TK,

gives a multiplicative Ehresmann connection on the bundle p : K → M :

TK = ker(d p) ⊕EK, where EK := E ∩ TK.

In terms of the nomenclature of Remark 2.6, EK is a Cartan connection for K. The 
resulting linear connection on the Lie algebroid k of K is precisely the linear connection 
∇E of Proposition 2.10.

The following result reduces the proof of Theorem 2.15 to the case of a bundle of Lie 
groups.

Proposition 2.17. A multiplicative Ehresmann connection for a groupoid homomorphism 
Φ : G → H is complete if and only if the multiplicative Ehresmann connection induced 
on its kernel p : K → M is complete.

Proof. In one direction the statement is obvious.
For the converse, assume that Φ : G → H admits a multiplicative Ehresmann connec-

tion E ⊂ TG such that the induced Ehresmann connection on the kernel EK ⊂ TK is 
complete. We observe that the following properties hold, independent of completeness:

(i) If g : I → G is a horizontal path, then t *→ g(t)−1 is also horizontal;
(ii) If g1, g2 : I → G are horizontal paths with s(g1(t)) = t(g2(t)) for all t ∈ I, then 

t *→ g1(t)g2(t) is also horizontal;
(iii) If g : I → G is a horizontal lift of a path h : I → H and k : I → K is a horizontal 

lift of γ := s ◦ h : I → M , then

g : I → G, g(t) := g(t)k(t),

is also a horizontal lift of h : I → H;
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(iv) Any two horizontal lifts g1, g2 : [a, b] → G of h : [a, b] → H are related by:

g2(t) = g1(t)k(t) (t ∈ [a, b]),

where k : [a, b] → K is the horizontal lift of s ◦ h : [a, b] → M with k(a) =
g1(a)−1g2(a).

Indeed, (i) and (ii) follow immediately from the fact that E ⇒ TM is a subgroupoid of 
TG ⇒ TM . Then (iii) follows from (i) and the fact that the connection EK on K → M

is the restriction of E to TK. Finally, (iv) follows from (i)-(iii) and the uniqueness of 
horizontal lifts.

Now, using these facts, we have the following standard argument showing that for 
every path h : [0, 1] → H and any g0 ∈ G with Φ(g0) = h(0) there exists a horizontal 
lift g : [0, 1] → G starting at g0. First, we always have an horizontal lift g : [0, t0) → G, 
defined for some t0 > 0. Then we can take any horizontal lift g : (t0 − ε, t0 + ε) → G of 
h : (t0 − ε, t0 + ε) → H. Then we can write:

g(t) = g(t)k(t), t ∈ (t0 − ε, t0),

where k : (t0 − ε, t0) → K is a horizontal lift of s ◦ h : (t0 − ε, t0) → M . Since EK ⊂
TK is complete, the path k : (t0 − ε, t0) → K extends to a (unique) horizontal lift of 
s ◦h : [0, 1] → M on the whole interval [0, 1]. But then we obtain an horizontal extension 
g : [0, t0 + ε) → G by setting g(t) := g(t)k(t)−1, for t ∈ (t0 − ε, t0 + ε). We conclude that 
g(t) extends to whole interval [0, 1]. !

To complete the proof of Theorem 2.15 we will show the following:

Proposition 2.18. Let p : K → M be a bundle of Lie groups. The following are equivalent:

(a) K admits a complete multiplicative Ehresmann connection;
(b) p : K → M is a locally trivial bundle of groups.

Moreover, in this case any multiplicative Ehresmann on K is complete.

Proof. Suppose a multiplicative Ehresmann connection exists which is complete. Then 
if we fix x0 ∈ M and take a ball Bε(x0) inside some chart, we define:

φ : Bε(x0) ×Kx0 → K, (x, k) *→ γ̃k
x(1),

where γ̃k
x : [0, 1] → K denotes the horizontal lift through k of the line segment γx :

[0, 1] → Bε(x0) joining x0 to x. Since the Ehresmann connection is multiplicative, for 
each x ∈ Bε(x0) the map k *→ φ(x, k) is a group isomorphism, so φ defines a local 
trivialization around x0.
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For the converse, assume that K is locally trivial, and fix an open cover {Ui} over 
which K trivializes. On each Ui consider the trivial multiplicative Ehresmann connection 
(see the example from Subsection 3.2) with corresponding multiplicative connection 1-
form αi ∈ Ω1

M(K|Ui ; k). Then choosing a partition of unity {χi} subordinate to this cover, 
we obtain a multiplicative connection 1-form

α =
∑

i

χiαi ∈ Ω1
M(K; k).

Next, we show that any multiplicative Ehresmann connection restricted to the con-
nected component of the identity, denoted K0, is complete. This will not use that K is 
locally trivial. Let γ : [0, 1] → M be a path. The lift at 1γ(0) is defined as 1γ(t) for all 
t ∈ [0, 1]. Therefore there is some neighborhood U ∈ K0

γ(0) such that for any g ∈ U the 
horizontal lift γ̃g is defined on [0, 1]. By a well-known result in Lie theory, we have:

K0
γ(0) =

⋃

n≥1
Un.

Hence, given any g ∈ K0
γ(0) we can factor it as a product:

g = g1 · · · gN , gi ∈ U.

Then the horizontal lift of γ through g is defined on [0, 1] and is given by:

γ̃g(t) := γ̃g1(t) · · · γ̃gN (t),

(see item (ii) in the proof of Proposition 2.17). This proves the claim for K0.
For the general case, since K is locally trivial bundle of Lie groups, it follows that 

K/K0 → M is a covering map. Hence any path γ : [0, 1] → M has a complete lift 
γ̃[g] : [0, 1] → K/K0, for any initial value [g] ∈ K/K0|γ(0). Next, we apply Proposition 2.17
to the groupoid homomorphism:

Φ : K → K/K0,

with kernel K0. Then we know that γ̃[g] lifts to a horizontal path γ̃g : [0, 1] → K, with 
any starting condition g ∈ Kγ(0). This proves completeness.

Note that the specific form of the Ehresmann connection did not play a role, and 
therefore we obtain the last claim of the statement. !

From the proof, we deduce:

Corollary 2.19. A bundle of connected Lie groups is locally trivial if and only if it admits 
a multiplicative Ehresmann connection. Any such connection is complete.
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Note also that there are bundles of groups which are not locally trivial and admit 
multiplicative Ehresmann connections (necessarily non-complete). For example, bundles 
of discrete groups admit unique multiplicative Ehresmann connections.

Remark 2.20. In [25, Prop 4.4] the authors show that connections for a Lie groupoid 
extension are always complete. This also follows from our results. Indeed, the proof of 
our Proposition 2.17 shows that a multiplicative connection on a bundle of Lie groups 
which is a trivial fibration must be complete: for completeness all that is used in the 
proof is that K/K0 → M is a covering map, and this follows if K → M is a locally trivial 
fibration.

2.5. Curvature

In this section we fix a partially split bundle of ideals k for G with a multiplicative 
Ehresmann connection E ⊂ TG. We denote by h : TG → E the horizontal projection 
relative the decomposition

TG = K ⊕E.

We denote by ∇ := ∇E the induced linear connection on the bundle k → M given by 
Corollary 2.11, and by ∇s := s∗∇ the induced connection on s∗k = G ×M k → G. This 
allows us to differentiate forms in G with coefficients in k (see Section A.3). We introduce 
the exterior covariant derivative of E as the operator D : Ωk(G, k) → Ωk+1(G, k) given 
by

(Dω)(X1, . . . , Xk+1) := (d∇ ω)(h(X1), . . . , h(Xk+1)).

Definition 2.21. The curvature of the multiplicative Ehresmann connection E is the 2-
form:

Ω := Dα ∈ Ω2(G, k),

where α ∈ Ω1
M(G, k) is the multiplicative connection 1-form of E.

The next properties of the curvature are reminiscent of properties of principal con-
nections. In fact, as we will see in Subsection 3.4, principal connections can be seen as 
examples of multiplicative Ehresmann connections.

Proposition 2.22. The curvature of a multiplicative Ehresmann connection E ⊂ TG is a 
multiplicative form Ω ∈ Ω2

M(G, k), which for horizontal vector fields X, Y ∈ Γ(E) is given 
by:

dLg · Ω(X,Y )g =
(
h([X,Y ]) − [X,Y ]

)
g
. (2.5)
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In particular, if k is induced by a Lie groupoid submersion Φ : G → H, and Ũ , Ṽ ∈ X(G)
are the horizontal lifts of U, V ∈ X(H), then

dLg · Ω(Ũ , Ṽ )g =
(
[̃U, V ] − [Ũ , Ṽ ]

)
g
.

Corollary 2.23. A multiplicative Ehresmann connection is involutive if and only if its 
curvature 2-form vanishes identically.

Proof. Let ∇s be the pullback of the connection ∇ to s∗k. The multiplicative connection 
1-form α vanishes on horizontal vectors. Hence, by applying the definition of d∇, we find 
for any horizontal vector fields X, Y ∈ Γ(E) ⊂ X(G):

Ω(X,Y ) = d∇ α(X,Y )
= ∇s

X(α(Y )) −∇s
Y (α(X)) − α([X,Y ])

= α(h([X,Y ]) − [X,Y ]).

Since h([X, Y ]) − [X, Y ] ∈ K, the definition of α implies (2.5).
Let Ω ∈ Ω2(G, K) be the K-valued 2-form on G defined by

Ω(X,Y )g := dLg · Ω(X,Y )g.

By the first part, if X, Y ∈ X(G) are horizontal vector fields, we have:

Ω(X,Y ) = h([X,Y ]) − [X,Y ]. (2.6)

On the other hand, the multiplicativity of Ω is equivalent to:

Ω(dm(v1, v2),dm(w1, w2)) = dRg2 · Ω(v1, w1) + dLg1 · Ω(v2, w2)
= dm(Ω(v1, w1),Ω(v2, w2)), (2.7)

for any pair of composable arrows (g1, g2) ∈ G(2) and any two pairs of composable 
tangent vectors (v1, v2), (w1, w2) ∈ T(g1,g2)G(2). Decomposing each tangent vector into 
horizontal and vertical component, and using the fact that Ω(v, w) vanishes if either v or 
w is vertical, we see that (2.7) holds if and only if holds for horizontal tangent vectors.

Now observe that, since multiplication in a groupoid is a submersion, given any 
composable tangent vectors (v, w) ∈ T(g1,g2)G(2), we can find (local) vector fields 
V, W, Vi, Wi ∈ X(G) such that

V = m∗(V1, V2), W = m∗(W1,W2),
(v1, v2) = (V1, V2)|(g1,g2), (w1, w2) = (W1,W2)|(g1,g2).

Moreover, h : TG → E is a groupoid morphism, so it follows that:
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h(V ) = m∗(h(V1), h(V2)), h(W ) = m∗(h(W1), h(W2)).

Hence, to prove the multiplicativity property (2.7), it is enough to prove that for any 
horizontal (local) vector fields V, W, Vi, Wi ∈ X(G) such that V = m∗(V1, V2) and W =
m∗(W1, W2) one must have:

Ω(m∗(V1, V2),m∗(W1,W2)) = m∗(Ω(V1,W1),Ω(V2,W2)).

Since all vector fields are horizontal we can use (2.6), and we find:

Ω(m∗(V1, V2),m∗(W1,W2)) =
=h([m∗(V1, V2),m∗(W1,W2)]) − [m∗(V1, V2),m∗(W1,W2)]
=h(m∗([(V1, V2), (W1,W2)])) −m∗([(V1, V2), (W1,W2)])
=m∗(h([V1,W1]), h([V2,W2])) −m∗([V1,W1], [V2,W2])
=m∗(Ω(V1,W1),Ω(V2,W2)),

as desired. !

To list further properties of the curvature, given k-valued forms β ∈ Ωk(G, k) and 
γ ∈ Ωl(G, k) we will denote by [β, γ]k the k-valued form of degree k + l given by:

[β, γ]k(X1, . . . , Xk+l) =
∑

σ∈Sk+l

(−1)|σ|[β(Xσ(1), . . . , Xσ(k)), γ(Xσ(k+1), . . . , Xσ(k+l))]k.

We have the following suggestive result:

Proposition 2.24. The curvature Ω of a multiplicative Ehresmann connection with mul-
tiplicative connection 1-form α satisfies:

(i) Structure equation: Ω = d∇ α + 1
2 [α, α]k;

(ii) Bianchi’s identity: D Ω = 0.

Proof. To prove (i), observe that from the definitions:

(
d∇ α + 1

2 [α,α]k
)
(X,Y ) = ∇s

Xα(Y ) −∇s
Y α(X) − α([X,Y ]) + [α(X),α(Y )]k.

We consider various cases:
• X = ξL and Y = ηL, ξ, η ∈ Γ(k), are vertical and left invariant: then Ω(X, Y ) = 0. 

On the other hand, ξ = α(ξL)|M , η = α(ηL)|M and:

α(ξL) = s∗ξ, α(ηL) = s∗η, s∗ξ
L = s∗η

L = 0.
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Hence, ∇s
Xα(Y ) = ∇s

Y α(X) = 0, and [X, Y ] = [ξ, η]L, so

α([X,Y ]) = s∗[ξ, η]k = [α(X),α(Y )]k.

Hence:
(
d∇ α + 1

2 [α,α]k
)
(X,Y ) = −α([X,Y ]) + α([X,Y ]) = 0 = Ω(X,Y ).

• X and Y horizontal: then α(X) = α(Y ) = 0 and we find:
(
d∇ α + 1

2 [α,α]k
)
(X,Y ) = −α([Y,X]) = Ω(X,Y ),

where the last identity follows from the previous proposition.
• X = ξL, ξ ∈ Γ(k), vertical and left invariant, and Y horizontal and s-projectable 

to U = s∗(Y ) ∈ X(M): Then Ω(X, Y ) = 0 and α(Y ) = 0. We claim that the following 
relation holds:

∇s
Y α(X) = α([Y,X]), (2.8)

which implies (i) in this case:
(
d∇ α + 1

2 [α,α]k
)
(X,Y ) = −α([Y,X]) + α([X,Y ]) = 0 = Ω(X,Y ).

To prove (2.8), we calculate Lie bracket using the commutator of the flows:

[X,Y ]g = d
d ε

∣∣∣
ε=0

d
d t

∣∣∣
t=0

ct,ε(g),

where:

ct,ε(g) := φ−ε
ξL ◦ φ−t

Y ◦ φε
ξL ◦ φt

Y (g) = φ−t
Y

(
φt
Y (g) · exp(εξ|φt

U (x))
)
· exp(−εξ|x),

with x = s(g) and exp : k → G the exponential map of the bundle of Lie algebras k. Note 
that in the non-Hausdorff case, the flows might not be unique - however, they do exist 
in local charts, and this suffices to prove (2.8). We find first:

d
d t

∣∣∣
t=0

ct,ε(g) = dRk−1
ε

(
− Y |g·kε + dm(Y |g,

d
d t

∣∣∣
t=0

exp(εξ|φt
U (x)))

)
∈ TgG,

where kε := exp(εξ|x) and Rk denotes right translation by k. Using that α is multiplica-
tive and vanishes on E, we then have:

α
( d

d t

∣∣∣
t=0

ct,ε(g)
)

= Adkε ◦α
(

dm
(
Y |g,

d
d t

∣∣∣
t=0

exp(εξ|φt
U (x))

))

= Adkε ◦α
( d

d t

∣∣∣
t=0

exp(εξ|φt
U (x))

)
.
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The exponential map factors as exp = i ◦ expk, where expk : k → G(k) is the exponential 
map of the bundle of 1-connected Lie groups G(k) integrating k, and i : G(k) ↪→ G
the induced immersion. By Corollary 2.11, the linear connection ∇ on k is obtained by 
differentiating the Ehresmann connection d i−1(E) ⊂ TG(k) and, by Proposition 2.10, 
expk : k → G(k) is connection preserving around the zero-section. So we have the following 
decomposition into horizontal and vertical component:

d
d t

∣∣∣
t=0

exp
(
εξ|φt

U (x)
)

= Ũkε ⊕
d
d t

∣∣∣
t=0

exp
(
ε(ξ + t∇Uξ)|x

)
∈ Ekε ⊕Kkε ,

for some Ũkε ∈ Ekε that projects to U |x = d s(Y |g). Therefore, we have that:

α
( d

d t

∣∣∣
t=0

ct,ε(g)
)

= d
d t

∣∣∣
t=0

exp
(
ε(ξ + t∇Uξ)|x

)
exp

(
− εξ|x

)
∈ kx,

and so we conclude that:

α([X,Y ]g) = α
( d

d ε

∣∣∣
ε=0

d
d t

∣∣∣
t=0

ct,ε(g)
∣∣∣
t=ε=0

)
= (∇Uξ)

∣∣
x
.

But then:
(
∇s

Y α(X)
)∣∣

g
= s∗(∇s∗(Y )ξ)|g = ∇Uξ|x = α([Y,X]|g),

so we obtained (2.8).
Since the vectors fields of the types considered in the cases above span all tangent 

vectors, item (i) is proven.
To prove (ii), note that DΩ(X, Y, Z) vanishes if one of the vectors is vertical. So we 

can assume that X, Y, Z ∈ X(G) are horizontal vector fields, and we find:

D Ω(X,Y, Z) = d∇ Ω(X,Y, Z)
= (d∇)2α(X,Y, Z) + [d∇ α,α]k(X,Y, Z)
= R∇(X,Y )α(Z) + R∇(Z,X)α(Y ) + R∇(Y,Z)α(X) = 0,

since α(X) = α(Y ) = α(Z) = 0. !

Remark 2.25. For connections on a Lie groupoid extension Φ : G → H the authors of 
[25] also introduce the curvature 2-form and prove analogues of the structure equations 
and Bianchi identity. See [25, Section 4.6].

Consider now a surjective, submersive, Lie groupoid morphism Φ : G → H. Given a 
multiplicative Ehresmann connection E for Φ we have the induced connection EK on the 
kernel p : K → M and the linear connection ∇ := ∇E on k = ker d p|M . The curvature 
of EK is the multiplicative 2-form i∗Ω, where i : K → G is the inclusion and Ω is the 
curvature of E. By Proposition 2.22, this form is multiplicative.



