
Limitations of Perturbation-based Explanation

Methods for Temporal Graph Neural Networks

Minh N. Vu and My T. Thai

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA

Email: {minhvu, mythai}@cise.ufl.edu

Abstract—Recently, there has been significant interest in Tem-
poral Graph Neural Networks (TGNN) because of their capability
to learn from time-evolving graph-related data. However, similar
to Graph Neural Network (GNN), explaining the predictions of
TGNN is non-trivial due to its black-box and complex nature. A
major approach for this problem in GNNs is by analyzing the
model’s responses to some perturbations of the model’s inputs,
called perturbation-based explanation methods. These methods
are convenient and flexible as they do not require access to
the model’s internals. However, a question arises: Does the lack
of internal access limit these methods from uncovering crucial
information about the predictions? Motivated by the question,
this study explores the limitations of some popular classes of
perturbation-based explanation methods. By constructing specific
instances of TGNNs, we show (i) Node-perturbation is not reliable
for identifying the paths that carry out the prediction, (ii) Edge-
perturbation cannot reliably determine all the nodes contributing
to the prediction and (iii) perturbing both nodes and edges does
not consistently help identify the graph components responsible
for the temporal aggregation in TGNNs. Our experimental results
further demonstrate situations for failures of explanations can
occur frequently in both synthetic and real-world scenarios. Thus,
they emphasize the importance of perturbation choices and the
internal information of the explained model in determining faithful
explanations of the model’s predictions.

I. INTRODUCTION

Graph Neural Networks have been achieving successful

performance in many practical graph-related problems in-

cluding social networks, citation networks, and biological

networks [1], [2], [3]. Various architectures with elegant designs

and competitive performance have been introduced in recent

years [4], [5], [6]. Along those works, a notable branch of

GNNs is developed to integrate temporal information into the

graph structure, called Temporal Graph Neural Networks [7],

[8], [9]. This variant has shown promising outcomes in domains

where the data has strong correlations with time such as

transportation and weather forecast.

Since GNNs and TGNNs inherit the black-box nature of

neural networks, interpreting their predictions remains non-

trivial as internal information about the models is not available.

In response, many explanation methods, called explainers, have

been introduced to explain local predictions of GNNs [10],

[11], [12], [13]. These methods generally rely on the model’s

responses to some perturbations of the input to find the

explanations. While the approach has shown many heuristic

successes, there is little theoretical result that follows. In

This work is partially supported by the National Science Foundation under
Grant No. FAI-1939725 and SCH-2123809.

particular, is there any information on the model’s internal

behavior that a given method of perturbation cannot uncover?

Addressing this question will help us design better explainers

for variants of GNNs, such as TGNNs and many other

architectures to come. More importantly, analyzing the limits

of explaining methods also helps prevent false claims and

incorrect inferences from the explanations.

Our work focuses on the limit of perturbation-based expla-

nation methods when applying to TGNN, i.e. what information

cannot be revealed by some given class of popular perturbations.

The classes are categorized based on the input’s features that

they perturb: node-only, edge-only, and node-and-edge. We

introduce a proof structure, called Unidentifiable Proof, through

which the limit of perturbation methods can be formalized and

examined. For each class of explainers, we identify a training

task (Fig. 1) and construct some models such that there is no

method in the class that can identify the internal dynamics of

those models when generating predictions. Specifically, given

a constant K depending on the model’s parameters, we show:

• Node-perturbation methods bounded by K cannot identify

the path carrying out the message passing. (Fig. 1a).

• Edge-perturbation methods cannot identify all nodes

contributing to a max aggregation. (Fig. 1b).

• Node-and-Edge-perturbation methods bounded by K
cannot identify which nodes carry out the temporal

aggregation. (Fig. 1c).

In practice, K is the result of training and can be arbitrarily

large. Thus, our analysis is relevant and applicable to many

practical scenarios as large perturbations are often weighted

lightly due to the notion of locality [14]. While most of our

results are applicable to GNN, we focus on TGNN due to its

lack of study. Another reason is, as TGNNs add the temporal

dimension to GNNs, it introduces a corresponding temporal

dimension to the explaining problem. We find studying this

temporal aspect novel and interesting by itself.

The outline of this manuscript is as follows. Sect. II

and Sect. III discuss the related works and preliminaries,

respectively. Our proposed Unidentifiable Proof and some

related notions are introduced in Sect. IV. Sects. V, VI and

VII formally describe and prove the type of information that

Node-perturbation, Edge-perturbation, and Node-and-Edge-

perturbation cannot identify. Sect. VIII provides synthetic and

real-world experiments showing the impact of perturbation

schemes on the explaining tasks. Sect. IX concludes the paper

618

2023 IEEE International Conference on Data Mining (ICDM)

DOI 10.1109/ICDM58522.2023.00071
979-8-3503-0788-7/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

with discussions on the theoretical implications and practical

aspects of our results.

II. RELATED WORKS

To our knowledge, there is currently no work theoretically

studying the limits of explanations for GNNs or TGNNs.

Even though many experiments evaluating explanation methods

have been conducted [15], [16], there exist many pitfalls and

challenges in those evaluations as the ground-truth explanations

are often unavailable [17]. Furthermore, with the increasing

number of datasets, model architectures, and explanation

methods, conducting comprehensive evaluations is becoming

much more challenging, especially for black-box methods of

which the computation complexity is significantly higher than

that of white-box methods [16].

Our work is directly related to black-box perturbation-based

explaining methods for GNNs, including GNNExplainer [10],

PGExplainer [18], GraphLIME [13], and some others [12],

[19], [11], [20]. Table I summarizes the target of perturbation

conducted by those explainers and the scope of results in each

section of this paper.

TABLE I: Summary of perturbation methods used by explainers and
the scope of our results.

Node Edge Sect.V Sect.VI Sect.VII

GNNExplainer [10] * * *
PGExplainer [18] * * *
GraphLIME [13] * * *

PGMExplainer [12] * * *
RelEx [19] * * *

GraphSVX [11] * * *
ZORRO [20] * * *

III. PRELIMINARIES

We now introduce some preliminaries and notations that

are commonly used in the research of GNNs and the explain-

ing problem. We also briefly introduce Dynamic Bayesian

Networks, which we use in our Unidentifiable Proofs.

Notation. For all models studied in this work, their inputs

are defined on a graph G = (V,E), where V is the set of

nodes and E is the set edges. The inputs of TGNN are a

sequence of feature vectors Xts,te := [X(ts), · · · , X(te)] and

an adjacency matrix A ∈ A := {0, 1}|V |×|V |. Here, ts, te and

X(t) ∈ R
|V |×F denote the starting time, the ending time, and

the input feature sequence. The model is referred to by its

forwarding function Φ : X ×A → Y , where X and Y are the

spaces of the input feature sequence and the output.

