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Understanding how neural circuits generate sequential activity is a longstanding
challenge. While foundational theoretical models have shown how sequences can be
stored as memories in neural networks with Hebbian plasticity rules, these models
considered only a narrow range of Hebbian rules. Here, we introduce a model for
arbitrary Hebbian plasticity rules, capturing the diversity of spike-timing-dependent
synaptic plasticity seen in experiments, and show how the choice of these rules and
of neural activity patterns influences sequence memory formation and retrieval. In
particular, we derive a general theory that predicts the tempo of sequence replay. This
theory lays a foundation for explaining how cortical tutor signals might give rise to
motor actions that eventually become “automatic.” Our theory also captures the impact
of changing the tempo of the tutor signal. Beyond shedding light on biological circuits,
this theory has relevance in artificial intelligence by laying a foundation for frameworks
whereby slow and computationally expensive deliberation can be stored as memories
and eventually replaced by inexpensive recall.

Hebbian learning | sequences | spike-timing-dependent plasticity | motor learning

An important class of animal behaviors are those that are consolidated into “automatic,”
well-practiced sequential routines (1-9). An analogy is the process of learning a tennis
serve, which starts as a slow and deliberate process, but eventually becomes nearly muscle
memory. Importantly, the behavior can be thought of as a sequence that, once initialized
in a starting state, progresses in a highly stereotyped, automatic fashion. From this
perspective, the behavior can be thought of as a stored sequence memory that is recalled
by an initial prompt.

For such sequence memories, the timing of the subelements of these sequences and
overall tempo are essential components (10—16). For example, activities such as walking,
swimming, and digestion follow a natural rhythm and tempo (17). Tempo-sensitive
sequential activities also include those learned through experience, such as learning a
sequence of precisely timed lever taps (18, 19). It is therefore important to understand
how temporally specific sequences can be learned, memorized, and recalled.

To answer this question, we need to look at the mechanisms of learning and generation
of sequential behavior. One common perspective holds that these behaviors are generated
by stereotyped sequential neural activity (17, 20-23). Further, several experiments
showed a tight correlation between neural activity and timing of behavior (13, 24—
31). This suggests that automatic sequential behavior may at least in part be “stored” in
the synapses of a neural circuit, such that the behavior can be generated by setting the
network to a state that corresponds to the first point in the sequence.

Despite the importance of these topics to understanding brain function, it is unclear
what actually determines the tempo of sequence generation in neural circuits, and how
this is connected to the learning process. Here, we hypothesize that the tempo arises from
an interaction between the temporal dependence of the synaptic learning rules and the
temporal structure of the network activity when learning the sequential behavior. We
refer to the mechanism that sets network activity during sequence learning as the “tutor
signal;” this tutor signal may come from a higher-order brain area such as the motor
cortex or from minimally processed sensory inputs. The idea of a tutor signal being
the basis for forming long-term memories is a standard theory that has been posited by
experimentalists studying birdsong learning and motor learning in rats (18, 32, 33).

This perspective is embodied by models featuring temporally asymmetric Hebbian
(TAH) learning rules. Despite the long and illustrious legacy of this class of models
(34—44), previous studies were seriously limited by the narrow class of learning rules
that these preexisting models can describe, and the fact that these learning rules do not
correspond with those observed in the brain. In this work, we extend the basic TAH
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models previously considered to a much richer class of models.
Not only do we derive a theory that describes the essential
elements of sequence dynamics—including tempo and noise
robustness—for learning rules currently seen in the brain; our
theory describes a wide class of TAH learning rules that gives rise
to sequential dynamics, covering the case of new learning rules
that may be discovered in biology in the future.

TAH network models are built upon Hebbian learning
rules, wherein the network state is set by the tutor to a
sequence of activity patterns one after another. These activity
patterns correspond to moments in behavioral sequences, and
the Hebbian learning rules store the structure of these sequences
in the network as a memory. The sequences can then be recalled
by setting the network to the first state in a desired sequence,
resulting in the execution of the now “automatic,” well-practiced
sequential behavior. These models can be seen as a generalization
of Hopfield networks (34, 45) to storing sequences rather than
static patterns; therefore, many of the motivations and rationale
behind the Hopfield model are applicable here, such as the
ability to “complete” a sequence based on partial inputs (see
Discussion for more in-depth interpretations of our model). Our
model is a straightforward extension of previous models [most
closely, (40)] with the addition of general Hebbian learning
rules and added white noise to the dynamics, which can be
considered a minimalistic model to capture the phenomenon
of sequence learning under general spike-timing-dependent
plasticity (STDP) learning rules and noise perturbation.

While our theory is very general, we demonstrate its applicabil-
ity and utility by focusing on two fundamental and biologically
relevant cases: 1) TAH learning rules with fast timescales relative
to the tutor signal and 2) double-sided exponential TAH learning
rules as are commonly seen in biology (46, 47). In both cases,
we find useful principles that are interpretable in the context
of biology. For example, weight structures (and TAH learning
rules) can be adjusted such that the tempo remains the same, but
robustness of sequence recall to noise increases. We also show
how networks with the same qualitative dynamical properties
can arise from very different weight structures. For double-sided
exponential TAH kernels, we show that the tempo of sequence
recall depends linearly on the tempo of the tutor signal, with
a slope that depends in a simple way on the parameters of the
kernel. While we focus here on applications to neuroscience,
considering its generality our analysis may also be of interest
to theorists in other domains studying dynamical systems with
asymmetric weight structures.

Results

Sequence Model Definition. The sequence is stored and pro-
duced by a recurrently connected network of N neurons. The
connectivity is given by a recurrent weight matrix W, where W;
is the connectivity strength of neuron j to neuron 7. The dynamics
of the network are then given by

r=—r+¢(Wr+n(), (1]

where n(#) is white noise ((#;(z)) = 0 and (n;(£)n:(¢')) =
7p?5(t — ¢')) and ¢ is a sigmoidal nonlinearity (see ST Appendix,
1 for more details). The dynamical variables 7; represent the
firing rate of neuron i. Note that the effect of 7 is to rescale
the timescale of the dynamics, r(t;7 = 4) = r(¢t/a;7 = 1).
Considering this, we set 7 = 1 without loss of generality. We
will discuss the role of general 7 again in the Exponential kernels
subsection of Results. The noise term 17(¢) models the effects of
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noisy biological processes such as synaptic transmission failure or
possibly from interference arising from the presence of multiple
stored sequences (40).

The sequence is stored in this network by a tutor signal
(Fig. 14). Given a sequence of length P, this signal sets the state of
the network sequentially to an ordered set of P patterns (& )5:] .
These P patterns represent P neural states that correspond to the
states making up the sequential behavior. The recurrent network
memorizes these patterns by synaptic plasticity at the recurrent
synapses.

To store a memory of this sequence, this synaptic plasticity can
take the form of a TAH learning rule active during application of
the tutor signal (34, 35, 40, 48). An example of a TAH learning
rule commonly seen in the literature (i.e., the previous set of
references) is

1 T—Atr
W < —— / drri(t + At)ri(2) (2]
bq : J\*)>
NAt Jy

where At is an interval of time that spans the amount of time the
network is placed in each pattern state and 7" = PA¢ is the total
duration for the tutor signal associated with the sequence. With
this learning rule, connections are strengthened according to the
coincident firing of neurons for the current pattern with those
of the next pattern; if weights are initially zero, this learning rule

results in final weights

P—-1

1 L g T
W= > oetEnT. (3]
u=1

We refer to this weight structure as sequi-associative. Intu-
itively, this set of synaptic weights calculates the overlap between
the current network state with the stored patterns, and if the
overlap with one of the patterns dominates over others (say
pattern V), it steers the network activity to the pattern that is
after the dominant pattern (pattern v + 1).

While sequi-associative weights capture some temporal aspects
of synaptic plasticity, they fall short in their ability to express
the full complexity of plasticity dynamics observed in experi-
ments (46, 47, 49, 50) which can significantly affect synaptic
structure and network dynamics (51-53). Mathematically, a
more general Hebbian learning rule could be written as

1 T T
W < —/ dt/ dsw(s — t)r;(s)ri(2), (4]
N Jo 0

where w is a general kernel/filter that weights the Hebbian
learning rule as a function of time offset. One sees that Eq.
2 corresponds to w(s — ) = (s — t — At)/Az. However,
biologically observed kernels take much richer and different
forms, including the famous double-sided exponential STDP
curve of Bi and Poo (46, 47) (Fig. 1 B, Right). Note that the
neuroscience literature often plots the kernel as a function of
—6t = —(s— ¢) instead of 6 = s — ¢ (i.e., “pre—post” instead of
the “post—pre” convention used here).

In this paper, we consider the learning of sequences under a
tutor signal with the general Hebbian rule (Eq. 4). This rule can
give rise to a much richer set of weights defined by

P P
1
W= g 2 a8’ 51
u=1v=1
where 4}, are coefficients that satisfy
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Fig. 1. lllustration of network model and stereotypical behavior. (4) The interaction of a tutor signal (the &#) with Hebbian temporal kernel w(st) = w(s —t)
gives rise to weight matrix W. The kernel is convolved with the network state and the result is integrated, where the state of the network is set by the tutor
signal. (B) lllustrations of different possible kernels, emphasizing the largely arbitrary shapes that they can take in our theory. Left: kernel that would give rise
to two terms for each u, ape# (%) and a;&#+71(£#)T. Second from Left: kernel that would give rise to three terms for each g, age# (e#) T, ae#+1 (&) and
a_q &4~ 1(&#)T. Third from Left: kernel that would give rise to five terms for each y, corresponding to indices —2, —1, 0, 1, and 2. Right: double-sided exponential
kernel. (C) Activity ry of ten randomly selected units in the network for coefficient values a1 = 1 and a; = 0for k # 1. Here, the network state is initialized to the

first pattern in the sequence, »(0) =

.51, and p = 0. (D) Overlaps g, of the network activity with patterns & (coefficients ay and p as in C). Color corresponds to

pattern index y and starts at u = 2. The vertical lines indicate the locations t,, of the peaks. The first overlap g1 is notincluded in the plot for ease of visualization

(it is an exponential that decays from 1).