R. Loja Fernandes, I. Mărcut, / Advances in Mathematics 427 (2023) 109124 21

Proposition 2.26. The IM 2-form associated with i∗Ω ∈ Ω2
M(K, k) is given by (R∇, 0) ∈

Ω2
IM(k, k). In particular, if EK is involutive then R∇ = 0, and the converse holds if K

has connected fibers.

Proof. Denote the horizontal lift of a vector field X ∈ X(M) to K by X̃ ∈ Γ(EK). Then 
Proposition 2.22, implies that

(i∗Ω)(X̃, Ỹ )k = dLk−1
(
[̃X,Y ] − [X̃, Ỹ ]

)
∈ kp(k).

To find the IM form corresponding to i∗Ω we apply (A.5) and (A.6). For the symbol we 
obtain, for ξ ∈ Γ(k),

l(ξ) = (iξLi∗Ω)|TM = 0,

since ξL ∈ X(K) is a vertical vector field. On the other hand, the flow of ξL is given by 
φt
ξL(k) = k exp(tξ), so for X, Y ∈ X(M) we find

(i∗Ω)(dφt
αL(X),dφt

αL(Y )) = (i∗Ω)(dRexp(tξ)(X),dRexp(tξ)(Y ))

= (i∗Ω)(h(dRexp(tξ)(X)), h(dRexp(tξ)(Y )))

= (i∗Ω)(X̃, Ỹ )exp(tξ).

Then (A.6) reduces to:

L(ξ)(X,Y ) = d
d t

∣∣∣
t=0

dRexp(−tξ)
(
[̃X,Y ] − [X̃, Ỹ ]

)
exp(tξ)

.

The exponential exp : k → K maps the ∇-horizontal lift X ∈ X(k) to the EK-horizontal 
lift X̃ ∈ X(K) (see Proposition 2.10). It follows then that:

L(ξ)(X,Y ) = d
d t

∣∣∣
t=0

(
[X,Y ] − [X,Y ]

)
tξ

= R∇(X,Y )(ξ).

The multiplicative 2-form i∗(Ω) vanishes on the bundle K0 of connected components of 
the identities if and only if the corresponding IM 2-form (R∇, 0) vanishes. This implies 
the last part of the statement. !

2.6. Flat multiplicative connections

Given a multiplicative Ehresmann connections E for a morphism Φ : G → H, there 
are various levels of flatness one can require.

We start by looking at the case where the induced Ehresmann connection EK is 
involutive, and hence, by Proposition 2.26, the linear connection ∇ on k is flat.
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Definition 2.27. A multiplicative Ehresmann connection E for a groupoid morphism Φ :
G → H is called kernel flat if EK is involutive.

In order to state the basic properties of kernel flat connections, let us make the 
following general observation about Φ : G → H. The G-action on k restricts to a K-action 
on k which is just the fiberwise adjoint action. Hence, its fixed point set is a collection 
of vector subspaces of the center:

kK ⊂ z(k).

In general, this fails to be a vector subbundle. It is one if either:

(a) k is locally trivial and K has connected fibers, in which case kK = z(k), or
(b) K is locally trivial, in which case one can have kK # z(k).

The G-action preserves kK and descends to an H-action on kK. So when kK is subbundle 
we obtain a representation of H.

Lemma 2.28. If kK is a subbundle then the linear connection ∇ restricts on kK to an 
H-invariant connection.

Proof. Consider the center of the bundle of Lie groups p : K → M , denoted

Z(K) := {z ∈ K : kzk−1 = z, ∀ k ∈ p−1(p(z))},

and its connected components of the identity, denoted Z(K)◦. Under the assumption 
that kK is a subbundle of k, this is a bundle of Lie groups integrating kK

kKx = T1xZ(K)◦, (x ∈ M).

We claim that for all z ∈ Z(K)◦ we have:

EK
z ⊂ TzZ(K)◦.

This claim implies that ∇ restricts to a linear connection on kK.
To prove the claim, we consider any smooth curve zt ∈ Z(K)◦ and show that, given 

the decomposition into vertical and horizontal vectors:

ż0 = żh0 ⊕ żv0 ∈ EK
z0 ⊕Kz0 ,

we have żv0 ∈ Tz0Z(K)◦. Then żh0 ∈ Tz0Z(K)◦ and the claim follows. Let k ∈ Kp(z0) and 
kt be the parallel transport of k along the curve p(zt). Then:

zt = ktztk
−1
t .
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Differentiating both sides at t = 0 and decomposing into horizontal and vertical compo-
nents, using the multiplicativity of EK, we obtain:

żv0 = 0k · żv0 · 0k−1 ,

where multiplication and inverse are the operations in the tangent group T (Kp(z0)). 
Writing żv0 = 0z0 · w, with w ∈ kp(z0), and using that z0 ∈ Z(K), we obtain:

w = Adk(w), ∀ k ∈ K.

Hence w ∈ kK, and so żv0 ∈ Tz0Z(K)◦.
We now show that ∇ restricts on kK to a H-invariant connection. For this, it is 

enough to show that if zt ∈ Z(K)◦ is a horizontal curve and ht ∈ H is any curve with 
s(ht) = p(zt) then ht · zt is a horizontal curve. For this observe that

ht · zt = h̃t · zt,

where h̃t ∈ G is any curve with Φ(h̃t) = ht. In particular, we can take h̃t to be the 
horizontal lift of ht and multiplicativity of E gives that ht · zt is horizontal. !

Let us now assume that E is kernel flat:

Proposition 2.29. Let E be a kernel flat multiplicative Ehresmann connection for a mor-
phism Φ : G → H. Then:

(i) The curvature Ω takes values in kK;
(ii) If kK is a vector bundle, there is a multiplicative form Ω ∈ Ω2

M(H, kK) such that:

Ω = Φ∗Ω,

and which is d∇-closed.

Proof. Let g1, g2 ∈ G such that Φ(g1) = h = Φ(g2). Let X, Y ∈ ThH, and consider 
their horizontal lifts X̃gi , Ỹgi ∈ TgiG, for i = 1, 2. First, write g2 = g1k, for k ∈ K. Let 
Xk, Y k ∈ TkK be the horizontal lift of dh sX and dh sY with respect to the connection 
EK. Since E is a subgroupoid of TG, we have that:

dm(X̃g1 , Xk) = X̃g2 , dm(Ỹg1 , Y k) = Ỹg2 .

Since Ω is multiplicative, this yields:

Ω(X̃g2 , Ỹg2) = k−1 · Ω(X̃g1 , Ỹg1) + Ω(Xk, Y k) = k−1 · Ω(X̃g1 , Ỹg1),
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where in the last equation we used that EK is flat, so i∗Ω = 0. Next, write g2 = lg1, with 
l ∈ K and let Xl, Y l ∈ TlK be the horizontal lift of dh t(X) and dh t(Y ) with respect to 
the connection EK. Then we also have that:

dm(X l, X̃g1) = X̃g2 , dm(Y l, Ỹg1) = Ỹg2 ,

and so, since Ω is multiplicative:

Ω(X̃g2 , Ỹg2) = g−1
1 · Ω(X l, Y l) + Ω(X̃g1 , Ỹg1) = Ω(X̃g1 , Ỹg1).

Since Ω vanishes on vertical vectors, the obtained equations show that Ω takes values in 
kK. They also show that we obtain a well-defined kK-valued 2-form on H, by setting for 
X, Y ∈ ThH:

Ω(X,Y ) = Ω(X̃g, Ỹg) (g ∈ Φ−1(h)).

When kK is a vector bundle the G-action factors through the H-action, and the multi-
plicativity of Ω follows from the multiplicativity of Ω.

The fact that Ω is d∇-closed follows from the Bianchi identity for Ω. !

Remark 2.30. Kernel flat connections play an important role in the theory of gerbes 
developed in [25]. There, for a groupoid extension, the authors obtain a version of the 
previous proposition (see [25, Theorem 6.38]).

We now describe another type of flatness. Observe that, if Φ : G → H is a surjective, 
submersive, morphism covering the identity, for each x ∈ M the restriction:

Φx := Φ|s−1
G (x) : s−1

G (x) → s−1
H (x)

is a principal Kx-bundle. Given a multiplicative Ehresmann connection E for a Φ : G → H
one obtains an Ehresmann connection on the restriction:

ker dg sG = Kg ⊕ Ex
g , Ex

g := ker dg sG ∩ E (g ∈ s−1
G (x)).

Lemma 2.31. For each x ∈ M , the restricted connection Ex is a principal bundle con-
nection.

Proof. Using the multiplicativity of E one finds that if k ∈ Kx and v ∈ Ex
g , for g ∈

s−1
G (x), then:

v · k = d(g,k) m(v, 0k) ∈ Ex
gk.

Hence, Ex is Kx-invariant. !
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If α ∈ Ω1
M(G, k) and Ω ∈ Ω2

M(G, k) are the multiplicative connection 1-form and 
curvature form of E then the principal bundle connection Ex has connection 1-form 
αx ∈ Ω1(s−1

G (x), kx) and curvature form Ωx ∈ Ω2(s−1
G (x), kx) the restrictions:

αx = i∗xα, Ωx = i∗xΩ,

where ix : s−1
G (x) ↪→ G is the inclusion.

Definition 2.32. A multiplicative Ehresmann connection E for a groupoid morphism Φ :
G → H is called leafwise flat if Ωx = 0 for every x ∈ M .

We have the following characterizations:

Lemma 2.33. Given a multiplicative Ehresmann connection E for a groupoid morphism 
Φ : G → H the following are equivalent:

(i) E is leafwise flat;
(ii) ker d s ∩E ⊂ TG is involutive;
(iii) B′ := (ker d s ∩E)|M ⊂ A is a Lie subalgebroid.

Proof. Clearly, (i) and (ii) are equivalent. Equivalence between (ii) and (iii) uses that 
ker d s ∩ E is spanned by right invariant extensions of elements in B′. !

Remark 2.34. The pair (G, E) is an example of a Pfaffian groupoid (see [31]).

The lemma shows that if Φ : G → H admits a leafwise flat multiplicative Ehresmann 
connection, then the induced Lie algebroid map φ : A → B admits a Lie algebroid 
splitting with image B′. We briefly recall the groupoid version of this condition.

Let H ⇒ M be a Lie groupoid which acts on a bundle of Lie groups p : K → M

preserving the group structure on the fibers. The semi-direct product is the Lie groupoid 
G := H×M K ⇒ M with multiplication is given by:

(h1, k1)(h2, k2) = (h1h2, (h−1
2 · k1)k2).

This fits into a short exact sequence of groupoids:

K H×M K Hpr1

which is canonically split by the groupoid morphism:

σ : H −→ H×M K, h *→ (h, 1s(h)).

Conversely, given a surjective, submersive, Lie groupoid map Φ : G → H covering the 
identity, which admits a Lie groupoid splitting:
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K G HΦ

σ

we obtain an action of H ⇒ M on the bundle of Lie groups p : K → M :

h · k = σ(h)kσ(h)−1,

preserving the group structure on the fibers, and a Lie groupoid isomorphism:

H×M K ≃ G, (h, k) *→ σ(h)k.

Given a leafwise flat multiplicative Ehresmann E for a groupoid map Φ : G → H, 
the induced Lie algebroid splitting integrates to a groupoid morphism on a possibly 
different Lie groupoid with the same Lie algebroid as H. To explain this, let H̃ ⇒ M be 
the universal covering groupoid of H0 ⇒ M , the connected component of the identity 
of H ⇒ M . Recall that it consists of s-leafwise path-homotopy classes of paths in H
starting at the identity:

H̃ =
{
[γ] | γ : [0, 1] → H, s(γ(t)) = x, γ(0) = 1x, x ∈ M

}
.

Recall that principal bundle connections are always complete, so the horizontal lifts 
of s-leafwise paths are always defined, and we can set:

Definition 2.35. Given a leafwise flat, multiplicative, Ehresmann connection E for Φ :
G → H the holonomy of E is the map:

Hol : H̃ → G, [γ] *→ γ̃(1),

where γ̃ : [0, 1] → G is the horizontal lift of γ starting at 1s(γ(0)).

Proposition 2.36. The holonomy of a leafwise flat, multiplicative Ehresmann connection 
E for Φ : G → H is a Lie groupoid morphism making the following diagram commute:

H̃
Hol

G
Φ

H

Proof. The smoothness of Hol follows from smoothness of flows of horizontal vector 
fields. Clearly, from the definition Hol(1x) = 1x. The fact that Φ preserves multiplication 
follows from the fact that products of horizontal lifts are horizontal and the definition of 
multiplication on H̃. !
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Notice that the kernel of Hol : H̃ → G is contained in the kernel of the covering map 
H̃ → H. We will say that a leafwise flat, multiplicative Ehresmann connection E for 
Φ : G → H has trivial holonomy if the two kernels coincide. Then we find:

Corollary 2.37. Let Φ : G → H be a morphism covering the identity and assume H
is source connected. If Φ : G → H admits a leafwise flat, multiplicative, Ehresmann 
connection with trivial holonomy then it admits a Lie groupoid splitting.

Proof. If the holonomy is trivial, then the holonomy morphism Hol : H̃ → G descends 
to a groupoid splitting σ : H → G. !

We will see later (Corollary 4.3) that when G is proper and kerΦ is abelian, then the 
converse holds: if Φ : G → H admits a Lie groupoid splitting then it admits a leafwise 
flat, multiplicative Ehresmann connection with trivial holonomy.

Next, we look for the conditions which ensure that a semi-direct product admits a 
leafwise flat, multiplicative Ehresmann connection. For that, we introduce an extension 
of Definition A.6 to non-linear connections.

Definition 2.38. Let H ⇒ M be a Lie groupoid which acts on a submersion p : N → M . 
An Ehresmann connection E on p : N → M is called H-invariant if the diffeomorphism:

H ×s p N
Ψ H ×t p N

H

(g, p) *→ (g, g · p),

induces an isomorphism dΨ : (d s)∗E ∼−→ (d t)∗E.

Note that in the distributions (d s)∗E and (d t)∗E appearing in this definition are 
Ehresmann connections for the projections in the diagram. We now have:

Proposition 2.39. Let Φ : G → H be a surjective, submersive groupoid map, and let 
K := kerΦ. The following are equivalent:

(i) There is a multiplicative Ehresmann connection E on G and Φ admits a groupoid 
splitting σ : H → G which is horizontal with respect to E.

(ii) G is isomorphic to a semidirect product G ≃ H ×M K, where K admits an H-
invariant multiplicative connection.

If these hold, then Φ : G → H admits a leafwise flat multiplicative Ehresmann connection 
with trivial holonomy.

Proof. We first prove (i) ⇒ (ii). For this, we use σ to identify G ≃ H×MK. Then any path 
of the form t *→ (ht, 1s(ht)) is E-horizontal. We claim that the multiplicative connection 
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EK = TK ∩ E on K is H-invariant. To see this let h : [0, 1] → H be any path, and let 
k : [0, 1] → K be an EK-horizontal path covering t *→ s(ht). Then t *→ (ht, kt) ∈ H×M K
is horizontal for the connection (d s)∗EK. Moreover, all (d s)∗EK-horizontal paths are of 
this form. It suffices to show that the pair t *→ (ht, ht · kt) is horizontal for (d t)∗EK, or 
equivalently, that t *→ ht ·kt is horizontal for EK. This follows because t *→ (ht, 1s(ht)) and 
t *→ (1s(ht), kt) are E-horizontal, E is multiplicative, and so also the following product 
is E-horizontal:

t *→ (ht, 1s(ht)) · (1s(ht), kt) · (ht, 1s(ht))−1 = (1t(ht), ht · kt).

Conversely, to prove that (ii) ⇒ (i). If EK is an H-invariant multiplicative Ehresmann 
connection on p : K → M , then E = (d s)∗EK is an Ehresmann connection on H×M K
for which a path (ht, kt) ∈ H ×M K is E-horizontal if and only if kt is EK-horizontal. 
In particular, the splitting h → (h, 1s(h)) is horizontal. To show that E is multiplicative 
it suffices to show that for any pair of paths (ht, kt) and (h̃t, ̃kt) in H ×M K that are 
pointwise composable and E-horizontal, their product is also E-horizontal. But EK is 
H-invariant, so we have that h̃−1

t · kt is EK-horizontal. Since EK is multiplicative, also 
(h̃−1

t · kt) ̃kt is EK-horizontal, or equivalently, (ht, kt) · (h̃t, ̃kt) is E-horizontal. Since
For the last part of the proposition, notice that the connection E = (d s)∗EK is 

leafwise flat with trivial holonomy. !

For semi-direct products with abelian kernel we obtain:

Corollary 2.40. Let H ⇒ M be a Lie groupoid which acts on a bundle of abelian groups 
p : A → M preserving addition on the fibers. Then pr1 : H ×M A → H admits a 
multiplicative Ehresmann connection if and only if p : A → M admits an H-invariant 
multiplicative connection.

Proof. Assume that pr1 : H ×M A → H admits a multiplicative Ehresmann connection 
with connection 1-form α. We can ensure that σ∗α = 0, by replacing α by α−pr∗1 σ∗(α). 
This form is multiplicative because A being abelian implies that the action of H×M A

on A is the pullback of the action of H on A. The corollary now follows from the 
proposition. !

For semi-direct products which have linear kernel, we obtain the following:

Corollary 2.41. Given a Lie groupoid H ⇒ M and a representation of H on a vector 
bundle p : V → M , the projection pr1 : H×M V → H admits a multiplicative Ehresmann 
connection if and only if V admits an H-invariant connection ∇.

Proof. Note that an Ehresmann connection EV ⊂ TV is multiplicative if and only if it 
defines a linear connection ∇. Also note that, for linear connections on V , the two notions 
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of H-invariance from Definitions 2.38 and A.6 coincide. Hence, the corollary follows from 
the previous one. !

Finally, we discuss the situation where a multiplicative Ehresmann connection E for 
a morphism Φ : G → H is involutive, in which case we say that E is totally flat. The 
following proposition shows that when the connection is complete then, up to a cover, G
is a trivial product and Φ is the projection:

Proposition 2.42. Let Φ : G → H be a morphism which admits a complete, totally flat, 
multiplicative, Ehresmann connection, and assume that G is target connected. Then there 
is a covering space of the base p : M̃ → M and a commutative diagram of Lie groupoid 
morphisms

p∗H̃×G
pr

p∗H̃

G
Φ

H

where G ≃ Kx is a Lie group, the vertical maps are surjective local diffeomorphisms 
covering p : M̃ → M , and the pullback of the Ehresmann connection under the morphism 
on the left is T (p∗H̃) × 0G.

