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Abstract—This paper investigates the challenges posed by
delays in Closed-Loop Sense-Act Systems in the context of Adver-
sarial Internet of Things (IoT) applications. Prior work focused
on studying the impact of delays on a single resource-constrained
platform. To capitalize on the capabilities of different computing
platforms, this work investigates the adaptation of control place-
ment to optimize application performance in distributed settings.
An Adaptive Control Placement (ACP) strategy is introduced,
which dynamically switches between a local controller with lower
accuracy and a cloud controller with higher accuracy based on
network dynamics, optimizing overall application performance.
The effectiveness of the ACP strategy is evaluated using a simu-
lated Vehicle Following application in the PyBullet simulator. The
results demonstrate that in terms of a time-to-complete (TTC)
metric, the ACP strategy consistently outperforms strategies that
use a fixed combination of controller type and location (e.g., PID
at Local and MPC at Cloud) across various deadline scenarios.

Index Terms—Sense-Act system, Adversarial IoT, PID, MPC,
Adaptive Control

I. INTRODUCTION

Sense-Act systems are fundamental to many Adversarial
Internet of Things (IoT) applications. Examples include radar
or camera-based tracking, intruder interception, and guided
missile interception. These systems primarily consist of two
modules: a sensing module responsible for measuring the state
of the environment and an actuation module that utilizes this
measurement to take suitable actions to achieve desired results.
The feasible methods for sensing and actuating vary based
on the specific nature of the application and its associated
performance metric.

For instance, in radar-based intruder tracking scenarios,
utilizing a sensing module with high latency and high accu-
racy would be deemed acceptable if the primary goal is to
achieve the most precise representation of the environment
possible. Conversely, a goal of obtaining the most accurate
representation of the environment as quickly as possible would
require sensing modules with lower latency or those capable
of predicting the environment’s state at the time of inference.

The trade-off between accuracy and latency is particularly
evident in Closed-loop Sense-Act Systems (Figure 1). Con-
sider the example of a guided missile interception system. The
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Sensing module records the state of the environment, namely
the current positions of the target intruder missile and the
interceptor missile. Within the sensing module, there may be
additional sub-methods (Perception, Inference) that assist in
deriving the final state information from the raw sensor data.
This state information is leveraged by the Control module to
estimate the required trajectory of the interceptor missile and
is subsequently translated into an action, specifically updated
linear and angular velocities, by the Actuation module.
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Fig. 1: Visualization of the Sense-Act system
with module delays d;, d», and d;

Each module within the Closed-loop Sense-Act System
incurs its own computation delay (d;, d>, and d3), which, when
integrated with the system design, governs the application
performance in terms of the accuracy-latency trade-off. In
the majority of instances, [13] [14], the system design is
tailored to account for the worst-case delays, wherein sensing
and actuation occur at fixed intervals with the interval being
greater than the worst-case cumulative of d;, d», and d;s.
Alternatively, some cases, [3] [15] [16], configure the system
design such that sensing occurs at fixed worst-case intervals,
while actuation is executed as soon as the action is ready.

Prior research has examined the impact of delays on various
components of the Sense-Act systems. For instance, Sela et
al. [1] investigated the influence of model completion times
on the performance of the perception module. The authors
illustrate that by the time the more complex, accurate models
finish processing, the ground truth has changed significantly.
Furthermore, if the application performance is determined by
accurately representing the state of the world at the time of
inference, then in certain scenarios it is more beneficial to
choose a simpler, less accurate model that finishes faster.
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Sandha et al. [2] demonstrate that systems cognizant of the
overall delays within the loop yield superior application per-
formance. For complex environmental settings, their approach
of training an end-to-end perception to control policy showed
23.8% performance improvement when compared with the
state of the art techniques.

However, these works focus on Sense-Act systems operating
on a single platform, typically a resource-constrained device.
As the models employed within these systems evolve, they
become increasingly computationally complex. For instance,
TinyYolov4 (a lightweight object detector for embedded de-
vices) offers higher accuracy at the cost of 66% higher
inference latency than its predecessor, TinyYolo3x [17]. To
optimize the utilization of these advances, we posit the need
to leverage other platforms such as Edge and Cloud in addition
to the resource-constrained devices.

In this work, we focus on the Control module in the
Sense-Act system and investigate the adaptation of control
placement to optimize application performance in distributed
settings. We assess the impact of different controllers and their
placement on application performance under varying delays.
Using a representative Vehicle Following example where the
ego vehicle trails a target vehicle on a specified trajectory, we
demonstrate that systems with immediate execution of action
outperform those designed for worst-case delays. Further, we
highlight the benefit of a distributed system architecture on
application performance by implementing an Adaptive Control
Placement strategy.