T” v+1 pu
/ / i dsw(s —t). [6]

Here, #; is the time at which the tutor signal for pattern v begins

and Téﬂ = tg o tg is the duration for which pattern y is
shown to the network. Our goal is to understand the sequential
dynamics and its tempo arising from such learning rules. Note
that Egs. 2 and 3 use kernels that are temporally asymmetric,
which is essential for sequential dynamics to arise, whereas Eqs. 4
and 5 do not specify this explicitly. Indeed, not all kernels used in
Eq. 4 give rise to forward-propagating, self-sustaining sequential
dynamics. S/ Appendix, 2 details certain conditions for this to
occur.

While in general the relationship between the coefficients and
the kernel is complex as indicated in Eq. 6, in special cases the
relationship can be described intuitively. One example is the case
of double-sided exponential kernels. See the final subsection of
SI Appendix, 2 for a description of this relationship (S7 Appendix,
Egs. A.30-A.32).

To quantify the sequential behavior of the network dynamics,
we define the overlaps

au(6) = ()T r(0) 7}

which measure the similarity of the recurrent network activity »
at time ¢ to stored patterns £”. For our initial condition, we will
always initialize the network state to the first pattern &'. Note
that the dynamics of the network in the basis of the neurons may
not reveal the sequential structure (Fig. 1C), while the overlaps
gy clearly display this structure (Fig. 1.D). To measure sequence
progression, we track the locations in time #, of the maxima of
the overlaps ¢,(); at time 7, we say the sequence is in state y
(see vertical lines in Fig. 1D).* We also define p, := ¢,(#,) to
be the height of the peaks. We are particularly interested in the
tempo of the recalled sequences, which we measure by the peak
difference 4, := #, — t,—. Note that by this definition tempo is

*We can also define the sequence state represented at a time t by arg max,, (g, (t)), but

the t, are more mathematically convenient objects to consider.
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the inverse of sequence progression speed. As we will show, the
tempo of the recalled sequence does not necessarily match the
tempo of the tutor signal (54).

Note that the coefficients 2} can inhomogeneously depend on
U, resulting in a tempo of sequence recall that can be controlled
based on the pattern state (i.e., the same sequence can have both
fast and slow transitions between patterns, resulting in a 4, that
depends strongly on ). If the tutor signal presents patterns at
regular intervals, then the coefficients take the form ‘ZZ =ay—y.
In this case, the coefficient for the £&# term only depends on
the difference between v and p rather than depending on u
independently of v:

1 P P
=2 g (@]

u=1v=1

1 P P—u
=52 > adthEn’ [8]

H=1l=—p+1

This means that the tempo 4, can no longer be controlled in
a sequence-state-dependent (i.e., p-dependent) manner. Even
stronger, often the tempo is approximately independent of u (it
is a global property of the sequence), so that 4, is approximately
constant across .

Sequence Stability. Beside tempo, we are also interested in
quantifying when sequential dynamics die out over time, or are
instead (relatively) self-sustaining. Note that since we are using
a saturating nonlinearity ¢, each r; is bounded which implies
that the overlaps ¢, are also bounded. Hence we are primarily
interested in how the solutions ¢,(#) decay with increasing
u. We observe that solutions generically decay to the zero
solution ¢, (¢) = 0 with increasing y but there is a bifurcation
point with decreasing magnitude of connection strength ), 2.
Before the bifurcation point (large >, @), the decay of g, ()
is subexponential, such as ~ 1//2zu (SI Appendix, 2). After
the bifurcation point (small )", ), the decay is exponential.
Since the peak times #, are seen in our theory and simulations
to be a linear function of time #, we can measure this decay of
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————— Mean Field

C N = 5000 D N = 20000

—— Network
Mean Field

—— Network
Mean Field

qu(t)
q,(t)

Fig. 2. Comparison of full network simulations Eq. 1 (solid lines) with the mean-field equations Eq. 9 (dashed lines). Throughout, every fifth overlap g, (t) is
shown, starting with x = 2. For all plots, p = 0. (A) Overlaps g, (t) for network with N = 5,000 neurons. The only nonzero coefficients are a,‘f'“ =1.5.(B)Asin
(A), but for N = 20,000 neurons. (C) As in (A), but a}; = 0.1 and af,’“ =13foru <11;and a} = —0.1 and aﬁ“ = 1.5for u > 11. All other coefficients are zero.

(D) As in (C) but for N = 20,000.

the solutions ¢, (#) by measuring the “sup-norm” of the solution
vector q(2) = [q1(#), q2(¢), ..., qp(#)] T while taking P — oo,
where the sup-norm |||/« of a vector v is max; |v;|. Precisely,
we say that the sequence of solutions (q1(%), g2(2), ..., gp(2))
is unstable if the solution vector ¢(#) has the property that
lim infp_ 00 |4(#) o decays to 0 with rate O(#%¢*) for some
a < 0 and some real number 4. We say that the sequence of
solutions is stable if it is not unstable.”

Related Works. Other works have also considered extensions
to Eq. 3. For example, some works (35-37, 54, 55) include
an autoassociative component & (E#)T to the weights; Refs.
35-37 use discrete dynamics that selectively “delay” filter the
sequi-associative component, and ref. 55 multiplies the sequi-
associative term with random noise. The authors of ref. 43
conduct simulation studies of a model with an antisymmetric
Hebbian kernel. Ref. 56 considers terms of the form E#H#(£#) T,
but only for a specific kernel rather than the generality considered
here.

Mean-Field Theory. To gain analytical insight about the behavior
of our model, we extend the mean-field analysis of ref. 40 to
the general weights described by Eq. 5. We assume that the
patterns are drawn identically and independently from a standard
Gaussian distribution, & ~ N(0,1), and take the network
population size to infinity, N — 00.

In this mean-field limit, the overlaps evolve with dynamics

given by (S] Appendix, 1)

P
Gu = —qu +g(7) Z‘Zeqw (9]

v=1

where

g(t) = G (149(2)1I5 + £%),

for some function G and where 4 is the matrix 4 = (4} )1<,v<p
(p indexes the rows and v indexes the columns). We give the full
functional form of G(x) in SI Appendix, 1 and Eq. A.3), which
depends on the shape of ¢. For the analysis here, the important
aspect of G is the value of G(p?), which serves as an upper bound
on g(t) (ST Appendix, Fig. S1). In particular, for p = 0, g(¢) is
bounded from above by G(0), and G(0) = 20/+/27 ~ 8 for
our choice of parameters for ¢ (see SI Appendix, 1). The form

Note the contrast to the dynamical systems literature, where stability typically means
that the solutions remain finite.

https://doi.org/10.1073/pnas.2309876121

of this expression comes from the Gaussian patterns and the
error-function form of ¢ (87 Appendix, Eq. A.1).

The convergence with increasing N of the mean-field solutions
to the full network solutions is illustrated in Fig. 2. This holds
both in the case of uniform tutor signal intervals (Fig. 2 A and
B) as well as nonuniform tutor intervals (Fig. 2 C and D). For
the following, we assume that tutor signal intervals are uniform
in temporal duration, so 2 = ay—y. We will revisit the case of
nonuniform intervals in the final subsection of Results (Sequences
with fast and slow parss). In the uniform interval case, Tfﬂ is
constant across ¢ so we drop the y dependence and write 7% as
the tutor signal interval duration.

In ST Appendix, 2, we show under appropriate conditions that
the solution to Eq. 9 is approximated by the linear equations

P
qu = —qu + Z‘_lﬂ—qu’

v=1

(10]

where 4, := ga,, and where we define g := 1/ Zf;l_])+l ap.
This is a consequence of g(#) asymptoting to a constant value as
t — 00; while we do not prove that this occurs, we observe it
happening in our simulations. In SI Appendix, 2, we argue that
lim;— o0 g(#) = g holds under certain conditions when solutions
are stable, and that with additional conditions lim;—, g(¢) = g
implies that solutions are stable. Conversely, one case where we
can expect solutions to be unstable is when g(#) is bounded away
from g. This occurs when connectivity is too weak, i.e., when

g> G(p?).

One Forward Term. We next turn to analyzing sequence progres-
sion in the recurrent neural network. We start by considering the
case with one forward term where 2, = 0 for £ ¢ {0, 1}. This
results in the weight matrix W = % Z” (agEHEH + a1 EFTIEH)
with autoassociative and sequi-associative terms #o&#&* and
a1 EFTIEN  respectively. This case is relevant in the regime where
the duration of sequence elements, 7%, is longer than the timescale
of w(z) (i.e. w(6¢) = 0 for 6¢ > T and w(6¢) = 0 for 67 < 0).
Fig. 34 illustrates two possible kernels w corresponding to this
case, emphasizing the arbitrary shape that the kernel can take
within its support.
In this case Eq. 10 becomes

u>1,

. —qu + aoqu + a1qu—1,
Gu u=1.