Proof. By completeness, the parallel transport exists along a path h : [0, 1] → H:

τh : Φ−1(h(0)) ∼−→ Φ−1(h(1)).

We note the following equalities, for any h : [0, 1] → H, with h(0) = 1x and s ◦ h = x:

τh(k) = τh(1x)k = τ1t◦h(k)τh(1x), (k ∈ Kx) (2.9)

These follow because E is multiplicative, so all the paths above are E-horizontal, they 
cover h and start at k.

Since E is leafwise flat, the holonomy map of Definition 2.35 is a groupoid map:

Hol : H̃ → G, [h] *→ τh(1x), x = s([h])

where H̃ is the target 1-connected cover of H - which has connected t-fibers, because G
has. We have an induced action of H̃ on K by group automorphisms, and so a surjective 
groupoid morphism

H̃×M K → G, ([h], k) *→ τh(1x)k.

From (2.9) we deduce that the action of H̃ on K is given by:
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[h] · k := τh(1x)kτh(1x)−1 = τ1t◦h(k), k ∈ Kx, x = s([h]).

In other words, [h] acts via the parallel transport on K along its base path [t ◦ h] with 
respect to the flat connection EK. Consider the holonomy cover p : M̃ → M for EK, 
i.e., the smallest cover where EK becomes the trivial connection. Upon pullback to M̃ , 
p∗K = M̃ ×G, where G ≃ Kx, and the action of p∗H̃ on p∗K becomes the trivial action; 
hence we have a groupoid isomorphism: p∗(H̃ ×M K) ≃ p∗H̃ × G. By comparing the 
parallel transport maps, one obtains the claim about the pullback of E to p∗H̃×G. !

3. Examples and applications (groupoids)

We discuss the partially split condition for several classes of groupoids with bundles 
of ideals.

3.1. Lie groups

Let G be a connected Lie group with Lie algebra g. We claim that an ideal k ⊂ g is 
partially split for G if and only if we have a decomposition g = k ⊕ h, for some ideal 
h ⊂ g. To see this, using left translations, we identify TG with the semi-direct:

TG ≃ G! g,

where G acts on g via the adjoint action. Under this isomorphism, K ⊂ TG is identified 
with the subgroup

K ≃ G! k.

Moreover, one checks easily that a distribution E ⊂ TG is a subgroup if and only if it 
takes the form:

E ≃ G! h,

where h ⊂ g is an ideal. Hence, the claim follows.
When k integrates to a closed subgroup of G, we have a surjective Lie group morphism 

Φ : G → H inducing k. The distributions E ⊂ TG, induced by ideals h ⊂ g as above, are 
then multiplicative Ehresmann connections for Φ, which are complete by Theorem 2.15.

3.2. Products

Let H ⇒ M be a Lie groupoid with Lie algebroid B ⇒ M and G be a Lie group with 
Lie algebra g. The product

G := H×G ⇒ M
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comes with the bundle of ideals k := 0M × g ⊂ B × g, which corresponds to the Lie 
groupoid morphism pr1 : G → H. This is partially split with complete, multiplicative 
Ehresmann connection E = TH×G ⊂ T (H×G).

3.3. Bundle of groups

As we already pointed out before, a bundle of groups p : G → M can be thought of as 
a groupoid submersion onto the identity groupoid M ⇒ M . The corresponding bundle of 
ideals is its Lie algebroid k = A. By Corollary 2.12, if k is partially split for G, then k must 
be locally trivial. The converse, in general, may fail, but it holds if G is assumed to be 
a bundle of simply connected Lie groups. This follows from Corollary 2.19, since in this 
case G is locally trivial (it follows also from the global to infinitesimal correspondence 
given in Theorem 5.6).

A simple example of a bundle of simply connected groups that is not locally trivial is 
G := R ×R2 → R, with multiplication given at x ∈ R by:

(u1, v1) · (u2, v2) = (u1 + u2, v1 + exu1v2).

Therefore, this does not admit multiplicative Ehresmann connections.
We note that, in the case of a vector bundle G = V → M , viewed as a bundle of Lie 

groups, a multiplicative Ehresmann connection is the same as a linear connection on V .

3.4. Transitive groupoids

For a transitive Lie groupoid G ⇒ M the bundle of isotropy Lie algebras k := ker ρ is 
a bundle of ideals, with

K = ker d s ∩ ker d t ⊂ TG.

This is the bundle of ideals determined by the groupoid submersion

Φ := (t, s) : G → M ×M

and it is always partially split. Indeed, recall that G can be identified with a gauge 
groupoid

G(P ) := P ×G P ⇒ M,

where, for a fixed x ∈ M , G denotes the isotropy group Gx, and P := s−1(x) is a principal 
G-bundle with projection t : P → M . Under this identification, the bundle k coincides 
with the adjoint bundle:

k = P [g] := P ×G g.
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If we choose a principal bundle connection η ∈ Ω1(P ; g), the 1-form pr∗2 η − pr∗1 η ∈
Ω1(P × P ; g) descends to a 1-form α ∈ Ω1(G(P ); P [g]):

q∗α = pr∗2 η − pr∗1 η,

where q : P ×P → G(P ) is the projection. This gives a multiplicative connection 1-form 
α ∈ Ω1

M(G(P ); P [g]), and so k = P [g] is partially split.
In fact, this assignment yields a 1-to-1 correspondence:

{
principal bundle

connections η ∈ Ω1(P ; g)

}
←̃→

{
multiplicative connections

α ∈ Ω1
M(G(P );P [g])

}

Since principal bundle connections are always complete, we see that any multiplicative 
Ehresmann connection for Φ := (t, s) : G → M ×M is complete. This agrees, of course, 
with Theorem 2.15 since the kernel of Φ is the locally trivial bundle of groups P [G] =
P ×G G → M (G acts by conjugation).

3.5. Principal type

Let G(P ) = P ×G P ⇒ M be the gauge groupoid of a principal G-bundle P → M , 
and H ⇒ M be any Lie groupoid. Consider the fiber product:

G := {(g, h) ∈ G(P ) ×H : sG(P )(g) = sH(h), tG(P )(g) = tH(h)} ⇒ M,

with groupoid structure such that the inclusion G ↪→ G(P ) × H is a groupoid map. 
Smoothness of G follows because the anchor map (tG(P ), sG(P )) : G(P ) → M × M is a 
surjective submersion. This also implies that the groupoid morphism:

Φ = pr2 : G → H

is a surjective submersion. This Lie groupoid map admits a multiplicative Ehresmann 
connection, constructed as follows. Let A(P ) = TP/G be the Lie algebroid of G(P ), and 
B that of H. Identifying the Lie algebroid of G with A = A(P ) ×TM B, we see that the 
bundle of ideals k corresponding to K = ker dΦ is identified with the isotropy bundle of 
A(P ) which, as we saw in the previous example, is P [g]. Also as in the previous example, 
any principal connection η ∈ Ω1

M(P ; g) gives rise to a multiplicative connection 1-form 
α ∈ Ω1(G(P ), P [g]). Using the projection pr1 : G → G(P ), which is a groupoid map, we 
obtain a multiplicative 1-form on G:

pr∗1 α ∈ Ω1
M(G, k).

We conclude that k is partially split.
The groupoids endowed with a bundle of ideals obtained via this construction will be 

called of principal type. Some of the previous examples fit into this setting:
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• When P is the trivial principal bundle, P = G ×M , one obtains the product G =
G ×H from Subsection 3.2.

• For a pair groupoid H = M × M , we obtain back the transitive Lie groupoids 
G = G(P ) with K = ker d s ∩ ker d t from Subsection 3.4.

• When H is a bundle of groups, we obtain the bundle of groups which is the fiberwise 
product G = P [G] ×M H, where P [G] = P ×G G.

The kernel of the groupoid morphism Φ = pr2 : G → H is P [G] = P×GG → M , which 
is locally trivial. Hence, by Theorem 2.15, the multiplicative Ehresmann connections for 
this class of examples are complete.

3.6. Action groupoids

Consider an action groupoid

G := G!M ⇒ M

associated with an action of a Lie group G on a manifold M . The Lie algebroid is the 
action algebroid:

A := g !M =⇒ M

associated with the infinitesimal action ρ : g → X(M). We have (v, x) ∈ ker ρx if and 
only if v lies in the isotropy Lie algebra gx of the infinitesimal action. Moreover, the 
action of an arrow (g, x) ∈ G !M on an element (v, x) ∈ ker ρx is given by:

(g, x) · (v, x) = (Adg v, gx).

It follows that a subbundle k ⊂ g !M is a bundle of ideals if and only if it satisfies:

(i) kx ⊂ ker ρx;
(ii) Adg(kx) = kgx.

The following is immediate:

Proposition 3.1. If the inclusion of a bundle of ideals k ↪→ g ×M admits a G-equivariant 
splitting l : g × M → k, then k is partially split with multiplicative connection 1-form 
α ∈ Ω1

M(G !M ; k) given by:

α(g,x)(dLg(v), w) := l(v, x).

In particular, if the action of G on M is proper, or if g admits a G-invariant inner 
product, then k is partially split.
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3.7. Non-integrable quotient

Let G be a compact semi-simple Lie group, and restrict the adjoint action of G to 
the unit sphere M ⊂ g, with respect to an invariant inner product. The action groupoid 
G := G !M ⇒ M has the bundle of ideals

k ⊂ A := g !M, k|x := Rx, x ∈ M.

By Proposition 3.1, k is partially split. However, for g ̸≃ so(3, R), the Lie algebroid 
B := A/k is not integrable. To see this, it is enough to consider the case when G is 
simply-connected. If H ⇒ M is a Lie groupoid integrating B, then we have an induced 
groupoid morphism Φ : G → H. So for each x ∈ M , we have an induced Lie group 
map between the isotropy groups Φx : Gx → Hx. The kernel of Φx is a 1-dimensional 
group whose connected component is exp(Rx) ⊂ Hx. However, for g ̸≃ so(3, R), there 
are x ∈ M for which exp(Rx) is not a closed submanifold of G. This is a contradiction.

3.8. Groupoids with bi-invariant metrics

For a general groupoid G the notion of bi-invariant metric does not make sense: for this 
we need to lift the right and left actions of G on itself to its tangent bundle. So assume 
that G ⇒ M is equipped with a Cartan connection, i.e., a multiplicative distribution 
complementary to the source fibers:

TG = ker d s ⊕H.

Then one can lift the left and right actions of G on itself to TG by setting:

λL
g : ThG → TghG, v *→ gv := d(g,h) m(w, v)

λR
h : TgG → TghG, v′ *→ v′h := d(g,h) m(v′, w′),

where w ∈ Hg and w′ ∈ Hh are the unique tangent vectors such that d s(w) = d t(v)
and d s(v′) = d t(w′). These actions extend the left and right actions of G on ker d t and 
ker d s and they are related by the groupoid inversion.

Now, given a groupoid G with a multiplicative connection H ⊂ TG, one says that a 
Riemannian metric η on G is bi-invariant if it is invariant under left translations, right 
translations and inversion (see [24]). If G admits a bi-invariant metric, then any bundle 
of ideals k is partially split. In fact, for a bi-invariant metric η the distribution orthogonal 
to K:

E := K⊥ ⊂ TG,

is a VB subgroupoid of TG, so satisfies Proposition 2.8 (i). We leave the details to the 
reader.
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Remark 3.2. An action groupoid G !M ⇒ M has an obvious multiplicative connection. 
If the action of G on M is proper, using averaging, one obtains a bi-invariant metric on 
G !M . This gives an alternative argument that if the action of G on M is proper then 
k is partially split, a fact also deduced in Proposition 3.1. We will see in Section 6.4 the 
infinitesimal analog of this result.

3.9. Over-symplectic groupoids

A closed multiplicative 2-form ω ∈ Ω2
M(G) is called an over-symplectic structure on 

the Lie groupoid G ⇒ M [8] if it satisfies:

kerω ⊂ ker d t ∩ ker d s.

It follows from this condition that rank of ω is constant, equal to 2 dimM (see [8, Propo-
sition 4.5]). Then k := kerω|M defines a bundle of ideals whose associate subgroupoid 
(2.2) is K = kerω. In this case, the existence of partial splittings plays an important 
role in the study of local models around Poisson submanifolds. For example, it implies 
that (G, ω) embeds coisotropically in some symplectic groupoid. We refer to [19] where 
this class of groupoids is discussed in detail.

4. Morita invariance and properness

In this section we prove the following fundamental result.

Theorem 4.1 (Morita invariance). Let H1 ⇒ N1 and H2 ⇒ N2 be two Lie groupoids. 
A Morita equivalence H1 ∼= H2 induces a one-to-one correspondence between bundles of 
ideals in H1 and bundles of ideals in H2, under which partially split bundles of ideals 
are sent to partially split bundles of ideals.

We start by deducing from this result the following important fact, which implies the 
theorem from the introduction.

Theorem 4.2. A bundle of ideals in a proper Lie groupoid is partially split.

Proof. Let x ∈ M and denote by O the orbit of G through x. By the slice theorem for 
proper Lie groupoids [15,35,36], there is a transversal T to O such that the restriction 
G|T ⇒ T is isomorphic to an action Lie groupoid Gx ! V ⇒ V , for some open set 
0 ∈ V ⊂ νx(O). Since G is proper, the isotropy group Gx is compact so this is a proper 
groupoid. On the other hand, G|T ⇒ T is Morita equivalent to G|U ⇒ U , where U
is the saturation of T (see, e.g., [15]). Therefore, it follows from Proposition 3.1 and 
Theorem 4.1 that k|U is a partially split bundle of ideals of G|U .

Hence, we can cover M by saturated open sets {Ui}i∈I such that, for each i ∈ I, there 
exists a multiplicative connection 1-form αUi ∈ Ω1

M(G|Ui , k). Since G is proper, there 
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exists a G-invariant partition of unity {ρi}i∈I subordinate to the cover {Ui}i∈I (see, e.g., 
[12, Proposition 8]). Then the k-valued 1-form:

α :=
∑

i∈I

(ρi ◦ s)αUi ∈ Ω1(G; k).

is multiplicative and satisfies:

α|k = Id.

Hence, α is a multiplicative connection 1-form, so k is partially split. !

The theorem also has the following consequence:

Corollary 4.3. Let Φ : G → H be a groupoid morphism with abelian kernel and assume 
that G is target-connected and proper. Then Φ : G → H admits a Lie groupoid splitting 
if and only if it admits a leafwise flat, multiplicative Ehresmann connection with trivial 
holonomy.

Proof. Corollary 2.37 gives one direction. To prove the other direction, we can assume 
that Φ = pr1 : H ×M A → H where p : A → M is an abelian bundle of Lie groups. 
Since G = H ×M A is assumed proper, Theorem 4.2 gives a multiplicative Ehresmann 
connection for pr1 : H ×M A → H, and then Corollary 2.40 shows that p : A → M

admits an H-invariant multiplicative Ehresmann connection EA. Then E = (d s)∗EA is 
a leafwise flat, multiplicative Ehresmann connection for pr1 : H×M A → H with trivial 
holonomy (see Proposition 2.39). !

4.1. Morita invariance

We now turn to the proof of Morita invariance. For the general theory of Morita 
equivalences see [16] and [29]. We take the point of view that a Morita equivalence is 
given by a Lie groupoid G and Morita maps Φ1 : G → H1 and Φ2 : G → H2 which 
are surjective submersions. This is equivalent to the bibundle definition via the following 
constructions. The base of G is a principal (H1, H2)-bibundle, and to a principal bibundle 
H1 $ M % H2 one associates the groupoid

(G ⇒ M) := (M ×N1 H1 ×N1 M ⇒ M) ≃ (M ×N2 H2 ×N2 M ⇒ M).

We will call a Morita map that is a surjective submersion a Morita fibration. Such 
maps can be characterized as follows:

Lemma 4.4. A groupoid map Φ : G → H is a Morita fibration if and only if it covers a 
surjective submersion φ : M → N and G ⇒ M is isomorphic to the pullback of H ⇒ N

along φ:
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φ∗(H) = M ×N H×N M ⇒ M

via the map:

Φ : G → φ∗(H), Φ(g) = (t(g),Φ(g), s(g)).

Given a Morita fibration Φ : G → H, covering a submersion φ : M → N , it follows 
from the properties above that its kernel:

K = {g ∈ G : Φ(g) = 1x, x ∈ N},

is a submersion groupoid: an element g ∈ K is uniquely determined by its source and 
target, and the restriction of Φ gives an isomorphism of Lie groupoids:

K ∼−→ M ×N M, g *→ (t(g), s(g)).

On submersion groupoids, multiplicative forms are multiplicatively exact:

Lemma 4.5. Let φ : M → N be a surjective submersion, and E → N be a vector bundle. 
Any multiplicative form on the submersion groupoid

α ∈ Ω•
M(M ×N M ;φ∗(E))

is multiplicatively exact, i.e., there exists θ ∈ Ω•(M ; φ∗(E)) such that α = δθ, where

δ : Ω•(M ;φ∗(E)) → Ω•
M(M ×N M ;φ∗(E))

is the simplicial differential of M ×N M with coefficients in φ∗(E) (see (A.4)).

Proof. Let U ⊂ N be an open set on which there exists a local section σ : U → M

of φ. Define θ ∈ Ω•(φ−1(U); φ∗(E)) by θ(v) := α(v, d(σ ◦ φ)(v)), for v ∈ ∧•Tφ−1(U). 
Multiplicativity of α implies that α|φ−1(U) = δθ:

α(v1, v2) = m∗(α)
(
(v1,dσ(u)), (dσ(u), v2)

)
= α(v1,dσ(u)) + α(dσ(u), v2)

= θ(v1) − θ(v2) = δθ(v1, v2),

for all v1, v2 ∈ ∧•Tφ−1(U) with dφ(v1) = u = dφ(v2).
In general, consider an open cover {Ui}i∈I of N for which local sections of φ exist. 

Then the corresponding local primitives θi ∈ Ω•(φ−1(Ui); φ∗(E)) of α can be glued, 
using a partition of unity {χi}i∈I subordinated to the cover, to a global primitive: θ :=∑

i∈I χi ◦ φ · θi. !

