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Abstract—Recently, there has been significant interest in Tem-
poral Graph Neural Networks (TGNN) because of their capability
to learn from time-evolving graph-related data. However, similar
to Graph Neural Network (GNN), explaining the predictions of
TGNN is non-trivial due to its black-box and complex nature. A
major approach for this problem in GNNs is by analyzing the
model’s responses to some perturbations of the model’s inputs,
called perturbation-based explanation methods. These methods
are convenient and flexible as they do not require access to
the model’s internals. However, a question arises: Does the lack
of internal access limit these methods from uncovering crucial
information about the predictions? Motivated by the question,
this study explores the limitations of some popular classes of
perturbation-based explanation methods. By constructing specific
instances of TGNNs, we show (i) Node-perturbation is not reliable
for identifying the paths that carry out the prediction, (ii) Edge-
perturbation cannot reliably determine all the nodes contributing
to the prediction and (iii) perturbing both nodes and edges does
not consistently help identify the graph components responsible
for the temporal aggregation in TGNNs. Our experimental results
further demonstrate situations for failures of explanations can
occur frequently in both synthetic and real-world scenarios. Thus,
they emphasize the importance of perturbation choices and the
internal information of the explained model in determining faithful
explanations of the model’s predictions.

I. INTRODUCTION

Graph Neural Networks have been achieving successful
performance in many practical graph-related problems in-
cluding social networks, citation networks, and biological
networks [1], [2], [3]. Various architectures with elegant designs
and competitive performance have been introduced in recent
years [4], [5], [6]. Along those works, a notable branch of
GNNs is developed to integrate temporal information into the
graph structure, called Temporal Graph Neural Networks [7],
[8], [9]. This variant has shown promising outcomes in domains
where the data has strong correlations with time such as
transportation and weather forecast.

Since GNNs and TGNNs inherit the black-box nature of
neural networks, interpreting their predictions remains non-
trivial as internal information about the models is not available.
In response, many explanation methods, called explainers, have
been introduced to explain local predictions of GNNs [10],
[11], [12], [13]. These methods generally rely on the model’s
responses to some perturbations of the input to find the
explanations. While the approach has shown many heuristic
successes, there is little theoretical result that follows. In
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particular, is there any information on the model’s internal
behavior that a given method of perturbation cannot uncover?
Addressing this question will help us design better explainers
for variants of GNNs, such as TGNNs and many other
architectures to come. More importantly, analyzing the limits
of explaining methods also helps prevent false claims and
incorrect inferences from the explanations.

Our work focuses on the limit of perturbation-based expla-
nation methods when applying to TGNN, i.e. what information
cannot be revealed by some given class of popular perturbations.
The classes are categorized based on the input’s features that
they perturb: node-only, edge-only, and node-and-edge. We
introduce a proof structure, called Unidentifiable Proof, through
which the limit of perturbation methods can be formalized and
examined. For each class of explainers, we identify a training
task (Fig. 1) and construct some models such that there is no
method in the class that can identify the internal dynamics of
those models when generating predictions. Specifically, given
a constant K depending on the model’s parameters, we show:

¢ Node-perturbation methods bounded by K cannot identify
the path carrying out the message passing. (Fig. 1a).

o Edge-perturbation methods cannot identify all nodes
contributing to a max aggregation. (Fig. 1b).

o Node-and-Edge-perturbation methods bounded by K
cannot identify which nodes carry out the temporal
aggregation. (Fig. 1c).

In practice, K is the result of training and can be arbitrarily
large. Thus, our analysis is relevant and applicable to many
practical scenarios as large perturbations are often weighted
lightly due to the notion of locality [14]. While most of our
results are applicable to GNN, we focus on TGNN due to its
lack of study. Another reason is, as TGNNs add the temporal
dimension to GNNG, it introduces a corresponding temporal
dimension to the explaining problem. We find studying this
temporal aspect novel and interesting by itself.

The outline of this manuscript is as follows. Sect. II
and Sect. III discuss the related works and preliminaries,
respectively. Our proposed Unidentifiable Proof and some
related notions are introduced in Sect. IV. Sects. V, VI and
VII formally describe and prove the type of information that
Node-perturbation, Edge-perturbation, and Node-and-Edge-
perturbation cannot identify. Sect. VIII provides synthetic and
real-world experiments showing the impact of perturbation
schemes on the explaining tasks. Sect. IX concludes the paper
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with discussions on the theoretical implications and practical
aspects of our results.

II. RELATED WORKS

To our knowledge, there is currently no work theoretically
studying the limits of explanations for GNNs or TGNNs.
Even though many experiments evaluating explanation methods
have been conducted [15], [16], there exist many pitfalls and
challenges in those evaluations as the ground-truth explanations
are often unavailable [17]. Furthermore, with the increasing
number of datasets, model architectures, and explanation
methods, conducting comprehensive evaluations is becoming
much more challenging, especially for black-box methods of
which the computation complexity is significantly higher than
that of white-box methods [16].

Our work is directly related to black-box perturbation-based
explaining methods for GNNs, including GNNExplainer [10],
PGExplainer [18], GraphLIME [13], and some others [12],
[19], [11], [20]. Table I summarizes the target of perturbation
conducted by those explainers and the scope of results in each
section of this paper.

TABLE I: Summary of perturbation methods used by explainers and
the scope of our results.

Sect.V  Sect.VI  Sect.VIL

*

Node

*

Edge

*
*

GNNExplainer [10]
PGExplainer [18]
GraphLIME [13]

PGMExplainer [12]

RelEx [19]
GraphSVX [11] *
ZORRO [20]

*
*
B

*
*

M
M

III. PRELIMINARIES

We now introduce some preliminaries and notations that
are commonly used in the research of GNNs and the explain-
ing problem. We also briefly introduce Dynamic Bayesian
Networks, which we use in our Unidentifiable Proofs.