—qu + a0qu
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=0 for k ¢ {0, 1}. Plots show the full network simulations Eq. 1 (solid lines) and

linear approximations Eq. 11 (dashed lines). Throughout, letters F, G, and H correspond to coefficient values (ag, aq) = (0.4,0.6), (=0.4,0.6), and (0.0,0.1),
respectively. For all plots except for panel (E), p = 0. (A) lllustrations of two TAH kernels w that would give rise to two terms. (B) Peak times t,,. The t symbol
denotes coefficient values that give rise to overlapping lines, and H denotes a coefficient values for which the network equations are unstable. (C) The value of
g(t) through time during the simulations in (B). Dashed lines denote g. The function g(t) is bounded from above by G(0) ~ 8, which is indicated by a dotted line.

For the coefficient values corresponding to H, there is a mismatch between g

and lim¢_, o g(t) (asymptote of solid line). (D) Plots of peak differences d, as a

function of ag and a7 . Shaded regions are 95% Cls for u € {3,..., 72}, and lines are the means. Left: ag is plotted on the horizontal axis and a; is denoted by color.
Right: ay is plotted on the horizontal axis and a is denoted by color. (£) The peak height p7q corresponding to the maximum of g7 (t) over ¢, in the full network
simulation, as a function of the sum of coefficients ag + a;. Color denotes the noise strength » and dashed vertical lines show the critical points G(p2)~", where

the network is predicted to pass from stable to unstable. Shaded regions are

95% Cls over ag € {—0.2,0,0.1}. (F) Overlaps g, (t) corresponding to coefficient

values (0.4, 0.6). (G) Overlaps g (t) corresponding to coefficient values (—0.4,0.6). (H) Overlaps g, (t) corresponding to coefficient values (0.0,0.1).

The solutions to these equations for 2; > 0 are (recall the initial
conditions ¢ (0) = 1 and ¢,,(0) = 0 for u > 1):

(@) 1

£) = Zlo—l)t)
which have maxima at
u—1
ty = . 11
# 1—2a (11
Note that 49 + 21 = 1 by definition, which places some

restrictions on the values that zg and #; can take. For instance,
ap > 1 implies 21 < 1. The tempo as measured by peak
difference is

=1+ —. [12]

Peak magnitudes p, can also be computed explicitly (S/
Appendix, 2 and Eqs. A.20 and A.21) and are asymptotically

pu~ 1/ 2mp,

when solutions are stable.

Fig. 3 shows the simulation results for various values of a9, 41,
and p. Fig. 3B plots peak times #, for p = 0. The full network
simulations with N' = 35,000 match the linear approximations
Eq. 11 closely, except for coefficient values where the solutions
for the full network decay to zero (denoted by H). This happens
because g is larger than the critical value of G(0) ~ 8. Note
the significant role of ¢ in determining the sequence tempo. In
particular, for 49 = 0 changing 41 has no impact on the tempo (f
symbol in Fig. 3B). Note also that, unlike in standard Hopfield
models, the autoassociative term 4 can be negative. The Bosrom

PNAS 2024 Vol. 121 No. 32 e2309876121

panel of Fig. 34 shows an example of a kernel that gives rise to
negative 49 and positive 4;.

Fig. 3C plots the function g(#). This plot supports our original
assumption that g(#) asymptotes to a constant value, and shows
the close match between lim, oo g(#) and g, except in the
case where g > G(0) ~ 8 (denoted by H), which results in
instability.

To look more closely at the relative impacts of 49 and «;
on sequence tempo, we plot sequence tempo ), for different
combinations of 49 and «; in Fig. 3D. Fig. 3D shows that the
dependence of d, on ay is roughly linear in the range plotted, with
a slope that decreases with increasing ;. Coefficient ranges were
chosen in an attempt to capture the full behavior of the dynamics
within the region of stable sequence generation; in particular, this
requires that#; > 0and a9+4; > 1/G(0). Note that forag < 0
sequence progression speed decreases, counterintuitively, with
increasing a1, while the opposite relationship holds for 29 > 0
(recall that sequence progression speed is the inverse of the tempo
dy). This can also be seen from Eq. 12.

Fig. 3F quantifies the stability properties of sequences by
plotting the peak magnitude p,, for a pattern of large index (here,
u = 70) as a function of g_l = a9 + a1 for two choices of
noise level, p = 0 and p = 2.58¢ — 2. This figure indicates that
increasing ! eventually transitions the network into a stable
regime, while for a fixed g7! increasing the noise p eventually
destabilizes a stable network. Note that such noise could come
from interference, such as that which arises if there are multiple
stored sequences (40), or from biologically relevant sources such
as synaptic transmission failure. The dashed vertical lines mark
the critical values of stability where g = G(p?). In summary, this
plot illustrates how g determines the stability of sequences, and
that smaller g (equivalently, larger @+ 1) is required for stability
in the presence of noise. The plot shows that, as predicted, peak
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magnitudes p, have a sharp inflection pointatg = G(p?), where ~ biology, such as double-sided exponential decay kernels (46, 47)

Pu goes from being approximately zero to nonzero. (see Fig. 1 B, Right for an illustration). Three terms in particular

Note that 29 and #; can be adjusted so that sequence tempo  are relevant when the TAH kernel’s timescale is faster than
dy remains constant, but stability is improved by decreasing g.  the tutor signal’s, for instance when the support of the kernel
This can most easily be seen by considering lines of constant , ~ vanishes outside of time windows spanning more than two

in Fig. 3D. The most straightforward example is the lined,, =1  pattern presentations. Fig. 44 illustrates an arbitrary kernel that
in the Right panel of Fig. 3D, which clearly corresponds to many ~ would give rise to three terms.

values of 29 + 4. This is particularly important in the presence of To understand sequence progression speed, we use Eq. 13:

noise, as shown by Fig. 3E. This degree of freedom of the system _ B

makes some kernels w(#) strictly better than others, even if they o M 1 a1 +a u>1 [15]
u - - .

result in the same tempo. a —a—1  2a —aq)¥

General Approximate Solution. While we were able to explicitly Sequence tempo as measured by peak difference is then
solve Eq. 10 in the case of two nonzero terms in the preceding ]

section, in general an explicit solution is not available and we dy~ ——— = At ata ,ou> 2.
need to resort to approximations. To approximately solve Eq. ay —a-1 ap —a—1

10, we replace the system of equations with one that is periodic
in p. A general approximate solution to the equations with these
periodic boundary conditions can then be found (S/ Appendix, 2):

The effect of changing 2_; on sequence tempo is revealed by
taking the derivative of ,, with respect to a_;:

d ap + 2a;
K-l B dyy oM
tﬂ ~ p — sz, H > 1, [13] dﬂ—l . (ﬂl - ﬂ_l)z g
Sl i This shows that increasing a_ i ' 2
where o = /LI;/lz1 l(ﬂ/e —a_p)kand g = /EI;/121 l(ﬂ/e + is shows that increasing #_; increases d,, provided a9 +24; >

0. To compare the relative impact of changing 2_; and #; on

- 2 . . . . .
@)k Sequence tempo as measured by peak difference is then sequence tempo, we can take the ratio of derivatives:

. oH> 2 [14] ddyy , ddy a0+ 22,

dy ~ )
day’ da_q ap + 2m

> 2.

R |~

When @ > 0, these equations describe forward propagation of
the sequence.

In the following sections, we will look at special cases of interest
that illustrate the theory.

This equation reveals that changes in #_;, counterintuitively,
may impact sequence tempo more than changes in #; for certain
coefficient configurations. Hence #_; is also a natural parameter
to use to control tempo.

Fig. 4 compares the full network simulations given by
Three Terms with Bidirectional Connectivity. Next we consider Eq. 1, the simulations of the linear system Eq. 10, and the

the case with three terms and bidirectional connectivity in Eq. 10, approximation Eq. 15. The peak times #, are plotted in Fig.
where 2 1: 0fork ¢ {_11’ 0, 1}. This results in th? weight matrix — 4p showing that Eq. 15 is a good estimate of both the linear
Vo= x>, (a1 E*T1EH + agEHEH + ay EMT &"). Bidirec-  and full network system. Fig. 4C shows the relationship between

tional connectivity occurs with TAH kernels commonly foundin ), a9, and 4; for fixed 2_; = —0.2. The Left panel reveals
A B o
(a_1.a0.a1) —— (00,-02,1.0) B
E P (0.2,0.2, 0.8)E (00,02, 0.8) E 0.6 1N A U
40 - (02,02, 1.0) (:0.2,-0.2,1.0) 0.4 4
1 ; (0.0, 0.2, 0.8) (-02,-02, 0.8) F =
* —— (00,02 10) type < o2 4
20 F —— (02,-02,08) — network S
—— (02,-02,10) linear B
0 4 —— (02,02, 1.0) approx 0.0
T T T T
0 20 40 60
w
C . D
34a.,=-02 o “a_1=-0.2 “. a1 =02
0.6 -0.2 6 -
2 —u .
- : N
< e — o4 < 4
—— networl - type
a / ,,,,, H,,::, . — 2 ﬂ
x| || 5 e
04—+ T T T T = T 0 T T T T T T
—0.4 0.0 0.4 0.4 0.6 0.8 1.0 —0.4 0.0 0.4 0.4 0.6 0.8 1.0
ao ay ag a,

Fig. 4. Sequence progression for bidirectional terms. Plots show the full network simulations Eq. 1 (solid lines), linear approximations Eq. 10 (dashed lines), and
approximation Eq. 15 (dotted lines). Throughout, letters E and F correspond to coefficient values (a_1, ag, a1) = (0.2,0.2,0.8) and (—0.2, —0.2, 0.8), respectively.
For all plots, p = 0. (A) lllustration of a TAH kernel w that would give rise to bidirectional terms. (B) Peak times t,, plotted for a variety of coefficient combinations
(a_1,ag,aq), denoted by color. (C) Plots of peak differences d, as a function of ag and a;. Here, a_q = —0.2. Shaded regions are 95% Cls for u € {3,...,72},
and lines are the means. Left: ag is plotted on the horizontal axis and a4 is denoted by color. Right: a4 is plotted on the horizontal axis and ag is denoted by
color. (D) As in (C) but with a_; = 0.2. (E) Overlaps g, (t) corresponding to coefficient values (0.2,0.2,0.8). (F) Overlaps g, (t) corresponding to coefficient values
(-0.2,-0.2,0.8).
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that 4, increases approximately linearly with increasing a9, with
a slope that decreases with increasing ;. Comparison with Fig.
3D shows the impact of introducing a negative #_;, which can be
mixed but is generally to decrease ), over the parameter regime
considered.