This paper is structured as follows: We first introduce the
underlying principles of our controllers of choice in Section II
and outline the system design and architecture in Section III.
Section IV provides an overview of the simulation process,
including the setup and performance metrics, as well as
elaborates on simulation results. Finally, we summarize our
findings in Section V and discuss potential future directions
in Section VI

II. BACKGROUND

In this section, we provide a brief overview of the two
control methodologies we employ, namely PID (Proportional-
Integral-Derivative) and MPC (Model Predictive Control).

A. Proportional-Integral-Derivative Control (PID)

The PID controller is the most prevalent form of feedback
control algorithm [4], a popularity that can be attributed to its
simplicity and ease of use. The mathematical expression of
the PID Controller is given as:

de(t)
dt

Here, the generated control signal u(?) is a summation of
three components: Proportional, Integral and Derivative with
gains Kp, K;, and Kp respectively. Each term produces a
control signal with respect to the error e(z) which is calculated
as the difference between the desired set point r(z) and the
measured state y(t), i.e. e(t) = r(t) - y(t).

u(t) = Kpe(t) + Kl/e(t)dt + Kp (1)

As the name suggests, the proportional term produces a
control signal proportional to error. The integral term corrects
for any steady-state errors while the derivative term uses
the rate of change of error to anticipate its future behavior.
The gain of each term (Kp, K;, and Kp) can fine-tuned to
achieve desired controller performance. However, this fine-
tuning can be challenging [6] and the performance of the
controller degrades with significant time delays [5].

B. Model Predictive Control (MPC)

MPC is an advanced control strategy that computes control
inputs by solving an optimization problem at each time step.
To understand MPC, let us consider the example of a vehicle
with the state space representation defined by the following
set of differential equations:

2)
@' (t) = v(t) x tand/L

where z(t) and y(t) denote the current x,y coordinates, v(t)
and ¢(t) give the current linear velocity and orientation of the
vehicle. Additionally, a(t), d, and L represent the acceleration,
steering angle and the vehicle wheel base (distance between
the front and rear wheels) respectively.

The Model Predictive Controller utilizes the mathematical
model (2) and the state of the system (in this case, the vehicle)
denoted by [z,y,v,d] to forecast its future behavior over a
finite horizon 7' and generates the control output [a,d] to
minimize a cost function over this horizon. This approach
allows MPC to handle multi-variable systems and constraints
effectively. However, the requirement to solve an optimization
problem at each time step makes MPC computationally expen-
sive, and the selection of the prediction horizon, cost function
weights, and constraints requires careful tuning to achieve the
desired controller performance [7].
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Fig. 2: System Setup

III. SYSTEM DESIGN

In this section, we first describe the system architecture
for controller type and location. We then elaborate on our
implementation of this architecture.

Authorized licensed use limited to: UCLA Library. Downloaded on September 07,2024 at 21:44:39 UTC from IEEE Xplore. Restrictions apply.

134



MILCOM 2023 - Workshop on Internet of Things for Adversarial Environments

To illustrate placement of control in a distributed setting,
we employ two locations of executing the control algorithm:
Local and Cloud. Local control refers to on-device controller
which may be connected to the device’s sensors using a
very low-latency link and has limited computational resources
by the virtue of being hosted on the resource-constrained
device. Cloud control can be thought of as a remote controller,
equipped with larger computational resources but connected to
the device via a high-latency link.

We implement this architecture (Figure 2) for a Vehicle
Following application by simulating a F1/10 racecar [8] and
its environment in the Pybullet simulator [9]. The simulator is
operated on a MacBook Pro [10] which is connected to the
local controller i.e. Raspberry Pi 4B [11] via Ethernet. The
simulator together with the local controller is representative
of the vehicular network. The cloud controller is hosted on
an Amazon AWS EC2 (N. California) [12] instance and is
connected to the vehicular network via Wi-Fi. The capabilities
of both control locations are listed in Table I.

Local Cloud
Computation Quad core Cortex-A72 | t2.micro with Intel Xeon
(ARM v8) 64-bit SoC @ | Scalable Processors @
1.8GHz; 4GB RAM 3.3 GHz; 1 GiB RAM
Communication Ethernet Wi-Fi

TABLE I: System Capabilities of Control Locations

IV. SIMULATIONS

In this section, we first outline the application performance
metrics and the simulation scenarios. Subsequently, we ex-
amine the impact of various combinations of controller type
and placement on the performance. Finally, we introduce
the adaptive control strategy and assess its performance in
comparison to that of individual controllers.

