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Understanding how neural circuits generate sequential activity is a longstanding
challenge. While foundational theoretical models have shown how sequences can be
stored as memories in neural networks with Hebbian plasticity rules, these models
considered only a narrow range of Hebbian rules. Here, we introduce a model for
arbitrary Hebbian plasticity rules, capturing the diversity of spike-timing-dependent
synaptic plasticity seen in experiments, and show how the choice of these rules and
of neural activity patterns influences sequence memory formation and retrieval. In
particular, we derive a general theory that predicts the tempo of sequence replay. This
theory lays a foundation for explaining how cortical tutor signals might give rise to
motor actions that eventually become “automatic.” Our theory also captures the impact
of changing the tempo of the tutor signal. Beyond shedding light on biological circuits,
this theory has relevance in artificial intelligence by laying a foundation for frameworks
whereby slow and computationally expensive deliberation can be stored as memories
and eventually replaced by inexpensive recall.

Hebbian learning | sequences | spike-timing-dependent plasticity | motor learning

An important class of animal behaviors are those that are consolidated into “automatic,”
well-practiced sequential routines (1–9). An analogy is the process of learning a tennis
serve, which starts as a slow and deliberate process, but eventually becomes nearly muscle
memory. Importantly, the behavior can be thought of as a sequence that, once initialized
in a starting state, progresses in a highly stereotyped, automatic fashion. From this
perspective, the behavior can be thought of as a stored sequence memory that is recalled
by an initial prompt.

For such sequence memories, the timing of the subelements of these sequences and
overall tempo are essential components (10–16). For example, activities such as walking,
swimming, and digestion follow a natural rhythm and tempo (17). Tempo-sensitive
sequential activities also include those learned through experience, such as learning a
sequence of precisely timed lever taps (18, 19). It is therefore important to understand
how temporally specific sequences can be learned, memorized, and recalled.

To answer this question, we need to look at the mechanisms of learning and generation
of sequential behavior. One common perspective holds that these behaviors are generated
by stereotyped sequential neural activity (17, 20–23). Further, several experiments
showed a tight correlation between neural activity and timing of behavior (13, 24–
31). This suggests that automatic sequential behavior may at least in part be “stored” in
the synapses of a neural circuit, such that the behavior can be generated by setting the
network to a state that corresponds to the first point in the sequence.

Despite the importance of these topics to understanding brain function, it is unclear
what actually determines the tempo of sequence generation in neural circuits, and how
this is connected to the learning process. Here, we hypothesize that the tempo arises from
an interaction between the temporal dependence of the synaptic learning rules and the
temporal structure of the network activity when learning the sequential behavior. We
refer to the mechanism that sets network activity during sequence learning as the “tutor
signal;” this tutor signal may come from a higher-order brain area such as the motor
cortex or from minimally processed sensory inputs. The idea of a tutor signal being
the basis for forming long-term memories is a standard theory that has been posited by
experimentalists studying birdsong learning and motor learning in rats (18, 32, 33).

This perspective is embodied by models featuring temporally asymmetric Hebbian
(TAH) learning rules. Despite the long and illustrious legacy of this class of models
(34–44), previous studies were seriously limited by the narrow class of learning rules
that these preexisting models can describe, and the fact that these learning rules do not
correspond with those observed in the brain. In this work, we extend the basic TAH
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models previously considered to a much richer class of models.
Not only do we derive a theory that describes the essential
elements of sequence dynamics—including tempo and noise
robustness—for learning rules currently seen in the brain; our
theory describes a wide class of TAH learning rules that gives rise
to sequential dynamics, covering the case of new learning rules
that may be discovered in biology in the future.

TAH network models are built upon Hebbian learning
rules, wherein the network state is set by the tutor to a
sequence of activity patterns one after another. These activity
patterns correspond to moments in behavioral sequences, and
the Hebbian learning rules store the structure of these sequences
in the network as a memory. The sequences can then be recalled
by setting the network to the first state in a desired sequence,
resulting in the execution of the now “automatic,” well-practiced
sequential behavior. These models can be seen as a generalization
of Hopfield networks (34, 45) to storing sequences rather than
static patterns; therefore, many of the motivations and rationale
behind the Hopfield model are applicable here, such as the
ability to “complete” a sequence based on partial inputs (see
Discussion for more in-depth interpretations of our model). Our
model is a straightforward extension of previous models [most
closely, (40)] with the addition of general Hebbian learning
rules and added white noise to the dynamics, which can be
considered a minimalistic model to capture the phenomenon
of sequence learning under general spike-timing-dependent
plasticity (STDP) learning rules and noise perturbation.

While our theory is very general, we demonstrate its applicabil-
ity and utility by focusing on two fundamental and biologically
relevant cases: 1) TAH learning rules with fast timescales relative
to the tutor signal and 2) double-sided exponential TAH learning
rules as are commonly seen in biology (46, 47). In both cases,
we find useful principles that are interpretable in the context
of biology. For example, weight structures (and TAH learning
rules) can be adjusted such that the tempo remains the same, but
robustness of sequence recall to noise increases. We also show
how networks with the same qualitative dynamical properties
can arise from very different weight structures. For double-sided
exponential TAH kernels, we show that the tempo of sequence
recall depends linearly on the tempo of the tutor signal, with
a slope that depends in a simple way on the parameters of the
kernel. While we focus here on applications to neuroscience,
considering its generality our analysis may also be of interest
to theorists in other domains studying dynamical systems with
asymmetric weight structures.

Results

Sequence Model Definition. The sequence is stored and pro-
duced by a recurrently connected network of N neurons. The
connectivity is given by a recurrent weight matrix W , where Wij
is the connectivity strength of neuron j to neuron i. The dynamics
of the network are then given by

� ṙ = −r + � (W r + �(t)) , [1]

where �(t) is white noise (〈�i(t)〉 = 0 and 〈�i(t)�i(t ′)〉 =
��2�(t − t ′)) and � is a sigmoidal nonlinearity (see SI Appendix,
1 for more details). The dynamical variables ri represent the
firing rate of neuron i. Note that the effect of � is to rescale
the timescale of the dynamics, r(t; � = a) = r(t/a; � = 1).
Considering this, we set � = 1 without loss of generality. We
will discuss the role of general � again in the Exponential kernels
subsection of Results. The noise term �(t) models the effects of

noisy biological processes such as synaptic transmission failure or
possibly from interference arising from the presence of multiple
stored sequences (40).

The sequence is stored in this network by a tutor signal
(Fig. 1A). Given a sequence of length P, this signal sets the state of
the network sequentially to an ordered set of P patterns (��)P�=1.
These P patterns represent P neural states that correspond to the
states making up the sequential behavior. The recurrent network
memorizes these patterns by synaptic plasticity at the recurrent
synapses.

To store a memory of this sequence, this synaptic plasticity can
take the form of a TAH learning rule active during application of
the tutor signal (34, 35, 40, 48). An example of a TAH learning
rule commonly seen in the literature (i.e., the previous set of
references) is

Wij ←
1

NΔt

∫ T−Δt

0
dt ri(t + Δt)rj(t), [2]

where Δt is an interval of time that spans the amount of time the
network is placed in each pattern state and T = PΔt is the total
duration for the tutor signal associated with the sequence. With
this learning rule, connections are strengthened according to the
coincident firing of neurons for the current pattern with those
of the next pattern; if weights are initially zero, this learning rule
results in final weights

W =
1
N

P−1∑
�=1

��+1(��)>. [3]

We refer to this weight structure as sequi-associative. Intu-
itively, this set of synaptic weights calculates the overlap between
the current network state with the stored patterns, and if the
overlap with one of the patterns dominates over others (say
pattern �), it steers the network activity to the pattern that is
after the dominant pattern (pattern � + 1).

While sequi-associative weights capture some temporal aspects
of synaptic plasticity, they fall short in their ability to express
the full complexity of plasticity dynamics observed in experi-
ments (46, 47, 49, 50) which can significantly affect synaptic
structure and network dynamics (51–53). Mathematically, a
more general Hebbian learning rule could be written as

Wij ←
1
N

∫ T

0
dt
∫ T

0
ds w(s − t)ri(s)rj(t), [4]

where w is a general kernel/filter that weights the Hebbian
learning rule as a function of time offset. One sees that Eq.
2 corresponds to w(s − t) = �(s − t − Δt)/Δt. However,
biologically observed kernels take much richer and different
forms, including the famous double-sided exponential STDP
curve of Bi and Poo (46, 47) (Fig. 1 B, Right). Note that the
neuroscience literature often plots the kernel as a function of
−�t = −(s− t) instead of �t = s− t (i.e., “pre–post” instead of
the “post–pre” convention used here).

In this paper, we consider the learning of sequences under a
tutor signal with the general Hebbian rule (Eq. 4). This rule can
give rise to a much richer set of weights defined by

W =
1
N

P∑
�=1

P∑
�=1

a���
�(��)>, [5]

where a�� are coefficients that satisfy
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A B

C D

Fig. 1. Illustration of network model and stereotypical behavior. (A) The interaction of a tutor signal (the �� ) with Hebbian temporal kernel w(�t) = w(s − t)
gives rise to weight matrix W . The kernel is convolved with the network state and the result is integrated, where the state of the network is set by the tutor
signal. (B) Illustrations of different possible kernels, emphasizing the largely arbitrary shapes that they can take in our theory. Left: kernel that would give rise
to two terms for each �, a0��(��)> and a1��+1(��)>. Second from Left: kernel that would give rise to three terms for each �, a0��(��)>, a1��+1(��)> and
a−1��−1(��)>. Third from Left: kernel that would give rise to five terms for each �, corresponding to indices −2, −1, 0, 1, and 2. Right: double-sided exponential
kernel. (C) Activity rk of ten randomly selected units in the network for coefficient values a1 = 1 and ak = 0 for k 6= 1. Here, the network state is initialized to the
first pattern in the sequence, r(0) = �1, and � = 0. (D) Overlaps q� of the network activity with patterns �� (coefficients ak and � as in C). Color corresponds to
pattern index � and starts at � = 2. The vertical lines indicate the locations t� of the peaks. The first overlap q1 is not included in the plot for ease of visualization
(it is an exponential that decays from 1).

a�� =
∫ T �

�

0
dt
∫

t�+1
� −t��

t��−t
�
�

ds w(s − t). [6]

Here, t�� is the time at which the tutor signal for pattern � begins
and T �

� = t�+1
� − t�� is the duration for which pattern � is

shown to the network. Our goal is to understand the sequential
dynamics and its tempo arising from such learning rules. Note
that Eqs. 2 and 3 use kernels that are temporally asymmetric,
which is essential for sequential dynamics to arise, whereas Eqs. 4
and 5 do not specify this explicitly. Indeed, not all kernels used in
Eq. 4 give rise to forward-propagating, self-sustaining sequential
dynamics. SI Appendix, 2 details certain conditions for this to
occur.

While in general the relationship between the coefficients and
the kernel is complex as indicated in Eq. 6, in special cases the
relationship can be described intuitively. One example is the case
of double-sided exponential kernels. See the final subsection of
SI Appendix, 2 for a description of this relationship (SI Appendix,
Eqs. A.30–A.32).

To quantify the sequential behavior of the network dynamics,
we define the overlaps

q�(t) :=
1
N

(��)>r(t), [7]

which measure the similarity of the recurrent network activity r
at time t to stored patterns ��. For our initial condition, we will
always initialize the network state to the first pattern �1. Note
that the dynamics of the network in the basis of the neurons may
not reveal the sequential structure (Fig. 1C ), while the overlaps
q� clearly display this structure (Fig. 1D). To measure sequence
progression, we track the locations in time t� of the maxima of
the overlaps q�(t); at time t� we say the sequence is in state �
(see vertical lines in Fig. 1D).* We also define p� := q�(t�) to
be the height of the peaks. We are particularly interested in the
tempo of the recalled sequences, which we measure by the peak
difference d� := t�− t�−1. Note that by this definition tempo is

*We can also define the sequence state represented at a time t by arg max�(q�(t)), but
the t� are more mathematically convenient objects to consider.

the inverse of sequence progression speed. As we will show, the
tempo of the recalled sequence does not necessarily match the
tempo of the tutor signal (54).

Note that the coefficients a�� can inhomogeneously depend on
�, resulting in a tempo of sequence recall that can be controlled
based on the pattern state (i.e., the same sequence can have both
fast and slow transitions between patterns, resulting in a d� that
depends strongly on �). If the tutor signal presents patterns at
regular intervals, then the coefficients take the form a�� = a�−�.
In this case, the coefficient for the ���� term only depends on
the difference between � and � rather than depending on �
independently of �:

W =
1
N

P∑
�=1

P∑
�=1

a�−���(��)>

=
1
N

P∑
�=1

P−�∑
k=−�+1

ak��+k(��)>. [8]

This means that the tempo d� can no longer be controlled in
a sequence-state-dependent (i.e., �-dependent) manner. Even
stronger, often the tempo is approximately independent of � (it
is a global property of the sequence), so that d� is approximately
constant across �.