The following two propositions prove Theorem 4.1.
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Proposition 4.6. A Morita fibration Φ : G → H gives a 1-to-1 correspondence between 
bundles of ideals in G and bundles of ideals in H.

Proof. For each x ∈ M , Φ restricts to an isomorphism of Lie groups: Gx
∼−→ Hφ(x). So 

we can define a map of bundles of ideals:

A(H) ⊃ k *−→ Φ∗(k), where Φ∗(k)x = {v ∈ ker ρx : dx Φ(v) ∈ k|φ(x)} ⊂ A(G).

For the inverse map, given a bundle of ideals k in G, one needs to show that if y =
φ(x) = φ(x′) then d Φ(kx) = d Φ(kx′). As we observed above, there is a unique k ∈ K
such that s(k) = x and t(k) = x′, and we have:

kx′ = k · kx.

Since k belongs to the kernel, we have Φ(kgk−1) = Φ(g), and so we conclude that:

d Φ(kx′) = dΦ(k · kx) = dΦ(kx).

Therefore we get a map of bundles of ideals:

A(G) ⊃ k *−→ Φ∗(k), where Φ∗(k)φ(x) = dΦ(kx) ⊂ A(H),

which is the inverse of the map above. !

Now if α ∈ Ω1
M(H, k) is a multiplicative connection 1-form for k, then the pullback 

form:

Φ∗α ∈ Ω1
M(G,Φ∗k),

is easily seen to be a multiplicative connection 1-form for Φ∗k. This establishes one half 
of the following proposition:

Proposition 4.7. Given a Morita fibration Φ : G → H, a bundle of ideals k in H is 
partially split if and only if the bundle of ideals Φ∗k in G is partially split.

Proof. We already know that if k is a partially split ideal in H then Φ∗k is a partially 
split ideal in G.

For the converse, let k be a bundle of ideals in H so that Φ∗k is partially split. Fix 
a multiplicative connection 1-form α ∈ Ω1(G, φ∗k). We will “correct” α so that it is the 
pullback of some multiplicative 1-form in H. As we mentioned already, the kernel K of a 
Morita fibration Φ is a submersion groupoid. So by Lemma 4.5 applied to the restriction 
α|K, there is a k-valued 1-form ω ∈ Ω1(M, φ∗k) such that:

α|K = δω,
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where δ : Ω1(M, φ∗k) → Ω1
M(K, φ∗k) is the simplicial differential of K with coefficients in 

φ∗k (see (A.4)). Now consider the 1-form:

α̃ := α− δω ∈ Ω1
M(G,φ∗k),

where δ : Ω1(M, φ∗k) → Ω1
M(G, φ∗k) is the simplicial differential of G with coefficients 

in φ∗k. Then the pullback of α̃ to K vanishes. We claim that there exists a unique 
multiplicative form β ∈ Ω1

M(H, k) such that:

α̃ = Φ∗β.

For this, we use the identification G ≃ φ∗(H) from Lemma 4.4. Then we have to show 
that α̃ takes the same value on any two vectors of the form:

(Xi, Y, Zi) ∈ TpiM ×Tt(g)N TgH×Ts(g)N TqiM, i = 1, 2.

Since dφ(X1) = d t(Y ) = dφ(X2) and dφ(Z1) = d s(Y ) = dφ(Z2), we have that:

(X1, Y, Z1) = (X1,dφ(X1), X2) ∗ (X2, Y, Z2) ∗ (Z2,dφ(Z1), Z1),

where ∗ = dm is the multiplication in Tφ∗(H). Using that the first and the last element 
on the right-hand side are in TK, and that α̃ is multiplicative, we obtain the claimed 
equality:

α̃(X1, Y, Z1) = α̃(X2, Y, Z2) ∈ ks(g).

Finally, α̃|Φ∗k = α|Φ∗k = Id implies that β|k = Id. Hence, k is partially split. !

4.2. Bundle gerbes and connections

As an application of the results discussed so far, we discuss now how one can re-
cover the curving and 3-curvature for bundle gerbes out of a multiplicative Ehresmann 
connection. Our aim is not to discuss the general theory of gerbes and multiplicative 
connections, for which we refer the reader to [25], but rather to give a simple illustration 
of our theory. For that reason we consider only S1-gerbes over manifolds (see, [22,25,30]). 
We will see how one can recover from our results the classical theorem of Murray [30]
that the class of the curvature 3-form is the image in H3(N, R) of the Dixmier-Douady 
class in H3(N, Z) (see Theorem 4.12).

Let N be a smooth manifold. By an S1-central extension over N we mean a surjective 
submersion φ : M → N together with a groupoid morphism onto the corresponding 
submersion groupoid Φ : G → M ×φ M , with kernel the trivial S1-bundle K = S1

M =
M × S1:
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1 S1
M G Φ

M ×φ M 1,

such that for all g ∈ G and θ ∈ S1:

g · (s(g), θ) = (t(g), θ) · g.

A Morita equivalence of S1-central extensions Φ1 : G1 → M1 ×φ1 M1 and Φ2 : G2 →
M2 ×φ2 M2 is given by a principal (G1, G2)-bibundle

G1 P G2

M1 M2

such that orbits of the actions of the kernels S1
M1

and S1
M2

on P coincide. The orbit 
space of these actions is then a manifold Q, which can be canonically identifies with the 
fiber product Q = M1 ×φ1 φ2

M2. Moreover, it is a principal bi-bundle for the submersion 
groupoids:

M1 ×φ1 M1 M1 ×φ1 φ2
M2 M2 ×φ2 M2

M1 M2

and one obtains a map of principal bi-bundles:

M1 P M2

M1 M1 ×φ1 φ2
M2 M2

Definition 4.8. An S1-gerbe over a manifold N is a Morita equivalence class of S1-central 
extensions over N .

We recall that an S1-gerbe is completely characterized by its Dixmier-Douady class
which can be defined as follows. Given an S1-central extension defined by a submersion 
φ : M → N and a groupoid morphism Φ : G → M ×φ M , one chooses a good cover {Ui}
of N for which there exist sections si : Ui → M of φ : M → N . Then one can find maps 
gij : Uij → G such that

Φ(gij(x)) = (si(x), sj(x)).
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Since, for each x ∈ Uijk, the composition gij(x) ·gjk(x) ·gjk(x) is an element of the kernel 
S1
M , we have that:

gij(x) · gjk(x) · gki(x) = (si(x), cijk(x)),

for a 3-cocycle cijk : Uijk → S1. The class in sheaf cohomology:

c2(G) := [cijk] ∈ H2(N,S1),

only depends on the Morita equivalence class of the extension and is called the Dixmier-
Douady class of the S1-gerbe. Using the exponential sequence:

1 Z R
exp

S1 1,

one can view the Dixmier-Douady class as a class in integer cohomology:

c2(G) ∈ H3(N,Z).

In this way, one can think that S1-central extensions give geometric representatives 
of integer cohomology classes in degree 3, the same way as principal S1-bundles give 
geometric representatives of integer cohomology classes in degree 2, via their Chern 
class. The same way one can use the curvature of a principal connection to obtain 
representatives in real cohomology of the Chern class, we will see now that one can use 
multiplicative Ehresmann connections to obtain representatives in real cohomology of 
the Dixmier-Douady class.

We start by the following proposition:

Proposition 4.9. Every S1-central extension

1 S1
M G Φ

M ×φ M 1,

admits a multiplicative Ehresmann connection E. The induced multiplicative Ehresmann 
connection EK on the kernel K = S1

M is the canonical flat connection.

Proof. Notice that G is necessarily a proper groupoid. Hence, it follows from Theorem 4.2
that multiplicative Ehresmann connections exist.

By Proposition 2.10, a multiplicative Ehresmann connection ES1 on the trivial S1-
bundle S1

M is related to a linear connection E∇ on the trivial line bundle RM by the 
exponential map:

(d exp)(E∇) = ES1
M .

It follows that constant sections of RM , x *→ (x, n) (n ∈ Z), are flat. Then any constant 
section is flat, and so ES1

M must be the trivial connection. !
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Hence, given a multiplicative Ehresmann connection E for an S1-central extension 
Φ : G → M ×φ M , the associated linear connection on k = RM is the canonical flat 
connection:

∇X = LX .

Then, by Proposition 2.29, the curvature Ω ∈ Ω2
M(G) of E satisfies

Ω = Φ∗Ω,

for a unique closed, multiplicative, 2-form Ω ∈ Ω2
M(M×φM). By Lemma 4.5, there exists 

a 2-form F ∈ Ω2(M) (not unique) such that:

Ω = pr∗1 F − pr∗2 F,

where pri : M ×φ M → M are the source and target of the submersion groupoid. 
Equivalently:

Ω = t∗F − s∗F. (4.1)

Definition 4.10. A form F ∈ Ω2(M) satisfying (4.1) is called a curving of the connection 
E.

Finally, observe that:

0 = d Ω = pr∗1 dF − pr∗2 dF.

Therefore, there exists a unique 3-form G ∈ Ω3(N) such that:

dF = φ∗G. (4.2)

Definition 4.11. The form G ∈ Ω2(N) satisfying (4.2) is called the curvature 3-form of 
the curving.

Note that two curvings F and F ′ differ by a form B = F − F ′ such that:

pr∗1 B − pr∗2 B = 0.

Hence, B = φ∗ϕ for a 2-form ϕ ∈ Ω2(N). The corresponding curvature 3-forms are then 
related by:

G−G′ = dϕ.
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In particular, the class [G] ∈ H3(N) does not depend on the choice of curving and is 
intrinsically associated with the multiplicative Ehresmann connection E. We can now 
state and prove Murray’s result:

Theorem 4.12. Let Φ : G → M×φM be an S1-central extension representing an S1-gerbe 
over a manifold N . Given any multiplicative Ehresmann connection E for Φ, the class 
[G] of a curvature 3-form is the image of the Dixmier-Douady class of the gerbe c2(G)
under the canonical map:

H3(N,Z) → H3(N,R).

Proof. As above, we pick a good cover {Ui} of N for which there exist sections si : Ui →
M of φ : M → N , and maps gij : Uij → G such that

Φ(gij(x)) = (si(x), sj(x)).

The Dixmier-Douady class is then c2(G) := [cijk] where the 3-cocycle cijk : Uijk → S1 is 
given by:

(si, cijk) = gij · gjk · gki.

This is an equality of maps Uijk → G and we are going to pull back the connection 1-form 
α ∈ Ω1(G) under both sides. For the left-side, it follows from the condition α(ξR) = ξ

that

(si, cijk)∗α = c−1
ijk d cijk = d fijk,

where we set cijk = exp(fijk), for a map fijk : Uijk → R, well-defined up to the addition 
of an integer. On the other hand, for the right-hand side, using that α is multiplicative, 
we find:

(gij · gjk · gki)∗α = g∗ijα + g∗jkα + g∗kiα

= Aij + Ajk + Aki,

where

Aij := g∗ijα ∈ Ω1(Uij).

We conclude that:

Aij + Ajk + Aki = d fijk. (4.3)

Now, if F ∈ Ω2(M) is a curving, and we let:
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Fi := s∗iF ∈ Ω2(Ui),

it follows from (4.1) that on Uij we must have:

Fi − Fj = s∗iF − s∗jF = (si, sj)∗Ω =
= g∗ijΩ = g∗ij dα = d g∗ijα.

In other words,

Fi − Fj = dAij . (4.4)

On the other hand, the definition (4.2) of the curvature 3-form gives:

G|Ui = dFi. (4.5)

Equations (4.3), (4.4) and (4.5) show that [G] ∈ H3(N, R) corresponds to the class 
[d fijk] ∈ H2(N, Ω1

cl), so using that cijk = exp(fijk) the result follows. !

5. IM Ehresmann connections

5.1. IM connection for a surjective algebroid morphism

We now turn to the infinitesimal version of multiplicative Ehresmann connections. If 
one starts with a surjective Lie algebroid morphism φ : A → B covering the identity, its 
differential is a morphism of VB algebroids:

TA
dφ

TB

A
φ

B

TM
Id

TM

M
Id

M

We recall that double arrows =⇒ represent Lie algebroids. The kernel of dφ is a VB 
subalgebroid of TA:

ker(dφ) A

0M M

This leads naturally to the infinitesimal version of a multiplicative Ehresmann connec-
tion:
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Definition 5.1. An IM Ehresmann connection for φ : A → B is a VB subalgebroid 
E ⇒ TM of TA ⇒ TM which is “horizontal”:

TA = ker(dφ) ⊕E.

5.2. Infinitesimal partially split bundles of ideals

A surjective Lie algebroid morphism φ : A → B covering the identity is completely 
determined by its kernel:

0 k A
φ

B 0 .

So the notion of IM Ehresmann connection for φ can be rephrased in terms of the bundle 
of ideals k, without any mentioning of φ and B. To do this we need to express ker(dφ)
in terms of k, which can be done as follows.

Let A ⇒ M be a Lie algebroid and k ⊂ A a bundle of ideals, i.e., k → M is a vector 
subbundle included in ker ρA and satisfying

α ∈ Γ(A), γ ∈ Γ(k) =⇒ [α, γ]A ∈ Γ(k).

Then we have the canonical representation of A on k:

∇k
αγ := [α, γ]A, α ∈ Γ(A), γ ∈ Γ(k). (5.1)

This is the infinitesimal version of the groupoid representation (2.1) and it gives rise to 
the infinitesimal version of the groupoid G ×M k ⇒ M . Namely, we have the semi-direct 
product Lie algebroid A ×M k ⇒ M , with Lie bracket

[(α1, γ1), (α2, γ2)] := ([α1,α2]A,∇k
α1γ2 −∇k

α2γ1),

and anchor ρA ◦ prA. This is a VB algebroid:

A×M k A

M M

and, in fact, we have:

Lemma 5.2. Given a bundle of ideals k ⊂ A the image of the inclusion

A×M k ↪→ TA, (a, γ) *→ d
d t

∣∣∣
t=0

(a + tγ), (5.2)

coincides with ker(dφ), where φ : A → B := A/k is the quotient map.
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Proof. Since φ : A → B is surjective and covers the identity, da φ : TaA → Tφ(a)B is 
surjective, for any a ∈ A. Also, if (a, γ) ∈ A ×M k then φ(a + tγ) = φ(a) so under the 
natural inclusion (5.2) A ×M k is mapped to the kernel of dφ. Since

rankA TA− rankB TB = rankM k = rankA(A×M k),

the result follows. !

Hence, we can rephrase Definition 5.1 in terms of bundle of ideals as follows:

Definition 5.3. A bundle of ideals k ⊂ A is called partially split if there is a VB subalge-
broid E ⇒ TM of TA ⇒ TM such that:

TA = (A×M k) ⊕ E.

We emphasize that, unlike the groupoid case, IM Ehresmann connections for a surjec-
tive Lie algebroid morphism and partially split bundle of ideals are equivalent notions. 
From now on we will mostly assume the perspective of bundle of ideals.

5.3. The infinitesimal partially split condition

We now look for alternative characterizations of (infinitesimal) partially split ideals.
If we represent the inclusion (5.2) by the diagram of VB algebroids:

A×M k TA

A

0M TM

M

then the VB dual to this inclusion is the projection:

A! k∗ T ∗A

A

k∗ A∗

M

Here A ! k∗ ⇒ k∗ is the action algebroid associated with the representation ∇k∗ of A on 
k∗ dual to the representation (5.1), which is defined by:
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LρA(α)(⟨β, X⟩) = ⟨∇k
αβ, X⟩ + ⟨β,∇k∗

α X⟩.

We have the following infinitesimal analogue of Proposition 2.8 giving alternative 
characterizations of partial splittings (for the terminology, see the appendix):

Proposition 5.4. Given a bundle of ideals k ⊂ A, the following structures are in 1-to-1 
correspondence:

(i) VB subalgebroids E ⊂ TA that are complementary to A ×M k:

TA = (A×M k) ⊕E;

(ii) VB algebroid morphisms θ : A ! k∗ → T ∗A that are splittings of the natural projec-
tion p : T ∗A → A ! k∗:

p ◦ θ = IdT∗A;

(iii) k-valued, IM 1-forms (L, l) ∈ Ω1
IM(A, k) that restrict to the identity on k:

l|k = Idk;

(iv) linear, closed, IM 2-forms µ ∈ Ω2
IM(A ! k∗) that along k ⊂ (A ! k∗)|M satisfy:

(
prk ◦µ|M

)
|k = Idk.

Proof. The equivalence between (i) and (ii) follows by passing from the VB algebroid 
TA to its dual VB algebroid T ∗A, as explained above.

A vector bundle map

A! k∗
θ

T ∗A

A
Id

A

k∗ A∗

M M

is a VB algebroid morphism covering the identity if and only if its dual is a VB algebroid 
morphism:
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TA
θ∨

A⊕ k

A
Id

A

TM 0M

M M

But a Lie algebroid morphism θ∨ : TA → A ⊕ k is the same thing as an k-valued, IM 
1-form (L, l) ∈ Ω1

IM(A; k) (see Example A.5). This establishes the equivalence between 
(ii) and (iii), since the extra conditions along M correspond to each other.

Next, a closed IM 2-form µ : A ! k∗ → T ∗k∗ can be viewed, alternatively, as a VB 
algebroid morphism:

T (A! k∗)
(ωµ)♭

T ∗(A! k∗)

T k∗ (A! k∗)∗

where ωµ ∈ Ω2(A ! k∗) is the fiberwise linear 2-form:

ωµ = µ∗ωcan.

The algebroid morphism (ωµ)♭ restricts to a VB algebroid morphism:

θ∨ : TA → A⊕ k

covering the identity Id : A → A, such that the following diagram commutes:

TA
θ∨

A⊕ k

T (A! k∗)
(ωµ)♭

T ∗(A! k∗)

TM M

T k∗ (A! k∗)∗

Moreover, θ∨ (or equivalently θ) completely determines µ: using the fact that µ is a linear 
IM form, one finds that it coincides with the pullback under the algebroid morphism 
θ : A ! k∗ → T ∗A of the canonical IM 2-form µcan:

µ = θ∗µcan.
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This proves the equivalence between (ii)-(iv) since the additional conditions along M
correspond to each other. !

Definition 5.5. Given a partially split bundle of ideals k with an IM Ehresmann con-
nection E ⊂ TA, the corresponding k-valued IM 1-form (L, l) ∈ Ω1

IM(A; k), given by 
Proposition 5.4 (iii), is called the IM connection 1-form.