Notation. For all models studied in this work, their inputs
are defined on a graph G = (V, E), where V is the set of
nodes and E is the set edges. The inputs of TGNN are a
sequence of feature vectors X; ;. = [X () ... X ()] and
an adjacency matrix A € A := {0, 1}IVI*IVl Here, t,, t. and
X® e RIVIXE denote the starting time, the ending time, and
the input feature sequence. The model is referred to by its
forwarding function ® : X x A — ), where X’ and ) are the
spaces of the input feature sequence and the output.

Graph Neural Networks. We use the general formulation
of GNNs based on the message passing mechanism [5], which
involves 3 computations: propagation, aggregation, and update:

m = MSG (hﬁl*”, h,g.l*”) ,

o = AGG ({m } ) 1 =P (0, nf )
JEN;

where m;; is the message from node 7 to node j, hf;l) is the
hidden representations of node ¢ at layer [ and N; is node
+’s neighbors. The final representation at the last layer L,

9
ji
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hEL), is commonly used to generate a prediction, i.e. Y =
READOUT(hEL)). Typically, the MSG, UPD, and READOUT
functions consist of trainable weights and biases followed by
an activation function. Some common choices for the AGG
are max, mean, and concatenating operations.

Temporal Graph Neural Networks. The forwarding func-
tion ® : X x A — Y of a TGNN can be formulated based on
its sequential implementation [7]:

H) = g(Xx "), 4)

HO =oHY X® A) t=t,+1,..t (1)

where @ is the forwarding function of a GNN and H® is the
temporal messages. T :=t. — t; + 1 is the input’s length.

The base GNN @ typically consists of some graph layers
followed by a readout. The output Y is computed either
by applying a readout on the temporal message at the last
layer H(*<) or from the node’s final hidden features. In this
manuscript, capital letters, e.g. X,Y and H, refer to external
signals of the GNN blocks, while small letters, e.g. m,a and
h, are for internal signals.

The Class of Explainers. This work studies black-box
explainers of GNNs and TGNNs based on the type of
perturbations that the explainers use:

o Node-perturbation class G,: the explainer can perturb the
entries of the feature matrices in X;_,_.

o Edge-perturbation class G.: the explainer can remove some
edges from the input adjacency matrix A.

o Node-and-Edge-perturbation class G,: the explainer can
perturb both the feature matrices in X;_, and remove
some edges in the input adjacency matrix A.

Dynamic Bayesian Networks (DBNs). The usage of DBNs
in this work is to model internal computations of TGNNs so
that theoretical analysis can be conducted. A DBN [21] can be
considered as an extension of Bayesian networks (BNs) [22] to
model the temporal dependency of systems’ variables. Temporal
information is integrated via edges between adjacent time steps.
Figs. 2a shows an example of a DBN: the Two-Timeslice
Bayesian Network (2TBN) [23]. Its equivalent BN in the form
of unrolled 4-time-step BN is shown in Figs. 2b. Readers can
find more details of DBNs in [23].

IV. UNIDENTIFIABLE PROOF FOR NEURAL NETWORKS

Given a black-box model ® and a class of explanation
methods, the Unidentifiable Proof formalizes the idea that
certain information of ¢ cannot be identified and used as the
explanation by a class of explainers. Before describing the
Unidentifiable Proof, we need to formalize the ground-truth
explanation. The first two subsections discussing about the
interpretable domain and the Transparent Model serve that
purpose. Intuitively, the interpretable domain is the domain
of all available explanations and the Transparent Model is a
domain’s member that can faithfully capture the model. The
latter part of this section describes the Unidentifiable Proof.
The general idea of the Unidentifiable Proof is by construction:
it constructs two instances of the model whose Transparent
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_______________________________

© = max{e,0,0}

a Multi-path aggregation task.

b Multi-node aggregation task.

________

el

® = max{e, o0

¢ Temporal aggregation task

Fig. 1: Tasks for the class of (a) Node-perturbation, (b) Edge-perturbation, and (c) Node-and-Edge-perturbation explanation methods. The
dash arrows and the dotted arrows show different internal computations that the model can carry out. Our Unidentifiable Proofs show that the
corresponding explanation methods cannot differentiate the computations; thus, cannot identify/explain those internal dynamics.

38

a A 2TBN. b The unroll BNs.

Fig. 2: An example of a DBN and its unroll BN. The intra-slice
connections are solid and the inter-slice connections are dashed. The
brighter line can be omitted as it can be inferred from other edges.

Models are different; however, the information extracted from
them by a given class of explainers is exactly the same. This
means no explainer of that class can identify the information
differentiating the two Transparent Models. This gives us formal
notions of unidentifiable information.

A. The Interpretable Domain

Given a black-box model ¢ and an input X, the explainers
solve for an interpretable representation of the prediction ®(X),
denoted as g(®(X)). For the sake of explaining, g(®(X))
should be intuitive and interpretable; therefore, we call the
space of g(®(X)) the interpretable domain. For example, the
interpretable domains for GNNs have been chosen to be a
set of scores on some nodes/edges’ features, the set of linear
functions, and the set of probabilistic models on the input’s
nodes [11], [12], [13]. Intuitively, a good interpretable domain
should balance its representative power and interpretability. In
this work, we consider it to be the set of DBNs. We describe
how DBNs can help explain TGNNs in the next subsection.

B. The Transparent Model

Given an interpretable domain and a black-box model, there
is no guarantee that there exists an interpretable representation
that correctly explains ®. Nevertheless, in some specific
contexts, an interpretable representation that can fully describe
the black-box model exists. Particularly, the work [24] embeds
a linear function inside a black-box model, which means that
a linear function can faithfully describe and explain that black-
box. This implies, for a given interpretable domain and for some
®, an explanation that can fully explain ¢ exists. We denote
it by the Transparent Model Z. In some cases, the Transparent
Model only exists for a subset of inputs S C X. We write
the Transparent Model in those cases as Z(®(X)), X € S.
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Furthermore, we call the assumption Z(®(X)) exists the
Existence assumption.