Graph Neural Networks. We use the general formulation

of GNNs based on the message passing mechanism [5], which

involves 3 computations: propagation, aggregation, and update:

m
(l)
ij = MSG

(

h
(l−1)
i , h

(l−1)
j

)

,

a
(l)
i = AGG

(

{

m
(l)
ji

}

j∈Ni

)

, h
(l)
i = UPD

(

a
(l)
i , h

(l−1)
i

)

where mij is the message from node i to node j, h
(l)
i is the

hidden representations of node i at layer l and Ni is node

i’s neighbors. The final representation at the last layer L,

h
(L)
i , is commonly used to generate a prediction, i.e. Y =

READOUT(h
(L)
i). Typically, the MSG, UPD, and READOUT

functions consist of trainable weights and biases followed by

an activation function. Some common choices for the AGG

are max, mean, and concatenating operations.

Temporal Graph Neural Networks. The forwarding func-

tion Φ : X ×A → Y of a TGNN can be formulated based on

its sequential implementation [7]:

H(ts) = Φ̄(X(ts), A)

H(t) = Φ̄(H(t−1), X(t), A), t = ts + 1, ...te (1)

where Φ̄ is the forwarding function of a GNN and H(t) is the

temporal messages. T := te − ts + 1 is the input’s length.

The base GNN Φ̄ typically consists of some graph layers

followed by a readout. The output Y is computed either

by applying a readout on the temporal message at the last

layer H(te) or from the node’s final hidden features. In this

manuscript, capital letters, e.g. X,Y and H , refer to external

signals of the GNN blocks, while small letters, e.g. m, a and

h, are for internal signals.

The Class of Explainers. This work studies black-box

explainers of GNNs and TGNNs based on the type of

perturbations that the explainers use:

• Node-perturbation class Gv: the explainer can perturb the

entries of the feature matrices in Xts,te .

• Edge-perturbation class Ge: the explainer can remove some

edges from the input adjacency matrix A.

• Node-and-Edge-perturbation class Ga: the explainer can

perturb both the feature matrices in Xts,te and remove

some edges in the input adjacency matrix A.

Dynamic Bayesian Networks (DBNs). The usage of DBNs

in this work is to model internal computations of TGNNs so

that theoretical analysis can be conducted. A DBN [21] can be

considered as an extension of Bayesian networks (BNs) [22] to

model the temporal dependency of systems’ variables. Temporal

information is integrated via edges between adjacent time steps.

Figs. 2a shows an example of a DBN: the Two-Timeslice

Bayesian Network (2TBN) [23]. Its equivalent BN in the form

of unrolled 4-time-step BN is shown in Figs. 2b. Readers can

find more details of DBNs in [23].

IV. UNIDENTIFIABLE PROOF FOR NEURAL NETWORKS

Given a black-box model Φ and a class of explanation

methods, the Unidentifiable Proof formalizes the idea that

certain information of Φ cannot be identified and used as the

explanation by a class of explainers. Before describing the

Unidentifiable Proof, we need to formalize the ground-truth

explanation. The first two subsections discussing about the

interpretable domain and the Transparent Model serve that

purpose. Intuitively, the interpretable domain is the domain

of all available explanations and the Transparent Model is a

domain’s member that can faithfully capture the model. The

latter part of this section describes the Unidentifiable Proof.

The general idea of the Unidentifiable Proof is by construction:

it constructs two instances of the model whose Transparent

619

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

a Multi-path aggregation task. b Multi-node aggregation task. c Temporal aggregation task

Fig. 1: Tasks for the class of (a) Node-perturbation, (b) Edge-perturbation, and (c) Node-and-Edge-perturbation explanation methods. The
dash arrows and the dotted arrows show different internal computations that the model can carry out. Our Unidentifiable Proofs show that the
corresponding explanation methods cannot differentiate the computations; thus, cannot identify/explain those internal dynamics.

a A 2TBN. b The unroll BNs.

Fig. 2: An example of a DBN and its unroll BN. The intra-slice
connections are solid and the inter-slice connections are dashed. The
brighter line can be omitted as it can be inferred from other edges.

Models are different; however, the information extracted from

them by a given class of explainers is exactly the same. This

means no explainer of that class can identify the information

differentiating the two Transparent Models. This gives us formal

notions of unidentifiable information.

A. The Interpretable Domain

Given a black-box model Φ and an input X , the explainers

solve for an interpretable representation of the prediction Φ(X),
denoted as g(Φ(X)). For the sake of explaining, g(Φ(X))
should be intuitive and interpretable; therefore, we call the

space of g(Φ(X)) the interpretable domain. For example, the

interpretable domains for GNNs have been chosen to be a

set of scores on some nodes/edges’ features, the set of linear

functions, and the set of probabilistic models on the input’s

nodes [11], [12], [13]. Intuitively, a good interpretable domain

should balance its representative power and interpretability. In

this work, we consider it to be the set of DBNs. We describe

how DBNs can help explain TGNNs in the next subsection.

B. The Transparent Model

Given an interpretable domain and a black-box model, there

is no guarantee that there exists an interpretable representation

that correctly explains Φ. Nevertheless, in some specific

contexts, an interpretable representation that can fully describe

the black-box model exists. Particularly, the work [24] embeds

a linear function inside a black-box model, which means that

a linear function can faithfully describe and explain that black-

box. This implies, for a given interpretable domain and for some

Φ, an explanation that can fully explain Φ exists. We denote

it by the Transparent Model I . In some cases, the Transparent

Model only exists for a subset of inputs S ⊆ X . We write

the Transparent Model in those cases as I(Φ(X)),X ∈ S.

Furthermore, we call the assumption I(Φ(X)) exists the

Existence assumption.

We now discuss the Transparent Model I(Φ) in terms

of DBNs. For all our Unidentifiable Proofs, the target of

explanation will be the prediction on a node of the input

graph. The explanation will be in the form of a DBN B, whose

variables are associated with the corresponding nodes in the

input graph. As each node of the input graph is physically

associated with a distinct set of neurons in the graph layers

of the TGNN, we associate each variable of B to the sending

messages of the neurons corresponding to that node in the

TGNN. Note that the sending messages from a node consist of

not only internal messages in the graph layers but also temporal

messages and output messages. These associations allow us to

capture the dynamics of the TGNN via DBN. Fig. 3 provides

an illustration of these associations.

Fig. 3: The association among variables of the explanation DBN, the
input nodes and the messages in the TGNN: Components of the same
color are associated with each other.

We say a DBN B is the Transparent Model of a model Φ if (i)

all independence claims of B about its variables are consistent

with the messages sent from the corresponding neurons in

the model and (ii) B is minimal. Condition (i) is obvious

since incorrect claims from the explanation are undesirable.

Note that, this condition implies the DBN B can represent all

communicating messages during the forward computation of Φ.

Condition (ii) enforces the explaining DBN to be as informative

as possible, i.e. it should remove unnecessary edges when they

do not help explain the model’s computations.