Fig. 4D shows the relationship between d,,, 4y, and a1 for
fixed positive 2_1 = 0.2. Again, the Left panel reveals that 4,
increases approximately linearly with increasing 4, with a slope
that decreases with 1. Comparing with Fig. 3D shows how
a_1 = 0.2 typically increases d), relative to 21 = 0.

As in the case with two terms, the tempo of the sequence can be
held constant while the stability term g is decreased. Indeed, the
introduction of z_ introduces an additional degree of freedom.
Examples of keeping 4, fixed while varying g can be seen by
following horizontal lines of fixed 4, in Fig. 4 C and D.

Three Terms with Forward Connectivity. Now we consider
the case with two forward terms, where 4 = 0 for
k ¢ {0,1,2}. This results in the weight matrix W =
% o4 (ao&HEH + a EHTIEN 4 a2§”+2§”). This illustrates the
effects of having TAH kernels with a slightly longer timescale
than the tutor signal. Fig. 54 illustrates a TAH kernel that would
give rise to two forward terms. Using Eq. 13:

-1 a 4a
e L _atte 0 e
M H
a1 + 2ap 2(a1 + 242)2

Sequence tempo as measured by peak difference is then

N 1 _atata
a) + 2ap a1 + 2a

n , H> 2. [17]

Fig. 5 compares the full network simulations given by Eq. 1,
the simulations of the linear system Eq. 10, and the asymptotic
approximation of the peak times Eq. 16, showing a close match
for all three quantities. Similar to the case of the previous section,
increasing 4, has a qualitatively different effect on &), depending

on the values of 49 and ;. Taking the derivative of 4, with
respect to 4 in Eq. 17

d a1+ 2a
dm H (511 +2&lz)2)

indicates that increasing #; increases 4, if and only if 21 +249 <
0. Examples of the effect of increasing 2, can be seen in Fig. 5B,
which plots peak times z,, for a range of coefficient combinations.
The differing effect of increasing 2, can be seen in this plot.

The relationship between 4, and different coefficient com-
binations is further elucidated in Fig. 5C, which plots 4, as a
function of 4o and 4;, where @ = 0.2. As in previous sections,
the dependence of 4, on a4y is approximately linear over the
coefficient values considered, with a slope that decreases with
increasing ;. Comparison with Fig. 3D shows the (multiplexed)
effect of positive ;.

Note that, as in the previous sections, the stability properties
of the sequence (determined by the sum of coefficients) can
be improved even as the timing is held constant (+ symbol in
Fig. 5B); that is, dy, ~ 1/(a1 + 2a3) can be fixed while g is
decreased. This is most clearly illustrated by the horizontal line
dy = 1 in the Right panel of Fig. 5C.

u>2 [18]

Exponential Kernels. Here, we consider the special case of
(double-sided) exponential kernels as commonly used to model
STDP kernels seen in biology (46, 47). These have the form
w(t) = —mye/™ for r < 0 and w(z) = mye™"/™ for t > 0,
where 71, 73 > 0 (see Fig. 64 for an illustration). We compute
in 81 Appendix, 2 that the approximate peak times are given by
Eq. 13 where
a = g(ml‘rlz + szZZ)
and
g = (mm — m171)71 Tgl

in the P — oo limit. Here, T¢ is the length of the tutor
signal interval. Note in particular that the sequence tempo as
measured by
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D t
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= type

approx

1 e —— network  _|
***** linear i ———

ao

(ag, a1, az) —— (0.0, 06, 0.4)
(0.4,06,-0.1)D (-0.4, 1.0, 0.0)
(0.4, 0.6, 0.0) (-0.4, 1.0, 0.4) T
(0.4, 1.0, 0.0) (-0.4,0.6,0.4) E 0.6
—— (0.0, 1.0, 0.0) (-0.4, 0.6, 0.0)
+ > 0.4
(0.0, 0.6, 0.0) type ¥
—— (0.4,1.0,04) —— network @1 0.2 g
—— (04,06,04)  — linear
—— (0.0,1.0,04) approx 0.0 4 z
T T T T
0 10 20 30
t
04
02 .
— 00 S 0.2 9
Nt
— 02 3
— 04 S 0.1
type
.......................... —— network 0.0
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Fig. 5. Sequence progression for two forward terms. Plots show the full network simulations Eq. 1 (solid lines), linear approximations Eq. 10 (dashed lines), and
approximation Eq. 16 (dotted lines). Throughout, letters D and E correspond to coefficient values (ag, a4, a) = (0.4,0.6, —0.1) and (—0.4, 0.6, 0.4), respectively.
For all plots, p = 0. (A) lllustration of a TAH kernel w that would give rise to two forward terms. (B) Peak times ¢, for a variety of coefficient combinations
(ag, a1, a3), denoted by color. The T symbol denotes coefficient values that give rise to overlapping lines. (C) Plots of peak differences d, as a function of ap and
aq. Here, ap = 0.2. Shaded regions are 95% Cls for u € {3,...,72}, and lines are the means. Left: ag is plotted on the horizontal axis and a4 is denoted by color.
Right: a4 is plotted on the horizontal axis and ag is denoted by color. (D) Overlaps g, (t) corresponding to coefficient values (0.4,0.6, —0.1). (E) Overlaps q, (t)

corresponding to coefficient values (-0.4,0.6,0.4).
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mpTy — Mm1T]

dy~—=T; , U >2 [19]

1
o mlrlz + ma15y
scales linearly with the tutor signal interval 7. The equation for
p is given by SI Appendix, Eq. A.33 in SI Appendix, 2.

Biology may use this relationship to dilate or contract the
stored sequence tempo relative to the tutor signal by using
mpT)—m17T]
m1r12+m2122
that the sequence will be stored faithfully (with the same tempo
as the tutor signal). For general 7 in Eq. 1, the condition is
mn—m 1
m]le-‘rsz%

The quantity 4, is plotted in Fig. 6 B and C for a variety
of different kernels as a function of tutor interval 7g. These
plots compare the full network simulations with the linear
approximation Eq. 10 and the approximation Eq. 19, showing a
close match, especially for small 7.

In Fig. 6D, we plot the dependence of sequence tempo 4,
on the parameters 71, 72, and ;. The Left panel shows that 4,
typically decreases with increasing 73, but this can be reversed for
large enough 7;. The Center panel shows that, for the parameter
values chosen, 4, decreases with increasing 71. The Right panel
shows the influence of changing 7, on d,; while increasing
my increases dy, the effect is small. Parameter values were
chosen to demonstrate the full spectrum of behaviors within the
regime of stable, forward-propagating dynamics. ST Appendix, 2
describes simple relationships between the kernel parameters and
coefficients ay.

To look more closely at the interplay between the timescale of
the TAH kernel and the timescale of the tutor signal, we look
at the case where 77 is small relative to 7. Then d, ~ T¢/75,
indicating that in this case the ratio of the timescales sets the
sequence tempo. Sequence stability is determined by g < G(p),

particular STDP kernels. In particular, = 1 indicates

where in this case g & mz_l‘rz_ ! Té_l.

Sequences with Fast and Slow Parts. In naturalistic settings,
different states of a sequence may have different durations. For
instance, in playing a piece of music different notes are held

with different durations. Our analysis indicates that changing
these durations causes a change in the sequence progression
speed, meaning that variable duration tutor signals Tgf' will result
in sequences with faster and slower parts (Fig. 7). Consider
a sequence with sections that pass from one set of uniform
durations {Tgl }ues, to another {ng} ues,» illustrated by Fig. 74.
The overlaps g, for u € S; will be governed by the first interval
length, with some disturbance from g, for v € §; mediated
by the backward coefficients 4; for £ < 0. For y far from the
boundary this disturbance should be small. On the other hand,
gv far from the boundary will be governed by the second interval
length with small disturbance from g, with the caveat that the
evolution up to time # has been influenced significantly by the
dynamics of ¢,. With these caveats in mind, we should expect
the tempo in each of these regions far from the boundary to
progress at speeds determined by the corresponding tutor signal
interval length, with more complex behavior occurring near the
boundary of the transition. In Fig. 7, we consider a case with
two transitions, where 7)) = 0.6 for y € [1,20], 72 = 0.3 for

u € [21,30], and Tg = 0.6 for p € [31, 100] (slow to fast back

to slow). Here, we use a double-sided exponential kernel with
71 = 0.25, m; = 2, 75 = 1, and my = 2. This figure illustrates
that after transitioning, the sequence speeds up or slows down to
match the new duration.