Sequence Stability. Beside tempo, we are also interested in
quantifying when sequential dynamics die out over time, or are
instead (relatively) self-sustaining. Note that since we are using
a saturating nonlinearity �, each ri is bounded which implies
that the overlaps q� are also bounded. Hence we are primarily
interested in how the solutions q�(t) decay with increasing
�. We observe that solutions generically decay to the zero
solution q�(t) ≡ 0 with increasing � but there is a bifurcation
point with decreasing magnitude of connection strength

∑
k ak.

Before the bifurcation point (large
∑

k ak), the decay of q�(t)
is subexponential, such as ∼ 1/

√
2�� (SI Appendix, 2). After

the bifurcation point (small
∑

k ak), the decay is exponential.
Since the peak times t� are seen in our theory and simulations
to be a linear function of time t, we can measure this decay of
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A B C D

Fig. 2. Comparison of full network simulations Eq. 1 (solid lines) with the mean-field equations Eq. 9 (dashed lines). Throughout, every fifth overlap q�(t) is
shown, starting with � = 2. For all plots, � = 0. (A) Overlaps q�(t) for network with N = 5,000 neurons. The only nonzero coefficients are a�+1

� = 1.5. (B) As in
(A), but for N = 20,000 neurons. (C) As in (A), but a�� = 0.1 and a�+1

� = 1.3 for � < 11; and a�� = −0.1 and a�+1
� = 1.5 for � ≥ 11. All other coefficients are zero.

(D) As in (C) but for N = 20,000.

the solutions q�(t) by measuring the “sup-norm” of the solution
vector q(t) := [q1(t), q2(t), ..., qP(t)]> while taking P → ∞,
where the sup-norm ‖v‖∞ of a vector v is maxi |vi|. Precisely,
we say that the sequence of solutions (q1(t), q2(t), ..., qP(t))
is unstable if the solution vector q(t) has the property that
lim infP→∞ ‖q(t)‖∞ decays to 0 with rate O(tbeat) for some
a < 0 and some real number b. We say that the sequence of
solutions is stable if it is not unstable.†

Related Works. Other works have also considered extensions
to Eq. 3. For example, some works (35–37, 54, 55) include
an autoassociative component ��(��)> to the weights; Refs.
35–37 use discrete dynamics that selectively “delay” filter the
sequi-associative component, and ref. 55 multiplies the sequi-
associative term with random noise. The authors of ref. 43
conduct simulation studies of a model with an antisymmetric
Hebbian kernel. Ref. 56 considers terms of the form ��+k(��)>,
but only for a specific kernel rather than the generality considered
here.

Mean-Field Theory. To gain analytical insight about the behavior
of our model, we extend the mean-field analysis of ref. 40 to
the general weights described by Eq. 5. We assume that the
patterns are drawn identically and independently from a standard
Gaussian distribution, ��i ∼ N (0, 1), and take the network
population size to infinity, N →∞.

In this mean-field limit, the overlaps evolve with dynamics
given by (SI Appendix, 1)

q̇� = −q� + g(t)
P∑

�=1
a�� q� , [9]

where
g(t) = G

(
‖Aq(t)‖22 + �2) ,

for some function G and where A is the matrix A = (a�� )1≤�,�≤P
(� indexes the rows and � indexes the columns). We give the full
functional form of G(x) in SI Appendix, 1 and Eq. A.3), which
depends on the shape of �. For the analysis here, the important
aspect of G is the value of G(�2), which serves as an upper bound
on g(t) (SI Appendix, Fig. S1). In particular, for � = 0, g(t) is
bounded from above by G(0), and G(0) = 20/

√
2� ≈ 8 for

our choice of parameters for � (see SI Appendix, 1). The form

†Note the contrast to the dynamical systems literature, where stability typically means
that the solutions remain finite.

of this expression comes from the Gaussian patterns and the
error-function form of � (SI Appendix, Eq. A.1).

The convergence with increasingN of the mean-field solutions
to the full network solutions is illustrated in Fig. 2. This holds
both in the case of uniform tutor signal intervals (Fig. 2 A and
B) as well as nonuniform tutor intervals (Fig. 2 C and D). For
the following, we assume that tutor signal intervals are uniform
in temporal duration, so a�� = a�−� . We will revisit the case of
nonuniform intervals in the final subsection of Results (Sequences
with fast and slow parts). In the uniform interval case, T �

� is
constant across � so we drop the � dependence and write T� as
the tutor signal interval duration.

In SI Appendix, 2, we show under appropriate conditions that
the solution to Eq. 9 is approximated by the linear equations

q̇� = −q� +
P∑

�=1
ā�−�q� , [10]

where ā� := ḡa� and where we define ḡ := 1/
∑P−1

k=−P+1 ak.
This is a consequence of g(t) asymptoting to a constant value as
t → ∞; while we do not prove that this occurs, we observe it
happening in our simulations. In SI Appendix, 2, we argue that
limt→∞ g(t) = ḡ holds under certain conditions when solutions
are stable, and that with additional conditions limt→∞ g(t) = ḡ
implies that solutions are stable. Conversely, one case where we
can expect solutions to be unstable is when g(t) is bounded away
from ḡ. This occurs when connectivity is too weak, i.e., when
ḡ > G(�2).

One Forward Term. We next turn to analyzing sequence progres-
sion in the recurrent neural network. We start by considering the
case with one forward term where ak = 0 for k /∈ {0, 1}. This
results in the weight matrix W = 1

N
∑

�(a0���� + a1��+1��)
with autoassociative and sequi-associative terms a0���� and
a1��+1��, respectively. This case is relevant in the regime where
the duration of sequence elements,T� , is longer than the timescale
of w(t) (i.e. w(�t) = 0 for �t > T� and w(�t) = 0 for �t < 0).
Fig. 3A illustrates two possible kernels w corresponding to this
case, emphasizing the arbitrary shape that the kernel can take
within its support.

In this case Eq. 10 becomes

q̇� =
{
−q� + ā0q� + ā1q�−1, � > 1,
−q� + ā0q�, � = 1.
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Fig. 3. Sequence progression for two-term connectivity corresponding to ak = 0 for k /∈ {0,1}. Plots show the full network simulations Eq. 1 (solid lines) and
linear approximations Eq. 11 (dashed lines). Throughout, letters F, G, and H correspond to coefficient values (a0 , a1) = (0.4,0.6), (−0.4,0.6), and (0.0,0.1),
respectively. For all plots except for panel (E), � = 0. (A) Illustrations of two TAH kernels w that would give rise to two terms. (B) Peak times t� . The † symbol
denotes coefficient values that give rise to overlapping lines, and H denotes a coefficient values for which the network equations are unstable. (C) The value of
g(t) through time during the simulations in (B). Dashed lines denote ḡ. The function g(t) is bounded from above by G(0) ≈ 8, which is indicated by a dotted line.
For the coefficient values corresponding to H, there is a mismatch between ḡ and limt→∞ g(t) (asymptote of solid line). (D) Plots of peak differences d� as a
function of a0 and a1. Shaded regions are 95% CIs for � ∈ {3, . . . ,72}, and lines are the means. Left: a0 is plotted on the horizontal axis and a1 is denoted by color.
Right: a1 is plotted on the horizontal axis and a0 is denoted by color. (E) The peak height p70 corresponding to the maximum of q70(t) over t, in the full network
simulation, as a function of the sum of coefficients a0 +a1. Color denotes the noise strength � and dashed vertical lines show the critical points G(�2)−1, where
the network is predicted to pass from stable to unstable. Shaded regions are 95% CIs over a0 ∈ {−0.2,0,0.1}. (F) Overlaps q�(t) corresponding to coefficient
values (0.4,0.6). (G) Overlaps q�(t) corresponding to coefficient values (−0.4,0.6). (H) Overlaps q�(t) corresponding to coefficient values (0.0,0.1).

The solutions to these equations for ā1 > 0 are (recall the initial
conditions q1(0) = 1 and q�(0) = 0 for � > 1):

q�(t) =
(ā1)�−1t�−1

(� − 1)!
e(ā0−1)t ,

which have maxima at

t� =
� − 1
1− ā0

. [11]

Note that ā0 + ā1 = 1 by definition, which places some
restrictions on the values that ā0 and ā1 can take. For instance,
ā0 > 1 implies ā1 < 1. The tempo as measured by peak
difference is

d� =
1

1− ā0
= 1 +

a0

a1
. [12]

Peak magnitudes p� can also be computed explicitly (SI
Appendix, 2 and Eqs. A.20 and A.21) and are asymptotically

p� ∼ 1/
√

2��,

when solutions are stable.
Fig. 3 shows the simulation results for various values of a0, a1,

and �. Fig. 3B plots peak times t� for � = 0. The full network
simulations with N = 35,000 match the linear approximations
Eq. 11 closely, except for coefficient values where the solutions
for the full network decay to zero (denoted by H). This happens
because ḡ is larger than the critical value of G(0) ≈ 8. Note
the significant role of a0 in determining the sequence tempo. In
particular, for a0 = 0 changing a1 has no impact on the tempo (†
symbol in Fig. 3B). Note also that, unlike in standard Hopfield
models, the autoassociative term a0 can be negative. The Bottom

panel of Fig. 3A shows an example of a kernel that gives rise to
negative a0 and positive a1.

Fig. 3C plots the function g(t). This plot supports our original
assumption that g(t) asymptotes to a constant value, and shows
the close match between limt→∞ g(t) and ḡ, except in the
case where ḡ > G(0) ≈ 8 (denoted by H), which results in
instability.

To look more closely at the relative impacts of a0 and a1
on sequence tempo, we plot sequence tempo d� for different
combinations of a0 and a1 in Fig. 3D. Fig. 3D shows that the
dependence of d� on a0 is roughly linear in the range plotted, with
a slope that decreases with increasing a1. Coefficient ranges were
chosen in an attempt to capture the full behavior of the dynamics
within the region of stable sequence generation; in particular, this
requires that a1 > 0 and a0+a1 > 1/G(0). Note that for a0 < 0
sequence progression speed decreases, counterintuitively, with
increasing a1, while the opposite relationship holds for a0 > 0
(recall that sequence progression speed is the inverse of the tempo
d�). This can also be seen from Eq. 12.

Fig. 3E quantifies the stability properties of sequences by
plotting the peak magnitude p� for a pattern of large index (here,
� = 70) as a function of ḡ−1 = a0 + a1 for two choices of
noise level, � = 0 and � = 2.58e − 2. This figure indicates that
increasing ḡ−1 eventually transitions the network into a stable
regime, while for a fixed ḡ−1 increasing the noise � eventually
destabilizes a stable network. Note that such noise could come
from interference, such as that which arises if there are multiple
stored sequences (40), or from biologically relevant sources such
as synaptic transmission failure. The dashed vertical lines mark
the critical values of stability where ḡ = G(�2). In summary, this
plot illustrates how ḡ determines the stability of sequences, and
that smaller ḡ (equivalently, larger a0+a1) is required for stability
in the presence of noise. The plot shows that, as predicted, peak
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magnitudes p� have a sharp inflection point at ḡ = G(�2), where
p� goes from being approximately zero to nonzero.

Note that a0 and a1 can be adjusted so that sequence tempo
d� remains constant, but stability is improved by decreasing ḡ.
This can most easily be seen by considering lines of constant d�
in Fig. 3D. The most straightforward example is the line d� = 1
in the Right panel of Fig. 3D, which clearly corresponds to many
values of a0 +a1. This is particularly important in the presence of
noise, as shown by Fig. 3E . This degree of freedom of the system
makes some kernels w(t) strictly better than others, even if they
result in the same tempo.

General Approximate Solution. While we were able to explicitly
solve Eq. 10 in the case of two nonzero terms in the preceding
section, in general an explicit solution is not available and we
need to resort to approximations. To approximately solve Eq.
10, we replace the system of equations with one that is periodic
in �. A general approximate solution to the equations with these
periodic boundary conditions can then be found (SI Appendix, 2):

t� ≈
� − 1
�
−

�
2�2 , � > 1, [13]

where � =
∑dP/2e−1

k=1 (āk − ā−k)k and � =
∑dP/2e−1

k=1 (āk +
ā−k)k2. Sequence tempo as measured by peak difference is then

d� ≈
1
�
, � > 2. [14]

When � > 0, these equations describe forward propagation of
the sequence.

In the following sections, we will look at special cases of interest
that illustrate the theory.

Three Terms with Bidirectional Connectivity. Next we consider
the case with three terms and bidirectional connectivity in Eq. 10,
where ak = 0 for k /∈ {−1, 0, 1}. This results in the weight matrix
W = 1

N
∑

�
(
a−1��−1�� + a0���� + a1��+1��

)
. Bidirec-

tional connectivity occurs with TAH kernels commonly found in

biology, such as double-sided exponential decay kernels (46, 47)
(see Fig. 1 B, Right for an illustration). Three terms in particular
are relevant when the TAH kernel’s timescale is faster than
the tutor signal’s, for instance when the support of the kernel
vanishes outside of time windows spanning more than two
pattern presentations. Fig. 4A illustrates an arbitrary kernel that
would give rise to three terms.