C. The Unidentifiable Proof

Under the Existence assumption, i.e. I(Φ(X)) exists, a good

explanation method g is expected to return g(Φ(X)) to be

similar to I(Φ(X)). This provides us a necessary condition

to theoretically analyze the limits of explanation methods:

given two models Φ1 and Φ2 with distinctively different

transparent models I(Φ1) and I(Φ2), a good explainer must

return different explanations, i.e. g(Φ1(X)) �= g(Φ2(X)). This

necessary condition is illustrated via Fig. 4.

620

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Necessary explaining conditions in the Existence assumption.

The above necessary conditions can be formalized as follows.

Given two neural networks Φ1 and Φ2, the Unidentifiable Proof

holds if their Transparent Models exist and:

g(Φ1(X)) = g(Φ2(X)), ∀g ∈ G, ∀X ∈ S ⊆ X (2)

∃X ∈ S ⊆ X s.t I(Φ1(X)) �= I(Φ2(X)) (3)

The first condition says the explanations of the two models

provided by all explainers in G are the same. The condition

can be shown by examining the forwarding computations of

the two models. The second condition states the existence of

some inputs such that their Transparent Models are different.

The main challenge in proving that condition is in concretely

determining I(Φ1(X)) and I(Φ2(X)). The two conditions

then imply the explainer cannot learn the Transparent Model

of at least one of the two models. More importantly, as

g outputs the same information in explaining both models,

any information that can be used to differentiate the two

models cannot be inferred from g. Thus, all information

differentiating I(Φ1(X)) and I(Φ2(X)) cannot be inferred

from the explainer either. The arguments, therefore, establish

the unidentifiable information for the class of explainers G.

V. UNIDENTIFIABLE PROOF FOR NODE-PERTURBATION

We now provide the Unidentifiable Proof for the Node-

perturbation class Gv . We show that for a simple max compu-

tation conducted by the TGNNs, Node-perturbation cannot

identify the messages’ propagating paths carrying out the

predictions in the model. We also elaborate on how the result

can be applied to GNNs in Sect. IX.

The Training Task. In this construction, the TGNNs operate

on a graph of 4 nodes forming a square, with the following

adjacency matrix:

A =

£

¤

¥

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

¦

§

¨

The training task is to recognize the maximum positive inputs

of node 3 and return the result at node 1:

Y
(t)
1 = max{0 and X

(t′)
3 , 0 ≤ t′ ≤ t}

Y
(t)
2 = Y

(t)
3 = Y

(t)
4 = 0 (4)

The model’s input and output at each time-step t are both in

R
4. Fig. 1a provides an illustration of this training task.

The Models. We construct two TGNNs, Φv
1 and Φv

2 , with

the same architecture but different parameters. We consider

the input’s length T = 2 for the sake of brevity. Each

node i is associated with a hidden feature vector hi =
[hri, hti, hsi, hzi, ho

+
i , ho

−
i] ∈ R

6, whose features mean:

• hri: message that node i receives.

• hti: temporal message that node i receives.

• hsi: feature determining if node i sends message.

• hzi: feature determining if node i outputs zero.

• ho+i and ho−i : features determining the output of node i.

During the all computations, hs and hz are constant. In practice,

they can be the results of a zero weight combined with a

constant bias. Their values in the two constructed models are

shown in Table II. The upcoming construction will ensure

that, if hsi = ks, node i does not send any message, and if

hzi = kz , the output of node i will be zero.

TABLE II: The constant features of the TGNNs in Gv’s proof.

Node 1 2 3 4

Hidden features hs1 hz1 hs2 hz2 hs3 hz3 hs4 hz4
TGNN Φv

1 ks 0 0 kz 0 kz ks kz
TGNN Φv

2 ks 0 ks kz 0 kz 0 kz

Our proposed TGNN architecture has 2 graph layers followed

by a READOUT layer (Fig. 5). By conventions, we use l ∈
{0, 1, 2} to indicates the model’s graph layers with h

(t,l=0)
i

refers to the model’s input:

h
(t,l=0)
i =

[

X
(t)
i , H

(t−1)
i , ∗, ∗, 0, 0

]

(5)

where ∗ means the features are determined by the model’s

weights and biases, i.e. by hs and hz. The temporal signal

H(t−1) has the same dimension as the model’s output Y .

Fig. 5: The model.
Fig. 6: The DBNs explaining the two T-
GNNs Φv

1 and Φv

2 .

The two models have trainable weights and biases such that

the MSG and AGG functions work as follows:

m
(t,l)
ji = ReLU

(

hr
(t,l−1)
j − hs

(t,l−1)
j

)

(6)

a
(t,l)
i =

∑

j∈Ni

m
(t,l)
ji (7)

for l ∈ {1, 2}. This means, if hsj = ks is large and unchanged,

there is no message coming out of node j. Thus, the ai consists

of messages only from node j with hsj = 0.

Meanwhile, the UPD returns h
(t,l)
i , which is

ReLU
(

w
�
h h

(t,l−1)
i + waa

(t,l)
i

)

. The parameters are chosen

such that:

hr
(t,l)
i = ReLU

(

a
(t,l)
i

)

, ht
(t,l)
i = ReLU

(

ht
(t,l−1)
i

)

(8)

hs
(t,l)
i = ReLU

(

hs
(t,l−1)
i

)

, hz
(t,l)
i = ReLU

(

hz
(t,l−1)
i

)

ho
±(t,l)
i = ReLU

(

±a
(t,l)
i ∓ ht

(t,l−1)
i

)

(9)

621

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

The READOUT is chosen as:

H
(t)
i = ReLU

(

(hri + hti + ho+i + ho−i)/2− hzi
)

(10)

Finally, the prediction of the model Y is assigned to H(t=2).

We can check that ht, hs, and hz are unchanged during the

forwarding computation and hri is indeed the received signal

at node i with the above specification.

The Forwarding computation of Φv
1 and Φv

2 . To show that

the forwarding computations of the two constructed models

satisfy the training tasks, we first pay attention to ho+i and

ho−i , whose summation is the difference between a
(t,l)
i and

ht
(t,l−1)
i . Thus, the maximum signal that node i received is:

1

2

(

hr
(t,L)
i + ht

(t,L)
i + ho

+(t,L)
i + ho

−(t,L)
i

)

=
1

2

(

a
(t,L)
i +H

(t−1)
i +

∣

∣

∣
a
(t,l)
i −H

(t−1)
i

∣

∣

∣

)

=max
{

a
(t,L)
i , H

(t−1)
i

}

= max
{

hr
(t,L)
i , H

(t−1)
i

}

(11)

Due to the READOUT in (10), the outputs of nodes with large

hzi are zero. Thus, from Table II, we have:

H
(t)
i =

{

max
{

hr
(t,L)
i , H

(t−1)
i

}

for i = 1

0 for i ∈ {2, 3, 4}
(12)

As the prediction of the model Y is set to H(t=2), to show

that the models work as specified in the training tasks, we

need to verify that hr
(t,L)
1 = X

(t)
3 for all t. We now show the

claim for Φv
1 .