We now discuss the Transparent Model Z(®) in terms
of DBNs. For all our Unidentifiable Proofs, the target of
explanation will be the prediction on a node of the input
graph. The explanation will be in the form of a DBN B, whose
variables are associated with the corresponding nodes in the
input graph. As each node of the input graph is physically
associated with a distinct set of neurons in the graph layers
of the TGNN, we associate each variable of B to the sending
messages of the neurons corresponding to that node in the
TGNN. Note that the sending messages from a node consist of
not only internal messages in the graph layers but also temporal
messages and output messages. These associations allow us to
capture the dynamics of the TGNN via DBN. Fig. 3 provides
an illustration of these associations.

DBN
domain

Model
domain

Output
domain

Inpus
domain

Fig. 3: The association among variables of the explanation DBN, the
input nodes and the messages in the TGNN: Components of the same
color are associated with each other.

We say a DBN B is the Transparent Model of a model & if (i)
all independence claims of 53 about its variables are consistent
with the messages sent from the corresponding neurons in
the model and (ii) B is minimal. Condition (i) is obvious
since incorrect claims from the explanation are undesirable.
Note that, this condition implies the DBN B can represent all
communicating messages during the forward computation of ®.
Condition (ii) enforces the explaining DBN to be as informative
as possible, i.e. it should remove unnecessary edges when they
do not help explain the model’s computations.

C. The Unidentifiable Proof

Under the Existence assumption, i.e. Z(®(X)) exists, a good
explanation method ¢ is expected to return g(®(X)) to be
similar to Z(®(X)). This provides us a necessary condition
to theoretically analyze the limits of explanation methods:
given two models ®; and ®, with distinctively different
transparent models Z(®1) and Z(P2), a good explainer must
return different explanations, i.e. g(®1(X)) # g(®2(X)). This
necessary condition is illustrated via Fig. 4.
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Black-box

Transparent
model Z( <I>1)

model ®

Fig. 4: Necessary explammg conditions in the Existence assumption.

The above necessary conditions can be formalized as follows.
Given two neural networks ®; and P, the Unidentifiable Proof
holds if their Transparent Models exist and:

g(®1(X)) = g(P3(X)), Vge G VX eSCX
IX €8 C X st I(91(X)) # I(P2(X))

2
3

The first condition says the explanations of the two models
provided by all explainers in G are the same. The condition
can be shown by examining the forwarding computations of
the two models. The second condition states the existence of
some inputs such that their Transparent Models are different.
The main challenge in proving that condition is in concretely
determining Z(®; (X)) and Z(®2(X)). The two conditions
then imply the explainer cannot learn the Transparent Model
of at least one of the two models. More importantly, as
g outputs the same information in explaining both models,
any information that can be used to differentiate the two
models cannot be inferred from g. Thus, all information
differentiating Z(®1 (X)) and Z(®2(X)) cannot be inferred
from the explainer either. The arguments, therefore, establish
the unidentifiable information for the class of explainers G.

V. UNIDENTIFIABLE PROOF FOR NODE-PERTURBATION

We now provide the Unidentifiable Proof for the Node-
perturbation class G,. We show that for a simple max compu-
tation conducted by the TGNNs, Node-perturbation cannot
identify the messages’ propagating paths carrying out the
predictions in the model. We also elaborate on how the result
can be applied to GNNs in Sect. IX.

The Training Task. In this construction, the TGNNs operate
on a graph of 4 nodes forming a square, with the following
adjacency matrix:

A=

o =O
O = O
[
[ S R

The training task is to recognize the maximum positive inputs
of node 3 and return the result at node 1:

Y = max{0 and X§"),0 <t <t}

YZ(t) _ YB(t) _ Kl(t) =0 4

The model’s input and output at each time-step ¢ are both in
R*. Fig. la provides an illustration of this training task.

The Models. We construct two TGNNs, ®f and @3, with
the same architecture but different parameters. We consider
the input’s length T' 2 for the sake of brevity. Each
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node ¢ is associated with a hidden feature vector h;
[hrs, hti, hsi, hzi, hoj’7 ho; ] € RS, whose features mean:

o hr;: message that node i receives.

o ht;: temporal message that node ¢ receives.

o hs;: feature determining if node 7 sends message.

o hz;: feature determining if node 4 outputs zero.

e ho} and ho; : features determining the output of node i.
During the all computations, hs and h, are constant. In practice,
they can be the results of a zero weight combined with a
constant bias. Their values in the two constructed models are
shown in Table II. The upcoming construction will ensure
that, if hs; = ks, node ¢ does not send any message, and if
hz; = k., the output of node 7 will be zero.

TABLE II: The constant features of the TGNNs in G,,’s proof.

Node 1 2 3 4

Hidden features | hs; hz1 hsa | hza | hss | hzs | hsa | hza
TGNN &7 ks 0 0 k- 0 k= ks k-
TGNN o3 ks 0 ks k= 0 k= 0 k=

Our proposed TGNN architecture has 2 graph layers followed
by a READOUT layer (Fig. 5). By conventions, we use [ €

{0,1,2} to indicates the model’s graph layers with hg,z:o)
refers to the model’s input:
R0 = (X0, 1Y 4 ,0,0] ©)

where * means the features are determined by the model’s
weights and biases, i.e. by hs and hz. The temporal signal
H(=1 has the same dimension as the model’s output Y.

X

Graph Layer 1

t
Graph Layer 2 HY

READOUT
b

Fig. 6: The DBNs explaining the two T-

Fig. 5: The model. GNNs o7 and P5.

The two models have trainable weights and biases such that
the MSG and AGG functions work as follows:
<t D — ReLU (hr(” 2 hs(-t’lfl))
J

A= Y

JEN;

(6)
@)
for [ € {1,2}. This means, if hs; = k; is large and unchanged,

there is no message coming out of node j. Thus, the a; consists
of messages only from node j with hs; = 0.