To understand sequence progression speed, we use Eq. 13:

t� ≈
� − 1

ā1 − ā−1
−

ā−1 + ā1

2(ā1 − ā−1)2 , � > 1. [15]

Sequence tempo as measured by peak difference is then

d� ≈
1

ā1 − ā−1
=

a0 + a1 + a−1

a1 − a−1
, � > 2.

The effect of changing a−1 on sequence tempo is revealed by
taking the derivative of d� with respect to a−1:

d
da−1

d� ≈
a0 + 2a1

(a1 − a−1)2 , � > 2.

This shows that increasing a−1 increases d� provided a0 +2a1 >
0. To compare the relative impact of changing a−1 and a1 on
sequence tempo, we can take the ratio of derivatives:

dd�
da1

/ dd�
da−1

≈ −
a0 + 2a−1

a0 + 2a1
, � > 2.

This equation reveals that changes in a−1, counterintuitively,
may impact sequence tempo more than changes in a1 for certain
coefficient configurations. Hence a−1 is also a natural parameter
to use to control tempo.

Fig. 4 compares the full network simulations given by
Eq. 1, the simulations of the linear system Eq. 10, and the
approximation Eq. 15. The peak times t� are plotted in Fig.
4B, showing that Eq. 15 is a good estimate of both the linear
and full network system. Fig. 4C shows the relationship between
d�, a0, and a1 for fixed a−1 = −0.2. The Left panel reveals

A

C D

B E F

Fig. 4. Sequence progression for bidirectional terms. Plots show the full network simulations Eq. 1 (solid lines), linear approximations Eq. 10 (dashed lines), and
approximation Eq. 15 (dotted lines). Throughout, letters E and F correspond to coefficient values (a−1 , a0 , a1) = (0.2,0.2,0.8) and (−0.2,−0.2,0.8), respectively.
For all plots, � = 0. (A) Illustration of a TAH kernel w that would give rise to bidirectional terms. (B) Peak times t� plotted for a variety of coefficient combinations
(a−1 , a0 , a1), denoted by color. (C) Plots of peak differences d� as a function of a0 and a1. Here, a−1 = −0.2. Shaded regions are 95% CIs for � ∈ {3, . . . ,72},
and lines are the means. Left: a0 is plotted on the horizontal axis and a1 is denoted by color. Right: a1 is plotted on the horizontal axis and a0 is denoted by
color. (D) As in (C) but with a−1 = 0.2. (E) Overlaps q�(t) corresponding to coefficient values (0.2,0.2,0.8). (F) Overlaps q�(t) corresponding to coefficient values
(−0.2,−0.2,0.8).
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that d� increases approximately linearly with increasing a0, with
a slope that decreases with increasing a1. Comparison with Fig.
3D shows the impact of introducing a negative a−1, which can be
mixed but is generally to decrease d� over the parameter regime
considered.

Fig. 4D shows the relationship between d�, a0, and a1 for
fixed positive a−1 = 0.2. Again, the Left panel reveals that d�
increases approximately linearly with increasing a0, with a slope
that decreases with a1. Comparing with Fig. 3D shows how
a−1 = 0.2 typically increases d� relative to a−1 = 0.

As in the case with two terms, the tempo of the sequence can be
held constant while the stability term ḡ is decreased. Indeed, the
introduction of a−1 introduces an additional degree of freedom.
Examples of keeping d� fixed while varying ḡ can be seen by
following horizontal lines of fixed d� in Fig. 4 C and D.

Three Terms with Forward Connectivity. Now we consider
the case with two forward terms, where ak = 0 for
k /∈ {0, 1, 2}. This results in the weight matrix W =
1
N
∑

�
(
a0���� + a1��+1�� + a2��+2��

)
. This illustrates the

effects of having TAH kernels with a slightly longer timescale
than the tutor signal. Fig. 5A illustrates a TAH kernel that would
give rise to two forward terms. Using Eq. 13:

t� ≈
� − 1

ā1 + 2ā2
−

ā1 + 4ā2

2(ā1 + 2ā2)2 , � > 1. [16]

Sequence tempo as measured by peak difference is then

d� ≈
1

ā1 + 2ā2
=

a0 + a1 + a2

a1 + 2a2
, � > 2. [17]

Fig. 5 compares the full network simulations given by Eq. 1,
the simulations of the linear system Eq. 10, and the asymptotic
approximation of the peak times Eq. 16, showing a close match
for all three quantities. Similar to the case of the previous section,
increasing a2 has a qualitatively different effect on d� depending

on the values of a0 and a1. Taking the derivative of d� with
respect to a2 in Eq. 17

d
da2

d� ≈
a1 + 2a0

(a1 + 2a2)2 , � > 2 [18]

indicates that increasing a2 increases d� if and only if a1 +2a0 <
0. Examples of the effect of increasing a2 can be seen in Fig. 5B,
which plots peak times t� for a range of coefficient combinations.
The differing effect of increasing a2 can be seen in this plot.

The relationship between d� and different coefficient com-
binations is further elucidated in Fig. 5C , which plots d� as a
function of a0 and a1, where a2 = 0.2. As in previous sections,
the dependence of d� on a0 is approximately linear over the
coefficient values considered, with a slope that decreases with
increasing a1. Comparison with Fig. 3D shows the (multiplexed)
effect of positive a2.

Note that, as in the previous sections, the stability properties
of the sequence (determined by the sum of coefficients) can
be improved even as the timing is held constant († symbol in
Fig. 5B); that is, d� ≈ 1/(ā1 + 2ā2) can be fixed while ḡ is
decreased. This is most clearly illustrated by the horizontal line
d� = 1 in the Right panel of Fig. 5C .

Exponential Kernels. Here, we consider the special case of
(double-sided) exponential kernels as commonly used to model
STDP kernels seen in biology (46, 47). These have the form
w(t) = −m1et/�1 for t < 0 and w(t) = m2e−t/�2 for t ≥ 0,
where �1, �2 > 0 (see Fig. 6A for an illustration). We compute
in SI Appendix, 2 that the approximate peak times are given by
Eq. 13 where

� = ḡ(m1�2
1 + m2�2

2 )
and

ḡ = (m2�2 − m1�1)−1 T−1
�

in the P → ∞ limit. Here, T� is the length of the tutor
signal interval. Note in particular that the sequence tempo as
measured by

A

C

B
D

E

Fig. 5. Sequence progression for two forward terms. Plots show the full network simulations Eq. 1 (solid lines), linear approximations Eq. 10 (dashed lines), and
approximation Eq. 16 (dotted lines). Throughout, letters D and E correspond to coefficient values (a0 , a1 , a2) = (0.4,0.6,−0.1) and (−0.4,0.6,0.4), respectively.
For all plots, � = 0. (A) Illustration of a TAH kernel w that would give rise to two forward terms. (B) Peak times t� for a variety of coefficient combinations
(a0 , a1 , a2), denoted by color. The † symbol denotes coefficient values that give rise to overlapping lines. (C) Plots of peak differences d� as a function of a0 and
a1. Here, a2 = 0.2. Shaded regions are 95% CIs for � ∈ {3, . . . ,72}, and lines are the means. Left: a0 is plotted on the horizontal axis and a1 is denoted by color.
Right: a1 is plotted on the horizontal axis and a0 is denoted by color. (D) Overlaps q�(t) corresponding to coefficient values (0.4,0.6,−0.1). (E) Overlaps q�(t)
corresponding to coefficient values (−0.4,0.6,0.4).
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d� ≈
1
�

= T�
m2�2 − m1�1

m1�2
1 + m2�2

2
, � > 2 [19]

scales linearly with the tutor signal interval T� . The equation for
� is given by SI Appendix, Eq. A.33 in SI Appendix, 2.

Biology may use this relationship to dilate or contract the
stored sequence tempo relative to the tutor signal by using
particular STDP kernels. In particular, m2�2−m1�1

m1�2
1+m2�2

2
= 1 indicates

that the sequence will be stored faithfully (with the same tempo
as the tutor signal). For general � in Eq. 1, the condition is
m2�2−m1�1
m1�2

1+m2�2
2
� = 1.

The quantity d� is plotted in Fig. 6 B and C for a variety
of different kernels as a function of tutor interval T� . These
plots compare the full network simulations with the linear
approximation Eq. 10 and the approximation Eq. 19, showing a
close match, especially for small T� .

In Fig. 6D, we plot the dependence of sequence tempo d�
on the parameters �1, �2, and m2. The Left panel shows that d�
typically decreases with increasing �2, but this can be reversed for
large enough �1. The Center panel shows that, for the parameter
values chosen, d� decreases with increasing �1. The Right panel
shows the influence of changing m2 on d�; while increasing
m2 increases d�, the effect is small. Parameter values were
chosen to demonstrate the full spectrum of behaviors within the
regime of stable, forward-propagating dynamics. SI Appendix, 2
describes simple relationships between the kernel parameters and
coefficients ak.

To look more closely at the interplay between the timescale of
the TAH kernel and the timescale of the tutor signal, we look
at the case where �1 is small relative to �2. Then d� ≈ T�/�2,
indicating that in this case the ratio of the timescales sets the
sequence tempo. Sequence stability is determined by ḡ < G(�),
where in this case ḡ ≈ m−1

2 �−1
2 T−1

� .

Sequences with Fast and Slow Parts. In naturalistic settings,
different states of a sequence may have different durations. For
instance, in playing a piece of music different notes are held

with different durations. Our analysis indicates that changing
these durations causes a change in the sequence progression
speed, meaning that variable duration tutor signals T �

� will result
in sequences with faster and slower parts (Fig. 7). Consider
a sequence with sections that pass from one set of uniform
durations {T 1

� }�∈S1 to another {T 2
� }�∈S2 , illustrated by Fig. 7A.

The overlaps q� for � ∈ S1 will be governed by the first interval
length, with some disturbance from q� for � ∈ S2 mediated
by the backward coefficients ak for k < 0. For � far from the
boundary this disturbance should be small. On the other hand,
q� far from the boundary will be governed by the second interval
length with small disturbance from q�, with the caveat that the
evolution up to time t has been influenced significantly by the
dynamics of q�. With these caveats in mind, we should expect
the tempo in each of these regions far from the boundary to
progress at speeds determined by the corresponding tutor signal
interval length, with more complex behavior occurring near the
boundary of the transition. In Fig. 7, we consider a case with
two transitions, where T 1

� = 0.6 for � ∈ [1, 20], T 2
� = 0.3 for

� ∈ [21, 30], and T 3
� = 0.6 for � ∈ [31, 100] (slow to fast back

to slow). Here, we use a double-sided exponential kernel with
�1 = 0.25, m1 = 2, �2 = 1, and m2 = 2. This figure illustrates
that after transitioning, the sequence speeds up or slows down to
match the new duration.

However, these transitions have undesirable characteristics.
For one, in the first transition, the sequence slows down just
before entering the faster sequence section (Fig. 7 B and C ). A
second issue is that the peak differences become more variable
after each transition (Fig. 7C ). A third issue is that the transition
from T 2

� to T 3
� is very gradual and takes a significant amount of

time before recovering the tempo of the T 1
� section (Fig. 7C ).

These issues, and particularly the third, are probably related to
how overlaps q� generically “spread out” for increasing index �
(Fig. 7D); that is, the width of the bumps traced out by q�(t)
increases with increasing�. This suggests that an improved model
represent overlaps in a way agnostic to the index of the pattern

A

D

B C

Fig. 6. Sequence progression for double-sided exponential kernels and varying T� . Shaded regions are 95% CIs over � ∈ {3, . . . ,12}, and lines are the means.
Plots show peak differences d� derived from the full network simulations Eq. 1 (solid lines), linear approximations Eq. 10 (dashed lines), and approximation Eq.
19 (dotted lines). For all plots, � = 0. (A) Illustration of a double-sided exponential TAH kernel w. (B) Peak differences d� for a variety of double-sided exponential
TAH kernel parameters �2 and m1 (color). Here, �1 = 0.25 and m2 = 2. (C) As in (B), but with m1 = 2 and varying m2 (denoted by color). (D) Peak differences d�
as a function of �1, �2, and m2. Unless otherwise defined, parameter values are �1 = 0.25, m1 = 1, m2 = 3, and T� = 3. Left: d� as a function of �2 with varying
�1 (color). Center: d� as a function of �1 with varying �2 (color). Right: d� as a function of m2 with varying �2 (color).
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A B C D

Fig. 7. Sequences with fast and slow parts. Sequence dynamics with three regions T1
� = 0.6, T2

� = 0.3, and T3
� = 0.6. The first transition occurs at � = 20 and

the second at � = 30. Parameters are �1 = 0.25, m1 = 2, �2 = 1, and m2 = 2. For all plots, � = 0. (A) Illustration of the three regions (note that this schematic is
not accurate with respect to the � values at which transitions occur). (B) Peak times as a function of pattern index �. Dashed vertical lines demarcate the three
regions. (C) Peak difference d� as a function of pattern index �. Dotted lines mark averages over the intervals [3,18], [20,28], and [50,80]. (D) Plot of overlaps
q�(t). Dashed vertical lines demarcate the three regions.

being represented, perhaps with the use of nonlinear learning
rules as in refs. 40 and 54, “interaction modulation” as suggested
by ref. 57, or “delay” filtering as suggested by refs. 35–37.