For l = 1, we have m
(t,1)
32 = hr

(t,0)
3 = X

(t)
3 from (6). Thus,

hr
(t,1)
2 = a

(t,1)
2 = m

(t,1)
32 = X

(t)
3 ((7) and (8)). For l = 2,

m
(t,2)
21 = hr

(t,1)
2 = X

(t)
3 and hr

(t,2)
1 = a

(t,2)
1 = m

(t,2)
21 = X

(t)
3 .

Therefore, Φv
1 fulfills the training task. Note that we have

a
(t,1)
2 = m

(t,1)
32 and a

(t,2)
1 = m

(t,2)
21 because there is no message

sending from node 1 and node 4. The claim for Φv
2 trivially

follows by swapping node 2 with node 4.

The Transparent Models of Φv
1 and Φv

2 . We now examine

the Transparent models I(Φv
1(X)) and I(Φv

2(X)). Fig. 6

shows two DBNs whose variables represent the messages

coming out of the model’s nodes. Particularly, the variable of

node i at time t, denoted by Vt
i , represents m

(t,l)
ij (∀l, ∀j ∈ Ni)

and the H
(t)
i . Our claim is the two DBNs can faithfully

explain the two models when their inputs are bounded by

K := min{ks, kz}:

Lemma 1. The DBN Bv
1 (Bv

2) in Fig. 6 can embed all infor-

mation of the hidden features of TGNN Φv
1 (Φv

2) without any

loss when the input signal is bounded by K := min{ks, kz}.

Furthermore, the DBN is minimal.

Proof. To show that the DBN Bv
1 can represent Φv

1 without

any loss, we show:

• Bv
1 can express how the predictions H

(t)
i are generated.

• Bv
1 can express how the messages propagate in the model.

The first claim only involves node i = 1 (as H
(t)
i = 0 for all

other nodes). Because H
(t)
1 = max

{

X
(t)
3 , H

(t−1)
1

}

(shown

below (12)), the paths from Vt
3 to Vt

1 and from Vt−1
1 to Vt

1 are

sufficient to represent how the predictions are generated.

From Table II, we observe that, as long as the inputs are

bounded by K, only nodes 2 and 3 send messages. Thus, to

show the second claim, we only need to consider messages

from those nodes. It is clear from (6), (7) and (8) that:

X
(t)
2 → m

(t,1)
21 → a

(t,1)
1 → hr

(t,1)
1 → ∅

X
(t)
2 → m

(t,1)
23 → a

(t,1)
3 → hr

(t,1)
3 → m

(t,2)
32 and m

(t,2)
34

X
(t)
3 → m

(t,1)
32 → a

(t,1)
2 → hr

(t,1)
2 → m

(t,2)
23 and m

(t,2)
21

X
(t)
3 → m

(t,1)
34 → a

(t,1)
4 → hr

(t,1)
4 → ∅

where the arrow means determining and → ∅ means the signals

result in no other messages. We can see that the messages sent

out from nodes 2 and 3 are only dependent on the signals of

those nodes. As those dependencies can be captured by an

edge between Vt
2 and Vt

3, we have the claim.

The above arguments also show that Bv
1 is minimal. Specifi-

cally, the edges (Vt−1
1 ,Vt

1) and (Vt
2, Vt

3) are necessary because

of the temporal dependency H
(t−1)
1 → H

(t)
1 and the messages’

dependency between nodes 2 and 3. We then require a path

from Vt
3 to Vt

1 to capture the dependency X
(t)
3 → H

(t)
1 when

X
(t)
3 > H

(t−1)
1 . Thus, at least another edge is needed. Since

Bv
1 has 3 edges, it is minimal.

From Lemma 1, we write Bv
1 = I(Φv

1(X)) and Bv
2 =

I(Φv
2(X)) for all X whose entries are bounded by K.

Unidentifiable Proof. As the two DBNs contain distinct

information regarding V2 and V4, for an explainer that is

capable of explaining the two corresponding models Φv
1 and Φv

2 ,

it must be able to differentiate the two DBNs. Unfortunately, in

the next Lemma 2, we show that the outputs of the two TGNNs

are the same under node-perturbation; hence, explainers of the

class cannot explain them:

Lemma 2. For all X such that X
(t)
i ≤ min{ks, kz}, we have

Φv
1(X) = Φv

2(X).

Proof. From the examination of the forwarding computations,

we know that both models satisfy (4) for all X bounded by

min{ks, kz}. Thus, their outputs on such X are the same.

Thus, we have the Lemma.

We are now ready for the unidentifiable result of Node-

perturbation:

Theorem 1. For a TGNN Φ, denote P :=
{(X,A,Φ(X,A))|Xi ≤ K}X , i.e. the set of Node-

perturbation-response of Φ when the perturbations are

bounded by K. Denote g an algorithm accepting P as inputs.

For any K > 0 and g, there exists a Φ such that:

1) For the interpretable domain of DBNs, the Transparent

Model of Φ exists for all inputs in P .

2) g cannot determine the Transparent Model of Φ.

Proof. We first set ks and kz (Table II) to K. We then construct

Φv
1 and Φv

2 as described from (5) to (10). Denote P1 and

P2 the sets of Node perturbation-response of Φv
1 and Φv

2 ,

622

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

respectively. Note that, from Lemma 1, we have Bv
1 and Bv

2

are the Transparent Models of Φv
1 and Φv

2 .

Given a Node-perturbation-response, suppose g returns either

Bv
1 or Bv

2 (or equivalents claims on which DBN is fitter). As

P1 is the same as P2 (Lemma 2), the outputs of g on the 2

perturbation-response sets must be the same. If, for example,

g(P1) = Bv
1 , g cannot determine that Bv

2 is the Transparent

Model for Φv
2 as g(P2) = g(P1) = Bv

1 . Thus, selecting Φv
2 as

Φ proves the Theorem.

From the proof of Theorem 1, we see that, even though Φv
1

and Φv
2 operate on different paths (reflected in the difference

between Bv
1 and Bv

2), all explanations produced by methods in

Gv cannot differentiate Φv
1 and Φv

2 . Therefore, we can conclude

that Node-perturbation methods are not able to reliably identify

which paths carry out the model’s predictions.

VI. UNIDENTIFIABLE PROOF FOR EDGE-PERTURBATION

This section is about the Unidentifiable Proof for Edge-

perturbation class Ge. We show that removing edges from

input graphs is not enough to identify all nodes contributing

to a max operation conducted by the TGNNs. The intuition is,

if the messages are gated by the features, edge perturbation

does not reveal the sources of those messages.

The Training Task and the Models. Our proof considers

a graph of 3 nodes forming a line. The task (Fig. 1b) is to

recognize the maximum positive inputs observed in nodes 2

and 3, and return results at node 1:

Y
(t)
1 = max

{

0, X
(t′)
2 and X

(t′)
3 , 0 ≤ t′ ≤ t

}

(13)

The outputs on other nodes are zeros.