However, these transitions have undesirable characteristics.
For one, in the first transition, the sequence slows down just
before entering the faster sequence section (Fig. 7 B and C). A
second issue is that the peak differences become more variable
after each transition (Fig. 7C). A third issue is that the transition

from Té to Tg is very gradual and takes a significant amount of

time before recovering the tempo of the Tg section (Fig. 7C).
These issues, and particularly the third, are probably related to
how overlaps ¢, generically “spread out” for increasing index p
(Fig. 7D); that is, the width of the bumps traced out by g,,(¢)
increases with increasing p. This suggests that an improved model
represent overlaps in a way agnostic to the index of the pattern
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Fig. 6. Sequence progression for double-sided exponential kernels and varying 7. Shaded regions are 95% Cls over x € {3,..., 12}, and lines are the means.
Plots show peak differences d,, derived from the full network simulations Eq. 1 (solid lines), linear approximations Eq. 10 (dashed lines), and approximation Eq.
19 (dotted lines). For all plots, p = 0. (A) lllustration of a double-sided exponential TAH kernel w. (B) Peak differences d,, for a variety of double-sided exponential
TAH kernel parameters 7, and mq (color). Here, r1 = 0.25 and m, = 2. (C) As in (B), but with mq = 2 and varying m; (denoted by color). (D) Peak differences d,
as a function of 71, 7, and m;. Unless otherwise defined, parameter values are 71 = 0.25, mq = 1, m, = 3, and T¢ = 3. Left: d,, as a function of 7, with varying
1 (color). Center: d, as a function of r; with varying = (color). Right: d, as a function of m, with varying =, (color).
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Fig. 7. Sequences with fast and slow parts. Sequence dynamics with three regions Tg =0.6, T§2 =0.3,and Tg = 0.6. The first transition occurs at y = 20 and
the second at 4 = 30. Parameters are 71 = 0.25, m; = 2, 7, = 1,and m, = 2. For all plots, p = 0. (A) lllustration of the three regions (note that this schematic is
not accurate with respect to the y values at which transitions occur). (B) Peak times as a function of pattern index u. Dashed vertical lines demarcate the three
regions. (C) Peak difference d,, as a function of pattern index u. Dotted lines mark averages over the intervals 3, 18], [20, 28], and [50, 80]. (D) Plot of overlaps

qu(t). Dashed vertical lines demarcate the three regions.

being represented, perhaps with the use of nonlinear learning
rules as in refs. 40 and 54, “interaction modulation” as suggested
by ref. 57, or “delay” filtering as suggested by refs. 35-37.

Discussion

The ability to store experiences as memories is fundamental
to intelligent behavior. While memories are typically modeled
as fixed points in recurrent networks, sequences constitute
information that is also of primary importance. This is clear when
considering the ubiquity of well-practiced, automatic motor
behaviors.

Our model stores memories by assuming that the network is
placed in states by a “tutor signal” during the learning process.
There are multiple possible interpretations for this. The state of
the network could be set by sensory inputs, so that TAH learning
rules constitute an unsupervised method for learning sequential
structure in the world. Another interpretation is that higher-
level brain areas provide this tutor signal. For instance, the motor
cortex could be directing motor outputs (a process involving slow,
deliberate thought) while sending tutor signals to a subcortical
network which makes a copy of the behavioral control that
allows sequential behavior to be later recalled, thereby skipping
the slow deliberation process and corresponding to automatic
behavior (18, 58).

This work seeks to fill a significant gap in theory describing the
ability to form sequence memories. Namely, it is not clear how
general and commonly observed Hebbian learning rules could
give rise to such sequence memories. Hebbian learning rules
have the advantage of being simple, more biologically realistic
alternatives to learning rules such as gradient descent, and have
been shown to be implemented in neural circuits. The generality
of our theory will allow it to be applicable as new STDP rules
are discovered and will enable theorists and experimentalists to
probe the functional role that this variety of STDP kernels might
be playing (49). Our theory may also be useful for analysis of
dynamical systems with sequence dynamics more generally (59)
since the mean-field Eq. 9 is quite general.

Findings Relevant to Neuroscience. Our analysis reveals many
interesting phenomena of potential consequence to neuroscience.
Our first contribution is showing that the replay tempo of
sequences stored in neural networks with Hebbian learning rules
generically does not match the tempo of the tutor signal. This
can be important in modeling observed neural behaviors such
as rapid replay as observed in the hippocampus (60). In this
case, the tutor signal would be provided by experience with the
environment, and recall in the model would correspond to the
replay events observed, for instance during sleep. In many cases,

PNAS 2024 Vol. 121 No. 32 e2309876121

the tutor signal is viewed as a signal to be stored faithfully, so
that recall has the same tempo as the stored signal. In these
cases, our theory makes predictions for the STDP learning rules
that will be observed in these neural circuits. We derive simple
equations describing the relationship between tempo and the
parameters of the (double-sided) exponential kernels commonly
seen in biology, showing that recall tempo scales approximately
linearly with the tempo of the tutor signal, where the slope of
this linear relationship depends on the parameters of the kernel.
In addition, our theory relates sequence stability to parameters
of the kernel, which could provide predictions for how many
applications of the tutor signal are needed for a sequence to be
robustly encoded in the neural circuit, since repeat application of
the learning rule is analogous to increasing the magnitude of the
kernel. This also reveals that Hebbian kernels can be chosen that
produce sequences with the same tempo, but that are more or
less robust to noise. Our theory lays out a quantitative framework
that allows such kernels to be delineated. Finally, we show the
result of changing the tempo of the tutor signal throughout the
sequence, so that the sequence has faster and slower parts. While
the recall tempo roughly follows these changes, we find several
undesirable characteristics of the recalled sequence and suggest
possible goals for improving the model.

With all this said, it may be necessary to address limitations
of our model as described below to acquire useful experimental
predictions. Even if this is the case, our theory takes a significant
step in the direction of making concrete experimental predictions.

Limitations and Future Work. A shortcoming of our model is
that the possibility of correlated patterns is not addressed. It is
reasonable to think that the sequence state patterns € could be
correlated across neurons and through time in biological circuits,
and addressing this may provide a more useful and biologically
faithful model. An additional limitation is the interpretation of
discrete sequence states, and on understanding what the biolog-
ically relevant timescales for tutor signals are. It is possible that
neural control signals in higher-order brain areas are “chunked”—
that is, a relatively constant control signal initiates another motor
area that enacts a motor motif (1). In general, it may still be of

interest to introduce tutor signals that are not constant over inter-

uo 1
vals [tg g

|- Another limitation of our model is the assumption
that during learning the network’s activity is entirely governed by
the tutor signal. In reality, there will likely be ongoing dynamics
not related to the tutor signal present during the learning process.
In addition, we consider only linear TAH learning rules, although
we expect our analysis would extend in spirit to nonlinear
learning rules such as those considered in ref. 40. Finally, our
model suffers from the overlaps d,(z) “spreading out” with
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increasing p with peak heights that slowly decay, even in the
stable regime. As mentioned in the Sequences with Fast and Slow
Parts subsection of Results, adding mechanisms such as nonlinear
learning rules (40, 54), “interaction modulation” as suggested by
ref. 57, or “delay” filtering as suggested by refs. 35-37 could help
mitigate this.

We further test our model’s behavior in extreme cases of fast
and slow tempos in S/ Appendix, Fig. S3. This figure shows
that there is a transient period where the tempo “settles in”
to a limiting tempo. However, this period is relatively short
over a wide range of limiting tempos, indicating that our model
holds up well under wide choices of parameters. We also test our
model’s behavior in the biologically relevant parameter regime
taken from ref. 47 in SI Appendix, Fig. S5. This shows that
the model behaves well in this regime as well, though the exact
kernel of ref. 47 creates periodic waves of activity due to strong
backward connectivity terms (S Appendix, Fig. S5E). To probe
the dependence of sequence magnitude on parameter choices, we
plot the sequence magnitudes p,, in S/ Appendix, Figs. S4 and S6,
corresponding to S/ Appendix, Figs. S3 and S5, respectively. These
plots show that while sequence magnitudes can decrease, for
instance as 7¢ is decreased, this can be counteracted by increasing
the magnitude of the Hebbian kernel.

In the long term, memory models should be combined with
other models, such as models of the motor cortex supporting
flexible motor control. Tutor signals would then be generated by
these other models, and gradually the memory model would take
over control of motor actions as they become more practiced (61).
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could be added to the memory modules. For instance, by gating
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TAH learning rules based on reward signals, this learning process
can be turned into a reinforcement learning process.
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such as using a spiking neural network model. There is a
straightforward extension of our model to spiking neurons, i.e.,
using the approach of ref. 40. While STDP learning rules are
often probed in firing rate models (40, 62), spiking may in some
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Summary. Our theory shows that sequence memories can be
formed by Hebbian learning rules that have been observed in
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Sl Appendix 1

Derivation of mean-field equations. Here we derive the mean-field equations Eq. (9). This is a fairly straightforward generaliza-
tion of the derivation in (1). The full network equations are

™ =—r+¢o(Wr+n)

where n(t) is a white noise vector ((n;(t)) = 0 and {(n;(t)n:(t')) = 7p>6(t —t')). To simulate these equations, we use forward
Euler integration with timestep dt:

r(t + dt) = 7(t) + dt (—r(t) + ¢(Wr(t) +n(t)) /7

where each n;(t) is drawn i.i.d. from a standard normal distribution with mean 0 and variance 7p?/dt.
The function ¢ is a sigmoidal nonlinearity:

¢($) = TS;&!’! (Tcenter + erf (ai/; 0)) . [Al}

Note that 7 simply rescales the temporal timescale of the dynamics. Due to this simple behavior, we can simply take 7 =1 for
the following derivation without loss of generality. The weights W are

P P
W g DD e e

Here each pattern £ is standard normal: & RN (0,1). The mean-field equations are written in terms of the overlaps
qu(t) = (") Tr(t)/N. If we let h = Wr + 1 we can then write

P P
h=) > aia+n
p=1v=1
We now investigate the evolution of the overlaps ¢,:
W= (&) #/N
= —qu + (&) o(h)/N.