Discussion

The ability to store experiences as memories is fundamental
to intelligent behavior. While memories are typically modeled
as fixed points in recurrent networks, sequences constitute
information that is also of primary importance. This is clear when
considering the ubiquity of well-practiced, automatic motor
behaviors.

Our model stores memories by assuming that the network is
placed in states by a “tutor signal” during the learning process.
There are multiple possible interpretations for this. The state of
the network could be set by sensory inputs, so that TAH learning
rules constitute an unsupervised method for learning sequential
structure in the world. Another interpretation is that higher-
level brain areas provide this tutor signal. For instance, the motor
cortex could be directing motor outputs (a process involving slow,
deliberate thought) while sending tutor signals to a subcortical
network which makes a copy of the behavioral control that
allows sequential behavior to be later recalled, thereby skipping
the slow deliberation process and corresponding to automatic
behavior (18, 58).

This work seeks to fill a significant gap in theory describing the
ability to form sequence memories. Namely, it is not clear how
general and commonly observed Hebbian learning rules could
give rise to such sequence memories. Hebbian learning rules
have the advantage of being simple, more biologically realistic
alternatives to learning rules such as gradient descent, and have
been shown to be implemented in neural circuits. The generality
of our theory will allow it to be applicable as new STDP rules
are discovered and will enable theorists and experimentalists to
probe the functional role that this variety of STDP kernels might
be playing (49). Our theory may also be useful for analysis of
dynamical systems with sequence dynamics more generally (59)
since the mean-field Eq. 9 is quite general.

Findings Relevant to Neuroscience. Our analysis reveals many
interesting phenomena of potential consequence to neuroscience.
Our first contribution is showing that the replay tempo of
sequences stored in neural networks with Hebbian learning rules
generically does not match the tempo of the tutor signal. This
can be important in modeling observed neural behaviors such
as rapid replay as observed in the hippocampus (60). In this
case, the tutor signal would be provided by experience with the
environment, and recall in the model would correspond to the
replay events observed, for instance during sleep. In many cases,

the tutor signal is viewed as a signal to be stored faithfully, so
that recall has the same tempo as the stored signal. In these
cases, our theory makes predictions for the STDP learning rules
that will be observed in these neural circuits. We derive simple
equations describing the relationship between tempo and the
parameters of the (double-sided) exponential kernels commonly
seen in biology, showing that recall tempo scales approximately
linearly with the tempo of the tutor signal, where the slope of
this linear relationship depends on the parameters of the kernel.
In addition, our theory relates sequence stability to parameters
of the kernel, which could provide predictions for how many
applications of the tutor signal are needed for a sequence to be
robustly encoded in the neural circuit, since repeat application of
the learning rule is analogous to increasing the magnitude of the
kernel. This also reveals that Hebbian kernels can be chosen that
produce sequences with the same tempo, but that are more or
less robust to noise. Our theory lays out a quantitative framework
that allows such kernels to be delineated. Finally, we show the
result of changing the tempo of the tutor signal throughout the
sequence, so that the sequence has faster and slower parts. While
the recall tempo roughly follows these changes, we find several
undesirable characteristics of the recalled sequence and suggest
possible goals for improving the model.

With all this said, it may be necessary to address limitations
of our model as described below to acquire useful experimental
predictions. Even if this is the case, our theory takes a significant
step in the direction of making concrete experimental predictions.

Limitations and Future Work. A shortcoming of our model is
that the possibility of correlated patterns is not addressed. It is
reasonable to think that the sequence state patterns �� could be
correlated across neurons and through time in biological circuits,
and addressing this may provide a more useful and biologically
faithful model. An additional limitation is the interpretation of
discrete sequence states, and on understanding what the biolog-
ically relevant timescales for tutor signals are. It is possible that
neural control signals in higher-order brain areas are “chunked”—
that is, a relatively constant control signal initiates another motor
area that enacts a motor motif (1). In general, it may still be of
interest to introduce tutor signals that are not constant over inter-
vals [t�� , t

�+1
� ]. Another limitation of our model is the assumption

that during learning the network’s activity is entirely governed by
the tutor signal. In reality, there will likely be ongoing dynamics
not related to the tutor signal present during the learning process.
In addition, we consider only linear TAH learning rules, although
we expect our analysis would extend in spirit to nonlinear
learning rules such as those considered in ref. 40. Finally, our
model suffers from the overlaps d�(t) “spreading out” with
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increasing � with peak heights that slowly decay, even in the
stable regime. As mentioned in the Sequences with Fast and Slow
Parts subsection of Results, adding mechanisms such as nonlinear
learning rules (40, 54), “interaction modulation” as suggested by
ref. 57, or “delay” filtering as suggested by refs. 35–37 could help
mitigate this.

We further test our model’s behavior in extreme cases of fast
and slow tempos in SI Appendix, Fig. S3. This figure shows
that there is a transient period where the tempo “settles in”
to a limiting tempo. However, this period is relatively short
over a wide range of limiting tempos, indicating that our model
holds up well under wide choices of parameters. We also test our
model’s behavior in the biologically relevant parameter regime
taken from ref. 47 in SI Appendix, Fig. S5. This shows that
the model behaves well in this regime as well, though the exact
kernel of ref. 47 creates periodic waves of activity due to strong
backward connectivity terms (SI Appendix, Fig. S5E). To probe
the dependence of sequence magnitude on parameter choices, we
plot the sequence magnitudes p� in SI Appendix, Figs. S4 and S6,
corresponding to SI Appendix, Figs. S3 and S5, respectively. These
plots show that while sequence magnitudes can decrease, for
instance as T� is decreased, this can be counteracted by increasing
the magnitude of the Hebbian kernel.

In the long term, memory models should be combined with
other models, such as models of the motor cortex supporting
flexible motor control. Tutor signals would then be generated by
these other models, and gradually the memory model would take
over control of motor actions as they become more practiced (61).
In addition, mechanisms for refinement based on reward signals
could be added to the memory modules. For instance, by gating

TAH learning rules based on reward signals, this learning process
can be turned into a reinforcement learning process.

Other biologically relevant details may also be useful to add,
such as using a spiking neural network model. There is a
straightforward extension of our model to spiking neurons, i.e.,
using the approach of ref. 40. While STDP learning rules are
often probed in firing rate models (40, 62), spiking may in some
cases be more appropriate (63).

Summary. Our theory shows that sequence memories can be
formed by Hebbian learning rules that have been observed in
biology, using a theory that is common in neuroscience: the
presence of a tutor signal. Our analysis provides clear predictions
for the STDP kernels that should be found in neural circuits
that store sequence memories. Our work indicates areas of
potential improvement and future development that we believe
are important for advancing the field.

Data, Materials, and Software Availability. Code for reproducing the
plots can be found at https://github.com/msf235/Recall-tempo-of-Hebbian-
sequences (64). For details of the parameters used in the simulations for
producing the plots, see SI Appendix, 3.
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SI Appendix 113

Derivation of mean-field equations. Here we derive the mean-field equations Eq. (9). This is a fairly straightforward generaliza-14

tion of the derivation in (1). The full network equations are15

τ ṙ = −r + φ(Wr + η)16

where η(t) is a white noise vector (〈ηi(t)〉 = 0 and 〈ηi(t)ηi(t′)〉 = τρ2δ(t− t′)). To simulate these equations, we use forward17

Euler integration with timestep dt:18

r(t+ dt) = r(t) + dt (−r(t) + φ(Wr(t) + η(t))) /τ19

where each ηi(t) is drawn i.i.d. from a standard normal distribution with mean 0 and variance τρ2/dt.20

The function φ is a sigmoidal nonlinearity:21

φ(x) = rspan

2

(
rcenter + erf

(
x− θ√

2σ

))
. [A.1]22

Note that τ simply rescales the temporal timescale of the dynamics. Due to this simple behavior, we can simply take τ = 1 for23

the following derivation without loss of generality. The weights W are24

W = 1
N

P∑
µ=1

P∑
ν=1

aνµξ
ν(ξµ)>25

Here each pattern ξµ is standard normal: ξµk
i.i.d.∼ N (0, 1). The mean-field equations are written in terms of the overlaps26

qµ(t) = (ξµ)>r(t)/N . If we let h = Wr + η we can then write27

h =
P∑
µ=1

P∑
ν=1

aνµξ
νqµ + η.28

We now investigate the evolution of the overlaps qµ:29

q̇µ = (ξµ)>ṙ/N30

= −qµ + (ξµ)>φ(h)/N.31
32

Let’s look more closely at the second term on the right hand side. As N →∞ this term approaches an average by the law of33

large numbers, yielding (ξµ)>φ(h)/N → 〈ξµφ(h)〉 where ξν i.i.d∼ N (0, 1) and34

h =
P∑
µ=1

P∑
ν=1

aνµξ
νqµ + η.35

Here η is a scalar white noise term: 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = ρ2δ(t− t′). Hence,36

q̇µ = −qµ +

〈
ξµφ

(
P∑
`=1

P∑
ν=1

aν` ξ
νq` + η

)〉
37

= −qµ +

〈
ξµφ

(
ξµ

P∑
`=1

aµ` q` +
P∑
ν 6=µ

ξν
P∑
`=1

aν` q` + η

)〉
38

39
40

We next note that each term of41
P∑
ν 6=µ

ξν
P∑
`=1

aν` q`42

is an independent normally distributed random variable with mean zero and variance (
∑P

`=1 a
ν
` q`)2. Hence the sum43 ∑P

ν 6=µ ξ
ν
∑P

`=1 a
ν
` q` + η is distributed like xRµ where R2

µ =
∑P

ν 6=µ(
∑P

`=1 a
ν
` q`)2 + ρ2 and x is standard normal. We similarly44

define Sµ =
∑P

`=1 a
ν
` q` and write the average as a Gaussian integral:45

q̇µ = −qµ +
∫
DξµDx ξµφ (ξµSµ + xRµ) [A.2]46
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where Dx = 1√
2π e
−x2/2dx.47

The remainder of the calculation follows closely (1). We next define the change of coordinates48

v = ξµSµ + xRµ√
S2
µ +R2

µ

= ξµSµ + xRµ
c

49

u = ξµRµ − xSµ√
S2
µ +R2

µ

= ξµRµ − xSµ
c

50

51

where v and u are uncorrelated standard normal random variables and where we have defined c =
√
S2
µ +R2

µ. To perform this52

change of variables we first compute the determinant of the Jacobian:53 ∣∣∣∣ dvdξ` dv
dx

du
dξ`

du
dx

∣∣∣∣ = 1
c2

∣∣∣∣Sµ Rµ
Rµ −Sµ

∣∣∣∣ = 1
c2

(
S2
µ +R2

µ

)
= 1.54

Hence we can use the substitution dudv = dξµdx. Furthermore,55

2πDuDv = e−u
2/2e−v

2/2dudv56

= exp
(
− (ξµRµ − xSµ)2

2c2

)
exp
(
− (ξµSµ + xRµ)2

2c2

)
dudv57

= exp
(
− (ξµRµ)2 + (ξµSµ)2 + (xSµ)2 + (xRµ)2

2c2

)
dudv58

= exp
[
−
(
(ξµ)2 + x2) /2] dξµdx59

= 2πDξµDx.60
61

Inverting the change of coordinate equations above, we find that ξµ = (Sµv+Rµu)/c. Using these substitutions, we can rewrite62

the integral63 ∫
DξµDx ξµφ (ξµSµ + xRµ) = 1

c

∫
DuDv (vSµ + uRµ)φ (cv)64

= Sµ
c

∫
Dv vφ (cv) .65

66

We now define67

G(x) = 1√
x

∫
D vvφ(v

√
x).68

Using the definition of φ, this integral can be evaluated with integration by parts and is69

G(x) = rspan√
2π(σ2 + x)

exp
(
− θ2

2(σ2 + x)

)
. [A.3]70

Our equation becomes71

q̇µ = −qµ +G(R2
µ + S2

µ)Sµ72

= −qµ +G

(∑
ν

(∑
`

aν` q`

)2

+ ρ2

)
P∑
`=1

aµ` q`.73

= −qµ +G
(
‖Aq‖22 + ρ2) P∑

`=1

aµ` q`.74

75

where A is the matrix A = (aν` )ν,` (ν indexes the rows and ` indexes the columns) and q is the vector q := (q1, . . . , qP )>.76

Finally, we define77

g(t) = G
(
‖Aq(t)‖22 + ρ2) ,78

79

which results in Eq. (9). Note that limN→∞ ‖Wr‖22/N = ‖Aq(t)‖22: letting u = Wr, the law of large numbers says that80

limN→∞
1
N

∑
i
u2
i = 〈u2

i 〉 =
∑

ν

(∑
`
aν` q`

)2 since ui =
∑

ν
ξνi
∑

`
aν` q` is a Gaussian random variable with mean 0 and variance81 ∑

ν

(∑
`
aν` q`

)2. Plots showing the convergence of the mean-field approximation to the network simulations for increasing N82

are shown in Fig. 2. Note that in the Appendices below, for theoretical analysis the number of patterns P will also be taken to83

infinity. In this case, in order for these mean-field dynamics to hold exactly, P/N must vanish as N and P are both taken large.84
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Note that stability is determined by the shape of the function G. For the values of φ considered in the main text (rspan = 2,85

rcenter = 0, θ = 0, and σ = 0.1), G has the shape plotted in Fig. S1. In particular, G is monotonically decreasing from86

its maximum at x = 0. Since ‖h(t)‖2 ≥ 0, the maximal value that g(t) can take during the ongoing dynamics is bounded87

from above by G(ρ2); see SI Appendix 2 below for more details. Note that the function G is the same as in (1), and the88

supplementary material of (1) contains plots of G for various values of rspan, θ, and σ.89