We use the same architecture as in Sect. V (Fig. 5) to

construct two TGNNs named Φe
1 and Φe

2. The hidden vector of

each node has 5 main features, i.e. hi = [hri, hti, hsi, hzi, hli],
and 6 additional features just for output purposes, denoted

by hai = [hrl+i , hrl
−
i , hrt

+
i , hrt

−
i , hlt

+
i , hlt

−
i]. The only new

feature in hi compared to the previous construction in Node-

perturbation is hli, which is the lag version of hri: hl
(t,l)
i =

ReLU
(

hr
(t,l−1)
i

)

. Φe
1 and Φe

2 use the same MSG, AGG, and

UPD functions as described from (6) to (9). The difference

between Φe
1 and Φe

2 is only in node 3: while it sends a message

in Φe
1 (as hs3 = 0), it does not in Φe

2 (as hs3 = ks).

Regarding the 6 additional features hai, they are zeros at

initialization. Their updates are:

hrl
±(t,l)
i =ReLU

(

±
(

a
(t,l)
i − hr

(t,l−1)
i

))

hrt
±(t,l)
i =ReLU

(

±
(

a
(t,l)
i − ht

(t,l−1)
i

))

hlt
±(t,l)
i =ReLU

(

±
(

hr
(t,l−1)
i − ht

(t,l−1)
i

))

Additionally, the READOUT and the prediction are:

H
(t)
i = ReLU

(

τ
(t,l=2)
i − hz

(t,l=2)
i

)

, Y = H(t=2) (14)

where τ
(t,l)
i := 1/3(1�

ha
(t,l)
i + hr

(t,l)
i + hl

(t,l)
i + ht

(t,l)
i). The

goal of the above setting is to make

H
(t)
1 = max

{

X
(t)
3 , X

(t)
2 , H

(t−1)
1

}

and H
(t)
i = 0 for i ∈ {2, 3}. In other words, it makes φe

1

satisfy the training task (13) as Y = H(t=2).

Since hs3 = ks in Φe
2, node 3 does not send messages. This

makes hr
(t,l=2)
1 = 0 as there is no message coming to node 1

at l = 2. This makes the output of Φe
2 at node 1 equal to:

H
(t)
1 = max

{

hl
(t,L)
1 , H

(t−1)
1

}

= max
{

X
(t)
2 , H

(t−1)
1

}

Therefore, by assigning the output Y to H(t), we make the

output of Φe
2 on node 1 equal:

Y
(t)
1 = max

{

0 and X
(t′)
2 , 0 ≤ t′ ≤ t

}

(15)

By comparing (13) to (15), it is clear that Φe
1 and Φe

2 are

different. However, when X
(t)
2 > X

(t)
3 , the responses of Φe

1

and Φe
2 are the same even when some edges are removed from

the input graph. We state that observation below:

Lemma 3. For the task in Fig 1b, denote Ā the adjacency

matrix obtained by either keeping the input adjacency matrix

A unchanged or by removing some edges. For any given X

such that X
(t)
i ≤ min{ks, kz} and X

(t)
2 > X

(t)
3 , we have

Φe
1(X, Ā) = Φe

2(X, Ā).

Proof. We only need to consider the output at node 1 since the

outputs of all other nodes are 0 (as hzi = kz for i ∈ {2, 3}.

If no edge is removed, from the analysis of the forwarding

computation (below (14)), we know that both models return

the maximum of X
(t)
2 at node 1 as X

(t)
2 > X

(t)
3 . If the edge

between node 1 and node 2 is removed, there is no message

coming to node 1 and hr
(t,l=2)
1 in both models will be 0. The

remained case is when only the edge between nodes 2 and

3 is removed. In this case, Φe
1 simply becomes Φe

2 and their

outputs must be the same. We then have the Lemma.

The Transparent Models and Unidentifiable Proof. As Φe
1

is different with Φv
1 only in node 4 and the additional content

in the propagating messages, it follows that Be
1 (Fig. 7) is the

Transparent Model of Φe
1 for X bounded by min{ks, kz}. We

write Be
1 = I(Φe

1). Note that even when X
(t)
2 > X

(t)
3 , m

(t,l=1)
21

is determined by X
(t)
3 . Thus, the edge between Vt

3 and Vt
2 in

Be
1 is necessary. Regarding Φe

2, as it is just Φe
1 with node 3

Fig. 7: The DBNs for Unidenti-
fiable Proof of Ge.

Fig. 8: The DBNs for Unidenti-
fiable Proof of Ga.

disconnected, Be
2 (Fig. 7) is the Transparent Model of Φe

2, i.e.

Be
2 = I(Φe

2). The above arguments combined with Lemma 3

623

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

give us the following Theorem about the Unidentifiable Proof

for Edge-perturbation:

Theorem 2. For a TGNN Φ, denote P :=
{(X, Ā,Φ(X, Ā))|Xi ≤ K}Ā, i.e. the set of Edge-

perturbation-response of Φ where X are fixed and

bounded by K, and Ā is defined as in Lemma 3. Denote g an

algorithm accepting P as inputs. For any K > 0 and g, there

exists a Φ satisfying the two conditions in Theorem 1.

Proof. We first choose ks and kz in the node’s features to K in

the Theorem. We then construct Φe
1 and Φe

2 as described above.

Denote P1 and P2 the sets of Edge-perturbation-response of

Φe
1 and Φe

2, respectively. From the discussion of Transparent

Models, we have Be
1 and Be

2 are the Transparent Models of

the two TGNNs.

Given an Edge-perturbation-response, suppose g returns

either Be
1 or Be

2. Due to Lemma 3, the Edge-perturbation-

response P1 is the same as P2; therefore, the outputs of g on the

2 perturbation-response sets must be the same. Hence, similar

arguments as in the proof of Theorem 1 give us Theorem 2.

From the proof of Theorem 2, we can see that when the

propagating path of TGNN’s computations is gated by an

intermediate node, the whole path cannot be identified by Ge.

This means Edge-perturbation might not be faithful in detecting

all graph features contributing to TGNN’s predictions.

VII. UNIDENTIFIABLE PROOF FOR NODE-AND-EDGE

PERTURBATION IN TGNN

This section provides the Unidentifiable Proof for the Node-

and-Edge-perturbation. The proof shows perturbing both nodes

and edges is not sufficient to identify which nodes carry out

the temporal aggregation in TGNNs.

The Training Task. The TGNNs operate on a line graph

(Fig. 1c). The task is to record the maximum positive inputs

observed in node 3 and return the result at node 1:

Y
(t)
1 = max{0 and X

(t′)
3 , 0 ≤ t′ ≤ t} (16)

The outputs on other nodes are zeros. This proof constructs 2

TGNNs whose internal behaviors are described by the DBNs

shown in Fig. 8. The main difference of this proof compared

to the previous is that the models involve temporal messages.

The Models. We use the same architecture as in Fig. 5.