We can now make precise the statement that IM Ehresmann connections are the 
infinitesimal counterpart of multiplicative Ehresmann connections:

Theorem 5.6. Let G ⇒ M be a target 1-connected Lie groupoid with Lie algebroid A ⇒ M . 
Given a bundle of ideals k ⊂ A there is a 1:1 correspondence:

⎧
⎨

⎩
multiplicative Ehresmann

connections E ⊂ TG
for G ×M k

⎫
⎬

⎭ ←̃→

⎧
⎨

⎩
IM Ehresmann

connections E∗ ⊂ TA
for A×M k

⎫
⎬

⎭

Proof. The proof follows from the description of multiplicative and IM Ehresmann con-
nections in terms of their connections 1-forms given by Propositions 2.8 and 5.4, and by 
observing that for a target 1-connected Lie groupoid one has a canonical isomorphism 
[14]

Ω1
M(G; k) ≃ Ω1

IM(A; k),

under which the extra conditions on the 1-forms correspond to each other. !

If G is not target 1-connected the differentiation of multiplicative forms still exists, 
and one can still associate to a multiplicative Ehresmann connection a IM Ehresmann 
connection, but not conversely.

Note that for a IM connection 1-form (L, l) ∈ Ω1
IM(A; k), the symbol l : A → k satisfies 

l|k = Id and hence gives a splitting of the short exact sequence:

0 k A
l

φ
B 0 .

In general, the induced splitting B → A is not a Lie algebroid morphism.
The partially split condition implies certain properties of the bundle of ideals. A first 

consequence is the following infinitesimal versions of Corollaries 2.12 and 2.13:

Corollary 5.7. Let k ⊂ A be a partially split bundle of ideals with IM connection 1-form 
(L, l) ∈ Ω1

IM(A; k), then

∇L
Xξ := iXL(ξ), (5.3)
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defines a connection on k which preserves the Lie bracket:

∇L
X [ξ, η]k = [∇L

Xξ, η]k + [ξ,∇L
Xη]k, X ∈ X(S), ξ, η ∈ Γ(k).

In particular, k is a locally trivial bundle of Lie algebras.

Proof. Since l|k = Id, the symbol equation (A.7) implies that (5.3) defines a linear 
connection ∇L on k. On the other hand, the third equation in the IM condition (A.8)
shows that one has

Lξη = [ξ, η], ξ, η ∈ Γ(k).

Then the second equation in (A.8) shows that ∇L preserves the Lie bracket. !

Corollary 5.8. Let k ⊂ A be a partially split bundle of ideals and fix x ∈ M . The symbol 
of any IM connection 1-form (L, l) ∈ Ω1

IM(A; k) gives a decomposition of the isotropy Lie 
algebra gx := ker ρA|x into a direct sum of ideals:

gx ≃ (gx ∩ ker l) ⊕ kx.

Proof. If α ∈ Γ(A) and β ∈ Γ(ker l) are such that αx, βx ∈ gx, then the third equation 
in the IM condition (A.8) shows that

[αx,βx] = [α,β]|x ∈ ker l.

This proves that gx ∩ ker l is an ideal in gx, so the corollary follows. !

An interesting characterization of the partial split condition can be obtained as follows. 
Given a (usual) connection ∇ on a Lie algebroid A ⇒ M one has the following associated 
A-connections on A and TM :

∇αβ := ∇ρ(β)α + [α,β],
∇αX := ρ(∇Xα) + [ρ(α), X]

They satisfy

ρ(∇αβ) = ∇αρ(β).

One defines the basic curvature of ∇ to be the tensor

Rbas
∇ (α,β)(X) := ∇X([α,β]) − [∇Xα,β] − [α,∇Xβ] −∇∇βX

α + ∇∇αXβ, (5.4)

where X ∈ X(M) and α, β ∈ Γ(A). When Rbas
∇ ≡ 0 one calls ∇ a Cartan connection and 

this is precisely the infinitesimal version of a Cartan connection on a Lie groupoid (see, 
e.g., [1,3,4]).
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Proposition 5.9. A bundle of ideals k ⊂ A is partially split if and only if there is a vector 
bundle splitting l : A → k of the associated short exact sequence

0 k A
φ

B 0

and a (usual) connection ∇ on A such that:

∇l = 0, l(Rbas
∇ ) = 0. (5.5)

In this case, the pair (l, ∇) determines a IM connection 1-form (L, l) ∈ Ω1
IM(A; k) by 

setting:

L : Γ(A) → Ω1(M ; k), iXL(α) := l(∇Xα).

Moreover, every IM connection 1-form (L, l) takes this form for some pair (l, ∇) satis-
fying (5.5).

Proof. Let l : A → k be any splitting of the short exact sequence. Given a map L :
Γ(A) → Ω1(M ; k), we claim that the pair (L, l) satisfies the IM-condition (A.7):

L(fα) = fL(α) + d f ∧ l(α)

if and only if

iXL(α) = l(∇Xα)

for some connection ∇ in A. Clearly, if L takes this form then (A.7) holds. Conversely, 
given (L, l) satisfying (A.7) choose any connection ∇′ on A and consider the difference:

D(α, X) := iXL(α) − l(∇′
Xα).

This is C∞-linear in both entries and takes values in k ⊂ A. Therefore, we can correct 
the connection ∇′ by setting:

∇Xα := ∇′
Xα + D(α, X),

so that (L, l) takes the desired form.
It remains to check that a pair (L, l) defined by (l, ∇) satisfies the IM-conditions (A.8)

if and only if (5.5) hold. Applying the definition of ∇, we obtain:

(∇αl)(β) = ∇α(l(β)) − l(∇αβ)
= [α, l(β)] − l(∇ρ(β)α + [α,β])
= Lαl(β) − iρ(β)L(α) − l([α,β]),
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for any α, β ∈ Γ(A). This shows that the condition ∇l = 0 amounts to the last IM 
condition in (A.8). It also shows that this condition can be written as:

l([α,β]) = [α, l(β)] + l(∇ρ(β)α),

for any α, β ∈ Γ(A). Using this last identity, the definition of L and the expression for 
the basic curvature, we now find:

iXL([α,β]) − l(Rbas
∇ (α,β)(X)) =

= l(∇X [α,β]) − l(Rbas
∇ (α,β)(X))

= l([∇Xα,β]) + l([α,∇Xβ]) + l(∇∇βX
α) − l(∇∇αXβ)

= l([∇Xα,β]) + l([α,∇Xβ]) + l(∇ρ(∇Xβ)+[ρ(β),X]α) − l(∇ρ(∇Xα)+[ρ(α),X]β)
= [α, l(∇Xβ)] − l(∇[ρ(α),X]β) − [β, l(∇Xα)] + l(∇[ρ(β),X]α)
= iX

(
LαL(β) − LβL(α)

)
.

So the second IM condition in (A.8) holds if and only if l(Rbas
∇ ) = 0. !

Remark 5.10. The connection ∇ in the previous proposition is not uniquely determined 
by the partial IM connection 1-form (L, l) ∈ Ω1

IM(A; k).

5.4. Couplings

In this section we give a coupling description of algebroids with a partially split bundle 
of ideals. This is inspired by (and in fact generalizes) the classical coupling description 
of symplectic fibrations [28] and horizontally non-degenerate Poisson structures [33,34].

To state the main result in this section we consider a partially split bundle of ideals 
k ⊂ A with a fixed choice of IM connection 1-form (L, l) ∈ Ω1

IM(A, k). The base map 
gives a vector bundle splitting of the associated short exact sequence

0 k A
l

φ
B 0

which we use to identify A ≃ B ⊕ k. Then we associate the following data:

(i) A linear connection ∇L on the vector bundle k → M , by setting:

∇L
Xξ := iXL(ξ).

(ii) A tensor U ∈ Γ(B∗ ⊗ T ∗M ⊗ k) given by:

U(α, X) := −iXL(α).
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That this is a connection and a tensor follows from the symbol equation (A.7) and the 
fact that l|k = Id. Notice that the connection ∇L has already appeared in Corollary 5.7.

Proposition 5.11. The data (∇L, U) associated with a IM connection 1-form (L, l) ∈
Ω1

IM(A, k) satisfies the structure equations:

(S1) the connection ∇L preserves the Lie bracket [·, ·]k, i.e.,

∇L
X [ξ, η]k = [∇L

Xξ, η]k + [ξ,∇L
Xη]k;

(S2) the curvature of ∇L is related to adU as follows:

∇L
ρB(α)∇L

X −∇L
X∇L

ρB(α) −∇L
[ρB(α),X] = [U(α, X), ·]k;

(S3) U satisfies the “mixed” cocyle-type equation:

∇L
ρB(α)U(β, X) −∇L

ρB(β)U(α, X) + ∇L
XU(α, ρB(β))

+ U(α, [ρB(β), X]) − U(β, [ρB(α), X]) = U([α,β]B , X),

for all X ∈ X1(M), α, β ∈ Γ(B), ξ, η ∈ Γ(k).

The proof of this proposition follows immediately from the IM conditions (A.8) and 
is left to the reader.

Definition 5.12. Let B ⇒ M be a Lie algebroid and (k, [·, ·]k) a Lie algebra bundle over M . 
A coupling data is a pair (∇L, U), where ∇L is a connection on k and U ∈ Γ(B∗⊗T ∗M⊗k)
is a tensor field satisfying the structure equations (S1), (S2) and (S3).

The following result shows that the coupling data gives a way of codifying algebroids 
with a partially split bundle of ideals.

Proposition 5.13. Let B ⇒ M be a Lie algebroid, (k, [·, ·]k) a Lie algebra bundle over M
and (U, ∇L) coupling data. Then A := B ⊕ k is a Lie algebroid, with anchor ρA(α, ξ) :=
ρB(α) and Lie bracket:

[(α, ξ), (β, η)]A := ([α,β]B , U(α, ρB(β)) + ∇L
ρB(α)η −∇L

ρB(β)ξ + [ξ, η]k). (5.6)

Then k ⊂ A is partially split, with IM connection 1-form (L, l) given by:

l = prk, iXL(α, ξ) = ∇L
Xξ − U(α, X). (5.7)

Moreover, any Lie algebroid A ⇒ M together with a partially split bundle of ideals 
k ⊂ A is isomorphic to one of this type.
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Proof. Assume we are given coupling data (U, ∇L). The skew-symmetrization with re-
spect to α and β of (S3) gives:

∇L
X

(
U(α, ρB(β)) + U(β, ρB(α))

)
= 0,

which yields:

U(α, ρB(β)) = −U(β, ρB(α)). (5.8)

Hence (5.6) defines a skew-symmetric bracket. It is immediate to check that it satisfies 
the Leibniz identity and that its Jacobiator is given by:

J((0, ξ), (0, η), (0, ν)) = (0, Jk(α, η, ν))

J((α, 0), (0, ξ), (0, η)) = (0, C1(α, ξ, η))

J((α, 0), (β, 0), (0, ξ)) = (0, C2(α,β, ξ)

J((α, 0), (β, 0), (γ, 0)) = (JB(α,β, γ), C3(α,β, γ))

where Jk and JB are the Jacobiators of the brackets [·, ·]k and [·, ·]B and

C1(α, ξ, η) := ∇L
ρB(α)[ξ, η]k − [∇L

ρB(α)ξ, η]k − [ξ,∇L
ρB(α)η]k

C2(α,β, ξ) := ∇L
ρB(α)∇L

ρB(β)ξ −∇L
ρB(β)∇L

ρB(α)ξ −∇L
[ρB(α),ρB(β)]ξ − [U(α, ρB(β)), ξ]k

C3(α,β, γ) := ∇L
ρB(α)U(β, ρB(γ)) + U(α, [ρB(β), ρB(γ)]) −∇L

ρB(β)U(α, ρB(γ))

− U(β, [ρB(α), ρB(γ)]) + ∇L
ρB(γ)U(α, ρB(β)) − U([α,β]B , ρB(γ))

If in the structure equations (S1), (S2) and (S3) we replace X by ρB(α), ρB(β) and 
ρB(γ), respectively, we obtain that these 3 expressions vanish. Hence, the bracket (5.7)
satisfies the Jacobi identity, so we obtain a Lie algebroid. If we now define l : A → k and 
L : Γ(A) → Ω1(M, k) by (5.7), one checks that the symbol equation (A.7) holds and that 
the IM conditions (A.8) are equivalent to (S1)-(S3).

Finally, if we start with a partially split bundle of ideals k ⊂ A, as we saw above, a 
choice of IM connection 1-form (L, l) ∈ Ω1

IM(A, k) determines coupling data satisfying the 
structure equations and a vector bundle isomorphism A ≃ B ⊕ k where B ≃ ker l. The 
anchor of A is then given by ρA(α, ξ) := ρB(α) and all we have to check is that, under 
this isomorphism, the Lie bracket becomes (5.7). For this we use the third equation in 
the IM condition (A.8) for (L, l) and the definitions of ∇L and U to conclude that:

• If α ∈ Γ(B) ≃ Γ(ker l) and ξ ∈ Γ(k) then:

[α, ξ]A = ∇L
ρB(α)ξ;
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• If α, β ∈ Γ(B) ≃ Γ(ker l) then:

[α,β]A = [α,β]B + U(α, ρB(β)).

Formula (5.7) for the bracket follows from these since k is a bundle of ideals. !

5.5. Flat IM Ehresmann connections

Let k ⊂ A be a bundle of ideals and let B = A/k. As we saw in Section 5.4, a choice 
of IM connection 1-form (L, l) ∈ Ω1

IM(A, k) gives rise to the coupling data (∇L, U), 
where U ∈ Γ(B∗ ⊗ T ∗M ⊗ k) is a tensor field and ∇L is a usual connection on k. Using 
Proposition 5.13, it is not hard to check that we have a k-valued IM 2-form (L̃, ̃l) ∈
Ω2

IM(A, k), where:

L̃(α, ξ) = R∇L

· ξ − d∇L

U(α), l̃(α, ξ) = −U(α), (5.9)

for α ∈ Γ(B) and ξ ∈ Γ(k). This is the infinitesimal version of the curvature of the 
multiplicative Ehresmann connection from Proposition 2.22. Namely, in the case where 
φ : A → B is induced by a groupoid morphism Φ : G → H and the IM Ehresmann 
connection is induced by a multiplicative Ehresmann E connection, (5.9) is the IM form 
corresponding to curvature 2-form Ω of E.

Definition 5.14. An IM Ehresmann connection (L, l) ∈ Ω1
IM(A; k) with associated cou-

pling data (∇L, U) is called:

(i) totally flat if R∇L = 0 and U = 0;
(ii) leafwise flat if the splitting B → A, α *→ (α, 0), is a Lie algebroid map, i.e., 

U(α, ρB(β)) = 0;
(iii) kernel flat if the associated linear connection ∇L is flat: R∇L = 0.

The first condition is equivalent to involutivity of the distribution E ⊂ TA corre-
sponding to the IM Ehresmann connection. This condition is very restrictive, as the 
following infinitesimal analogue of Proposition 2.42 shows:

Proposition 5.15. If a bundle of ideals k ⊂ A admits a totally flat IM Ehresmann con-
nection, then there is a covering space of the base p : M̃ → M such that the pullback of 
A to M̃ is isomorphic to a product p∗A ≃ p∗B × g, where p∗k ≃ M̃ × g.

Proof. Let (∇L, U = 0) be a totally flat coupling data. Let p : M̃ → M denote the 
holonomy cover of ∇L. Parallel transport along ∇L induces a trivialization of the bundle 
of Lie algebras p∗k ≃ M̃×g, where g = kx, for some x ∈ M . Since ∇L becomes the trivial 
connection on M̃ × g, formulas (5.6) show that the algebroid p∗A is a product (see also 
the example from Subsection 6.2). !
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The second flatness condition can be understood as a leafwise version of the first:

Proposition 5.16. Given a bundle of ideals k ⊂ A, an IM Ehresmann connection (L, l) ∈
Ω1

IM(A; k) is leafwise flat if and only if, for any leaf O ⊂ M of the Lie algebroid A, the 
pullback IM Ehresmann connection (L, l)|O ∈ Ω1

IM(A|O; k|O) is totally flat.

Proof. Given a leaf O of A, the coupling data associated to the pullback of (L, l) to 
A|O is (∇O, UO), where ∇O is the pullback of the connection ∇L to k|O and UO is the 
restriction of U to B|O ⊗ TO. Now, (L, l) being leafwise flat, i.e.,

U(α, ρB(β)) = 0, for all α,β ∈ B,

is clearly equivalent to UO = 0 for all leaves O ⊂ M . On the other hand, using that A|O
is transitive and (S2), we see that UO = 0 implies that ∇O is flat. !

Note that a leafwise flat IM Ehresmann connection turns A into a semi-direct product, 
in the sense of the following.

Let B ⇒ M be a Lie algebroid which acts on a bundle of Lie algebras (k, [·, ·]k) → M

by infinitesimal Lie algebra automorphisms. The semi-direct product is the Lie algebroid 
A := B ×M k ⇒ M with Lie bracket:

[(α, ξ), (β, η)] = ([α,β],∇k
αη −∇k

βξ + [ξ, η]k)

and anchor ρB ◦ prB . Note that the short exact sequence

k B ×M k B
pr1

is canonically split by a Lie algebroid morphism:

σ : B −→ B ×M k, α *→ (α, 0).

Conversely, given a surjective Lie algebroid map φ : A → B covering the identity, 
which admits a Lie algebroid splitting:

k A B
φ

σ

we obtain an action of B ⇒ M on the bundle of Lie algebras (k, [·, ·]k) → M :

∇k
αξ := [σ(α), ξ]A,

preserving the Lie algebra structure, and a Lie algebroid isomorphism:

B ×M k ≃ A, (α, ξ) *→ σ(α) + ξ.
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Notice that the Lie algebroid splitting σ : B → A allows to pull back k-valued IM forms 
on A to IM forms on B:

σ∗ : Ω•
IM(A; k) −→ Ω•

IM(B; k).

Therefore we conclude the following:

Corollary 5.17. Given a bundle of ideals k ⊂ A, with an IM Ehresmann connection 
(L, l) ∈ Ω1

IM(A; k) that is leafwise flat, we obtain a IM 1-form (U, 0) ∈ Ω1
IM(B; k).