Let’s look more closely at the second term on the right hand side. As N — oo this term approaches an average by the law of
large numbers, yielding (¢*) T ¢(h)/N — (€*$(h)) where £” v N(0,1) and

P P
h= > an€qu+n.
p=1v=1
Here 7 is a scalar white noise term: (n(t)) = 0 and {n(t)n(t')) = p*8(t — t'). Hence,

P
Gu = —qu + <§u¢ (Z Z ag&qe + 77) >

=1 v=1
P P P
- <w <€”Za?Qe+Z£”Za2qz+n>>
=1 vER =1

We next note that each term of - -
D€ aia
[z am (=1

is an independent normally distributed random variable with mean zero and variance (25:1 ayq)?. Hence the sum
Zf;ﬁu & Zle agqe + n is distributed like xR, where Ri = Z’};H(Zf;l ayqe)* + p* and z is standard normal. We similarly

define S, = 25:1 ayqe and write the average as a Gaussian integral:
Gu = —qu + /Dg“px ¢ (6" Sy + xRy) (A-2]
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where Dx = \/%e_xz/de.

The remainder of the calculation follows closely (1). We next define the change of coordinates

o &St aRy _ €Syt R,

&R, —xS, "R, — xS,
V/SE+ RZ ¢

where v and u are uncorrelated standard normal random variables and where we have defined ¢ = 1/S2 + RZ%. To perform this
change of variables we first compute the determinant of the Jacobian:

u

dv dv

Tl dw 115 R, 1

dgg dx = — H H = — 2 2 :1
£ E-aln Bl-aeemer

Hence we can use the substitution dudv = d¢"dz. Furthermore,
2mDuDv = e~ %"/ dudv
vy 2 " 2
— exp (_M> exp (_MHRH> dudy

2¢? 2¢?
= exp (_ (EMR/L)2 + (gﬂsu);;‘ (JJSH)Q + (xR,,)2> dudv
=exp [— ((¢")* +2?) /2] d¢"da

= 27 DEM D

Inverting the change of coordinate equations above, we find that £* = (S,v+ Rpu)/c. Using these substitutions, we can rewrite
the integral

C

= %/sz@(cv).

/Df“@x ¢ ('S +aR,) = L /DUDU (vSu + ulRy)¢ (cv)

We now define .
G(z) = E/vad)(vﬁ).

Using the definition of ¢, this integral can be evaluated with integration by parts and is

—_ Tspan o 0
G(z) = (0?1 2) p( Q(UQH)). [A.3]

Our equation becomes

qu = —qu + G(Ri + S;QL)SM

G (Z (Z a;q5>2 +p2> S ata

v 4 =1
P
= —q. + G (| Adll3 + %) Y allae.
=1
where A is the matrix A = (a}),, (v indexes the rows and ¢ indexes the columns) and g is the vector q := (q1,...,qp)".

Finally, we define
9(t) = G (I Aq(®)lI3 + p*) ,
which results in Eq. (9). Note that limy_,e [|[Wr||3/N = ||Aq(t)||3: letting w = Wr, the law of large numbers says that

. 1 2 _ 2\ v \2 . _ v v . . . .
MmN oo 3 2 u; = (ui) =, (Ze ay qg) since u; = ) &>, agqe is a Gaussian random variable with mean 0 and variance

ZV (Z 0 7 Qg)2. Plots showing the convergence of the mean-field approximation to the network simulations for increasing N
are shown in Fig. 2. Note that in the Appendices below, for theoretical analysis the number of patterns P will also be taken to
infinity. In this case, in order for these mean-field dynamics to hold exactly, P/N must vanish as N and P are both taken large.

Matthew Farrell and Cengiz Pehlevan 30f20



86

87

88

89

90

91

92

93

94

95

96
97

98

99

100

101

102

103

104

105

106

107

108

109

110

11

112

13

114

115

116

17

118

119

120
121

122

Note that stability is determined by the shape of the function G. For the values of ¢ considered in the main text (rspan = 2,
Tcenter = 0, @ = 0, and o = 0.1), G has the shape plotted in Fig. S1. In particular, G is monotonically decreasing from
its maximum at x = 0. Since ||h(¢)||* > 0, the maximal value that g(t) can take during the ongoing dynamics is bounded
from above by G(p?); see SI Appendix 2 below for more details. Note that the function G is the same as in (1), and the
supplementary material of (1) contains plots of G for various values of Tspan, 6, and o.

Our choice of parameters for ¢ means that firing rates r are in the range [—1,1]. For nonnegative firing rates, different
parameter values can be chosen, as in (1). However, in this case it may be sensible to use nonnegative random patterns &
rather than Gaussian. We do not investigate this possibility further here.

Sl Appendix 2

In this appendix we show the full details of the mathematical derivations of the peak times ¢, and stability conditions as
defined in the main text.

Stability conditions. Here we derive stability conditions, and for stable dynamics we show how the value of goo := lim;— 0 g(t)
depends on the coefficients a,. We start with the mean-field equations Eq. (9) and assume that the coefficients are shift-invariant,
so that a) = a,—.:
P
G =—au+9(1) Y au-vu- [A4]

v=1

Note that stability is defined only in the P — oo limit, so the equation above and those below are defined also for P = co. As in
SI Appendix 1, we define g to be the (possibly infinite length) column vector q := (qu)ueq1,2,...,py- To show the dependence of
q on t, P, and initial conditions q(0) (which itself depends on P) we write g(t) or q(t; P) or q(¢; P, q(0)). With this definition,
we can write Eq. (A.4) as a matrix-vector equation

q=-q+g(t)Aq [A.5]

where A is a Toeplitz matrix that holds the coefficients ay:

ao a-i1 a-2 -+ A-pP+1
ail aop a—1
A= a2 a1 ao K a—o
a—1
ap—1 az ai ao

We make the following assumptions, which we refer to as our “standard list of assumptions”:

Standard list of assumptions:

Positive pairs: ay +a_, > 0 for all £ > 0.
Finite norm: ||A| < oco.

Continuity: ¢(t) is continuous.

Finite g: g < oo.

Rapid convergence: lim;_, o

fot ds(g(s) — goo)| < 0.

Our objective is to show that

P-1 -1
Jm g(t) = goo =g := Z ak [A.6]
k=—P+1

is a critical relation for stability in the following senses:

Proposition 1 (Nonperiodic boundary conditions). Let q(t; P, q(0; P)) be a sequence of solution trajectories, indexed by P,
for Eq. (A.5) under the standard list of assumptions above. In addition, let q(t; P = co) denote the solution trajectory for
Eq. (A.5) with P = oo and initial condition q(0; P = 00). Then the following hold:

e (exponential decay for goo < g): limsupp_, . ||lg(t; P, q(0; P))||p, = O(et(*ng{g)) provided limsupp_, . ||g(0; P)||p < oo
for p > 2, including p = oo. In addition, ||q(t; P = o, q(0))]|, = O(e""19=/9)) for all initial conditions q(0) provided
1g(0)l» < oo.
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123 o (unbounded growth for goo > g): If goo > g, then for each time point t, there exists a sequence of initial conditions q(0; P) in-

124 dezxed by P (and possibly depending on t) with limsupp_, . ||q(0; P)||2 < oo such thatlim;_,o limsupp_, o ||q(t; P, q(0; P))||2 =
125 co. In addition, there exists a sequence of initial conditions qi(0; P = co) (possibly depending on t) with lim sup,,_, . ||qx(0; P =
126 o0)||2 < 00 such that limt,—co SUP< <y, limsUP,_, lg(t; 00, qr(0; 00))]|2 = oo.

127 To summarize the above results, as P — oo and for g < g the solutions are unstable, while for goo > g there are ways to

128 choose initial conditions that make the solutions unbounded.
129 A proof of this proposition is given below. The result that we would ideally like to show, but that we were not able to at
130 this point, is encoded in the following conjecture. First we need to define a new condition:

131 Forward-propagation-dominated: a; > |a—| for all £ > 0.
132 This is a restriction of the positive pairs condition defined above.

133 Conjecture 1 (Nonperiodic boundary conditions). Let q be a solution trajectory for Eq. (A.5) under the standard list of
134 assumptions as well as the forward-propagation-dominated condition with P = oo and q(0) = e1 (the vector with 1 in the first
135 coordinate and O elsewhere). Then q(t) is stable and bounded for all time t if and only if goo = g.