Meanwhile, the UPD returns h,(t ,  which is
RelLU (w,, h(“ 2 +w (t l)) The parameters are chosen
such that:

hr®D = ReLU ( * ”) ) = ReLU (ht(” 1)) 8)
hs") = ReLU (hsgth))  hz{t) = ReLU (hzft’l*”)

ho ) = ReLU (a5 n(" 1)) ©)
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The READOUT is chosen as:

H" = ReLU ((hr; + ht; + ho} + ho;)/2 —hz)  (10)

Finally, the prediction of the model Y is assigned to H(=2),
We can check that h;, hs, and h, are unchanged during the
forwarding computation and hr; is indeed the received signal
at node ¢ with the above specification.

The Forwarding computation of ®} and ®5. To show that
the forwarding computations of the two constructed models
satisfy the training tasks, we first pay attention to ho; d
ho. , whose summation is the difference between a( )
ht-t = 1). Thus, the maximum signal that node ¢ recelved is:

( (tL>+ht<tL)+hO+(t D) 4 ho: (tL))
( (tL)+H(t 1)_'_‘ (0 H(t I)D
=ma; {agt’L),Hi(t 1)} :max{hrgt’L),Hi(t_l)} (11)

Due to the READOUT in (10), the outputs of nodes with large
hz; are zero. Thus, from Table II, we have:

(t,L) (t—1)
Hi(t> _ {max{hri JH; }

0
As the prediction of the model Y is set to H (t=2) (o show
that the models work as specified in the training tasks, we
need to verify that hrgt’L = Xét) for all £. We now show the
claim for 7.
For [ =1, we have mét b =

leMM—\

fori =1

12)
for i € {2,3,4}

= hr (t - X(t) from (6). Thus,

hr (gt D %* o= Y = X(” ((7) and (8)). For | = 2,
myy? = hrj X(t) and hrt® = ot = mt? = X0,

Therefore, <I> fulﬁlls the training task. Note that we have

g D= (t D and a(t 2 = métl’Z) because there is no message
sending from node 1 and node 4. The claim for ®F trivially
follows by swapping node 2 with node 4.

The Transparent Models of 7 and ®3. We now examine
the Transparent models Z(®Y(X)) and Z(®4(X)). Fig. 6
shows two DBNs whose variables represent the messages
coming out of the model’s nodes. Particularl the variable of
node i at time ¢, denoted by V!, represents m (Vl Vi eN;)
and the H, ® Qur claim is the two DBNs can faithfully

explain the two models when their inputs are bounded by
K :=min{k,, k. }:

Lemma 1. The DBN By (B3) in Fig. 6 can embed all infor-
mation of the hidden features of TGNN ®Y (®% ) without any
loss when the input signal is bounded by K := min{ks, k. }.
Furthermore, the DBN is minimal.

Proof. To show that the DBN B} can represent ®} without
any loss, we show:

o B} can express how the predictions Hi(t) are generated.
o B} can express how the messages propagate in the model.

The first claim only involves node ¢ = 1 (as H, i(t) = 0 for all
other nodes). Because Hft) = max {Xét),HftA)} (shown
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below (12)), the paths from V4 to V! and from Vi~ to V} are
sufficient to represent how the predictions are generated.

From Table II, we observe that, as long as the inputs are
bounded by K, only nodes 2 and 3 send messages. Thus, to
show the second claim, we only need to consider messages
from those nodes. It is clear from (6), (7) and (8) that:

(t,1) (t,1)

X(f)—>m(”)—>a —hr;" =@
Xét) — m%l) — az(,’t SN hréf’l) — mét 2 and mgf)
X§t> — métél) — aét’l) — hrét’l) — mét ) and mgtl’Q)
Xét) — mg’zl) — aff’l) — hrff’l) - g

where the arrow means determining and — & means the signals
result in no other messages. We can see that the messages sent
out from nodes 2 and 3 are only dependent on the signals of
those nodes. As those dependencies can be captured by an
edge between V} and Vi, we have the claim.

The above arguments also show that B} is minimal. Specifi-
cally, the edges (Vi~', V!) and (V%, V3) are necessary because
of the temporal dependency H 1(t71) —H l(t) and the messages’
dependency between nodes 2 and 3. We then require a path
from Vi to V] to capture the dependency X ) _, H, ) when
X3 RN H, (¢=1) . Thus, at least another edge is needed. Since
B” has 3 edges it is minimal. O

From Lemma 1, we write B} = Z(®Y(X)) and BY =
Z(PL(X)) for all X whose entries are bounded by K.

Unidentifiable Proof. As the two DBNSs contain distinct
information regarding V, and V,, for an explainer that is
capable of explaining the two corresponding models ®} and 3,
it must be able to differentiate the two DBNs. Unfortunately, in
the next Lemma 2, we show that the outputs of the two TGNNs
are the same under node-perturbation; hence, explainers of the
class cannot explain them:

Lemma 2. For all X such that Xi(t) < min{ks, k. }, we have
OY(X) = @5(X).

Proof. From the examination of the forwarding computations,
we know that both models satisfy (4) for all X bounded by
min{ks, k,}. Thus, their outputs on such X are the same.
Thus, we have the Lemma. |

We are now ready for the unidentifiable result of Node-
perturbation:

Theorem 1. For a TGNN ®, denote P
{(X,A,(X,A)|X; < K}x, ie the set of Node-
perturbation-response of ® when the perturbations are
bounded by K. Denote g an algorithm accepting P as inputs.
For any K > 0 and g, there exists a © such that:

1) For the interpretable domain of DBNs, the Transparent

Model of ® exists for all inputs in P.
2) g cannot determine the Transparent Model of ®.

Proof. We first set kg and k. (Table IT) to K. We then construct
&Y and ®F as described from (5) to (10). Denote P; and
P2 the sets of Node perturbation-response of ®{ and @,
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respectively. Note that, from Lemma 1, we have 5} and B3
are the Transparent Models of ®7 and 3.