The following infinitesimal version of Proposition 2.39 gives yet another notion of 
flatness, weaker than totally flat and stronger than leafwise flat:

Proposition 5.18. Let k ⊂ A be a bundle of ideals with quotient B := A/k. The following 
are equivalent:

(i) There is an IM Ehresmann connection (L, l) ∈ Ω1(A; k) on A and pr : A → B whose 
associated splitting σ : B → A is a horizontal algebroid splitting: i.e., σ∗(L, l) = 0;

(ii) There exists an IM Ehresmann connection (L, l) ∈ Ω1
IM(A; k) with coupling data 

(∇L, U = 0);
(iii) A is isomorphic to a semi-direct product A ≃ B×M k and k admits an B-invariant 

connection ∇L preserving the bracket [·, ·]k (see Definition A.9).

Proof. Note that σ∗(L, l) = (U, 0), so (i) and (ii) are equivalent.
If U = 0, then the formula for the Lie bracket on A (5.6) together with (S1), (S2) are 

equivalent to ∇L being a B invariant connection on k which preserves [·, ·]k.
Conversely, if A ≃ B ×M k, and the representation of B on k admits a B-invariant 

connection ∇L which preserves [·, ·]k, then (∇L, U = 0) is a coupling data for an IM 
Ehresmann connection. !

Finally, we look at the kernel flat IM Ehresmann connections. For this, observe that 
the representation ∇k of the Lie algebroid A restricts to an A-representation on the 
center z(k). While the representation of A on the whole k, in general, does not factor to 
a representation of B, its restriction to the center z(k) does factor. We still denote this 
representation by ∇k. In terms of the coupling the representation of B on the center z(k)
is given by:

∇k
αξ = ∇L

ρB(α)ξ,

for all α ∈ Γ(B), ξ ∈ Γ(z(k)). This follows from the expression of the bracket given in 
Proposition 5.13.

In the kernel flat case, the structure equations (S1)-(S3) of Proposition 5.11 simplify 
to:
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Proposition 5.19. Let k ⊂ A be a partially split bundle of ideals with coupling data 
(∇L, U). If ∇L is flat, then:

(S1’) The connection ∇L preserves the bracket [·, ·]k;
(S2’) The tensor U takes values in the center of k;
(S3’) The pair (d∇L

U, U) is a z(k)-valued IM 2-form on B.

Conversely, given a Lie algebroid B ⇒ M , a Lie algebra bundle k → M with a flat 
connection ∇L, and a tensor field U ∈ Γ(B∗ ⊗ T ∗M ⊗ k) satisfying (S1’)-(S3’), then k
is a partially split bundle of ideals in Lie algebroid A = B ⊕ k with kernel flat coupling 
data (∇L, U).

Proof. If ∇L is flat, it is obvious that (S1)-(S2) are equivalent to (S1’)-(S2’).
Now consider the pair (d∇L

U, U). The properties of d∇L

give immediately that:

d∇L

U(fα) = f d∇L

U(α) + d f ∧ U(α),

so U : B → T ∗M ⊗ k is the symbol of d∇L

U : Γ(B) → Ω2(M, k), i.e., (A.7) holds. The 
skew-symmetry of U , given by (5.8), can be written as:

iρB(β)U(α) = −iρB(α)U(β),

which is the first equation in the IM conditions (A.9). Then (S3) can be rewritten using 
the connection ∇L as:

U([α,β]B) = L ∇L

ρB(α)U(β) − iρB(β) d∇L

U(α),

and since Lα = L ∇L

ρB(α) this gives the third equation in the IM conditions (A.9).
Finally, applying d∇ to this last equation, using that its square is zero and “Cartan’s 

magic formula” holds for L ∇L , we obtain:

d∇L

U([α,β]B) = d∇L

LαU(β) − d∇L

iρB(β) d∇L

U(α)

= Lα d∇L

U(β) − L ∇L

ρB(β) d∇L

U(α)

= Lα d∇L

U(β) − Lβ d∇L

U(α),

which is the second equation in the IM conditions (A.9). Hence, (d∇L

U, U) is a z(k)-
valued IM 2-form on B.

It should clear from this that the converse also holds: a pair (∇L, U), with ∇L flat and 
satisfying (S1’)-(S3’), also satisfies (S1)-(S3). Hence, the last part follows from Proposi-
tion 5.13. !
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Remark 5.20. For a kernel flat partial splitting of k ⊂ A, the proposition yields the IM 
valued 2-form:

(d∇L

U,U) ∈ Ω2
IM(B; z(k)), (5.10)

which is the infinitesimal analogue of the class from Proposition 2.29. Namely, the IM 
form corresponding the multiplicative form Ω is (− d∇L

U, −U) – see (5.9).
Since ∇L is flat, by Proposition A.10 we have an induced differential:

d∇L

IM : Ω•
IM(B; z(k)) −→ Ω•+1

IM (B; z(k)),

for which the element (5.10) is clearly closed. Applying the chain map from Lemma A.11
we obtain a B-cocycle with values in z(k):

λ ∈ Ω2(B; z(k)), λ(α,β) := U(α, ρB(β)).

That λ is a cocycle can be seen directly also from (S3). Note that the classes

[(d∇L

U,U)] ∈ H2
IM(B; z(k)) and [λ] ∈ H2(B; z(k))

depend on the choice of the IM connection.

The remark can be developed into a criterion for the existence of kernel flat IM 
connection for abelian bundle of ideals k ⊂ A. In this case, the canonical action of 
B := A/k is on k = z(k) and, after choosing a splitting A ≃ B ⊕ k, the Lie bracket takes 
the form:

[(α, ξ), (β, η)]A := ([α,β]B ,λ(α,β) + ∇k
αη −∇k

βξ).

Then λ ∈ Ω2(B; k) is a 2-cocycle, whose cohomology class:

c2(A) := [λ] ∈ H2(B; k)

is independent of the splitting, and it determines the extension k → A → B up to 
isomorphism. We have the following:

Proposition 5.21. An abelian bundle of ideals k ⊂ A, with B := A/k, admits a kernel flat 
partial splitting if and only if k admits a flat connection ∇ inducing ∇k and the class 
c2(A) is in the image of the map (from Lemma A.11):

H2
IM(B; k) → H2(B; k).



60 R. Loja Fernandes, I. Mărcut, / Advances in Mathematics 427 (2023) 109124

Proof. Given a flat coupling data (∇L, U), the connection ∇L induces ∇k, and, as re-
marked, c2(A) is the image of the class [(d∇L

U, U)] ∈ H2
IM(B; k).

Conversely, assume one is given a flat connection ∇L inducing ∇k and that c2(A) is 
the image of c ∈ H2

IM(B; k). Note that any representative of c if of the form (d∇L

U, U). 
Choose a splitting inducing

λ(α,β) = U(α, ρB(β)).

Since the pair (∇L, U) satisfies (S1’)-(S3’), it follows from Proposition 5.13 that it is the 
coupling data of a kernel flat partial splitting for A. !

We also have the infinitesimal version of Corollary 2.41:

Corollary 5.22. A semi-direct product A = B×M k, with k abelian is partially split if and 
only if the representation of B on k admits a B-invariant connection (in the sense of 
Definition A.9).

Proof. If k admits a B-invariant connection ∇L, then (∇L, U = 0) is the coupling data 
for an IM connection on B ×M k.

Conversely, let (L, l) ∈ Ω1(B ×M k; k) be an IM Ehresmann connection. Both the 
projection φ : B ×M k → B and the inclusion σ : B → B ×M k are Lie algebroid 
morphisms which intertwine the actions on k. Therefore, φ∗ ◦ σ∗(L, l) is an IM 1-form. 
By subtracting it from (L, l), we may assume that σ∗(L, l) = 0. By Proposition 5.18, 
this is equivalent to (L, l) having coupling data (∇L, U = 0), with ∇L a B-invariant 
connection on k. !

6. Examples and applications (algebroids)

Using the correspondence from Theorem 5.6, many of the examples that follow can be 
seen as infinitesimal counterparts of the examples discussed in Section 3. Note, however, 
that we will make no integrability assumption, so often we obtain more general classes 
of examples.

6.1. Lie algebra bundles

Let A → M be a Lie algebra bundle. A bundle of ideals k ⊂ A is not necessarily 
partially split. The obstructions are precisely those found in Corollaries 5.7 and 5.8:

Proposition 6.1. A bundle of ideals k ⊂ A in a Lie algebra bundle is partially split if and 
only if the following two conditions hold:

(i) k is a Lie algebra bundle;
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(ii) there exists a splitting A ≃ B ⊕ k, for which the fiberwise Lie bracket is a direct 
product.

Proof. By Corollaries 5.7 and 5.8, a partial splitting for k ⊂ A yields a (usual) connection 
∇L on k which preserves the Lie bracket and a splitting A ≃ B⊕k, for which the fiberwise 
Lie bracket is a direct product.

Conversely, fix a connection ∇L on k which preserves the Lie bracket and a splitting 
A ≃ B ⊕ k for which the Lie bracket is a direct product. Then we can obtain a partial 
splitting from Proposition 5.11 by setting U := 0. !

Remark 6.2. If M is connected, then for a bundle of Lie algebras (k, [·, ·]k) → M to be a 
Lie algebra bundle, it suffices that:

H2(kx, kx) = 0, ∀x ∈ M.

Indeed, this condition implies that each kx is a rigid Lie algebra: any small deformation 
of the Lie bracket on kx is isomorphic to kx (see, e.g., [13]). Therefore, all Lie algebras 
in k are isomorphic to each other and it follows that k is a bundle of Lie algebras.

6.2. Products

Consider the Lie algebroid A ⇒ M obtained as the product of a Lie algebroid B ⇒ M

and a Lie algebra g:

A = B × g.

Then k := M × g ⊂ A is a bundle of Lie algebras which is always partially split with a 
canonical, totally flat partial splitting. This follows by observing that we have canonical 
isomorphisms:

TA = TB × (g ! g), A×M k = B × (g ! g),

in terms of which the inclusion (5.2) is

B × (g ! g) → TB × (g ! g), (b, v, w) *→ (0b, v, w).

Hence, we have the canonical IM Ehresmann connection E ⊂ TA given by:

E(b,v) := {(X, v, 0) : X ∈ Tb(Bx), v ∈ g}.

It is also easy to determine the alternative data of specifying this connection given by 
Proposition 5.4, namely:
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• The canonical splitting θ : A ! k∗ → T ∗A:

θ : B × (g ! g∗) → T ∗(B) × (g ! g∗), (b, v, ξ) *→ (0b, v, ξ).

• The IM connection 1-form (L, l) ∈ Ω1
IM(A, k):

l : B × g → M × g, L(bx, v) = (x, v),
L : Γ(B) × C∞(M ; g) → Ω1(M, g), L(α, f) = d f.

• The linear, closed, IM 2-form µ ∈ Ω2
IM(A ! k∗):

µ : B × (g ! g∗) → T ∗(M × g∗) = T ∗M × (g ! g∗), (α, v, ξ) *→ (0, v, ξ).

6.3. Transitive algebroids

Let A ⇒ M be a transitive Lie algebroid. Its isotropy k = ker ρ is a bundle of ideals. 
We claim that this is always partially split, and there is a 1-to-1 correspondence between 
splittings of the anchor:

0 k A
ρ

l

TM
τ

0

and IM connection 1-forms (L, l) ∈ Ω1
IM(A, k).

Indeed, given a splitting l, we can define a linear operator L : Γ(A) → Ω1(M, k) by 
setting:

iXL(α) := l([τ(X),α]). (6.1)

One checks easily that the pair (L, l) satisfies (A.8), so it is a k-valued, IM 1-form, with 
l|k = Id.

Conversely, given any IM connection 1-form (L′, l) ∈ Ω1
IM(A, k), the bundle map l :

A → k determines a splitting of the anchor. We claim that L′ = L, where L is given by 
(6.1). Note that the difference L − L′ is a k-valued, IM 1-form whose symbol vanishes. 
It follows from the last equation in (A.8) that:

iρ(β)(L(α) − L′(α)) = 0, ∀β ∈ A.

Since ρ is surjective, this means that L = L′.

6.4. Cartan connections

Recall that a Cartan connection is a connection ∇ on a Lie algebroid A whose basic 
curvature vanishes identically:
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Rbas
∇ ≡ 0.

Hence, as an immediate consequence of Proposition 5.9, we obtain:

Corollary 6.3. Let k ⊂ A be a bundle of ideals. If A admits a Cartan connection ∇ and a 
splitting l : A → k which is ∇-invariant, then k is partially split. In particular, this holds 
when A admits a fiberwise metric that is ∇-invariant.

Proof. The second part of the statement follows by choosing the splitting l : A → k to 
be the orthogonal projection relative to the invariant metric. !

In Subsection 3.8 we saw that, for a Lie groupoid admitting a bi-invariant metric, 
every bundle of ideals is partially split. At the Lie algebroid level, the corresponding 
notion of a bi-invariant metric (see [24]) is given by a Cartan connection and a pair of 
metrics (ηA, ηM ) on A and M satisfying:

∇ηA = 0, ∇ηM = 0.

The previous corollary shows that for a Lie algebroid A admitting a bi-invariant metric 
any bundle of ideals k ⊂ A is partially split. Notice that the metric ηM plays here no 
role.

6.5. Action Lie algebroids

Let A = g !M ⇒ M be the action Lie algebroid associated with a Lie algebra action 
ρ : g → X(M). The canonical flat connection ∇ on A has vanishing basic curvature, 
hence it is a Cartan connection. Given a bundle of ideals k ⊂ A a splitting l : A → k is 
∇-invariant if and only if it is g-equivariant:

l([v, w]g) = [v, l(w)]g!M ,

for all v, w ∈ g (here we identify elements of g with constant sections of A). Hence, we 
deduce from Corollary 6.3 the infinitesimal version of Proposition 3.1:

Corollary 6.4. A bundle of ideals on an action algebroid g ! M ⇒ M admitting a g-
equivariant splitting is partially split.

For example, if g is a Lie algebra of compact type then it admits an ad-invariant 
scalar product ⟨·, ·⟩. Such an inner product defines a fiberwise metric η on A which is ∇-
invariant. Hence, in this case, any bundle of ideals on A = g !M admits a g-equivariant 
splitting, so it is partially split.
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6.6. Infinitesimal principal type

Let A′ ⇒ M be a transitive Lie algebroid and B ⇒ M any Lie algebroid. Consider 
the Lie algebroid fibre product:

A := A′ ×TM B := {(α,β) : ρA′(α) = ρB(β)},

where the structure is such that the inclusion in the product A ↪→ A′ × B is a Lie 
algebroid morphism. The projection φ := prB : A → B is a Lie algebroid morphism, 
which is surjective because we assume B to be transitive. The kernel k := kerφ is then a 
bundle of ideals which can be identified with kerρA′ via prA′ . A bundle of ideals k ⊂ A

obtained via this construction will be called of principal type. This is of course the 
infinitesimal counterpart of groupoids with bundle of ideals of principal type, discussed 
in Subsection 3.5.

Since A′ ⇒ M is transitive, as discussed in Subsection 6.3, a splitting lA′ : A′ → k

of ρA′ determines an IM connection 1-form (LA′ , lA′) ∈ Ω1
IM(A′, k). Pulling back this 

connection 1-form to A, we obtain a multiplicative k-valued 1-form

(L := LA′ ◦ prA′ , l := lA′ ◦ prA′) ∈ Ω1
IM(A, k),

which satisfies l|k = Idk. So bundles of ideals of principal type are partially split.
The IM connection 1-form (L, l) ∈ Ω1

IM(A, k) can also be described using the fact that 
the splitting lA′ gives an identification A′ ≃ TM ⊕ k, where the anchor becomes prTM

and the bracket is given by:

[(X, ξ), (Y, η)]A′ = ([X,Y ],Ω(X,Y ) + ∇Xη −∇Y ξ + [ξ, η]k), (6.2)

for all X, Y ∈ X1(M), ξ, η ∈ Γ(k). Here:

- Ω is C∞(M)-bilinear, so that Ω ∈ Ω2(M ; k);
- ∇ is a connection on k preserving [·, ·]k with curvature R∇ = ad(Ω).

Then, one finds that, for α ∈ Γ(B) and ξ ∈ Γ(k):

iXL(α, ξ) = ∇X(ξ) + Ω(X, ρB(α)).

In the notation of Proposition 5.13, we have that

U(α, X) = Ω(ρB(α), X), ∇L = ∇.

Here is a class of bundle of ideals which are of principal type:

Proposition 6.5. Let k ⊂ A be a bundle of ideals such that:
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(i) k is a locally trivial Lie algebra bundle;
(ii) the typical fiber (g, [·, ·]) of k satisfies:

H0(g, g) = H1(g, g) = 0.

Then k ⊂ A is of principal type, and in particular it is partially split.

Corollary 6.6. If k ⊂ A is a bundle of semi-simple Lie algebras, then it is of principal 
type.

Proof. For a semi-simple Lie algebra g, we have that Hi(g, g) = 0, for all i. Also, k
is automatically a locally trivial Lie algebra (see Remark 6.2), hence Proposition 6.5
applies. !

Proof of Proposition 6.5. Consider the Lie algebroid gl(k) whose sections are the deriva-
tions of the vector bundle k, i.e., the bundle maps DX : Γ(k) → Γ(k) satisfying:

DX(fξ) = fDX(ξ) + X(f)ξ,

for all f ∈ C∞(M). The anchor of gl(k) assigns to the section DX its symbol X ∈ X(M), 
and the Lie bracket is the commutator of derivations. We let A′ ⊂ gl(k) be the Lie 
subalgebroid whose sections are the derivations of the bracket [·, ·]k

Γ(A′) = Der(k, [·, ·]k).

The fact that A′ is a Lie subalgebroid and transitive, follows from (i).
Now, to prove the proposition, let B = A/k and consider the map

ψ : A → A′ ×B, α *→ (∇k
α, [α]).

We claim that this is an injective Lie algebroid morphism, with image the fiber product 
A′ ×TM B. That ψ is a Lie algebroid morphism follows the fact that both components 
∇k : A → A′ and pr : A → B are Lie algebroid maps. On the other hand, if α ∈ A is 
such that ψ(α) = 0, then α ∈ kx satisfies:

∇k
α = [α,−]kx = 0.