A. Application Performance Metrics
We evaluate the application performance using two metrics:

o Time to Complete Trajectory (I'TC): The time the
vehicle takes to reach Goal destination from Start
location.

e Tracking Error: The average deviation of followed
trajectory from expected trajectory. It is calculated by
sampling the trajectories at fixed intervals and measuring
the deviation at each sample.

For an ideal controller, we expect a low TTC and minimal
tracking error.

B. Simulation Scenarios

To study the impact of delays on application performance,
we evaluate the system under a variety of actuation deadlines:

o As soon as possible (ASAP): There is no actuation
deadline. Action is applied as soon as it reaches the device
(in our case, simulated vehicle).

o Static (worst — case) deadline: Action is applied at a
specified worst-case actuation deadline (A, = A) where

the interval between two deadlines is greater than worst-
case delays within the loop.

e Static (high) deadline: Here, the actuation deadline is
slightly less than that of Static (worst-case) (A, = 0.9A)

o Static (moderate) deadline: Here, the actuation dead-
line is slightly less than that of Static (high) (A, = 0.8A)

o Static (low) deadline: This is the case of very strict
deadlines where the actuation deadline is close to the
summation of delays in the loop (A, = 0.7A)

In each case, sensing happens at fixed sensing intervals (A =
A) which are greater than worst-case delays within the Sense-
Act loop of our simulation.

C. Controller Type and Location Compatibility

To identify the most optimal combination of controller type
and location, we first analyze the total latency from sensing to
effect, i.e. one cycle of the Sense-Act loop. Here, the ASAP
(As Soon As Possible) deadline is used wherein the action
is implemented immediately upon becoming available. Table
IT provides a detailed breakdown of total latency for each
combination of controller type and location.

We observe that the local control location offers approx-
imately 8 times lower communication latency than cloud
control location. Futher, controllers when hosted on the cloud
benefit from a significant computational speed-up. As shown
in Section II, the PID controller is less complex than the MPC,
and therefore, receives a more substantial computational boost.
Additionally, we note that the resource-constrained nature of
the local control location has an adverse effect on MPC’s
computational latency, rendering it infeasible for systems with
sampling period less than 0.6 seconds.

Controller Communication Computation Total Latency
Loc./Type Latency (ms) Latency (ms) (ms)
Local PID (9.54, 44.9) (56.8, 96.89) (69.34, 111.24)
Local MPC (7.92, 14.8) (580.5, 773.21) | (580.62, 773.7)
Cloud PID (81.73, 263.9) (0.25, 0.34) (81.98, 264.18)
Cloud MPC (50.45, 117.53) (157.6, 185.03) | (208.12, 269.8)

TABLE II: Breakdown of total latency with
(average, worst-case) metrics in ms

D. Controller Performance

We evaluate the performance of PID and MPC algorithms
when hosted at local and cloud control locations using the
metrics we identified in Section IV-A. Figure ?? shows the
TTC to as function of controller type and location for each
deadline as outlined in Section IV-B. Average deviation is also
noted on the bars for Local PID and Cloud MPC which are
the best performing combinations.

Executing PID at the Cloud results in the longest completion
time for each deadline because the effect of lower accuracy,
leading to deviation from the trajectory, is magnified by
the high round-trip communication latency. Additionally, as
highlighted in Section I'V-C, the implementation of MPC at the
Local control location is computationally infeasible. Although
PID at Local yields the lowest Time-To-Complete (TTC), it
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(a) Performance of PID controller at Local and Cloud locations.
Local PID finishes faster than Cloud PID.
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(b) Performance of MPC controller at Local and Cloud locations.
Cloud MPC finishes faster than Local MPC.

Fig. 3: Application performance of PID and MPC controllers are Local and Cloud placement locations under ASAP
deadlines. Cloud MPC has less tracking error (average deviation from expected trajectory) than Local PID controller.

incurs a higher tracking error compared to MPC at Cloud,
which, despite having a higher TTC, yields more precise
trajectory tracking.