The hidden feature vectors have 7 features, i.e. hi =
[hri, hti, hsi, hzi, ho, ho

+
i , ho

−
i]. Except for the newly intro-

duced hoi, all features have the same meaning as described in

Sect. V. The two constructed models, called Φa
1 and Φa

2 , have

different MSG functions, READOUT functions, and hidden

constant features, i.e. hsi and hoi. The constant features for

the two models are shown in Table III.

The MSG, AGG, UPD, and READOUT of Φa
1 are as

specified from (6) to (10). Since hoi in Φa
1 is just a dummy

variable, Φa
1 satisfies (16) since Φa

1 is Φv
1 without node 4.

In Φa
2 , we use hzi to control the temporal messages H(t) and

the newly introduced hoi is to control the output Y . The model

uses the same AGG and UPD functions as specified from (7)

TABLE III: The constant features of the TGNNs in Ga’s proof.

Node 1 2 3

Features hs1 hz1 ho1 hs2 hz2 ho2 hs3 hz3 ho3
TGNN Φa

1 ks 0 0 0 kz 0 0 kz 0

TGNN Φa

2 ks 0 0 0 kz kz ks kz kz

to (9). The update rule of hoi is ho
(t,l)
i = ReLU(ho

(t,l−1)
i).

The MSG function has the trainable weight wm such that:

m
(t,l)
ij = ReLU

(

hri + hti + ho+i + ho−i)/2− hsi
)

(17)

Here, all variables on the RHS have temporal index t and

layer index l. The final difference in Φ2 compared to Φ1

is its READOUT as we set H
(t)
i = ReLU (hri − hzi) and

Yi = ReLU (hri − hoi).
Forwarding computation of Φa

2 . We now show that the

forwarding computation of Φa
2 fulfils (16). We start with the

following observations:

• The message mij (17) is the maximum of hri and hti
(similar to arguments at (11)) when hsi = 0.

• Because of the READOUT (specified below (17)), H
(2)
2

and ht2 are always zeros. Thus, m2j is always hr2.

• Since node 2 only receives messages from node 3 (as

hs1 = 0) and the input message, hr
(t,l)
2 is always the

message sent from 3 for l odd. Combining with the above

point, m
(t,l=2)
21 is always m

(t,l=1)
32 .

• As node 1 only connects to node 2, hr
(t,l=2)
1 is always

m
(t,l=2)
21 , which is m

(t,l=1)
32 .

From those observations, we have hr
(t,l=2)
1 is the maximum

of hr
(t,l=0)
3 and ht3. If ht3 is always the maximum input in

the past and hr
(t,l=0)
3 is the current input of node 3, then we

have the model fulfill the training task (Fig. 1c).

To see that ht3 is always the maximum input in the past, we

refer to Table IV tracking the received message hri and the out-

going message mi∗ for arbitrary inputs X(t=1) = [α1, α2, α3]
and X(t=2) = [β1, β2, β3]. We first consider the claim for

the input’s length T = 2. For the first time-step t = 1, the

sending and receiving messages can be deduced in the same

manner as in Φv
1 (Sect. V). For t = 2, we have ht3 = α3

(because only hz3 = 0), which is indeed the maximum signal

in the past of node 3. For larger T , we can further examine

the Table IV and deduce that claim: at l = 0, node 3 sends

out max{X
(t)
3 , H

(t−1)
3 }. At l = 1, this message is received at

node 2. Finally, this message is sent back to node 3 at l = 2.

TABLE IV: Hidden features of the TGNN Φa

2 for input X(t=1) =
[α1, α2, α3] and X(t=2) = [β1, β2, β3]. γ3 = max{α3, β3} and
γ2 = max{γ3, β2}

Variable Input Layer 1 Layer 2

t = 1

H(t) = [0, 0, 0]

mi∗ 0, α2, α3 0, α3, α2

hri α1, α2, α3 α2, α3, α2 α3, α2, α3

t = 2

H(t) = [0, 0, α3]

mi∗ 0, β2, γ3 0, γ3, γ2
hri β1, β2, β3 β2, γ3, β2 γ3, γ2, γ3

The Transparent Models of Φa
1 and Φa

2 . As Φa
1 is Φv

1

without node 4, we have the Ba
1 , which is Bv

1 without variables

for node 4, is the Transparent Model of Φa
1 . We write Ba

1 =
I(Φa

1(X)) for X bounded by min{ks, kz}.

624

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

On the other hand, the transparent model of Φa
2 can be

shown to be the DBN Ba
2 in Fig. 8 by the following Lemma:

Lemma 4. The DBN Ba
2 in Fig. 8 can embed all information

of the hidden features of TGNN Φa
2 without any loss when the

input signal is bounded by K := min{ks, kz}. Furthermore,

the DBN is minimal.

Proof. The proof has the same structure as in Lemma 1, in

which we show the DBN can express the predictions and the

messages. For the prediction, in the forwarding computation,

we have shown hr
(t,l=2)
1 is the maximum of hr

(t,l=0)
3 and ht3.

Thus, the path Vt−1
3 − Vt

3 − Vt
2 − Vt

1 is sufficient to express

the prediction. For the messages, since only node 2 and 3 are

sending out messages, we only need the edge Vt
3 − Vt

2 and

edge Vt
2 − Vt

1 to represent them. We can also track the signal

via Table IV to verify this.

It is easy to verify that the DBN Ba
2 is indeed minimal:

simply from the fact that the prediction at node 1 depends on

the past signal ht3, which means a path between Vt−1
3 and Vt

1

must be maintained. Thus, we cannot remove any edges from

Ba
2 while keeping it consistent with Φa

2 .

As Ba
1 and Ba

2 contain different information, e.g. different

set of independent variables, Lemma 4 allows us to claim

I(Φa
1(X)) �= I(Φa

2(X)) for some X bounded by K.

Unidentifiable Proof. Similar to previous proofs, we show

that, for all X bounded by K and a valid adjacency matrix,

the outputs of the two constructed models are the same, which

is stated in the following Lemma:

Lemma 5. For the training task in Fig 1c, denote Ā the

adjacency matrix obtained by either keeping the input ad-

jacency matrix A unchanged or by removing some edges

from A. For all X such that X
(t)
i ≤ min{ks, kz}, we have

Φa
1(X, Ā) = Φa

2(X, Ā).

Proof. First, if A is fixed, from the forwarding computation,

we know that both models satisfy (16) for all X bounded by

min{ks, kz}. Thus, we have the Lemma for A fixed.

If the edge between nodes 1 and 2 is removed, there is no

message coming to node 1 and the models’ outputs will always

be zeros. The remained case is only the edge between nodes

2 and 3 is removed. In that situation, at l = 1, there is no

incoming message to node 2 (because node 1 does not send

and node 3 is disconnected) and hr
(t,l=1)
2 = 0. This means

at l = 2, there is no incoming message to node 1 because

m
(t,l=2)
21 = hr

(t,l=1)
2 = 0. As a result, the models’ outputs will

also always be zeros. We then have the Lemma.