Given a Node-perturbation-response, suppose ¢ returns either
B or B3 (or equivalents claims on which DBN is fitter). As
Py is the same as P, (Lemma 2), the outputs of g on the 2
perturbation-response sets must be the same. If, for example,
g(P1) = BY, g cannot determine that B3 is the Transparent
Model for ®% as g(P2) = g(P1) = BY. Thus, selecting 3 as
® proves the Theorem. O

From the proof of Theorem 1, we see that, even though ®7
and @3 operate on different paths (reflected in the difference
between B} and 53), all explanations produced by methods in
G, cannot differentiate @} and ®%. Therefore, we can conclude
that Node-perturbation methods are not able to reliably identify
which paths carry out the model’s predictions.

VI. UNIDENTIFIABLE PROOF FOR EDGE-PERTURBATION

This section is about the Unidentifiable Proof for Edge-
perturbation class G.. We show that removing edges from
input graphs is not enough to identify all nodes contributing
to a max operation conducted by the TGNNSs. The intuition is,
if the messages are gated by the features, edge perturbation
does not reveal the sources of those messages.

The Training Task and the Models. Our proof considers
a graph of 3 nodes forming a line. The task (Fig. 1b) is to
recognize the maximum positive inputs observed in nodes 2
and 3, and return results at node 1:

¥ = max {0, X{" and x{7 0 < <t} (13)
The outputs on other nodes are zeros.

We use the same architecture as in Sect. V (Fig. 5) to
construct two TGNNs named ®¢ and ®§. The hidden vector of
each node has 5 main features, i.e. h; = [hr;, ht;, hs;, hz;, hl;],
and 6 additional features just for output purposes, denoted
by ha; = [hrl}, kel ket hrt; hit] hit;]. The only new
feature in h; compared to the previous construction in Node-
perturbation is hl;, which is the lag version of hr;: hl§t’l) =
ReLU hr?’lil) . ¢ and @5 use the same MSG, AGG, and
UPD functions as described from (6) to (9). The difference
between ®f and @ is only in node 3: while it sends a message
in ®¢ (as hs3 = 0), it does not in P (as hs3 = ks).

Regarding the 6 additional features ha;, they are zeros at
initialization. Their updates are:

D _ReL (i (aY’l) _ hrgt,l—l))>
prt 0 —ReLU ( (af™ — n"' V)

£t _ReLU (i (hrgt,l—l) -~ htf;t’l_l)))

Additionally, the READOUT and the prediction are:

hit

H{" = ReLU (7{"'=?

K2

B hzi(t,l:2)) . Y= (=2 (14)
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where 7! = 1/3(1Tha§t’l) + hrgt’l) + hll(t’l) + htl(vt’l))‘ The

i
goal of the above setting is to make

H" = max {x§, x§, m{'"V}

and Hi(t) = 0 for ¢ € {2,3}. In other words, it makes ¢5
satisfy the training task (13) as Y = H(=2),

Since hss = ks in ®§, node 3 does not send messages. This
makes hr§t’l:2) = 0 as there is no message coming to node 1
at [ = 2. This makes the output of ®5 at node 1 equal to:

Hl(t) = max {hlgt’L), Hftil)} = max {Xét), H{til)}

Therefore, by assigning the output ¥ to H*), we make the
output of ®§ on node 1 equal:

v = max {0 and X{",0 <# <t} (15)

By comparing (13) to (15), it is clear that ®§ and ®§ are
different. However, when Xg(t) > Xét), the responses of &
and ®§ are the same even when some edges are removed from
the input graph. We state that observation below:

Lemma 3. For the task in Fig 1b, denote A the adjacency
matrix obtained by either keeping the input adjacency matrix
A unchanged or by removing some edges. For any given X
such that Xi(t) < min{ks, k.} and Xz(t) > X?Et), we have
O (X, A) = d5(X, A).

Proof. We only need to consider the output at node 1 since the
outputs of all other nodes are 0 (as hz; = k., for i € {2,3}.
If no edge is removed, from the analysis of the forwarding
computation (below (14)), we know that both models return
the maximum of Xét) at node 1 as Xét) > X?Et). If the edge
between node 1 and node 2 is removed, there is no message
coming to node 1 and th’ZZZ) in both models will be 0. The
remained case is when only the edge between nodes 2 and
3 is removed. In this case, ®¢ simply becomes ®§ and their
outputs must be the same. We then have the Lemma. O

The Transparent Models and Unidentifiable Proof. As ®¢
is different with @7 only in node 4 and the additional content
in the propagating messages, it follows that B{ (Fig. 7) is the
Transparent Model of ®§ for X bounded by min{k,, k. }. We
write B¢ tI=1)

Z(®$). Note that even when Xét) > X?()t), My
is determined by X.". Thus, the edge between VY and V} in
{ is necessary. Regarding ®§, as it is just ®¢ with node 3

1()—221 1()—?:1 1()—2;1 10§1

20 2 2@ 2 20 2 2@ @2

3@ 3 30 3 3@
Bi Bt

3@ @3
B3 B3
Fig. 7: The DBNs for Unidenti-  Fig. 8: The DBNs for Unidenti-
fiable Proof of G..

fiable Proof of G,.

disconnected, B5 (Fig. 7) is the Transparent Model of @5, i.e.
BS = Z(®$5). The above arguments combined with Lemma 3
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give us the following Theorem about the Unidentifiable Proof
for Edge-perturbation:

Theorem 2. For a TGNN @, denote P
{(X,A,®(X,A)|X; < K}, ie the set of Edge-
perturbation-response of ©® where X are fixed and
bounded by K, and A is defined as in Lemma 3. Denote g an
algorithm accepting P as inputs. For any K > 0 and g, there
exists a © satisfying the two conditions in Theorem 1.