Our choice of parameters for φ means that firing rates r are in the range [−1, 1]. For nonnegative firing rates, different90

parameter values can be chosen, as in (1). However, in this case it may be sensible to use nonnegative random patterns ξ91

rather than Gaussian. We do not investigate this possibility further here.92

SI Appendix 293

In this appendix we show the full details of the mathematical derivations of the peak times tµ and stability conditions as94

defined in the main text.95

Stability conditions. Here we derive stability conditions, and for stable dynamics we show how the value of g∞ := limt→∞ g(t)96

depends on the coefficients ak. We start with the mean-field equations Eq. (9) and assume that the coefficients are shift-invariant,97

so that aµν = aµ−ν :98

q̇µ = −qµ + g(t)
P∑
ν=1

aµ−νqν . [A.4]99

Note that stability is defined only in the P →∞ limit, so the equation above and those below are defined also for P =∞. As in100

SI Appendix 1, we define q to be the (possibly infinite length) column vector q := (qµ)µ∈{1,2,...,P}. To show the dependence of101

q on t, P , and initial conditions q(0) (which itself depends on P ) we write q(t) or q(t;P ) or q(t;P, q(0)). With this definition,102

we can write Eq. (A.4) as a matrix-vector equation103

q̇ = −q + g(t)Aq [A.5]104

where A is a Toeplitz matrix that holds the coefficients ak:105

A =



a0 a−1 a−2 · · · a−P+1

a1 a0 a−1
. . .

...

a2 a1 a0
. . . a−2

...
. . . . . . . . . a−1

aP−1 · · · a2 a1 a0

 .106

We make the following assumptions, which we refer to as our “standard list of assumptions”:107

Standard list of assumptions:108

Positive pairs: ak + a−k ≥ 0 for all k > 0.109

Finite norm: ‖A‖∞ <∞.110

Continuity: g(t) is continuous.111

Finite ḡ: ḡ <∞.112

Rapid convergence: limt→∞

∣∣∣∫ t0 ds(g(s)− g∞)
∣∣∣ <∞.113

Our objective is to show that114

lim
t→∞

g(t) =: g∞ = ḡ :=

(
P−1∑

k=−P+1

ak

)−1

[A.6]115

is a critical relation for stability in the following senses:116

Proposition 1 (Nonperiodic boundary conditions). Let q(t;P, q(0;P )) be a sequence of solution trajectories, indexed by P ,117

for Eq. (A.5) under the standard list of assumptions above. In addition, let q(t;P = ∞) denote the solution trajectory for118

Eq. (A.5) with P =∞ and initial condition q(0;P =∞). Then the following hold:119

• (exponential decay for g∞ < ḡ): lim supP→∞ ‖q(t;P, q(0;P ))‖p = O(et(−1+g∞/ḡ)) provided lim supP→∞ ‖q(0;P )‖p <∞120

for p ≥ 2, including p =∞. In addition, ‖q(t;P =∞, q(0))‖p = O(et(−1+g∞/ḡ)) for all initial conditions q(0) provided121

‖q(0)‖p <∞.122
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• (unbounded growth for g∞ > ḡ): If g∞ > ḡ, then for each time point t, there exists a sequence of initial conditions q(0;P ) in-123

dexed by P (and possibly depending on t) with lim supP→∞ ‖q(0;P )‖2 <∞ such that limt→∞ lim supP→∞ ‖q(t;P, q(0;P ))‖2 =124

∞. In addition, there exists a sequence of initial conditions qk(0;P =∞) (possibly depending on t) with lim supk→∞ ‖qk(0;P =125

∞)‖2 <∞ such that limt0→∞ sup0≤t≤t0 lim supk→∞ ‖q(t;∞, qk(0;∞))‖2 =∞.126

To summarize the above results, as P →∞ and for g∞ < ḡ the solutions are unstable, while for g∞ > ḡ there are ways to127

choose initial conditions that make the solutions unbounded.128

A proof of this proposition is given below. The result that we would ideally like to show, but that we were not able to at129

this point, is encoded in the following conjecture. First we need to define a new condition:130

Forward-propagation-dominated: ak ≥ |a−k| for all k > 0.131

This is a restriction of the positive pairs condition defined above.132

Conjecture 1 (Nonperiodic boundary conditions). Let q be a solution trajectory for Eq. (A.5) under the standard list of133

assumptions as well as the forward-propagation-dominated condition with P =∞ and q(0) = e1 (the vector with 1 in the first134

coordinate and 0 elsewhere). Then q(t) is stable and bounded for all time t if and only if g∞ = ḡ.135

The above results concern Eq. (A.4), which has nonperiodic boundary conditions in µ. Next we consider the analogous136

equation with periodic boundary conditions. In thise case, we will need to assume that P is finite. For ease of exposition, we137

will also assume that P is even; the odd case is similar. We will also need the following assumption:138

Band-limited: ak = 0 for |k| > P/2− 1.139

This is a stronger condition than the finite norm condition in our standard list of assumptions. Let H = P/2− 1 and consider140

the equation141

q̇µ = −qµ + g(t)
H∑

ν=−H

aνqµ−ν mod P+1. [A.7]142

(the modulo is in the subscript of q and is taken to be in the range [1, P ], so in particular 0 mod P + 1 = P ). This corresonds143

to Eq. (A.5) with A replaced by the circulant coefficient matrix144

C =



a0 a−1 · · · a−H 0 aH · · · a2 a1
a1 a0 a−1 · · · a−H 0 aH · · · a2
... a1

. . . . . .
...

aH
...

. . . . . .
...

0
. . . . . . . . .

...

a−H 0 aH
...

. . . . . .
...

...
. . . . . . a−1

a−1 a−2 a−3 · · · a1 a0


.145

Matters simplify considerably in the periodic case:146

Proposition 2 (Periodic boundary conditions). Let q(t;P ) be a sequence of solution trajectories to Eq. (A.7) indexed by P147

under the standard list of assumptions with q(0;P ) = e1 (the vector with 1 in the first coordinate and 0 elsewhere). Then148

q(t;P ) is stable and bounded if and only if g∞ = ḡ. Futhermore, limP→∞ ‖q(t)‖2 ∼ t−1/4et(−1+g∞/ḡ).149

A significant difference between the periodic and nonperiodic cases is that the direction of a propagating wave of activity150

matters in the latter but not in the former. In particular, “backward” propagating waves eventually hit the boundary condition151

at µ = 1 in the nonperiodic case, which can cause activity to die out when it would not do so in the periodic case. This explains152

the presence of the forward-propagating-dominated condition in Conjecture 1. One approach to proving Conjecture 1 may be to153

formally connect the periodic and nonperiodic solutions in such a way that their stability properties are shown to be equivalent154

under the forward-propagating-dominated condition. The solutions in Proposition 1 avoid this issue by allowing for a sequence155

of initial conditions that move away from the µ = 1 boundary; for instance, the initial conditions could be q(0;P ) = eP .156

To start to prove these results, we need the following lemma which will allow us to link our nonlinear equation with a linear157

one:158

Lemma 1 (Stability equivalence of linear and nonlinear equations). Suppose that q1(t) is a solution trajectory to Eq. (A.5)159

for arbitrary A that satisfied the finite norm condition, and with g(t) an arbitrary function satisfying the rapid convergence160

assumption, and q2(t) is a solution trajectory to Eq. (A.5) with g(t) = g∞ under the finite norm condition above. Then q1 is161

stable if and only if q2 is stable, and q1 is bounded for all time if and only if q2 is bounded for all time.162
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Proof. For now we will assume that g∞ 6= 0. The solutions to equation Eq. (A.5) for general g(t) (that satisfies the standard163

list of assumptions) and for g(t) = g∞ are164

q1(t) = e−te
g∞A

∫ t
0
ds g(s)/g∞

q(0) [A.8]165

166

q2(t) = e−teg∞Atq(0), [A.9]167

respectively. Next define f(t) := g(t)/g∞ − 1. The function f measures the deviation of g/g∞ from its eventual limiting value
of 1. Then ∫ t

0
dsg(s)/g∞ =

∫ t

0
ds(f(s) + 1) = t+

∫ t

0
dsf(s).

It follows that168

q1(t) = e−teg∞Ate
g∞A

∫ t
0
ds f(s)

q(0) = Y (t)q2(t) [A.10]169

where we have defined Y (t) := e
g∞A

∫ t
0
ds f(s). Suppose first that q1 is not stable, which means that ‖q1(t)‖∞ = O(tbeat) for170

some real number b and a < 0. Since171

‖q2(t)‖∞ = ‖Y −1(t)q1(t)‖∞ ≤ ‖Y −1(t)‖∞‖q1(t)‖∞ [A.11]172

we have that173

‖q2(t)‖∞ = O
(
tbeat‖Y −1(t)‖∞

)
= O

(
tbeat

)
174

where the last equality follows from the finite norm and rapid convergence conditions as stated in the standard list of assumptions175

(‖A‖∞ < ∞ and limt→∞ |
∫ t

0 ds f(s)| < ∞. Note that this second condition is equivalent to limt→∞ |
∫ t

0 ds g(s)− g∞| < ∞).176

Hence q2 is not stable.177

Going the other way, suppose q2 is not stable, so ‖q2(t)‖∞ = O(tbeat) for some real number b and a < 0. Since178

‖q1(t)‖∞ = ‖Y (t)q2(t)‖∞ ≤ ‖Y (t)‖∞‖q2(t)‖∞ [A.12]179

we have that180

‖q1(t)‖∞ = O
(
tbeat‖Y (t)‖∞

)
= O

(
tbeat

)
181

where the last equality follows from the finite norm and rapid convergence conditions as stated in the standard list of assumptions.182

Hence under these conditions, we have completed the second direction of the equivalence.183

Next we assume that supt ‖q1(t)‖∞ <∞, which by Eq. (A.11) implies that supt ‖q2(t)‖∞ <∞ provided supt ‖Y −1(t)‖∞ <∞.184

To show that supt ‖Y −1(t)‖∞ < ∞, we first note that continuity of g implies that supt
∫ t

0 ds f(s) < ∞ is equivalent to185

limt→∞
∫ t

0 ds f(s) <∞. Then the finite norm and rapid convergence assumptions imply that supt ‖Y −1(t)‖∞ <∞ as above.186

Finally we assume that supt ‖q2(t)‖∞ <∞, which by Eq. (A.12) implies that supt ‖q1(t)‖∞ <∞ provided supt ‖Y (t)‖∞ <∞,187

which holds for the same reasons as for ‖Y −1(t)‖∞. This finishes the equivalence.188

In the above, we assumed that g∞ 6= 0. The case g∞ = 0 follows a similar line of reasoning. We leave this simple case to the189

reader.190

Lemma 1 says that to understand the stability properties of the nonlinear Eq. (A.4), we can instead consider the stability191

properties of its linear analogue where we set g(t) = g∞. For the following proofs, q will refer to Eq. (A.9), the solution to the192

linear equation with g(t) = g∞. This equation is valid for P finite or P =∞, in which case A is an infinite-dimensional matrix.193

In addition to the notation above, from here we let A refer to the infinite-dimensional matrix and let AP refer to the P × P194

truncation of A. By this definition A∞ = A.195

We now need to incorporate machinery from the theory of Toeplitz matrices. This will allow us to define an analogue of196

the spectrum of the matrix in infinite dimensions.∗ Let a : S1 → C be the function mapping the unitary complex numbers197

s(θ) = e2πiθ to the complex plane defined by a(s) =
∑P−1

k=−P+1 aks
k. The function a is called the symbol of the Toeplitz matrix198

A. While the spectral absissa is the quantity of interest when investigating stability of finite-dimensional systems, it is actually199

the real part of the symbol which is the relevant quantity in infinite dimensions.200

Lemma 2. Suppose AP (for P finite or infinite) satisfies the finite norm and positive pairs conditions listed above. Then

sup
s

<a(s) = (ḡ)−1 =
P−1∑

k=−P+1

ak

∗This is actually more closely related to the pseudospectrum of the finitely truncated matrices than it is to the spectrum of these truncations (2), and in general the eigenvalues are a misleading indication
of stability. For instance, the infinite matrixA with a1 = 1 and ak = 0 for k 6= 1 gives rise to stable dynamics, even though the eigenvalues of every truncationAP are 0, which together with the−q

decay term should indicate that the solutions decay to 0 with asymptotic rate e−t . Indeed, solutions do decay to 0, but only after the traveling wave of activity has hit the last pattern in the sequence. If
there is no last pattern (i.e. infinite-dimensionalA), then the activity never decays to 0.
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Proof. The symbol of A is201

a(s) =
P−1∑

k=−P+1

aks
k.202

By the finite norm condition (see Section 1.6 of (2)), this sum is absolutely convergent and we can rearrange terms:203

a(s) = a0 +
P−1∑
k=1

(aksk + a−ks
−k).204

Paramaterizing s as s = e2πiθ, we have that205

sup
s∈S1

<a(s) = a0 + sup
θ∈[0,2π)