136 The above results concern Eq. (A.4), which has nonperiodic boundary conditions in . Next we consider the analogous
137 equation with periodic boundary conditions. In thise case, we will need to assume that P is finite. For ease of exposition, we
138 will also assume that P is even; the odd case is similar. We will also need the following assumption:

139 Band-limited: a, =0 for |k| > P/2 — 1.

140 This is a stronger condition than the finite norm condition in our standard list of assumptions. Let H = P/2 — 1 and consider
141 the equation

H
142 QH = —qu + g(t) Z Avqu—v mod P+1- [A7]

v=—H

143 (the modulo is in the subscript of ¢ and is taken to be in the range [1, P], so in particular 0 mod P + 1 = P). This corresonds
14 to Eq. (A.5) with A replaced by the circulant coefficient matrix

ao a_1 -+ a—g 0 ag -+ a2 ai
al ao a—1 a—Hg 0 ag az
ai
ag
145 C=
0
a_H 0 ap
a—1
a—1 a_2 a-3 ai ao

s Matters simplify considerably in the periodic case:

147 Proposition 2 (Periodic boundary conditions). Let q(t; P) be a sequence of solution trajectories to Eq. (A.7) indexed by P
s under the standard list of assumptions with q(0; P) = e1 (the vector with 1 in the first coordinate and 0 elsewhere). Then
ws  q(t; P) is stable and bounded if and only if goo = §. Futhermore, limp o0 ||q(t) |2 ~ ¢t~/ et (71F900/9),

150 A significant difference between the periodic and nonperiodic cases is that the direction of a propagating wave of activity
151 matters in the latter but not in the former. In particular, “backward” propagating waves eventually hit the boundary condition
12 at u =1 in the nonperiodic case, which can cause activity to die out when it would not do so in the periodic case. This explains
153 the presence of the forward-propagating-dominated condition in Conjecture 1. One approach to proving Conjecture 1 may be to
154 formally connect the periodic and nonperiodic solutions in such a way that their stability properties are shown to be equivalent
155 under the forward-propagating-dominated condition. The solutions in Proposition 1 avoid this issue by allowing for a sequence
16 of initial conditions that move away from the p = 1 boundary; for instance, the initial conditions could be ¢(0; P) = ep.

157 To start to prove these results, we need the following lemma which will allow us to link our nonlinear equation with a linear
158 one:

159 Lemma 1 (Stability equivalence of linear and nonlinear equations). Suppose that qi(t) is a solution trajectory to Eq. (A.5)
160 for arbitrary A that satisfied the finite norm condition, and with g(t) an arbitrary function satisfying the rapid convergence
161 assumption, and g2(t) is a solution trajectory to Eq. (A.5) with g(t) = goo under the finite norm condition above. Then qi is
w2 stable if and only if q2 is stable, and q1 is bounded for all time if and only if q2 is bounded for all time.
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Proof. For now we will assume that g # 0. The solutions to equation Eq. (A.5) for general g(¢) (that satisfies the standard
list of assumptions) and for g(t) = g are

t
¢ (t) — e—tegocA f() ds 9(9)/gooq(0) [AS}

q2(t) = ¢ 'e™>"q(0), [A.9]

respectively. Next define f(¢) := g(¢)/goo — 1. The function f measures the deviation of g/ge from its eventual limiting value

of 1. Then . . .
/O dsg(s)/gms :/D/ds(f(s)—&-l):t—i—/oldsf(s).

ai(t) = ot egoAt god [ds § ) q(0) = Y (t)ga(t) [A.10]

It follows that

t
where we have defined Y () := egmAfo d f(e)

some real number b and a < 0. Since

. Suppose first that g1 is not stable, which means that ||qi(t)c = O(t?e*') for

laz(®)lloe = 1Y~ (g1 (®)lloo < 1Y (O)loollqr(t)lloo [A.11]

we have that
lg2(t)lloe = O (™Y (t)l|o) = O (t"e™)

where the last equality follows from the finite norm and rapid convergence conditions as stated in the standard list of assumptions
(JJA|loo < 00 and lim;— o0 | fot ds f(s)| < oo. Note that this second condition is equivalent to lim¢_ o | fot ds g(s) — goo| < 00).
Hence g2 is not stable.

Going the other way, suppose g2 is not stable, so ||gz(t)||co = O(t?e*!) for some real number b and a < 0. Since

g1 (Bl = [[Y (B)g2(D)llcc < 1Y (D)oo llg2(®) e [A.12]

we have that
lgi(®)]lee = O (™Y (t)]|c) = O (t’™)

where the last equality follows from the finite norm and rapid convergence conditions as stated in the standard list of assumptions.
Hence under these conditions, we have completed the second direction of the equivalence.

Next we assume that sup, ||q1(t)||cc < 00, which by Eq. (A.11) implies that sup, ||g2(t)||cc < 0o provided sup, ||¥ ™! (t)|lcc < 0.
To show that sup, ||V 7' (t)||cc < 0o, we first note that continuity of g implies that sup, fot ds f(s) < oo is equivalent to

limy— 00 fot ds f(s) < co. Then the finite norm and rapid convergence assumptions imply that sup, ||Y 7' (¢)||c < 0o as above.
Finally we assume that sup, ||g2(t)||c < 00, which by Eq. (A.12) implies that sup, ||q1(¢)||cc < co provided sup, ||Y (t)]|c < o0,
which holds for the same reasons as for ||[¥ 7' (¢)||c. This finishes the equivalence.

In the above, we assumed that go. # 0. The case goo = 0 follows a similar line of reasoning. We leave this simple case to the
reader. O

Lemma 1 says that to understand the stability properties of the nonlinear Eq. (A.4), we can instead consider the stability
properties of its linear analogue where we set g(t) = goo. For the following proofs, g will refer to Eq. (A.9), the solution to the
linear equation with g(t) = goo. This equation is valid for P finite or P = oo, in which case A is an infinite-dimensional matrix.
In addition to the notation above, from here we let A refer to the infinite-dimensional matrix and let Ap refer to the P x P
truncation of A. By this definition A = A.

We now need to incorporate machinery from the theory of Toeplitz matrices. This will allow us to define an analogue of
the spectrum of the matrix in infinite dimensions.* Let a : S* — C be the function mapping the unitary complex numbers
5(0) = €™ to the complex plane defined by a(s) = kP;iP_H axs®. The function a is called the symbol of the Toeplitz matrix
A. While the spectral absissa is the quantity of interest when investigating stability of finite-dimensional systems, it is actually
the real part of the symbol which is the relevant quantity in infinite dimensions.

Lemma 2. Suppose Ap (for P finite or infinite) satisfies the finite norm and positive pairs conditions listed above. Then

P-1
—\—1
supRa(s) = (g) = E ak
s k=—P+1
*This is actually more closely related to the pseudospectrum of the finitely truncated matrices than it is to the spectrum of these truncations (2), and in general the eigenvalues are a misleading indication
of stability. For instance, the infinite matrix A with a1 = 1 and a = 0for k # 1 gives rise to stable dynamics, even though the eigenvalues of every truncation A p are 0, which together with the —q

decay term should indicate that the solutions decay to O with asymptotic rate e~ *t. Indeed, solutions do decay to 0, but only after the traveling wave of activity has hit the last pattern in the sequence. If
there is no last pattern (i.e. infinite-dimensional A), then the activity never decays to 0.
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Proof. The symbol of A is

k=—P+1

By the finite norm condition (see Section 1.6 of (2)), this sum is absolutely convergent and we can rearrange terms:

P-1
a(s) = ao + Z(aksk +a_ps ™).
k=1
Paramaterizing s as s = 2™ we have that
P-1 P-1
sup Ra(s) =ao + sup Z(ak cos(2mkl) + a—x cos(—27kf)) = ao + sup Z(ak + a—g) cos(2mk0).
sest 6€[0,27) 1 0€[0,27) 1

Using the positive pairs condition, we have that this sum is maximized when 6 = 0, yielding

P-1
sup Ra(s) = E ak.
sest ke—Pt1

We are now ready to prove Propositions 1 and 2.

Proof of Proposition 1. Recall that q(t) = e*9>*q(0). Our general strategy is to translate the results of Theorem 8.15 of (2)
regarding the behavior of the norm of the transfer function ef9=4 to statements about the norm of the solution etg‘”Aq(O).
We first assume that goo < g. Then for p > 2 (including p = o)

la(t; P.a(0)lp < e Nle”" 7 I 1g(0)l, < e~ [|e?>" 7 |12]|g(0) |- [A.13]

Using the finiteness of limsupp_, . [|g(0)||p, we have that

limsup [|q(t; P, q(0)) |, < limsupe™" "7 2[lq(0)|, = ¢~
P—oo P—oo

0 i sup [ g(0)],

P—oo
where the last equality uses the fact that limp_, oo ||et94P || = etg”f“p R for each t > 0, which is Theorem 8.15 of (2). Using
Lemma 2 it follows that limsupp_, _ [|q(t; P, q(0))|, = O(e'(~1+9/9) Next we note that by the Banach-Steinhaus theorem
let9=4 ||z < liminfp_, o ||€?99°4P||2. As stated above, by Theorem 8.15 of (2) the limit exists and is equal to ' 5" ®%  Hence

tgoo A tgooAP||2 — el9oosupRa _ tgeo/g [A.14]

le la < lim |le
P—o0

It follows that ]

q(t, P = 00) < e "[|e""="|2[lq(0)[|]2 = O (" "1 9/

provided [|q(0)|]2 < oo.

Next assume that goo > g and fix a ¢t > 0. By the definition of the matrix operator norm, for each time ¢ and system size P
we can choose a sequence of initial conditions q(0; P) (that may depend on t) such that ||e'9>*P q(0; P)||2 > ||e'9>*P |5 — ¢ for
some constant ¢ which does not depend on ¢ or P. Taking the limit yields

lign inf |92 4P (0; P)||o > e'9oe P Re _ ¢ [A.15]
— 00

We have again by Theorem 8.15 of (2) that limp_,o ||e/94P || = !9 59P R Now by Lemma 2, goo supRa = goo /g > 1. It
follows that lim;_,c lim inf p_ oo [|e9 AP q(0; P)||2 = oo.