We are now ready to state the Unidentifiable Proof for the

class of Node-and-Edge-perturbation:

Theorem 3. For a TGNN Φ, denote P :=
{(X, Ā,Φ(X, Ā))|Xi ≤ K}X∈X ,Ā, i.e. the set of Node-and-

Edge-perturbation-response of Φ where X are fixed and

bounded by K, and Ā is defined as in Lemma 5. Denote g an

algorithm accepting P as inputs. For any K > 0 and g, there

exists a Φ satisfying the two conditions in Theorem 1.

Proof. We first choose ks and kz in Table III to K in the

Theorem. We then construct Φa
1 and Φa

2 as described in

Sect. VII. Denote P1 and P2 the sets of Node-and-Edge-

perturbation-response of Φa
1 and Φa

2 , respectively. Note that,

from the discussion of Transparent Models in that section, we

have Ba
1 and Ba

2 are the Transparent Models the two models.

Given an Node-and-Edge-perturbation-response, suppose g
returns either Ba

1 or Ba
2 . From Lemma 5, P1 is the same as

P2; therefore, the outputs of g on the 2 perturbation-response

sets must be the same. Following similar arguments as in the

proof of Theorem 1, we have Theorem 3.

As in previous proofs, the proof of Theorem 3 also shows

Node-and-Edge-perturbation cannot differentiate Φa
1 with Φa

2 ,

whose Transparent Models are two DBNs with different

temporal information. Therefore, we can conclude Node-and-

Edge-perturbation cannot identify the model’s components

conducting the temporal messaging and aggregations.

VIII. EXPERIMENTS

This section reports our experiments demonstrating the

impact of unidentifiable information in the explanation tasks for

GNNs and TGNNs, in both synthetic and real-world settings.

In particular, our experiments aim to elaborate on the failures

of Node-perturbation in identifying the correct propagating

paths (Sect. V) and Node-and-Edge-perturbation in capturing

the temporal information carried out by the models (Sect. VII).

Our code is anonymously available at [25].

Synthetic Experiment on Node-perturbation. To demon-

strate the unidentifiable result of Node-perturbation, we con-

struct a synthetic node-classification task as shown in Fig. 9.

The input is a 6-node-circle graph with one activated node.

The task is to transmit that activation to the 2-hop away nodes

from those activated nodes using 2 graph layers. Due to the

restriction of 2 graph layers, the ground-truth explanation must

be as indicated in Fig. 9 (iv).

TABLE V: GNNExplainer fails to detect the ground-truth explanations
of the synthetic task (Fig. 9) when using Node-perturbation (Node)
and Node-and-Edge perturbation (All).

Method
Return Edge Return Node

TPR FPR TPR FPR

Naive Edge 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

GNNExplainer (Node) 1.00 ± 0.00 0.50 ± 0.00 0.61 ± 0.20 0.39 ± 0.20

GNNExplainer (All) 0.50 ± 0.18 0.25 ± 0.09 0.58 ± 0.20 0.42 ± 0.20

Node-perturbation methods are expected to fail since they

cannot differentiate the contributions of the two 1-hop neighbors

of the target node. We consider the state-of-the-art explanation

method, the GNNExplainer [10], to elaborate that claim.

Table V reports the True-positive-rate (TPR) and False-positive-

rate (FPR) of the method in this synthetic task. The result

not only supports our claim in the case of Node-perturbation

but also in Node-and-Edge perturbation. Interestingly, a naive

greedy Edge-perturbation method in which the edges are

selected based on their sensitivity to the predictions can match

the ground truth perfectly. These results emphasize clearly the

importance of the choice of perturbations for explanations.

625

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: The synthetic static task demonstrating the failure of node-
perturbation explanation methods.

Fig. 10: The synthetic temporal task demonstrating the failure of
node-and-edge perturbation-based explanation methods.

Fig. 11: The temporal activations of TGNNs in synthetic
temporal task demonstrating the failure of Node-and-
edge perturbation-based explanation methods.

Fig. 12: The real-world temporal messages demonstrating the failure of Node-and-
edge perturbation-based explanation methods. Note that the outputs of the two
TGNNs in both experiments are identical regardless of the perturbations.

Experiments on Node-and-Edge-perturbation. We now de-

scribe our synthetic experiment showing the issue of explaining

TGNNs’ temporal dynamic using the conventional Node-and-

Edge perturbation. The learning task is the prediction of the

maximum signals observed in the opposite node in a 6-node-

circle motif as depicted in Fig. 10. Two distinct 2-time-step

TGNNs are obtained by the combinations of some separately

trained neural layers so that their outputs are always identical on

the same inputs. Furthermore, the constructions also make the

two models have very different temporal dynamics: while the

first model transmits temporal information via the source node,

the other relies on the whole graph for temporal transmission

(Fig. 11). The existence of those 2 models implies that the

unidentifiable situations pointed out in our theoretical analysis

can occur as a result of the neural network’s training process.

We further strengthen that claim with our experiments on two

real-world Shenzhen and Los Angeles traffic datasets [7]. The

training task is to predict the traffic speed using past data. For

each dataset, we use the same construction and training strategy

as in the synthetic experiment to obtain 2 instances of TGNNs

whose temporal activations are shown in Fig. 12. Since the

outputs of the two TGNNs are also identical, we do not report

the predictions in these cases. It can be observed from both

datasets that the temporal dynamics learned by TGNNs can be

varied not only in terms of the number of nodes contributing

to the temporal messaging but also in the range and meaning

of activation values. The results further point out that faithful

explanations for temporal models cannot be obtained by simply

perturbing node and edge features of the input graph.

IX. DISCUSSION AND CONCLUSION

This work studies the fundamental limit of different perturba-

tion explanation methods in explaining black-box TGNNs. We

have shown that there is key information on how the TGNNs

generate their predictions that cannot be identified by some

given classes of explanation methods. We now further point

out several interesting implications of our theoretical results.

Theorem 1 and 2 for GNNs. The Unidentifiable Proofs for

Node-perturbation and Edge-perturbation explanation methods

can be applied directly to GNNs by dropping the feedback

loop of H(t) (Fig. 5). This modification will just set H
(t−1)
i in

(5) to zeros. Note that in GNNs, we do not have the temporal

dimension in the interpretable domains, i.e. they are BNs

instead of DBNs. As illustrations, Fig. 13a and 14 show the

components of the proofs for Node-perturbation and Edge-

perturbation in GNNs.

a The training task. b The BNs.

Fig. 13: The components for Node-perturbation
Unidentifiable Proof of GNNs.

Fig. 14: The BNs for
Edge-perturbation
Unidentifiable Proof
of GNNs.

Theorem 3 for GNNs? Our proof cannot readily apply to

the case of GNNs because the two constructions will have the

same Transparent Model, i.e. I(Φa
1) = I(Φa

2).
What practical models are applicable to our Unidentifi-

able Proofs? As our analysis uses the most basic constructions

of the TGNNs, our Unidentifiable Proofs in Sects. V, VI and

VII are applicable to all versions of the TGNNs found in [7],

[9], [26]. As the base GNN can be considered as TGNN with

zero temporal feedback (see Fig. 5), Our results in Sects. V

and VI are also applicable to many modern variants of GNNs

including GCN [4], GraphSage [5] and GAT [6].