Proof. We first choose k4 and k, in the node’s features to K in
the Theorem. We then construct ®¢ and ®§ as described above.
Denote P; and P, the sets of Edge-perturbation-response of
®¢ and @5, respectively. From the discussion of Transparent
Models, we have Bf and B5 are the Transparent Models of
the two TGNNSs.

Given an Edge-perturbation-response, suppose ¢ returns
either B or BS. Due to Lemma 3, the Edge-perturbation-
response P; is the same as Ps; therefore, the outputs of g on the
2 perturbation-response sets must be the same. Hence, similar
arguments as in the proof of Theorem 1 give us Theorem 2. [

From the proof of Theorem 2, we can see that when the
propagating path of TGNN’s computations is gated by an
intermediate node, the whole path cannot be identified by G..
This means Edge-perturbation might not be faithful in detecting
all graph features contributing to TGNN’s predictions.

VII. UNIDENTIFIABLE PROOF FOR NODE-AND-EDGE
PERTURBATION IN TGNN

This section provides the Unidentifiable Proof for the Node-
and-Edge-perturbation. The proof shows perturbing both nodes
and edges is not sufficient to identify which nodes carry out
the temporal aggregation in TGNNS.

The Training Task. The TGNNs operate on a line graph
(Fig. 1c). The task is to record the maximum positive inputs
observed in node 3 and return the result at node 1:

VY = max{0 and X{'”,0 <t <t} (16)

The outputs on other nodes are zeros. This proof constructs 2
TGNNs whose internal behaviors are described by the DBNs
shown in Fig. 8. The main difference of this proof compared
to the previous is that the models involve temporal messages.

The Models. We use the same architecture as in Fig. 5.
The hidden feature vectors have 7 features, i.e. h;
[hr;, ht;, hsi, hz;, ho, ho;, ho;]. Except for the newly intro-
duced ho;, all features have the same meaning as described in
Sect. V. The two constructed models, called ¢ and ®4, have
different MSG functions, READOUT functions, and hidden
constant features, i.e. hs; and ho;. The constant features for
the two models are shown in Table III.

The MSG, AGG, UPD, and READOUT of ®¢ are as
specified from (6) to (10). Since ho; in @ is just a dummy
variable, ®¢ satisfies (16) since ®§ is ®] without node 4.

In &%, we use hz; to control the temporal messages H(*) and
the newly introduced ho; is to control the output Y. The model
uses the same AGG and UPD functions as specified from (7)
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TABLE III: The constant features of the TGNNs in G,’s proof.

2
hzo
k=
k=

Node
Features
TGNN 2¢
TGNN 95

1
hz1
0
0

hss
0
ks

hoz
0
k

hoa
0
k=

ho1
0
0

hsi
ks
ks

hso
0

0

to (9). The update rule of ho; is hogt’l) = ReLU(hogt’l_l)).
The MSG function has the trainable weight w,,, such that:

m) = ReLU (hr; + ht; + hof +hoy)/2 — hs;)  (17)

Here, all variables on the RHS have temporal index ¢ and
layer index [. The final difference in ® compared to P,
is its READOUT as we set HZ-(t) = ReLU (hr; — hz;) and
Y; = ReLU (h?“l — hOl)

Forwarding computation of ®5. We now show that the
forwarding computation of ®¢ fulfils (16). We start with the
following observations:

o The message m;; (17) is the maximum of hr; and ht;
(similar to arguments at (11)) when hs; = 0.

o Because of the READOUT (specified below (17)), Héz)
and hto are always zeros. Thus, mo; is always hrs.

« Since node 2 only receives messages from node 3 (as
hsy = 0) and the input message, hrét’l) is always the
message sent from 3 for [ odd. Combining with the above

oint, m'=? is always mG! =
p > Mgy y 32

o As node 1 only connects to node 2, hrﬁt’lzz) is always
(t,1=2) N
My, , which is mg, .

From those observations, we have hr is the maximum
of hr:(,f’l:m and hts. If hts is always the maximum input in
the past and hrét’lzo) is the current input of node 3, then we
have the model fulfill the training task (Fig. lc).

To see that hts is always the maximum input in the past, we
refer to Table IV tracking the received message hr; and the out-
going message m;. for arbitrary inputs X “=1) = [ay, ag, a3]
and X(=2) = (B, Ba, B3]. We first consider the claim for
the input’s length 7" = 2. For the first time-step ¢ = 1, the
sending and receiving messages can be deduced in the same
manner as in ®7 (Sect. V). For ¢t = 2, we have hi3 = a3
(because only hzs = 0), which is indeed the maximum signal
in the past of node 3. For larger 7', we can further examine
the Table IV and deduce that claim: at [ = 0, node 3 sends
out max{Xét), Hst_l)}. At [ = 1, this message is received at
node 2. Finally, this message is sent back to node 3 at [ = 2.

(£,1=2)
1

TABLE 1V: Hidden features of the TGNN ®% for input X *=1) =
[011,0[2,013} and X(t:2> = [/81752763]' V3= max{ag,ﬁg} and
Y2 = max{ys, B2}

Variable Input Layer 1 Layer 2
t=1 M 0, a2, a3 0, a3, a2
H® =10,0,0] hri | a1,00,a3 | a,a3,a2 | ag,az, a3
t=2 M 0, 82,73 0,v3,72
H® =1[0,0,a3] | hri | B1,B2,83 | B2,73,B2 | 73,72,73

The Transparent Models of ®{ and ®5. As ®¢ is ®f
without node 4, we have the B{, which is 3] without variables
for node 4, is the Transparent Model of ®¢. We write Bf =
Z(®¢(X)) for X bounded by min{ks, k. }.
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On the other hand, the transparent model of ®4 can be
shown to be the DBN B3 in Fig. 8 by the following Lemma:

Lemma 4. The DBN BS in Fig. 8 can embed all information
of the hidden features of TGNN ®§ without any loss when the
input signal is bounded by K := min{ks, k,}. Furthermore,
the DBN is minimal.