P−1∑
k=1

(ak cos(2πkθ) + a−k cos(−2πkθ)) = a0 + sup
θ∈[0,2π)

P−1∑
k=1

(ak + a−k) cos(2πkθ).206

Using the positive pairs condition, we have that this sum is maximized when θ = 0, yielding207

sup
s∈S1

<a(s) =
P−1∑

k=−P+1

ak.208

209

We are now ready to prove Propositions 1 and 2.210

Proof of Proposition 1. Recall that q(t) = etg∞Aq(0). Our general strategy is to translate the results of Theorem 8.15 of (2)211

regarding the behavior of the norm of the transfer function etg∞A to statements about the norm of the solution etg∞Aq(0).212

We first assume that g∞ < ḡ. Then for p ≥ 2 (including p =∞)213

‖q(t;P, q(0))‖p ≤ e−t‖eg∞tAP ‖p‖q(0)‖p ≤ e−t‖eg∞tAP ‖2‖q(0)‖p. [A.13]214

Using the finiteness of lim supP→∞ ‖q(0)‖p, we have that215

lim sup
P→∞

‖q(t;P, q(0))‖p ≤ lim sup
P→∞

e−t‖etg∞AP ‖2‖q(0)‖p = e−teg∞t sup<a lim sup
P→∞

‖q(0)‖p216

where the last equality uses the fact that limP→∞ ‖etg∞AP ‖2 = etg∞ sup<a for each t > 0, which is Theorem 8.15 of (2). Using217

Lemma 2 it follows that lim supP→∞ ‖q(t;P, q(0))‖p = O(et(−1+g∞/ḡ)). Next we note that by the Banach-Steinhaus theorem218

‖etg∞A‖2 ≤ lim infP→∞ ‖etg∞AP ‖2. As stated above, by Theorem 8.15 of (2) the limit exists and is equal to etg∞ sup<a. Hence219

‖etg∞A‖2 ≤ lim
P→∞

‖etg∞AP ‖2 = etg∞ sup<a = etg∞/ḡ. [A.14]220

It follows that221

q(t, P =∞) ≤ e−t‖etg∞A‖2‖q(0)‖2 = O
(
et(−1+g∞/ḡ)) .222

provided ‖q(0)‖2 <∞.223

Next assume that g∞ > ḡ and fix a t > 0. By the definition of the matrix operator norm, for each time t and system size P224

we can choose a sequence of initial conditions q(0;P ) (that may depend on t) such that ‖etg∞AP q(0;P )‖2 ≥ ‖etg∞AP ‖2 − c for225

some constant c which does not depend on t or P . Taking the limit yields226

lim inf
P→∞

‖etg∞AP q(0;P )‖2 ≥ etg∞ sup<a − c. [A.15]227

We have again by Theorem 8.15 of (2) that limP→∞ ‖etg∞AP ‖2 = etg∞ sup<a. Now by Lemma 2, g∞ sup<a = g∞/ḡ > 1. It228

follows that limt→∞ lim infP→∞ ‖eg∞AP tq(0;P )‖2 =∞.229

We now prove the final portion of the proposition, which again is under the case of g∞ > ḡ. Following Theorem 8.15 of230

(2) is the following result: if the pseudospectrum spε(A) of A contains points in the open right-half plane, then each point231

λ ∈ spε(A) with β := <λ > 0 yields an estimate of the form232

sup
0≤t≤t0

‖etA‖2 ≥ eβt0/
(

1 + ε
eβt0 − 1

β

)
. [A.16]233

We will not define the pseudospectrum spε(A) here but instead note that Section 7.4 of (2) implies that if there is η in the234

spectrum of A with <η > 0, then for ε small enough there is also a point λ in the pseudospectrum of A with <λ > 0. It follows235

that if such an η exists, then limt0→∞ sup0≤t≤t0 ‖e
tA‖2 =∞. Finally, we need to connect g∞<a with the spectrum of A. This236

connection comes in the form of Corollary 1.10 of (2), which implies that the symbol of A is contained in the spectrum of A. It237

follows that g∞<a > 1 implies that there is a point η in the spectrum of A with <η > 0. Finally, we construct a sequence of238

initial conditions qk(0;P =∞) (which may depend on t) that realizes the supremum of the operator norm. This concludes the239

proof.240

Matthew Farrell and Cengiz Pehlevan 7 of 20



Next we can prove Proposition 2. The circulant (periodic) situation is much simpler because circulant matrices are241

diagonalizable by Fourier modes.242

Proof of Proposition 2. This proof is similar to that of Lemma 2. Indeed, there is a close connection between the circulant243

matrix C and the Toeplitz matrix A; namely, the symbol of A is a continuous version of the eigenvalues of C. The solution to244

Eq. (A.7) is245

q(t) = e−tetg∞Cq(0). [A.17]246

Since C is diagonalizable, ‖q(t)‖∞ is strictly bounded between 0 and ∞ as t→∞ if and only if the spectral abscissa of C is 1.
The circulant matrix C has eigenvalues

λµ =
H∑

k=−H

ake
2πikµ/P

with real parts

<λµ = a0 +
H∑
k=1

(ak + a−k) cos (2πkµ/P ) .

By the positive pairs condition, <λµ is maximized at µ = 0 which yields max<λµ =
∑H

−H ak. Hence q(t) is stable and bounded247

if and only if g∞max<λµ = 1 (assuming that
∑H

−H ak 6= 0, which is guaranteed by the finite ḡ standard assumption).248

For the second part, we note that since q is unitarily diagonalizable with first eigenvector equal to 1/
√
P , it follows that249

‖q(t)‖2 = 1
P
‖(e−t+g∞λ1t, ..., e−t+g∞λP t)>‖2. Taking P large, this becomes250

‖q(t)‖22 = e−2t 1
P

P∑
µ=1

|e2tg∞λµ | →
P→∞

e−2t
∫ π

−π
dθ e

2tg∞
∑

k
ak cos(kθ) [A.18]251

Using the positive pairs condition, we have that that the maximum of
∑

k
ak cos(kθ) occurs at θ = 0. Hence Laplace’s method252

with large t yields253 ∫ π

−π
dθ e

2tg∞
∑

k
ak cos(kθ) ∼

√
π

g∞t
∑

k
ak
e

2tg∞
∑

k
ak

254

255

It follows that256

‖q(t)‖2 ∼ t−1/4et(−1+g∞/ḡ). [A.19]257

258

Note that even in this simple case, it is not trivial to find the asymptotic behavior of ‖q(t)‖∞ (using the sup norm) since259

the sup norm and 2-norm are not equivalent in infinite dimensions.260

We conjecture that stability of Eq. (A.4) is equivalent to Eq. (A.6) (under assumptions detailed in Conjecture 1 above).261

This does not, of course, automatically imply that Eq. (A.4) will be stable, as it is possible for Eq. (A.6) to not hold. Indeed,262

there is a clear situation that violates Eq. (A.6): since g(t) is bounded from above by maxxG(x) (see SI Appendix 1), clearly263

Eq. (A.6) cannot be satisfied if ḡ > maxxG(x). In this case (and if our other assumptions hold), the nonlinear dynamics264

Eq. (A.4) are expected to not be stable (they will decay to 0 with (near) exponential rate).265

However, if maxxG(x) ≥ ḡ, we can additionally argue that the nonlinear dynamics Eq. (A.4) will in fact be stable, under266

the additional assumption that G(x) is monotonically decreasing from x = 0 (which is satisfied by a wide range of parameters267

for φ including those used in all of our simulations, see Fig. S1). This is because, if the network activity is vanishing, then the268

argument ‖Aq(t)‖2 + ρ2 of G will approach ρ2. This causes g(t) = G(‖Aq(t)‖2 + ρ2) to grow. Once g(t) ≥ ḡ, for each of these269

values of g(t), say g(t∗), the overlaps in the linear equation q̇µ = −qµ + g(t∗)
∑P

ν=1 aµ−νqν will grow. For large enough t, the270

linear equations closely approximate the nonlinear equations, so that the overlaps in the nonlinear equations will also grow.271

However, the overlaps for the nonlinear equations cannot grow indefinitely, since the nonlinearity φ bounds the activity of the272

network. Hence the overlaps will not decay to 0, nor will they grow without bound, so that Eq. (A.4) will be stable. Intuitively,273

the combatting forces of increased growth caused by decreasing ‖Aq(t)‖ and bounded growth from the nonlinearity φ will in274

practice cause ‖Aq(t)‖2 + ρ2 to settle at a stable value which coincides with g(t)→ ḡ.275

Simple example: one forward connection. To demonstrate the theory derived above, we consider a simple example that is similar276

to Section 2.3 of the Supplementary Information of (1), and that is summarized in the One forward term subsection of the277

main text Results. This is the example with one sequi-associative and one autoassociative connection, i.e. where ak = 0 for278

k /∈ {0, 1}. For an even simpler, but slightly less informative example, one can take a0 = 0 in the below calculations. The279

linear Eq. (A.4) with g(t) = g∞ for one sequi-associative and one autoassociative connection is280 {
q̇µ = −qµ + g∞a0qµ + g∞a1qµ−1, µ > 1
q̇µ = −qµ + g∞a0qµ, µ = 1

281
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with initial conditions q1(0) = 1 and qµ(0) = 0 for µ > 1. The solutions to these equations for µ > 1 are282

qµ(t) = gµ−1
∞ aµ−1

1 tµ−1e−t+g∞a0t

(µ− 1)! .283

Solving q̇µ(t) = 0 for t yields peak times of tµ = (µ− 1)/(1− g∞a0). We can observe the growth properties of these solutions284

by evaluating qµ at these peak values, yielding285

qµ+1(tµ+1) =
gµ∞a

µ
1 ( µ

1−g∞a0
)µe−µ

1−g∞a0
1−g∞a0

µ! =
µµ(a1

g∞
1−g∞a0

)µe−µ

µ! . [A.20]286

where we offset the µ index by 1 to make the expression simpler. Sterling’s approximation µ! ∼
√

2πµ(µ/e)µ yields287

qµ+1(tµ+1) ∼
(

a1g∞
1− g∞a0

)µ
(2πµ)−1/2 = mµ

√
2πµ

[A.21]288

where we have set m := a1g∞
1−g∞a0

. This experiences critical behavior at m = 1: for m > 1 the solutions grow without bound,289

while for m < 1 the solutions decay (nearly) exponentially quickly to 0. Solving m = 1 for g∞ yields g∞ = 1/(a0 + a1), which290

is Eq. (A.6). At the critical value of m = 1 the solutions decay to zero, but do so with rate ∼ 1/√µ.291

The periodic Eq. (A.7) with g(t) = g∞ and the same coefficient values as above has solution292

q(t) = 1√
P
W [et(−1+g∞a0+g∞a1e

2µπi/P )]P−1
µ=0293

where W has columns wµ = [e−2µkπi/P ]P−1
k=0 . The growth properties of this solution are revealed by the real part of294

−1 + g∞a0 + g∞a1e
2µπi/P , which for g∞a1 > 0 is maximized at µ = 0 and realizes the maximum value −1 + g∞a0 + g∞a1.295

This is zero when g∞ = 1/(a0 + a1), so that this is a critical value for the solution similarly to the nonperiodic case (though in296

this case solutions neither decay to zero nor grow without bound when g∞ = 1/(a0 + a1)).297

Bidirectional connectivity – explicit solution. Here we derive an expression for a solution to the mean-field system with298

bidirectional connectivity. We include this derivation for completeness and to illustrate the difficulties that arise in deriving a299

simple exact expression for the solution. The reader may prefer to skip to the next sections showing our methods for finding300

approximate solutions. We start with the system of equations301

q̇µ =


−qµ + ā0qµ + ā−1qµ+1 + ā1qµ−1, µ > 1
−qµ + ā0qµ + ā−1qµ+1, µ = 1
−qµ + ā0qµ + ā1qµ−1, µ = P.