But (ii) is equivalent to ad : kx → Der(kx) being an isomorphism of Lie algebras. Injec-
tivity of these maps shows that α = 0 and so ψ is injective. Finally, surjectivity of this 
map implies that the map ψ is onto A′ ×TM B. !

Remark 6.7. As observed in the proof, condition (ii) of Proposition 6.5 is equivalent to 
ad : g → Der(g) being a Lie algebra isomorphism. Therefore, G := Aut(g) is a Lie group 
integrating g and we have the principal G-bundle of g-frames:
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P := {ϕ : g → kx : x ∈ M, ϕ is a Lie algebra isomorphism}.

The transitive Lie algebroid A′ → M in the proof is isomorphic to the Atiyah Lie 
algebroid of P and hence is integrable.

We also have a global version of Proposition 6.5.

Proposition 6.8. Let Φ : G → H be a groupoid map covering the identity which is a 
surjective submersion, and let φ : A → B be the induced Lie algebroid map. If k := kerφ
satisfies the conditions of Proposition 6.5 then Φ is partially split.

Proof. The assumption implies that

G′ :=
{
Lie algebra isomorphisms kx ∼−→ ky, x, y ∈ M

}
⇒ M

is a transitive Lie groupoid. The map (2.1) Ad : G → G′ together with the map Φ induce 
a groupoid map into the fiber product:

Ψ := (Ad,Φ) : G → G′ ×M×M H.

Then Ψ integrates the Lie algebroid map ψ from the proof of Proposition 6.5. Since ψ
is an isomorphism, it follows that Ψ is a local diffeomorphism. On the other hand, since 
G′ is transitive, it follows that pr2 : G′ ×M×M H → H is of principal type, so by the 
example of Subsection 3.5, pr2 admits a multiplicative Ehresmann connection E. The 
preimage of E under Ψ is a multiplicative Ehresmann connection for Φ. !

6.7. Bundles of ideals of principal type with kernel flat IM connections

Let k ⊂ A be an ideal of principal type, for which the 2-form (6.2) is center-valued:

Ω ∈ Ω2(M, z(k)).

Then the corresponding connection ∇ is flat, so we are in the case of an IM Ehres-
mann connection which is kernel flat. This kind of partially split ideals can be explicitly 
described as follows.

Let B ⇒ M be a Lie algebroid and let k → M be a Lie algebra bundle with a flat 
connection ∇L preserving the bracket [·, ·]k. Given any center-valued, d∇L

-closed, 2-form 
Ω ∈ Ω2(M, z(k)) one can define a center-valued tensor U by:

U(α, X) := Ω(ρB(α), X).

One checks that U satisfies (S3), so that (S1’)-(S3’) hold. Therefore, we obtain a partially 
split bundle of ideals k ⊂ A with flat coupling data. Moreover, it is of principal type: we 
have A ≃ A′×TM B, where A′ = TM ⊕ k is the transitive Lie algebroid with Lie bracket:
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[(X, ξ), (Y, η)]B = ([X,Y ],Ω(X,Y ) + ∇L
Xη −∇L

Y ξ + [ξ, η]k).

Note that in this case the B-cocycle λ in Remark 5.20 is given by (ρB)∗(Ω), so its 
class is the image of the map:

(ρB)∗ : H2(M, z(k)) → H2(B, z(k)).

When Ω = d∇L θ, with θ ∈ Ω1(M, z(k)) we have [λ] = 0 and the resulting bundle of 
ideals k ⊂ A is isomorphic to a “trivial” coupling data (∇L, 0), via the map:

A → B ⊕ k, (α, ξ) *→ (α, θ(α) + ξ).

On the other hand, given any partially split bundle of ideals k ⊂ A with flat coupling 
data (∇L, U) and a center-valued, d∇L

-closed, 2-form Ω ∈ Ω2(M, z(k)), we obtain a 
“gauge transformed” bundle of ideals with coupling data (∇L, eΩU) where:

eΩU(α, X) := U(α, X) + Ω(ρB(α), X).

The bracket of the underlying algebroid B changes by replacing the cocycle λ with the 
cocycle λ + (ρB)∗(Ω).

6.8. Bundles of ideals of rank one

We treat in detail the case of bundle of ideals of rank one. In this setting the existence 
of specific types of IM connections has cohomological interpretations.

Let k ⊂ A be a bundle of ideals of rank one, which, for simplicity, we assume to be 
orientable. As usual, we set B = A/k, and after choosing a splitting of the short exact 
sequence:

0 k A B 0

we obtain an identification

A ≃ B ⊕ k,

where the anchor and the Lie bracket on A become:

ρA(α, ξ) = ρB(α),
[(α, ξ), (β, η)]A = ([α,β]B ,λ(α,β) + ∇k

αη −∇k
βξ).

Notice that:

• The flat B-connection ∇k is independent of the choice of splitting of A;
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• Up to isomorphism, the representation of B on k is determined by its characteristic 
class (see, e.g., Section 11.1 in [11]):

c1(k) ∈ H1(B).

Explicitly, if we choose a trivialization k ≃ M ×R, then

∇k
αf = LρB(α)f + iV (α)f, (f ∈ C∞(M))

for a cocycle V ∈ Ω1(B), which is a representative of c1(k). If we change the trivi-
alization k ≃ M × R by multiplying with a non-zero function h, then V changes by 
ρ∗B(d log |h|) = dB log |h|.

• The k-valued 2-form λ ∈ Ω2(B; k) is dB-closed, so it determines a class:

c2(A) := [λ] ∈ H2(B; k).

This class is well-defined: a different splitting of A is determined by an element 
Z ∈ Ω1(B; k), and this has the effect of changing λ by dB Z.

The anchor ρB : B → TM , being a Lie algebroid morphism, defines a map in coho-
mology

ρ∗B : H1(M) −→ H1(B).

The class c1(k) belongs to the image of this map if and only if there exists a flat 
connection ∇ on k such that, for all α ∈ Γ(B) and ξ ∈ Γ(k):

∇k
αξ = ∇ρB(α)ξ. (6.3)

To see this, choose a trivialization k ≃ M × R, giving rise to the representative V of 
c1(k). We have a one-to-one correspondence between flat connections ∇ on M × R and 
closed forms θ ∈ Ω1(M), given by:

∇Xf = LXf + θ(X)f, (f ∈ C∞(M))

Under this correspondence, we have that (6.3) is equivalent to V = ρ∗Bθ. The class

c1(∇) := [θ] ∈ H1(M)

is just the characteristic class of the representation of TM on k given by ∇, and we have 
by definition:

ρ∗B(c1(∇)) = c1(k).
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Below, whenever c1(k) belongs to the image of ρ∗B , and we choose a flat connection 
satisfying (6.3), we will say that “∇ is a flat connection with ρ∗B∇ = ∇k”. In particular, 
when this happens, ∇ is a B-invariant connection (see Definition A.9). Also, we have a 
map in cohomology with coefficients in k, for the representations defined by ∇ and ∇k:

ρ∗B : H•(M ; k) −→ H•(B; k),

and another map in IM cohomology, for the differential d∇
IM (see Lemma A.11):

H•
IM(B; k) −→ H•(B; k).

After these preliminaries, we can now state a result about the various special IM 
Ehresmann connections one can have for a bundle of ideals of rank one:

Proposition 6.9. Let k ⊂ A be a bundle of ideals of rank one, which is orientable.

(i) The Lie algebroid A is isomorphic to a product, A ≃ B ×R, with k ≃ 0M ×R (see 
Subsection 6.2), if and only if

c1(k) = 0 and c2(A) = 0.

(ii) There exists a totally flat IM Ehresmann connection for k ⊂ A if and only if

c1(k) ∈ Im(H1(M) → H1(B)) and c2(A) = 0.

(iii) There exists a leafwise flat IM Ehresmann connection for k ⊂ A if and only if k
admits a B-invariant connection ∇ and c2(A) = 0.

(iv) There exists a kernel flat IM Ehresmann connection for k ⊂ A if and only if

c1(k) ∈ Im(H1(M) → H1(B)) and c2(A) ∈ Im(H2
IM(B; k) → H2(B; k)),

where the last map is for a flat connection ∇ with ρ∗B∇ = ∇k.
(v) The Lie bundle of ideals k ⊂ A is of principal type if and only if

c1(k) ∈ Im(H1(M) → H1(B)) and c2(A) ∈ Im(H2(M ; k) → H2(B; k)),

where the last map is for a flat connection ∇ with ρ∗B∇ = ∇k.

Before we look at the proof, let us discuss the general question of existence of partial 
splittings for ideals of rank one:

Proposition 6.10. A rank one bundle of ideals k ⊂ A admits an IM Ehresmann connection 
if and only if:
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(i) k admits a B-invariant connection ∇L, i.e., for all α ∈ B:

∇k
α = ∇L

ρB(α) and iρB(α)R
∇L = 0,

(ii) and c2(A) has a representative of the form

λ(α,β) = iρB(β)U(α),

where U : B → T ∗M ⊗ k is a linear map satisfying the structure equation:

U([α,β]B) = L ∇L

ρB(α)U(β) − iρB(β) d∇L

U(α),

for all α, β ∈ Γ(B).

Proof. From the theory of couplings, discussed in Section 5.4, k ⊂ A is partially split if 
and only if there exists a pair (∇L, U) and a splitting A ≃ B⊕ k such that ∇k

α = ∇L
ρB(α), 

λ(α, β) = U(α, ρB(β)), and the structure equations (S2) and (S3) hold. It follows easily 
that (S2) is equivalent to invariance of the connection, and that (S3) is equivalent to the 
equation in (ii) – as was mentioned already in the proof of Proposition 5.19. !

Assume then that we have an IM Ehresmann connection with coupling data (∇L, U), 
as in the previous proposition. After fixing a trivialization k ≃ M ×R, we can write the 
connection as

∇L
X = LX + θ(X),

for a unique 1-form θ ∈ Ω1(M). Then c1(k) = [V ] where V ∈ Ω1(B) satisfies:

V (α) = iρB(α)θ.

Moreover, regarding U as a map U : B → T ∗M , c2(A) = [λ] where λ ∈ Ω2(B) satisfies:

λ(α,β) = iρB(β)U(α).

The structure equations from (i) and (ii) become:

iρB(α) d θ = 0, (S2”)
U([α,β]B) = LρB(α)U(β) − iρB(β) dU(α) (S3”)

+ θ(ρB(α))U(β) − iρB(β)
(
θ ∧ U(α)

)
,

for all α, β ∈ Γ(B). This follows from the relations:

R∇L(X,Y ) = d θ(X,Y ), d∇L

ω = dω + θ ∧ ω, L ∇L

X ω = LXω + θ(X)ω.
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Recall that a class c ∈ Hk(B; V ) is said to be tangential if it has some representative 
P ∈ Ωk(B; V ) satisfying

ρB(α) = 0 =⇒ iαP = 0.

The previous discussion implies the following obstruction for existence of IM Ehresmann 
connection:

Corollary 6.11. If a rank one bundle of ideals k ⊂ A admits an IM Ehresmann connection, 
then the classes c1(k) ∈ H1(B) and c2(A) ∈ H2(B; k) are tangential.

Proof of Proposition 6.9. (i) If A is isomorphic to a product, then clearly c1(k) = 0 and 
c2(A) = 0. Conversely, c2(A) = 0 means that there exists a splitting A ≃ B × k such 
that λ = 0, and c1(k) = 0 means that there exists a trivialization k ≃ M × R such that 
V = 0. Thus A is a product.

(ii) Assume that k ⊂ A admits a totally flat IM connection, with coupling data 
(∇L, U = 0). Then, as remarked above c1(k) belongs to the image of ρ∗B, and λ = 0, so 
clearly c2(A) = 0. Conversely, under the assumptions, there exists a splitting A ≃ B⊕ k, 
under which λ = 0 and there is a flat connection ∇L on k inducing ∇k. Then (∇L, U) is 
the coupling data of a totally flat IM connection for k.

(iii) Assume that k ⊂ A admits a leafwise flat IM connection, with coupling data 
(∇L, U). This means that λ = 0, so clearly, c2(A) = 0, and as remarked before ∇L

is B-invariant. Conversely, under the assumptions, there exists a splitting A ≃ B × R, 
under which λ = 0, and there is a connection ∇L which is B-invariant. Then the pair 
(∇L, U = 0) is the coupling data of a leafwise flat IM connection for k.

(iv) Assume that k ⊂ A admits a kernel flat IM connection, with coupling data 
(∇L, U). This means that ∇L is flat, so c1(k) is in the image of ρ∗B . By Proposition 5.19, 
the pair (d∇L

U, U) is an IM 2-form on B with values in k, which is clearly closed 
for the differential d∇L

IM from Proposition A.10, and which is sent under the map from 
Lemma A.11 to λ. So c2(A) it the image of [γ]. Conversely, the assumptions imply the 
existence of a flat connection ∇L on k which is B-invariant, and of a splitting A ≃
B ⊕ k, under which λ is in the image of Ω2

IM(B; k) → Ω2(B; k) (see Lemma A.11) of an 
element γ which is d∇L

IM -closed. This implies that γ = (d∇L

IM U, U). The second part of 
Proposition 5.19 implies that (∇L, U) is the coupling data of a kernel flat IM connection.

(v) Assume that k ⊂ A is of principal type, i.e., there exists a transitive Lie algebroid 
k ↪→ A′ " TM so that A ≃ A′ ×TM B. As discussed in Subsection 6.6, after choosing a 
splitting A′ ≃ TM ⊕ k, the Lie bracket on A′ is given by

[(X, ξ), (Y, η)]A′ = ([X,Y ],Ω(X,Y ) + ∇Xη −∇Y ξ), (6.4)

where ∇ is a flat connection on k and Ω ∈ Ω2(M ; k) is d∇-closed. Using the induced 
splitting A ≃ B⊕ k, we obtain that ∇k

α = ∇ρB(α) and λ = ρ∗B(Ω); so c1(k) and c2(A) are 
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in the image of ρ∗B . Conversely, if this happens, we have a flat connection ∇ on k such 
that ∇k

α = ∇ρB(α), and a d∇-closed 2-form Ω ∈ Ω2(M ; k) such that λ = ρ∗B(Ω), for some 
splitting. This means precisely that A ≃ A′×TM B, where A′ = TM ⊕ k is the transitive 
Lie algebroid with bracket (6.4). !

Appendix A. Multiplicative and infinitesimal multiplicative forms

We recall here a few results about multiplicative and infinitesimal multiplicative (IM) 
forms that are required throughout the paper. For us, it will be specially important forms 
with coefficients, since they appear as “connection 1-forms” for Ehresmann connections. 
More details on the results mentioned in this section can be found in [6,7,10,14,18] and 
we only provide proofs of the results that cannot be found in those references.

A.1. Multiplicative forms and IM forms

Let G ⇒ M be a Lie groupoid with source/target s, t : G → M and multiplication 
m : G ×s t G → G.

Definition A.1. A differential form ω ∈ Ωk(G) is called multiplicative if it lies in the 
kernel of the simplicial differential:

δω := pr∗1 ω −m∗ω + pr∗2 ω = 0

where pri : G ×s t G → G are the projections on the factors.

The differential of a multiplicative form is again a multiplicative form, so we have a 
complex of multiplicative differential forms (Ω•

M(G), d). A basic fact is that two multi-
plicative forms ω, ω′ ∈ Ωk

M(G) such that ω|M = ω′|M and (dω)|M = (dω′)|M actually 
coincide, assuming that G has connected target fibers.

Denote by (A, [·, ·], ρ) the Lie algebroid of G ⇒ M . Given a multiplicative form ω ∈
Ωk

M(G) one defines two vector bundle maps µ : A → ∧k−1T ∗M and ζ : A → ∧kT ∗M by 
setting:

µ(a) = iaω|TM , ζ(a) = ia dω|TM . (A.1)

The pair (µ, ζ) satisfies the following set of equations for any α, β ∈ Γ(A):

iρ(β)µ(α) = −iρ(α)µ(β),
µ([α,β]) = Lρ(α)µ(β) − iρ(β) dµ(α) − iρ(β)ζ(α), (A.2)
ζ([α,β]) = Lρ(α)ζ(β) − iρ(β) d ζ(α).

This leads to the notion of infinitesimal multiplicative form on an arbitrary Lie algebroid 
A ⇒ M , integrable or not:
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Definition A.2. An IM k-form on a Lie algebroid (A, [·, ·], ρ) is a pair (µ, ζ), where µ :
A → ∧k−1T ∗M and ζ : A → ∧kT ∗M are bundle maps satisfying (A.2).

The space of IM forms is denoted by Ωk
IM(A) and it becomes a cochain complex with 

differential given by

dIM : Ωk
IM(A) → Ωk+1

IM (A), dIM(µ, ζ) := (ζ, 0).

For a target 1-connected Lie groupoid G ⇒ M with Lie algebroid A ⇒ M the assignment 
ω *→ (µ, ζ) given by (A.1) is an isomorphism of complexes:

(Ω•
M(G),d) ≃ (Ω•

IM(A),dIM).

A.2. Multiplicative forms and IM forms with coefficients

This subsection follows [14], where all claims are proven. Let G be a Lie groupoid and 
V a G-representation. We will work with differential forms on G with coefficients in s∗V
(instead of t∗V , as in [14]), which we denote by

Ω•(G;V ) := Ω•(G; s∗V ).

Similarly, denote by Ω•(G(k); V ) the space of differential forms on the manifold G(k) of 
composable k-strings of arrows, with values in the vector bundle (s ◦ prk)∗(V ) → G(k), 
where pri : G(k) → G is the projection onto the i-th component.

Definition A.3. A form ω ∈ Ω•(G; V ) is called multiplicative if

δω = 0,

where δ : Ω•(G; V ) → Ω•(G(2); V ) is the simplicial differential defined by:

δω|(g1,g2) = g−1
2 · pr∗1 ω|g1 −m∗ω|g1g2 + pr∗2 ω|g2 . (A.3)

We denote by Ω•
M(G; V ) the space of V -valued multiplicative k-forms.

A simple way to produce multiplicative forms is by using the simplicial differential in 
degree zero δ : Ω•(M ; V ) → Ω•

M(G; V ) given by:

δω|g := g−1 · t∗ω − s∗ω, g ∈ G. (A.4)

We will see later other examples.
Let us pass to the infinitesimal level, so denote by A ⇒ M the Lie algebroid of 

G ⇒ M . Given a representation p : V → M of G, at the algebroid level we obtain a flat 
A-connection on V :
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∇ : Γ(A) × Γ(V ) → Γ(V ), (α, s) *→ ∇αs.