Proof. The proof has the same structure as in Lemma 1, in
which we show the DBN can express the predictions and the
messages. For the prediction, in the forwardin% computation,
we have shown hr{"'=) is the maximum of ry"'=") and hts.
Thus, the path V5! — Vi — Vi — V! is sufficient to express
the prediction. For the messages, since only node 2 and 3 are
sending out messages, we only need the edge Vi — Vi and
edge Vi — V! to represent them. We can also track the signal
via Table IV to verify this.

It is easy to verify that the DBN B is indeed minimal:
simply from the fact that the prediction at node 1 depends on
the past signal hts, which means a path between V;‘l and V}
must be maintained. Thus, we cannot remove any edges from
BS while keeping it consistent with ®3. O

As Bf and B§ contain different information, e.g. different
set of independent variables, Lemma 4 allows us to claim
Z(®9(X)) # Z(P%(X)) for some X bounded by K.

Unidentifiable Proof. Similar to previous proofs, we show
that, for all X bounded by K and a valid adjacency matrix,
the outputs of the two constructed models are the same, which
is stated in the following Lemma:

Lemma 5. For the training task in Fig Ic, denote A the
adjacency matrix obtained by either keeping the input ad-
Jjacency matrix A unchanged or by removing some edges
from A. For all X such that Xi(t) < min{ks, k. }, we have
O} (X, A) = P4(X, A).

Proof. First, if A is fixed, from the forwarding computation,
we know that both models satisfy (16) for all X bounded by
min{ks, k. }. Thus, we have the Lemma for A fixed.

If the edge between nodes 1 and 2 is removed, there is no
message coming to node 1 and the models’ outputs will always
be zeros. The remained case is only the edge between nodes
2 and 3 is removed. In that situation, at [ = 1, there is no
incoming message to node 2 (because node 1 does not send
and node 3 is disconnected) and hrét’lzl) = 0. This means
at | = 2, there is no incoming message to node 1 because
m§=2 = prP'=Y = 0. As a result, the models’ outputs will
also always be zeros. We then have the Lemma. O

We are now ready to state the Unidentifiable Proof for the
class of Node-and-Edge-perturbation:

Theorem 3. For a TGNN &, denote P
{(X,A,®(X,A))|X; < K}xcy i i.e the set of Node-and-
Edge-perturbation-response of ® where X are fixed and
bounded by K, and A is defined as in Lemma 5. Denote ¢ an
algorithm accepting ‘P as inputs. For any K > 0 and g, there
exists a © satisfying the two conditions in Theorem 1.
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Proof. We first choose kg and k, in Table III to K in the
Theorem. We then construct ®¢ and ®§ as described in
Sect. VII. Denote P; and P, the sets of Node-and-Edge-
perturbation-response of ® and ®3, respectively. Note that,
from the discussion of Transparent Models in that section, we
have B{ and B4 are the Transparent Models the two models.

Given an Node-and-Edge-perturbation-response, suppose g
returns either B{ or B5. From Lemma 5, P; is the same as
‘Pa; therefore, the outputs of g on the 2 perturbation-response
sets must be the same. Following similar arguments as in the
proof of Theorem 1, we have Theorem 3. O

As in previous proofs, the proof of Theorem 3 also shows
Node-and-Edge-perturbation cannot differentiate ®¢ with @,
whose Transparent Models are two DBNs with different
temporal information. Therefore, we can conclude Node-and-
Edge-perturbation cannot identify the model’s components
conducting the temporal messaging and aggregations.

VIII. EXPERIMENTS

This section reports our experiments demonstrating the
impact of unidentifiable information in the explanation tasks for
GNNs and TGNNSs, in both synthetic and real-world settings.
In particular, our experiments aim to elaborate on the failures
of Node-perturbation in identifying the correct propagating
paths (Sect. V) and Node-and-Edge-perturbation in capturing
the temporal information carried out by the models (Sect. VII).
Our code is anonymously available at [25].

Synthetic Experiment on Node-perturbation. To demon-
strate the unidentifiable result of Node-perturbation, we con-
struct a synthetic node-classification task as shown in Fig. 9.
The input is a 6-node-circle graph with one activated node.
The task is to transmit that activation to the 2-hop away nodes
from those activated nodes using 2 graph layers. Due to the
restriction of 2 graph layers, the ground-truth explanation must
be as indicated in Fig. 9 (iv).

TABLE V: GNNExplainer fails to detect the ground-truth explanations
of the synthetic task (Fig. 9) when using Node-perturbation (Node)
and Node-and-Edge perturbation (All).

Return Edge Return Node

Method TPR FPR TPR FPR
Naive Edge 700 £ 0.00 | 0.00 £ 0.00 | 1.00 £ 0.00 | 0.00 £ 0.00
GNNExplainer (Node) | 1.00 £ 0.00 | 0.50 & 0.00 | 0.61 £ 0.20 | 0.39 £ 0.20
GNNExplainer (All) | 0.50 £ 0.18 | 0.25 £ 0.09 | 0.58 £ 0.20 | 0.42 £ 0.20

Node-perturbation methods are expected to fail since they
cannot differentiate the contributions of the two 1-hop neighbors
of the target node. We consider the state-of-the-art explanation
method, the GNNExplainer [10], to elaborate that claim.
Table V reports the True-positive-rate (TPR) and False-positive-
rate (FPR) of the method in this synthetic task. The result
not only supports our claim in the case of Node-perturbation
but also in Node-and-Edge perturbation. Interestingly, a naive
greedy Edge-perturbation method in which the edges are
selected based on their sensitivity to the predictions can match
the ground truth perfectly. These results emphasize clearly the
importance of the choice of perturbations for explanations.
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Fig. 9: The synthetic static task demonstrating the failure of node-
perturbation explanation methods.
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Fig. 11: The temporal activations of TGNNs in synthetic
temporal task demonstrating the failure of Node-and-
edge perturbation-based explanation methods.