[A.22]302

In this case, the coefficient matrix A for the system written as q̇ = −q +Aq has eigenvalues303

λµ = ā0 + 2
√
ā−1ā1 cos µπ

P + 1 , µ ∈ {1, 2, . . . , P}304

and eigenvectors vµ:305

vµk =
√

2
P + 1

∣∣∣ ā−1

ā1

∣∣∣(ā1/ā−1)k/2 sin µkπ

P + 1 , µ, k ∈ {1, 2, . . . , P} [A.23]306

The solution to Eq. (A.22) is then307

q(t) = V DV −1q(0). [A.24]308

where the columns of V are the eigenvectors vµ and where D is a diagonal matrix with Dµµ = e(−1+λµ)t. Letting V ∗ denote
the conjugate transpose of V , we see that V V ∗ is a diagonal matrix with the first entry being equal to 1. To see this, an easy
calculation shows that

P∑
µ=1

vµ1 (vµ1 )∗ = 1,
P∑
µ=1

vµk (vµk′)
∗ = 0, k 6= k′

where the asterisk ∗ denotes the complex conjugate. Hence, if we use the initial conditions qµ(0) = δ(µ − 1), we have that309

(V −1q(0))k = (v1
k)∗. Hence we can write Eq. (A.24) as310

qµ(t) =
∑
j

vjµ exp((−1 + λj)t)(v1
j )∗311

= 2
P + 1

∣∣∣ ā−1

ā1

∣∣∣ (ā1/ā−1)µ/2
(√

ā1/ā−1

)∗∑
j

sin jµπ

P + 1 exp
[(
−1 + ā0 + 2√a−1a1 cos jπ

P + 1

)
t
]

sin jπ

P + 1312

313
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Taking P →∞ this becomes an integral314

qµ(t) = 2 |ā−1/ā1| (ā1/ā−1)µ/2
(√

ā1/ā−1

)∗
e(−1+ā0)tKµ(2√a−1a1t)315

= 2|ā1/ā−1|(µ+1)/2−1e(−1+ā0)t|Kµ(2√a−1a1t)|316
317

where318

Kµ(t) =
∫ 1

0
ds et cos sπ sinµsπ sin sπ.319

Noting that320

Iµ(t) = Kµ(t)t/µ321

is the modified Bessel function of the first kind, this equation can be written322

qµ(t) = 2|ā1/ā−1|(µ+1)/2−1e(−1+ā0)tµt−1|Iµ(2√a−1a1t)|. [A.25]323

Instead of analyzing these equations further, we proceed with approximate methods that will generalize to more cases (i.e.324

more nonzero coefficients ak).325

Bidirectional connectivity – periodic boundary conditions. To further analyze the behavior, we convert the boundary conditions326

of Eq. (A.22) to periodic. This yields the following system of equations327

q̇µ =


−qµ + ā0qµ + ā−1qµ+1 + ā1qµ−1, µ > 1
−qµ + ā0q1 + ā−1q2 + ā1qP , µ = 1.
−qµ + ā0qP + ā−1q1 + ā1qP−1, µ = P.

328

Note that the periodic equations may not match the solutions to the nonperiodic equations exactly, even as P →∞. This329

makes our simulations important for verifying that the approximations are useful.330

The periodic equations can be written331

q̇ = −q +Aq332

where333

A =



ā0 ā−1 0 0 · · · ā1
ā1 ā0 ā−1 0 · · · 0
0 ā1 ā0 ā−1 · · · 0
...

...
...

...
. . .

...
0 0 0 ā1 ā0 ā−1
ā−1 0 0 0 ā1 ā0.

334

Since A is circulant, it can be diagonalized by Fourier modes. Specifically, the µth eigenvalue and eigenvector of −I +A can be335

written λµ = −1 + ā0 + ā−1e
−2µπi/P + ā1e

2µπi/P and vµk = e−2µkπi/P /
√
P for µ, k ∈ {0, ..., P − 1}. Using the initial condition336

qµ(0) = δ(µ− 1), the solution can then be written337

qµ+1(t) = 1√
P

P−1∑
k=0

vµk expλkt [A.26]338

which becomes for P →∞339

qµ+1(t) = e(−1+ā0)t

2π

∫ 2π

0
e−iµse(ā−1e

−si+ā1e
si)tds.340

Note that in taking P →∞, we still require that N is much larger than P so that the mean-field equations are valid. Simplifying341

the integrand results in342

qµ+1(t) = e(−1+ā0)t

2π

∫ 2π

0
et(ā1+ā−1) cos sei(t(ā1−ā−1) sin s−µs)ds.343

and using the 2π-periodicity of the integrand344

qµ+1(t) = e(−1+ā0)t

2π

∫ π

−π
et(ā1+ā−1) cos sei(t(ā1−ā−1) sin s−µs)ds. [A.27]345

We next have some choice of method for approximating this integral. A simple approach would involve taking a truncated346

Taylor expansion of the trigonometric functions in the integrand, with the hope that this resolves into an integral that can be347

evaluated. A more sophisticated and principled approach would be to use a saddle point approximation, where t is treated as a348

variable that is becoming large. We will start with saddle point approximations and show the limitations of this approach in349

this instance. We will then compare the result with the naïve Taylor expansion approach. To get the essential information, the350

reader may wish to skip to this Taylor expansion approach.351
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Bidirectional connectivity – saddle point approximation. We proceed by performing a saddle point approximation of the integral
in Eq. (A.27). To do so, we write the integral as

I(t) =
∫ π

−π
etφ(s)ds

where φ(s) = β cos s+ iα sin s− γs and β = ā1 + ā−1 and α = ā1 − ā−1 and γ = µ/t. Note that we are treating µ/t as a finite352

scalar, so µ and t are growing large together.353

For the saddle point approximation, we first extend φ to a function over the complex numbers and find the critical points of
φ (<φ are saddle points at these critical points in the complex plane). When γ is large enough, there are two saddle points
that both lie on the imaginary axis. To find these, we can take s = iy and find the roots of φ′(iy). Letting u = ey, φ′(iy) can
be written φ′(iy) = −iβ(u− 1/u)/2 + iα(u+ 1/u)/2− iγ. The roots of the resulting quadratic are

u± =
(
γ ±

√
β2 − α2 + γ2

)
/(α− β).

Here we see that the condition that these roots exist is that γ2 ≥ β2 − α2 since u must be real. We next need to calculate
the angle of approach for these saddle points. This is given by arg φ′′ evaluated at the saddle points. This shows that the
angles are −π/2 and 0 for the saddle points in the y > 0 positive half-space and y < 0 negative half-space, respectively. The
contribution of the saddle point in the positive half-space is pure imaginary, so we can focus on the saddle point in the negative
half space, which we denote s∗. Given the negative root u− above, it is straightforward to compute that

φ(s∗) =
√
β2 − α2 + γ2 + log

(
γ −

√
β2 − α2 + γ2

α− β

)
, φ′′(s∗) = −

√
β2 − α2 + γ2.

The resulting saddle point approximation yields

I(t) ≈ Isp(t) :=
√

2π
t|φ′′(s∗)|e

tφ(s∗)

so that354

qµ+1(t) ≈ e(−1+ā0)t
√

1
2πt|φ′′(s∗)|e

tφ(s∗). [A.28]355

356

To find the peak times, we seek the roots of q′µ(t). Given the saddle point approximation above, it is straightforward to compute357

q′µ(t). This expression, even in the asymptotic limit t→∞ (with µ/t constant), does not appear to have roots that can be358

expressed in an explicit equation for t.359

Given that the roots of the saddle point approximation are unhelpfully complex expressions, we next try taking a saddle
point approximation of q′µ+1(t); i.e., instead of finding a saddle point approximation and then taking a derivative, we first take
a derivative and then find the saddle point approximation. The derivative q′µ+1(t) is

q′µ+1(t) = e(−1+ā0)t

2π
(
(−1 + ā0)I(t) + I ′(t)

)
where

I ′(t) =
∫ π

−π
ψ(s)etφ(s)ds, ψ(s) = β cos s+ iα sin s.

Taking a saddle point approximation of this involves taking a saddle point approximation of I(t) and I ′(t); we have already
done the former, and the latter is simply

I ′(t) ≈
√

2π
t|φ′′(s∗)|ψ(s∗)etφ(s∗)

where s∗ is the critical point of φ as above. Hence

q′µ+1(t) ≈
√

1
2πt|φ′′(s∗)|e

(−1+ā0)t ((−1 + ā0) + ψ(s∗)) .

We again look for the peak times by finding the roots of this expression, which occur at ((−1 + ā0) + ψ(s∗)) = 0. Evaluating ψ(s∗)360

is similar to evaluating φ′′(s∗) and yields ψ(s∗) =
√
β2 − α2 + γ2. Substituting β = ā1 + ā−1, α = ā1− ā−1, ā0 = 1− ā1− ā−1,361

and γ = µ/t into this expression and solving (−1 + ā0) +
√
β2 − α2 + γ2 = 0 for t yields362

tµ ≈ (µ− 1)/(ā1 − ā−1). [A.29]363

This is the same as Eq. (12) up to an added constant.364

Matthew Farrell and Cengiz Pehlevan 11 of 20



While this is a fair approximation, the differences between this estimate and the true peak times typically remain non-365

vanishing even as t and µ approach infinity; see the blue and orange lines of Fig. S2a and S2b. However, the differences between366

the true peak differences dµ = tµ − tµ−1 and this estimate do vanish with increasing t and µ; see the blue and orange lines of367

Fig. S2c and S2d.368

Considering that the saddle point method yields either (1) an estimate for tµ that doesn’t appear to have a simple closed-form369

expression, or (2) an estimate that is not asymptotically precise, we seek a simpler approach. This simpler approach derived in370

the next section has the additional advantage of generalizing to the case of arbitrarily many nonzero coefficients ak.371

Bidirectional connectivity – Taylor expansion. In our next approach to approximating the integral Eq. (A.27), we expand the372

trigonometric functions around s = 0 to get373

qµ+1(t) ≈ e(−1+ā0)t

2π

∫ π

−π
et(ā1+ā−1)(1−s2/2)ei(t(ā1−ā−1)s−µs)ds374

= et(−1+ā0+ā1+ā−1)

2π

∫ π

−π
e−s

2t(ā1+ā−1)/2eis(t(ā1−ā−1)−µ)ds375

= 1
2π

∫ π

−π
e−s

2t(ā1+ā−1)/2eis(t(ā1−ā−1)−µ)ds376

377

where in the last step we have used that
∑

k
āk = 1. Letting α := ā1 − ā−1 and β := ā1 + ā−1, we rewrite the integral as378

qµ+1(t) ≈ 1
2π

∫ π

−π
e−(βt/2)s2+i(αt−µ)sds.379

380

While we can write this integral in terms of error functions, a simpler expression results if we are able to integrate over the381

whole real line. We note that across a range of reasonable choices of the ak, the integrand is vanishingly small outside of the382

interval [−π, π]. Hence we can indeed approximate the integral with one over the real line. This results in383

qµ+1(t) ≈ 1
2π

∫ ∞
−∞

e−(βt/2)s2+i(αt−µ)sds384

= 1√
2πβt

e
− (αt−µ)2

2βt385

386

The locations tµ of the peaks are given by the positive root of q̇µ(t) = 0, which when using the approximation above yields387

tµ ≈
−β +

√
β2 + 4α2(µ− 1)2

2α2388

Taking the asymptotic limit of large µ and taking the positive root yields Eq. (14):389

tµ ≈
µ− 1
α
− β

2α2 = µ− 1
ā1 − ā−1

− ā−1 + ā1

2(ā1 − ā−1)2 .390

Similar to the estimate yielded by taking a saddle point approximation of q′µ(t), this estimate is not asymptotically exact;391

see the green lines in Fig. S2a and S2b. Depending on the choice of ak, the approximation can be better or worse than the392

saddle point approximation Eq. (A.29); compare Fig. S2a with Fig. S2b. However, as before the differences dµ := tµ − tµ−1 are393

asymptotically correct; see Fig. S2c and S2d. Hence we can consider this approximation to be practically at least as useful394

as that yielded by taking saddle point approximations. An extra benefit of this approach is that it generalizes; see the next395

section.396

Generalizing the computation to general shift-invariant connectivity. The above technique of using Taylor expansions to find397

an approximate solution for qµ extends to the general case of Eq. (10) with periodic boundary conditions in µ. As above, we398

assume that A is band-limited so that we can replace A with the circulant approximation of A. The eigenvalues of the circulant399

matrix I −A are then λµ = −1 +
∑dP/2e−1

k=−dP/2e+1 āke
2µkπi/P . Grouping terms and taking the limit as P →∞ results in400

eλ(s)t = e(−1+ā0)te
t
∑dP/2e−1

k=1
c+
k

cos 2πks+ic−
k

sin 2πks
401

where c+k = āk + ā−k, c−k = āk − ā−k, and s ∈ [0, 1]. Hence, using a diagonalization of circulant matrices as in Eq. (A.26)402

results in403

qµ(t) ≈ 1
P

P∑
k=1

vµk expλkt→
1

2π

∫ 2π

0
e
t
∑dP/2e−1

k=1
c+
k

cos ks+i
(
t
∑dP/2e−1

k=1
c−
k

sin ks−µs
)
ds404
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as P →∞. Redefining the bounds of integration to [−π, π] and expanding the trigonometric functions around s = 0 as before405

yields406

qµ(t) ≈ e(−1+ā0)t

2π

∫ π

−π
e
t
∑dP/2e−1

k=1
c+
k

(1−(ks)2/2)+i
(
t
∑dP/2e−1

k=1
c−
k
ks−µs

)
ds = e

t

(
−1+
∑dP/2e−1

k=−dP/2e+1
āk

)
2π

∫ π

−π
e−(βt/2)s2+i(αt−µ)sds407

where β =
∑dP/2e−1

k=1 c+k k
2 and α =

∑dP/2e−1
k=1 c−k k. Again extending this to an integral over the real line as before, as well as408

noting that
∑dP/2e−1

k=−dP/2e+1 āk = 1, yields the solution409

qµ+1(t) ≈ 1√
2πβt

e
− (αt−µ)2

2βt .410

As before, the positive root of q̇µ(t) is asymptotically411

tµ ≈
µ− 1
α
− β

2α2 .412

which is Eq. (13). This approximation will be used for the remainder of the Appendices.413

Two forward terms. In the case of two forward terms, the system of equations is414

q̇µ =


−qµ + ā0qµ + ā1qµ−1 + ā2qµ−2, µ > 2
−qµ + ā0qµ + ā1qµ−1, µ = 2
−qµ + ā0qµ, µ = 1.