This means that for all α, β ∈ Γ(A), s ∈ Γ(V ), and f ∈ C∞(M), we have:

∇fαs = f∇αs, ∇α(fs) = f∇αs + (Lρ(α)f)s, ∇[α,β] = [∇α,∇β ].

We also call (V, ∇) a representation of the Lie algebroid A.
For a V -valued multiplicative k-form ω ∈ Ωk

M(G; V ), define a vector bundle map 
l : A → ∧k−1T ∗M ⊗ V by setting

l(a) := (iaω)|TM , (A.5)

and a linear operator L : Γ(A) → Ωk(M ; V ) by letting

L(α)x(v1, . . . , vk) := d
d ϵ

∣∣∣
ϵ=0

φϵ
αL(x) · ω(dx φ

ϵ
αL(v1), . . . ,dx φ

ϵ
αL(vk)) (A.6)

where φϵ
αL denotes the flow of the left-invariant vector field αL. This operator is a kind of 

differential operator with symbol l, in the sense that for any f ∈ C∞(M) and α ∈ Γ(A)
it satisfies:

L(fα) = fL(α) + d f ∧ l(α). (A.7)

Furthermore, the pair (L, l) satisfies the following set of equations:

iρ(α)l(β) = −iρ(β)l(α),
L([α,β]) = LαL(β) − LβL(α), (A.8)
l([α,β]) = Lαl(β) − iρ(β)L(α),

where, for α ∈ Γ(A) and γ ∈ Ωk(M ; V ), we denoted:

Lαγ(X1, . . . , Xk) := ∇α(γ(X1, . . . , Xk)) −
k∑

i=1
γ(X1, . . . , [ρ(α), Xi], . . . , Xk). (A.9)

Now observe that all this makes sense for an arbitrary algebroid A ⇒ M , integrable 
or not, provided one has a representation (V, ∇):

Definition A.4. Let (V, ∇) be a representation of the Lie algebroid A ⇒ M . An V -
valued IM k-form is a pair (L, l), where L : Γ(A) → Ωk(M, V ) is a linear map and 
l : A → ∧k−1T ∗M ⊗ V is a vector bundle map satisfying (A.7) and (A.8).

We denote by Ω•
IM(A; V ) the space of V -valued IM k-forms. For historical reasons, 

these are also sometime called Spencer operators. For a target 1-connected Lie groupoid 
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G ⇒ M with Lie algebroid A ⇒ M the assignment ω *→ (L, l) given by (A.5) and (A.6)
gives an isomorphism:

Ω•
M(G;V ) ≃ Ω•

IM(A;V ).

Example A.5 (V -valued forms of degree 1). For us the V -valued multiplicative forms of 
degree 1 will be important. Such a form ω ∈ Ω1

M(G; V ) is the same thing as a morphism 
of VB groupoids ω : TG → s∗V = G ×s p V covering the identity morphism Id : G → G. 
Let us explain this in more detail.

First, the tangent bundle of a Lie groupoid G ⇒ M is a VB-groupoid:

TG G

TM M

Next, if p : V → M is a representation of G, then we have the groupoid extension 
G ×M V := G ×s p V ⇒ M , where composition of arrows is given by:

(g, v) · (h,w) = (gh, h−1 · v + w).

It can also be viewed as a VB-groupoid:

G ×M V G

0M M

Now an V -valued multiplicative differential form ω ∈ Ω•
M(G; V ) is just a map:

ω : TG → s∗V = G ×M V, vg *→ (g,ω(vg)),

which is a morphism of VB groupoids covering the identity. In other words, it is a 
groupoid morphism, which is a vector bundle map making the diagram commute:

TG ω G ×M V

G Id G

TM 0M

M M
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A similar discussion holds at the infinitesimal level for V -valued IM forms of degree 
1: a 1-form (L, l) ∈ Ω1

IM(A; V ) is the same thing as a VB algebroid morphism θ∨ : TA →
A ⊕ V covering the identity morphism Id : A → A, as we now explain.

First, the tangent bundle of a Lie algebroid A ⇒ M is a VB-algebroid:

TA A

TM M

where the double arrow is used to distinguish the algebroid projections from the alge-
broid morphisms. Next, given a representation (V, ∇) of A, then we have the algebroid 
extension A ⊕ V with anchor ρ ◦ prA and bracket:

[(α, s), (β, t)] = ([α,β],∇αt−∇βs).

It can also be viewed as a VB-algebroid:

A⊕ V A

0M M

Now, given a morphism of VB algebroids θ∨ : TA → A ⊕ V covering the identity 
morphism Id : A → A:

TA
θ∨

A⊕ V

A
Id

A

TM 0M

M M

we can define an V -valued IM form (L, l) ∈ Ω1
IM(A, V ) by setting for any section α ∈ Γ(A)

and v ∈ TM :

L(α)(v) := prV (θ∨(dα(v))),
l(α) := prV θ∨(α̂)|M ,

where α̂ ∈ X(A) is the vertical lift of the section α. Conversely, given an V -valued IM 
form (L, l) ∈ Ω1

IM(A; V ) there exists a unique VB algebroid morphism θ∨ : TA → A ⊕V

which covers the identity and corresponds to (L, l) under the above assignment.
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A.3. Differentiation of multiplicative forms with coefficients

In this section we discuss differentiation of multiplicative forms with coefficients. The 
material here seems to be new, so we include detailed proofs.

On a manifold M , in order to be able to differentiate forms with coefficients in a 
vector bundle p : V → M one needs to choose a connection ∇. This gives a ∇-de Rham 
operator d∇ : Ωk(M ; V ) → Ωk+1(M ; V ) defined by

d∇ ω(X0, . . . , Xk) :=
∑

i

(−1)i∇Xiω(x0, . . . , X̂i, . . . , Xk)+

+
∑

i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

Note that d∇ is a differential if and only if ∇ is flat.
Now, consider a representation p : V → M of a Lie groupoid G ⇒ M , with Lie 

algebroid A ⇒ M . If we fix a connection ∇ on V , we can take the pullback connection 
∇s on s∗V → G and use it to differentiate V -valued forms. However, in general, given 
a multiplicative form ω ∈ Ωk

M(G; V ), its differential d∇s
ω will not be a multiplicative 

form. We need the connection ∇ to be compatible with the representation.

Definition A.6. Let G ⇒ M be a Lie groupoid and p : V → M a G-representation. A 
(usual) connection ∇ on V is called G-invariant if the isomorphism of vector bundles:

s∗V → t∗V, (g, v) *→ (g, g · v),

preserves the connections ∇s := s∗∇ and ∇t := t∗∇.

The G-invariance of a connection is equivalent to the commutation relation:

d∇s
δ = δ d∇,

where δ : Ω•(M ; V ) → Ω•
M(G; V ) is the degree zero simplicial differential (A.4). It turns 

out that this is equivalent to require this commutation relation to hold for any simplicial 
degree. We only need the case of degree 1:

Proposition A.7. Let G ⇒ M be a Lie groupoid, let p : V → M be a G-representation, 
and let ∇ be a connection on V . We denote by ∇s both the pullback connections on 
s∗V → G and on (s ◦pr2)∗V → G(2). The ∇s-de Rham differential d∇s

and the simplicial 
differential (A.3) commute:

d∇s
δ = δ d∇s

,

if and only if the connection ∇ is G-invariant. In particular, if this is the case, then d∇s

maps multiplicative forms to multiplicative forms.
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Proof. Let E → M be a vector bundle equipped with a linear connection ∇. Given a 
map φ : N → M , denote by ∇φ the pullback connection on φ∗V . Then:

d∇φ

φ∗ = φ∗ d∇ .

Now, we can write the simplicial differential with coefficients as:

δ = Φ∗ pr∗1 −m∗ + pr∗2,

where Φ is the vector bundle isomorphism covering the identity:

Φ : (s ◦ pr1)∗V = (t ◦ pr2)∗V → (s ◦ pr2)∗V, (g, h, v) *→ (g, h, h−1v).

The condition that the connection ∇ is G-invariant is easily seen to be equivalent to this 
map preserving the pullback connections:

(t ◦ pr2)∗∇ = pr∗2 ∇t, (s ◦ pr2)∗∇ = pr∗2 ∇s.

This condition, in turn, is equivalent to:

Φ∗ pr∗1 d∇ = d∇s
Φ∗ pr∗1 .

Hence, we conclude that ∇ is G-invariant if and only if d∇s
δ = δ d∇s

. !

We now pass to infinitesimal level. First we deduce the infinitesimal analogue of the 
G-invariance condition on a connection:

Proposition A.8. Let G ⇒ M be an t-connected Lie groupoid with Lie algebroid A ⇒ M

and let p : V → M be a G-representation. Denote by ∇A the corresponding flat A-
connection on V . A connection ∇ is G-invariant if and only if

∇A
a = ∇ρ(a) and R∇(ρ(a), v) = 0, (A.10)

for all a ∈ Ax, v ∈ TxM , and x ∈ M .

Proof. We claim that G-invariance of ∇ is equivalent to the statement that for any path 
g(t) ∈ G, one has a commutative diagram:

Vs(g(0))
τ∇
s(g(t))

g(0)

Vs(g(t))

g(t)

Vt(g(0))
τ∇
t(g(t))

Vt(g(t))

(A.11)
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where τ∇ denotes parallel transport for the connection ∇. To see this note that the 
G-invariance condition on ∇ is equivalent to require the map Φ : s∗V → t∗V , (g, v) *→
(g, g · v), to preserve parallel transport along any curve g(t):

Φ ◦ τ∇
s

g(t) = τ∇
t

g(t).

The claim now follows by observing that since the connections are obtained by pulling 
back ∇ along s and t, we have:

τ∇
s

g(t) = (g(t), τ∇s(g(t))), τ∇
t

g(t) = (g(t), τ∇t(g(t))).

Fix g ∈ G, and let x := t(g). Since G is t-connected we can choose a path g(ε)
in the target fiber t−1(x) with g(0) = 1x and g(1) = g. Then we have the A-path 
a : [0, 1] → T ∗M , a(ε) := g−1(ε)g′(ε), and parallel transport along a(ε) for the A-
connection ∇A amounts to acting by the inverse of g:

τ∇
A

a : Vt(g) → Vs(g), τ∇
A

a (v) = g−1v.

We prove the proposition by showing the equivalence between G-invariance in the 
form of the diagram (A.11) and conditions (A.10). If we assume G-invariance, then given 
any a ∈ Ax we choose a path g(ε) in the target fiber t−1(x) such that g(0) = 1x and 
g′(0) = a. Then the A-path a(ε) := g−1(ε)g′(ε) satisfies

τ∇
A

a = τ∇s◦g.

Since s ◦ g is the base path of a, by differentiating at t = 0, we obtain:

∇A
a = ∇ρ(a).

Next, given a ∈ Ax and v ∈ TxM we choose a smooth family of paths g(t, ε) where 
for each fixed t the path ε *→ g(t, ε) lies in the target fiber t−1(x(t)) and starts at an 
identity, g(t, 0) = 1x(t), and moreover:

d g

d ε
(0, 0) = a,

d
d t

(s ◦ g)(0, 0) = v.

It follows from diagram (A.11) that for the family γ(t, ε) := s(g(t, ε)) the ∇-parallel 
transports commute:

τ∇ε,→γ(t,ε) ◦ τ∇t,→γ(t,0) = τ∇t,→γ(t,ε) ◦ τ∇ε,→γ(0,ε).

By differentiation, this gives:

R∇(ρ(a), v) = R∇
(d γ

d ε
(0, 0), d γ

d t
(0, 0)

)
= 0.
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This argument can be reversed, to prove the converse. If the curvature condition in 
(A.10) holds for all x ∈ M , a ∈ Ax and v ∈ TxM , then one obtains that for any smooth 
family of paths g(t, ε), where for each fixed t the path ε *→ g(t, ε) lies in a target fiber, 
the ∇-parallel transports commute:

τ∇ε,→γ(t,ε) ◦ τ∇t,→γ(t,0) = τ∇t,→γ(t,ε) ◦ τ∇ε,→γ(0,ε),

where γ(t, ε) := s(g(t, ε)). Then if the relationship between connections in (A.10) holds, 
we conclude that (A.11) must hold for the path g(t) := g(t, 1). Since one can obtain any 
path g(t) in G in this way, the result follows. !

This motivates the following:

Definition A.9. Let A ⇒ M be a Lie algebroid and let (V, ∇A) be an A-representation. 
We call a (usual) connection ∇ on V A-invariant if (A.10) holds.

In the presence of an invariant connection we have an operator on IM-forms, which is 
the infinitesimal version of the operator on multiplicative forms that we saw before:

Proposition A.10. Let A ⇒ M be a Lie algebroid and (V, ∇A) an A-representation. An 
A-invariant connection ∇ on V induces operator on IM-forms, as follows:

d∇
IM : Ωk

IM(A, V ) → Ωk+1
IM (A, V ), (L, l) *→ (d∇ L,L− d∇ l).

If ∇ is flat, this operator is a differential.

Proof. If ∇A
a = ∇ρ(a) then we obtain:

Lα = L ∇
ρ(α).

On the other, this together with the condition R∇(ρ(a), v) = 0, gives:

d∇ Lα − Lα d∇ = d∇ L ∇
ρ(α) − L ∇

ρ(α) d∇

= (d∇)2iρ(α) − iρ(α)(d∇)2

= R∇ ∧ (iρ(α) ·) − iρ(α)(R∇ ∧ ·) = −(iρ(α)R
∇) ∧ · = 0.

It follows that if (L, l) satisfies the IM conditions (A.8), so does (d∇ L, L − d∇ l). !

There is also a natural map:

Ωk
IM(A, V ) →Ωk(A, V ), (L, l) *→ ωl (A.12)

where ωl(α1, . . . ,αk) := l(α1)(ρ(α2), . . . , ρ(αk)).
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The corresponding operation on the Lie groupoid level is the restriction of multiplicative 
forms to the target fibers. It is immediate to check:

Lemma A.11. Let A ⇒ M be a Lie algebroid and (V, ∇A) an A-representation. If ∇ is 
an A-invariant connection then (A.12) intertwines the differentials:

(Ω•
IM(A, V ),d∇

IM) → (Ω•(A, V ),d∇A

).

Hence, when ∇ is flat we obtain a map of complexes, and so a map in cohomology:

H•
IM(A, V ) → H•(A, V ). (A.13)

Remark A.12. In the flat case we also obtain a alternative way of expressing IM-forms 
with coefficients in V , which is similar to (in fact extends) the case of trivial coefficients. 
Namely, an A-invariant connection ∇ gives a 1:1 correspondence between maps L :
Γ(A) → Ωk(M ; V ) with symbol l : A → ∧k−1T ∗M ⊗V and pairs of tensors (µ, ζ), where 
µ : A → ∧k−1T ∗M ⊗ V and ζ : A → ∧kT ∗M ⊗ V , by setting:

µ := l, ζ := L− d∇ l.

When ∇ is flat, one checks that (L, l) is an IM-form if and only if the pair (µ, ζ) satisfies 
the ∇-analogue of equations (A.2), namely:

iρ(β)µ(α) = −iρ(α)µ(β),
µ([α,β]) = L ∇

ρ(α)µ(β) − iρ(β) d∇ µ(α) − iρ(β)ζ(α),
ζ([α,β]) = L ∇

ρ(α)ζ(β) − iρ(β) d∇ ζ(α).

A.4. Linear forms

A differential form ω ∈ Ωk(F ) on the total space of a vector bundle F → M is called
linear if

m∗
tω = tω, ∀t > 0,

where mt : F → F denotes fiberwise multiplication by t. Let Ωk
lin(F ) the space of linear 

k-forms on F .
To any vector bundle map Θ : F → ∧kT ∗M covering the identity, one can associate 

a linear k-form:

Θ∗(αk
can) ∈ Ωk

lin(F ),

where αk
can ∈ Ωk(∧kT ∗M) is the tautological k-form:
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αk
can|ξ := pr∗∧kT∗M (ξ).

We have the following decomposition of linear forms:

Lemma A.13. Any linear k-form ω ∈ Ωk
lin(F ) can be decomposed as:

ω = Ξ∗(αk
can) + d Θ∗(αk−1

can ),

for unique linear maps

Ξ : F → ∧kT ∗M, Θ : F → ∧k−1T ∗M.

Moreover, ω is closed if and only if ω = dΘ∗(αk−1
can ), i.e., if and only if Ξ ≡ 0.

We have the corresponding notion on a VB groupoid:

Definition A.14. Given a VB groupoid:

F G

E M

a form ω ∈ Ωk
M(F ) is called a linear multiplicative form if it is multiplicative for the 

groupoid F ⇒ E and linear for the vector bundle F → G.

One important example is the canonical symplectic form ωcan ∈ Ω2
M(T ∗G) on the 

cotangent VB groupoid

T ∗G G

A∗ M

where A denotes the Lie algebroid of G. The canonical primitive of ωcan, i.e., the Liouville 
1-form α1

can ∈ Ω1
M(T ∗G), is also a linear multiplicative 1-form.

We now turn to the infinitesimal version of these results.

Definition A.15. A linear IM form on a VB algebroid

B A

E M
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is an IM form (µ, ζ) ∈ Ωk
IM(B) on the algebroid B → E satisfying

m∗
tµ = t µ, m∗

t ζ = t ζ, ∀t > 0,

where mt : B → B is the scalar multiplication on the vector bundle B → A.

Under the correspondence between multiplicative forms and IM forms, linear multi-
plicative forms on a VB groupoid correspond to linear IM forms on the associated VB 
algebroid.

For any Lie algebroid A → M , its cotangent algebroid is a VB algebroid:

T ∗A A

A∗ M

and carries a canonical closed, linear, multiplicative 2-form µcan ∈ Ω2
IM(T ∗A), namely 

the canonical isomorphism (called the reverse isomorphism in [26]):

µcan : T ∗A → T ∗A∗.

This IM 2-form is exact with canonical primitive the linear, multiplicative 1-form 
(fcan, µcan) ∈ Ω1

IM(T ∗A), where fcan : T ∗A → R is the tautological map

fcan(α) = α
( d

d t

∣∣
t=0e

tu
)
, for α ∈ T ∗

uA.
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