Experiments on Node-and-Edge-perturbation. We now de-
scribe our synthetic experiment showing the issue of explaining
TGNNs’ temporal dynamic using the conventional Node-and-
Edge perturbation. The learning task is the prediction of the
maximum signals observed in the opposite node in a 6-node-
circle motif as depicted in Fig. 10. Two distinct 2-time-step
TGNNSs are obtained by the combinations of some separately
trained neural layers so that their outputs are always identical on
the same inputs. Furthermore, the constructions also make the
two models have very different temporal dynamics: while the
first model transmits temporal information via the source node,
the other relies on the whole graph for temporal transmission
(Fig. 11). The existence of those 2 models implies that the
unidentifiable situations pointed out in our theoretical analysis
can occur as a result of the neural network’s training process.

We further strengthen that claim with our experiments on two
real-world Shenzhen and Los Angeles traffic datasets [7]. The
training task is to predict the traffic speed using past data. For
each dataset, we use the same construction and training strategy
as in the synthetic experiment to obtain 2 instances of TGNNs
whose temporal activations are shown in Fig. 12. Since the
outputs of the two TGNNs are also identical, we do not report
the predictions in these cases. It can be observed from both
datasets that the temporal dynamics learned by TGNNs can be
varied not only in terms of the number of nodes contributing
to the temporal messaging but also in the range and meaning
of activation values. The results further point out that faithful
explanations for temporal models cannot be obtained by simply
perturbing node and edge features of the input graph.

IX. DISCUSSION AND CONCLUSION

This work studies the fundamental limit of different perturba-
tion explanation methods in explaining black-box TGNNs. We
have shown that there is key information on how the TGNNs
generate their predictions that cannot be identified by some

(i) Input (iii) Temporal Messages

(ii) Task
i TGNN 1

Fig. 10: The synthetic temporal task demonstrating the failure of
node-and-edge perturbation-based explanation methods.

@ =max{0,®} TGNN 2

Shenzhen Los Angeles

0
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m=m Temporal Messages 1 wem Temporal Messages 1

“Temporal Messages 2

Temporal Messages 2

No. Nodes

70 52 55 58 60 62 65

Temporal activation

10 20 30 40 50 60 68 70

Temporal activation

Fig. 12: The real-world temporal messages demonstrating the failure of Node-and-
edge perturbation-based explanation methods. Note that the outputs of the two
TGNNSs in both experiments are identical regardless of the perturbations.

given classes of explanation methods. We now further point
out several interesting implications of our theoretical results.

Theorem 1 and 2 for GNNs. The Unidentifiable Proofs for
Node-perturbation and Edge-perturbation explanation methods
can be applied directly to GNNs by dropping the feedback
loop of H® (Fig. 5). This modification will just set H'~ ") in
(5) to zeros. Note that in GNNs, we do not have the temporal
dimension in the interpretable domains, i.e. they are BNs
instead of DBNs. As illustrations, Fig. 13a and 14 show the
components of the proofs for Node-perturbation and Edge-
perturbation in GNNGs.

@r P! @1 @1
® 2 @ 2 O 2 )
@3 @3 O 3 @ 3
O 4 O 4 B By
Bl B‘Z .
Fig. 14: The BNs for
a The training task. b The BNs. Edge-perturbation

Unidentifiable Proof

Fig. 13: The components for Node-perturbation
of GNNs.

Unidentifiable Proof of GNNs.

Theorem 3 for GNNs? Our proof cannot readily apply to
the case of GNNs because the two constructions will have the
same Transparent Model, i.e. Z(®¢) = Z(Pg).

What practical models are applicable to our Unidentifi-
able Proofs? As our analysis uses the most basic constructions
of the TGNNSs, our Unidentifiable Proofs in Sects. V, VI and
VII are applicable to all versions of the TGNNs found in [7],
[9], [26]. As the base GNN can be considered as TGNN with
zero temporal feedback (see Fig. 5), Our results in Sects. V
and VI are also applicable to many modern variants of GNNs
including GCN [4], GraphSage [5] and GAT [6].

Usage of other interpretable domains and Transparent
Models (not DBNs). Unidentifiable results can be obtained
by other interpretable domains as long as (i) the Transparent
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Models of the constructed models can be identified (similar to
Lemma 1 and 4) and (ii) they contain meaningful information
that helps establish the unidentifiable information. While
condition (i) requires the domain to have strong expressive
power, condition (ii) requires the domain’s members to be
somewhat interpretable. We find DBN is a balanced choice for
the analysis of TGNN.

What do Theorem 1 and 2 imply about the reliability of
existing explanation methods for GNNs? Existing explanation
methods have been successfully identifying many important
features contributing to the predictions; however, the results
are still limited. Our results establish a fundamental limit of
perturbation-based explanation methods.

For example, Theorem 1 implies explanations obtained by
only perturbing nodes cannot reliably inform us of the paths
determining the predictions. For the case of the two constructed
®7 and @3, the contributions of node 2 and node 4 will always
be considered equal by all Node-perturbation methods. This
means both will be included or discarded by the explainers,
even when the actual messages are only transmitted through
one of them. Thus, Node-perturbation methods are bound to
commit false positives or false negatives. This claim is further
supported by our experiments in Fig. 9.

What does Theorem 3 imply about the design of
explanation methods for TGNNs? Even though the Theorem
states that the Node-and-Edge perturbation methods cannot
identify the temporal component of the model, it does not
mean there is nothing we can do to tackle this challenging
problem. Careful readers might realize that one key aspect
of our proof is based on the fact that removing an edge in
the input graph will disconnect that connection at all rounds
of temporal computations. If there is a mechanism to remove
edge only at some temporal computations, it is possible to
differentiate ®¢ from 9, which is crucial to identify whether
node 1 or node 3 conducts the temporal aggregation. In other
words, temporal perturbation might be something we need to
explain TGNNs more faithfully.
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