Furthermore, we observe that Static (worst-case) deadlines
offer the poorest performance for both time-to-complete (TTC)
and tracking error. This is attributed to the vehicle having
a prolonged wait time for the actuation deadline, resulting
in a significant deviation from the expected trajectory. This
deviation is amplified if the actuation deadline is missed due to
computational or network latency. As the deadlines decrease
(Static (high) and Static (moderate) cases), we notice a de-
crease in TTC and average deviation because the actions are
implemented more promptly, affording the vehicle less time to
deviate from the path. However, in the case of strict deadlines
(Static (Iow) case), we see a deterioration in performance since
the likelihood of missing deadlines increases, subsequently
leading to increased deviation. It is, however, rapidly rectified
at the subsequent actuation deadline. Finally, the absence
of additionally delays in ASAP deadline scenario enables it
achieve the best performance.

E. Adaptive Control Placement Performance

The findings from the preceding sections collectively sug-
gest that PID, when hosted on the device, and MPC, when
hosted on the Cloud, yield the best performance. We leverage
this by designing a distributed system with both Local and
Cloud control locations and employ an Adaptive Control
Placement (ACP) strategy as shown in Figure 4(a). MPC,
being a more complex control methodology, is hosted on com-
putationally faster but higher communication latency control
location, i.e. the Cloud, while the simpler PID controller is
hosted on the computationally slower Local control location
with low communication latency. Although preference is given
to the more accurate MPC controller, we switch to less
accurate but always available PID controller in the event of
high network delays.

Figure 4(b) illustrates the application performance of the
Adaptive Control Placement strategy compared with the best-
performing controllers for each location, i.e., PID at Local
and MPC at Cloud. ACP outperforms both the individual con-
trollers in terms of time-to-complete (TTC) across all deadline
scenarios. This can be ascribed to the absence of deadline
misses in the case of adaptive control placement. Specifically,
during substantial network delays, the PID controller assumes
control, albeit with a less accurate control signal, to prevent the
vehicle from significantly deviating from the trajectory. While
this maneuver incurs a tracking error cost, it contributes to
reducing the overall trajectory completion time.

On the other hand, the tracking error of the ACP lies be-
tween that of the individual controllers since a combination of
control signals from the low-accuracy PID and high-accuracy
MPC controllers are utilized. Additionally, as expected, Static
(worst-case) deadlines have the highest time-to-complete and
it canonically decreases as the deadlines becomes shorter.
However, for very strict deadlines (Static (low) case) we
observe a slight increase in TTC due to increase in the number
of invocations of the PID controller. This leads to greater
deviation from expected trajectory and results in increased
time to complete as well.

V. CONCLUSION

In this paper, we examined the influence of delays within the
Closed-Loop Sense-Act Systems on application performance.
While prior research in this domain focused on optimizing
performance on a single platform, our work shows that better
optimization is achieved by harnessing a distributed architec-
ture. With the wide accessibility and adoption of computing
tiers such as Edge and Cloud, the importance of challenges
posed by computation and communication delays increases.
Focusing on the Control sub-module within the Sense-Act
system, we demonstrate that variations in delays leads to cor-
responding variations in application performance. Moreover,
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Fig. 4: Architecture and performance of Adaptive Control Placement strategy. (a) Visualization of the distributed architecture
of the Adaptive Control Placement strategy (b) ACP outperforms Local PID and Cloud MPC in terms of time-to-complete.
Tracking error of ACP (denoted by bar labels) lies in between that of PID and MPC.

we present an Adaptive Control Placement strategy that opti-
mizes overall application performance by switching between
a lower-accuracy local controller and a higher-accuracy cloud
controller based on network dynamics.

VI. DISCUSSION AND FUTURE WORK

This work focused on analyzing the effect of delays on
the closed-loop version of Sense-Act Systems (for example,
a guided missile interception system) where the sensing and
actuation happen in a repetitive manner until the application
objective is fulfilled. However, as we briefly discuss in Section
I, there exist other variants of the Sense-Act systems such
as radar-based tracking (situational awareness), and intruder
interception (open-loop sense-act system) with different sys-
tem architectures and objectives. A potential avenue for future
research could be extending our delay impact analysis to
such systems thereby facilitating a more comprehensive and
generalized understanding of the relationship of delay with
Sense-Act systems.

Additionally, the most prominent delays arise from complex
sensing, inference and perception algorithms. Although we
model these delays as a variety of deadlines in our work,
integrating these algorithms with Adaptive Control Placement
strategy would lead to a more refined overall system archi-
tecture, more closely aligned to real-world deployments. It
would be valuable to study the application performance within
complex, multi-modal Sense-Act systems and evaluate the
generalizability of our findings.
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