Usage of other interpretable domains and Transparent

Models (not DBNs). Unidentifiable results can be obtained

by other interpretable domains as long as (i) the Transparent

626

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

Models of the constructed models can be identified (similar to

Lemma 1 and 4) and (ii) they contain meaningful information

that helps establish the unidentifiable information. While

condition (i) requires the domain to have strong expressive

power, condition (ii) requires the domain’s members to be

somewhat interpretable. We find DBN is a balanced choice for

the analysis of TGNN.

What do Theorem 1 and 2 imply about the reliability of

existing explanation methods for GNNs? Existing explanation

methods have been successfully identifying many important

features contributing to the predictions; however, the results

are still limited. Our results establish a fundamental limit of

perturbation-based explanation methods.

For example, Theorem 1 implies explanations obtained by

only perturbing nodes cannot reliably inform us of the paths

determining the predictions. For the case of the two constructed

Φv
1 and Φv

2 , the contributions of node 2 and node 4 will always

be considered equal by all Node-perturbation methods. This

means both will be included or discarded by the explainers,

even when the actual messages are only transmitted through

one of them. Thus, Node-perturbation methods are bound to

commit false positives or false negatives. This claim is further

supported by our experiments in Fig. 9.

What does Theorem 3 imply about the design of

explanation methods for TGNNs? Even though the Theorem

states that the Node-and-Edge perturbation methods cannot

identify the temporal component of the model, it does not

mean there is nothing we can do to tackle this challenging

problem. Careful readers might realize that one key aspect

of our proof is based on the fact that removing an edge in

the input graph will disconnect that connection at all rounds

of temporal computations. If there is a mechanism to remove

edge only at some temporal computations, it is possible to

differentiate Φa
1 from Φa

2 , which is crucial to identify whether

node 1 or node 3 conducts the temporal aggregation. In other

words, temporal perturbation might be something we need to

explain TGNNs more faithfully.

REFERENCES

[1] J. You, B. Liu, R. Ying, V. Pande, and J. Leskovec, “Graph convolu-
tional policy network for goal-directed molecular graph generation,” in
Proceedings of the 32nd International Conference on Neural Information

Processing Systems, ser. NIPS’18. Red Hook, NY, USA: Curran
Associates Inc., 2018, p. 6412–6422.

[2] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”
in Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds., vol. 31. Curran Associates, Inc., 2018.

[3] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy
side effects with graph convolutional networks,” Bioinformatics, vol. 34,
no. 13, p. 457–466, 2018.

[4] T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” in Proceedings of the 5th International

Conference on Learning Representations, 2017.
[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation

learning on large graphs,” in Advances in Neural Information Processing

Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc.,
2017.

[6] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” International Conference on

Learning Representations, 2018.

[7] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-gcn: A temporal graph convolutional network for traffic prediction,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9,
pp. 3848–3858, 2019.

[8] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia, and J. Yu,
“Traffic flow prediction via spatial temporal graph neural network,” in
Proceedings of The Web Conference 2020, 2020, pp. 1082–1092.

[9] S. Min, Z. Gao, J. Peng, L. Wang, K. Qin, and B. Fang, “Stgsn—a
spatial–temporal graph neural network framework for time-evolving
social networks,” Knowledge-Based Systems, vol. 214, p. 106746, 2021.

[10] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer:
Generating explanations for graph neural networks,” in Advances in

Neural Information Processing Systems, vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/
2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf

[11] A. Duval and F. Malliaros, “Graphsvx: Shapley value explanations for
graph neural networks,” in European Conference on Machine Learning

and Knowledge Discovery in Databases (ECML PKDD), 2021.
[12] M. Vu and M. T. Thai, “Pgm-explainer: Probabilistic graphical model

explanations for graph neural networks,” in Advances in Neural Informa-

tion Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
12 225–12 235.

[13] Q. Huang, M. Yamada, Y. Tian, D. Singh, D. Yin, and Y. Chang,
“Graphlime: Local interpretable model explanations for graph neural
networks,” CoRR, vol. abs/2001.06216, 2020. [Online]. Available:
https://arxiv.org/abs/2001.06216

[14] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should i trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2016, p. 1135–1144.
[15] B. Sanchez-Lengeling, J. Wei, B. Lee, E. Reif, P. Wang, W. Qian,

K. McCloskey, L. Colwell, and A. Wiltschko, “Evaluating attribution
for graph neural networks,” in Advances in Neural Information

Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
5898–5910. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/file/417fbbf2e9d5a28a855a11894b2e795a-Paper.pdf

[16] K. Amara, R. Ying, Z. Zhang, Z. Han, Y. Shan, U. Brandes,
S. Schemm, and C. Zhang, “Graphframex: Towards systematic evaluation
of explainability methods for graph neural networks,” arXiv preprint

arXiv:2206.09677, 2022.
[17] L. Faber, A. K. Moghaddam, and R. Wattenhofer, “When comparing

to ground truth is wrong: On evaluating gnn explanation methods,”
Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, 2021.
[18] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,

“Parameterized explainer for graph neural network,” Advances in Neural

Information Processing Systems, vol. 33, 2020.
[19] Y. Zhang, D. DeFazio, and A. Ramesh, “Relex: A model-agnostic rela-

tional model explainer,” Proceedings of the 2021 AAAI/ACM Conference

on AI, Ethics, and Society, 2021.
[20] T. Funke, M. Khosla, and A. Anand, “Zorro: Valid, sparse, and stable

explanations in graph neural networks,” arXiv preprint arXiv:2105.08621,
2021.

[21] P. Dagum, A. Galper, and E. Horvitz, “Dynamic network models for
forecasting,” in Uncertainty in Artificial Intelligence, D. Dubois, M. P.
Wellman, B. D’Ambrosio, and P. Smets, Eds. Morgan Kaufmann, 1992,
pp. 41–48. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9781483282879500104

[22] J. Pearl, “Chapter 3 - markov and bayesian networks: Two graphical
representations of probabilistic knowledge,” in Probabilistic Reasoning

in Intelligent Systems. Morgan Kaufmann, 1988, pp. 77 – 141.
[23] K. Murphy, “Dynamic bayesian networks: Representation, inference and

learning,” Ph.D. dissertation, University of California, 01 2002.
[24] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling lime

and shap: Adversarial attacks on post hoc explanation methods,” in
AAAI/ACM Conference on AI, Ethics, and Society (AIES), 2020.

[25] Anonymous, Source Code for this paper, https://drive.google.com/file/d/
11iK8ASQWIk272IgS2e5Fs WN7DMe8n1n/view?usp=sharing.

[26] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn:
A social spatio-temporal graph convolutional neural network for human
trajectory prediction,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 14 424–14 432.

627

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2024 at 02:09:11 UTC from IEEE Xplore. Restrictions apply.