415

Using Eq. (12) yields the approximate peak times of Eq. (15):416

tµ ≈
µ− 1

ā1 + 2ā2
− ā1 + 4ā2

2(ā1 + 2ā2)2 .417

Exponential kernels. Here we derive the peak times tµ for exponential kernels of the form w(t) = −m1e
t/τ1 for t < 0418

and w(t) = m2e
−t/τ2 otherwise. Given the approximation Eq. (12), we need only compute α =

∑P ′

k=1(āk − ā−k)k and419

β =
∑P ′

k=1(āk + ā−k)k2. To start we adapt Eq. (6) to the setting of equal tutor intervals (Tµξ = Tξ) so that the relationship420

between the coefficients ak and the kernel w takes the form421

ak =
∫ Tξ

0
dt

∫ (k+1)Tξ

kTξ

dsw(s− t).422

Then, for k > 0,423

ak = m2

∫ Tξ

0

∫ (k+1)Tξ

kTξ

e−(s−t)/τ2 dsdt = m2τ
2
2
(
eTξ/τ2 − 1

)2
e−(k+1)Tξ/τ2 [A.30]424

425

a−k = −m1

∫ Tξ

0

∫ (−k+1)Tξ

−kTξ

e(s−t)/τ1 dsdt = −m1τ
2
1
(
eTξ/τ1 − 1

)2
e−(k+1)Tξ/τ1 [A.31]426

These equations afford an intuitive interpretation of the relationship between the kernel and the coefficients. For positive k, ak427

increases with m2 and doesn’t depend on m1 and τ1. The coefficient ak also increases with τ2: after some algebra we find428

that the derivative of ak with respect to τ2 has the same sign as eTξ/τ2 − 1− bTξ/τ2 where b = (k+1)−eTξ/τ2 (k+1−2)
2 , which is429

positive provided τ2 ≤ Tξ. An analogous relation holds for a−k. From this we compute430

lim
P→∞

P−1∑
k=1

ak = m2τ
2
2
(
1− e−Tξ/τ2

)
431

432

lim
P→∞

P−1∑
k=1

a−k = m1τ
2
1
(
1− e−Tξ/τ1

)
433

After computing434

a0 = −m1

∫ Tξ

0
dt

∫ t

0
ds et/τ1 +m2

∫ Tξ

0
dt

∫ Tξ

t

ds e−t/τ2 = Tξ(m2τ2−m1τ1)−m2τ
2
2
(
1− e−Tξ/τ2

)
−m1τ

2
1
(
1− e−Tξ/τ1

)
[A.32]435
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we see that, for large P ,436

ḡ =

(
a0 +

P−1∑
k=−P+1,k 6=0

ak

)−1

→ T−1
ξ (m2τ2 −m1τ1)−1 .437

Similarly,438

lim
P→∞

P−1∑
k=1

kak = m2τ
2
2439

440

lim
P→∞

P−1∑
k=1

−ka−k = −m1τ
2
1 .441

Hence, for large P ,442

α = ḡ

∞∑
k=−∞

kak = ḡ
(
m1τ

2
1 +m2τ

2
2
)
.443

A similar calculation yields444

β = ḡ

(
τ2
2m2

(
eTξ/τ2 + 1

)(
eTξ/τ2 − 1

) −
τ2
1m1

(
eTξ/τ1 + 1

)(
eTξ/τ1 − 1

) )
. [A.33]445

SI Appendix 3446

Here we give the details of the network simulations. Differential equations are solved with forward Euler integration with a447

timestep of dt = 0.075, except for Fig. 1 which uses dt = .0375, Fig. 3e, which uses dt = 1/15, Fig. S2 which uses dt = .001,448

Fig. S3e-f and S4c-d which use dt = 1/120, and Figs. S5-S6 which use a different timestep for each line color (see Github449

repository linked in the main text for the precise values). Recall that the length of the input patterns is denoted by N and the450

number of patterns in the sequence is P . In Figs. 1 and 3 to 5 and Fig. S2, N = 35000. In Figs. 6 and 7, N = 40000. In Fig.451

1, P = 40. In Figs. 3 to 5, 6b, 6c and 7 and Fig. S2, P = 100. In 6d, P = 60. In Figs. 2 to 6 and Fig. S2, P = 100.452

Throughout, we use the nonlinearity Eq. (A.1) with rspan = 2, rcenter = 0, θ = 0, and σ = 0.1.453

Error bars (shaded regions) are computed automatically by the Seaborn plotting library, which uses bootstrapping to454

compute 95% confidence intervals.455
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Fig. S2. Comparing approximations of tµ to true peak times. In these plots, the differences between the true peak times tµ and approximations t̃µ are plotted across µ.
Blue line, orange line, and green line correspond to the peaks of the saddle point approximation of qµ(t), the roots of the saddle point approximation of q′µ(t), and the peaks of
the Taylor expansion approximation of qµ(t), respectively. The python scipy.signal utility find_peaks is used to find the peak times numerically for the blue line. True peak
times (dashed lines) are found by numerical quadrature of the integral expression in Eq. (A.2), followed by using find_peaks. In all plots, ρ = 0. a) Nonzero coefficient
values a−1 = −.3, a0 = .1, and a1 = 1.8. b) Nonzero coefficient values a−1 = .2, a0 = .2, and a1 = .8. c)-d) Difference of peak differences dµ = tµ − tµ−1 with
approximations d̃µ. Note that the orange and green lines coincide. Dotted lines denote the precision ceiling due to the step size dt = 0.001. c) Nonzero coefficient values
a−1 = −.3, a0 = .1, and a1 = 1.8. d) Nonzero coefficient values a−1 = .2, a0 = .2, and a1 = .8.
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Fig. S3. Sequence dynamics over a large range of timescales. Peak differences dµ as a function of µ and tµ over a wide range of parameter combinations. Throughout,
solid lines denote the full network simulations Eq. (1), dashed lines denote the mean-field simulations Eq. (9), dotted lines denote the linear approximate mean-field simulations
Eq. (10), and the dotted-dashed lines denote the approximation given by Eq. (14). In all plots, ρ = 0. a)−d) Two nonzero terms a0 and a1. Color corresponds to coefficient
combinations (a0, a1). Additional parameters: N = 35, 000, P = 140. a), c) dµ as a function of pattern index µ. b), d) dµ as a function of peak time tµ. a),b) Coefficient
values sum to 1.5: a0 + a1 = 1.5. Corresponding legend is to the right of b. c),d) Coefficient values sum to .6: a0 + a1 = .6. Corresponding legend is to the right of d. b)
inset shows the magnitude of the normalized integrated difference D between the mean field equation value of dµ (dashed lines) and the baseline approximate value of dµ
(dot-dash lines) as a function of the approximate value of dµ: D = |(dapprox)−1

∑
µ

(dmean field
µ − dapprox)|. Note that each value of dapprox corresponds to a color in b. This

measures the deviation of the mean-field tempo from the asymptotic tempo. d) description as in b but for different coefficient values. e)-f) Exponential kernel with parameters
τ1 = .25, m1 = 2, τ2 = 1, and m2 = 2. Color denotes tutor signal interval Tξ . Additional parameters: N = 100, 000, P = 80. e) dµ as a function of µ. f) dµ as a
function of tµ. Inset as in b.
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Fig. S4. Magnitude of sequences over a large range of timescales. Peak magnitudes pµ as a function of µ over a wide range of parameter combinations. Throughout,
solid lines denote the full network simulations Eq. (1), dashed lines denote the mean-field simulations Eq. (9), and dotted lines denote the linear approximate mean-field
simulations Eq. (10). In all plots, ρ = 0. a)−b) Color corresponds to coefficient combinations (a0, a1). Additional parameters: N = 35, 000, P = 140. a) Coefficient values
sum to 1.5: a0 + a1 = 1.5. b) Coefficient values sum to .6: a0 + a1 = .6. c) Exponential kernel with parameters τ1 = .25, m1 = 2, τ2 = 1, and m2 = 2. Color denotes
tutor signal interval Tξ . d) As in c, but with the kernel magnitude doubled to m1 = m2 = 4. Additional parameters: N = 100, 000, P = 80.

18 of 20 Matthew Farrell and Cengiz Pehlevan



Tξ (ms)
100
60
30
10
type
network
mf
linear
approx

0 10 20 30
μ

0

10

20

30

d μ
 (m

s)

0 200 400 600 800
tμ (ms)

0

10

20

30

d μ
 (m

s)

5 10 15 20
μ

0

100

200

d μ
 (m

s)

0 1000 2000
tμ (ms)

0

100

200

d μ
 (m

s)

a b

c d

10 20
dμ (ms)

0

10

D
 (m

s)

50 100
dμ (ms)

0

50

D
 (m

s)

(ms)approx

(ms)approx

0 200 400
t (ms)

0.0

0.2

q μ
(t)

0.01
e

f

Fig. S5. Sequence dynamics over a large range of timescales for parameter values close to those measured in biology with double-sided exponential kernels.
a)-d) Peak differences dµ as a function of µ and tµ for parameter values close to those measured in biology with double-sided exponential kernels. Throughout, solid lines
denote the full network simulations Eq. (1), dashed lines denote the mean-field simulations Eq. (9), dotted lines denote the linear approximate mean-field simulations Eq. (10),
and the dotted-dashed lines denote the approximation given by Eq. (14). Color denotes the tutor signal interval Tξ (legend to right of panel c). Here we take a timescale of
τ = 10 milliseconds (ms) in Eq. (1), and throughout time is measured in milliseconds (ms). In all plots, ρ = 0. a)-b) Parameters for double-sided exponential kernel, adjusted
from (3), are τ1 = 16.8 ms, m1 = 1092, τ2 = 16.8 ms, and m2 = 3108. Note that the absolute values of m1 and m2 are somewhat arbitrary since scaling them has a
similar effect to multiple applications of the learning rule; their ratio is the more important factor, which we take to match that of (3). The large magnitude of m1 and m2 are
needed to maintain stability for small Tξ , but can be decreased for larger Tξ . a) Peak difference dµ as a function of pattern index µ. b) Peak difference dµ as a function of
peak time tµ. Inset is as defined in Fig. S3b. c)-d) Parameters for double-sided exponential kernel are adjusted so that the tutor signal is stored faithfully, m2τ2−m1τ1

m1τ2
1 +m2τ2

2
τ = 1.

This results in τ1 = 4.8 ms, m1 = 1638, τ2 = 4.8 ms, and m2 = 4662. c) Peak difference dµ as a function of pattern index µ. d) Peak difference dµ as a function of peak
time tµ. Inset is as defined in Fig. S3b. e) Overlaps qµ(t) for network with decay rates τ1 and τ2 taken directly from (3): τ1 = 33.7 ms, m1 = 1092, τ2 = 16.8 ms, and
m2 = 3108. Color denotes µ from µ = 2. f) Illustration of a double-sided exponential kernel, copied from Fig. 6a. Additional parameters: N = 100, 000, P = 40.
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Fig. S6. Sequence magnitude over a large range of timescales for parameter values close to those measured in biology with double-sided exponential kernels.
Peak magnitudes pµ as a function of µ for parameter values close to those measured in biology with double-sided exponential kernels. Throughout, solid lines denote the full
network simulations Eq. (1), dashed lines denote the mean-field simulations Eq. (9), and dotted lines denote the linear approximate mean-field simulations Eq. (10). Color
denotes the tutor signal interval Tξ . Here we take a timescale of τ = 10 milliseconds (ms) in Eq. (1). In all plots, ρ = 0. a) Parameters for double-sided exponential kernel,
adjusted from (3), are τ1 = 16.8 ms, m1 = 1092, τ2 = 16.8 ms, and m2 = 3108. Note that the absolute values of m1 and m2 are somewhat arbitrary since scaling them
has a similar effect to multiple applications of the learning rule; their ratio is the more important factor, which we take to match that of (3). The large magnitude of m1 and m2
are needed to maintain stability for small Tξ , but can be decreased for larger Tξ . b) Parameters for double-sided exponential kernel are adjusted so that the tutor signal is
stored faithfully, m2τ2−m1τ1

m1τ2
1 +m2τ2

2
τ = 1. This results in τ1 = 4.8 ms, m1 = 1638, τ2 = 4.8 ms, and m2 = 4662. c) As in b, but with the kernel magnitude doubled to

m1 = 3276 and m2 = 9324. Additional parameters: N = 100, 000, P = 40.
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