We now prove the final portion of the proposition, which again is under the case of goc > g. Following Theorem 8.15 of
(2) is the following result: if the pseudospectrum sp_(A) of A contains points in the open right-half plane, then each point
A € sp.(A) with 8 := R\ > 0 yields an estimate of the form

t
sup ||| > e/ <1 +56ﬂo1> . [A.16]
0<t<to B

We will not define the pseudospectrum sp,(A) here but instead note that Section 7.4 of (2) implies that if there is n in the
spectrum of A with n > 0, then for € small enough there is also a point A in the pseudospectrum of A with R\ > 0. It follows
that if such an 7 exists, then lim¢,— oo SUPy<;<4, e |2 = co. Finally, we need to connect gooRa with the spectrum of A. This
connection comes in the form of Corollary 1.10 of (2), which implies that the symbol of A is contained in the spectrum of A. It
follows that goofa > 1 implies that there is a point 7 in the spectrum of A with ®n > 0. Finally, we construct a sequence of
initial conditions g (0; P = co) (which may depend on t) that realizes the supremum of the operator norm. This concludes the
proof. O
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Next we can prove Proposition 2. The circulant (periodic) situation is much simpler because circulant matrices are
diagonalizable by Fourier modes.

Proof of Proposition 2. This proof is similar to that of Lemma 2. Indeed, there is a close connection between the circulant
matrix C' and the Toeplitz matrix A; namely, the symbol of A is a continuous version of the eigenvalues of C'. The solution to
Eq. (A.7) is

q(t) = e te>=¢(0). [A.17]
Since C' is diagonalizable, ||g(t)|| is strictly bounded between 0 and oo as t — oo if and only if the spectral abscissa of C is 1.

The circulant matrix C' has eigenvalues
H

2mikp/P
Ay = E are> "/

k=—H

with real parts
H

R\, = ao + Z(ak + a—x) cos (2mku/P) .
k=1

By the positive pairs condition, R\, is maximized at p = 0 which yields max R\, = ZI_{H ay. Hence ¢(t) is stable and bounded

if and only if goo max RA, = 1 (assuming that Zi[H ar # 0, which is guaranteed by the finite g standard assumption).

For the second part, we note that since ¢ is unitarily diagonalizable with first eigenvector equal to 1/+/P, it follows that
lg(®)]]2 = & |(e Tt | e "F92APT) Ty Taking P large, this becomes

™

P us
— 1 — a CcOos
la(O)l = e 5 3 Jettowe] o e / d 2195 2 cos(k0) [A18]
p=1 -

Using the positive pairs condition, we have that that the maximum of > & Ok cos(k@) occurs at @ = 0. Hence Laplace’s method

with large t yields
/ﬂ do €2tg°c Zk ay, cos(k0) ~ i 6275990 Zk ag
o goot Zk ak

lg(t)]o ~ ¢~/ et oo/, [A.19]
O

It follows that

Note that even in this simple case, it is not trivial to find the asymptotic behavior of ||g(¢)||cc (using the sup norm) since
the sup norm and 2-norm are not equivalent in infinite dimensions.

We conjecture that stability of Eq. (A.4) is equivalent to Eq. (A.6) (under assumptions detailed in Conjecture 1 above).
This does not, of course, automatically imply that Eq. (A.4) will be stable, as it is possible for Eq. (A.6) to not hold. Indeed,
there is a clear situation that violates Eq. (A.6): since g(t) is bounded from above by max, G(z) (see SI Appendix 1), clearly
Eq. (A.6) cannot be satisfied if § > max, G(x). In this case (and if our other assumptions hold), the nonlinear dynamics
Eq. (A.4) are expected to not be stable (they will decay to 0 with (near) exponential rate).

However, if max, G(x) > g, we can additionally argue that the nonlinear dynamics Eq. (A.4) will in fact be stable, under
the additional assumption that G(z) is monotonically decreasing from z = 0 (which is satisfied by a wide range of parameters
for ¢ including those used in all of our simulations, see Fig. S1). This is because, if the network activity is vanishing, then the
argument ||Aq(t)||* + p* of G will approach p®. This causes g(t) = G(||Aq(t)||* + p*) to grow. Once g(t) > g, for each of these
values of g(t), say g(t*), the overlaps in the linear equation ¢, = —gq, + g(t*) Zle au—vqy will grow. For large enough ¢, the
linear equations closely approximate the nonlinear equations, so that the overlaps in the nonlinear equations will also grow.
However, the overlaps for the nonlinear equations cannot grow indefinitely, since the nonlinearity ¢ bounds the activity of the
network. Hence the overlaps will not decay to 0, nor will they grow without bound, so that Eq. (A.4) will be stable. Intuitively,
the combatting forces of increased growth caused by decreasing ||Aq(t)|| and bounded growth from the nonlinearity ¢ will in
practice cause || Agq(t)||? 4 p? to settle at a stable value which coincides with g(t) — g.

Simple example: one forward connection. To demonstrate the theory derived above, we consider a simple example that is similar
to Section 2.3 of the Supplementary Information of (1), and that is summarized in the One forward term subsection of the
main text Results. This is the example with one sequi-associative and one autoassociative connection, i.e. where a, = 0 for
k ¢ {0,1}. For an even simpler, but slightly less informative example, one can take ap = 0 in the below calculations. The
linear Eq. (A.4) with g(t) = g for one sequi-associative and one autoassociative connection is

{QH = —qu + goo@0qu + goo1qu—1, p>1
Gu = —qu + Goo oGy, p=1

8 of 20 Matthew Farrell and Cengiz Pehlevan
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with initial conditions ¢1(0) =1 and ¢, (0) = 0 for > 1. The solutions to these equations for p > 1 are
=1k —lp—1,—t+gocaot

_ Joo a7
(=1t

qu(t) =
Solving ¢, (t) = 0 for ¢ yields peak times of ¢, = (1 — 1)/(1 — gooao). We can observe the growth properties of these solutions
by evaluating g, at these peak values, yielding

l1-gooag

Pl () e MR (ot e
Qui1(tur1) = g fl' = ‘L' 0 . [A.20]

where we offset the p index by 1 to make the expression simpler. Sterling’s approximation u! ~ /2wu(u/e)* yields

H u
a19 — m
Qu1 (butr) ~ (1—gao> (2mp) % = Vo [A.21]

1900
1—goocag

while for m < 1 the solutions decay (nearly) exponentially quickly to 0. Solving m =1 for g« yields goo = 1/(a0 + a1), which
is Eq. (A.6). At the critical value of m = 1 the solutions decay to zero, but do so with rate ~ 1/,/z.
The periodic Eq. (A.7) with g(¢) = goo and the same coefficient values as above has solution

where we have set m := . This experiences critical behavior at m = 1: for m > 1 the solutions grow without bound,

W[et(—1+gooao+gooa1ez“"i/P)]P—01
=

q(t) = VP

where W has columns w, = [672#167”‘/})]5;01. The growth properties of this solution are revealed by the real part of
—1 4 Goo@0 + gooa1€2*™/ T which for geoai > 0 is maximized at p = 0 and realizes the maximum value —1 + goo@o + Joo@1.
This is zero when goo = 1/(ao + a1), so that this is a critical value for the solution similarly to the nonperiodic case (though in

this case solutions neither decay to zero nor grow without bound when g = 1/(ao + a1)).

Bidirectional connectivity — explicit solution. Here we derive an expression for a solution to the mean-field system with
bidirectional connectivity. We include this derivation for completeness and to illustrate the difficulties that arise in deriving a
simple exact expression for the solution. The reader may prefer to skip to the next sections showing our methods for finding
approximate solutions. We start with the system of equations

—qpu + &qu + a—lqu+1 + alqufb 14 >1

Gu = —qu + QoG + G—1qu41, p=1 [A.22]
—qu + Goqu + a1qu—1, uw=P.
In this case, the coefficient matrix A for the system written as ¢ = —q + Aq has eigenvalues

Ap = Go + 24/a—1a1 cos P'u:l, wed{l,2,...,P}

and eigenvectors v*:

2 a—1|,- - k/2_. pkm
w_ 2 |81 PR
Ui A Py 2 (a1/a-1) SlnP+1’ uke{l,2,..., P} [A.23]
The solution to Eq. (A.22) is then
q(t) = VDV~ 'q(0). [A.24]

where the columns of V are the eigenvectors v* and where D is a diagonal matrix with D, = e(='**)! Letting V* denote
the conjugate transpose of V| we see that VV™* is a diagonal matrix with the first entry being equal to 1. To see this, an easy
calculation shows that

P
Skl =1, Y o) =0, k#K
p=1 p=1

where the asterisk * denotes the complex conjugate. Hence, if we use the initial conditions ¢,,(0) = é(u — 1), we have that
(V7q(0))x = (vi)*. Hence we can write Eq. (A.24) as

gu(t) =Y vhexp((—1+ X\)t)(v))"
2

P+1

a—1

ai

(ELl/EL,l)“/2 (N/al/a,l) Zsin Iglj—wl exp [(71 + ag + 24/a_1a1 cos P]: 1) t} sin P]—t T

J
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Taking P — oo this becomes an integral

0u(t) = 2[a-s /| @ /a0 (Var/as) e 0K, 2 aa)
= ofa fa [V (o /)|
where )
Ku(t)z/ ds €' °**°™ sin ps sin s7.
0

Noting that
L) = K, (Ot/n
is the modified Bessel function of the first kind, this equation can be written

qu(t) = 2|ar Ja_, |2 TR0t = T (2 /aTant)|. [A.25]

Instead of analyzing these equations further, we proceed with approximate methods that will generalize to more cases (i.e.
more nonzero coefficients ay).

Bidirectional connectivity — periodic boundary conditions. To further analyze the behavior, we convert the boundary conditions
of Eq. (A.22) to periodic. This yields the following system of equations

—qu + @0qu + G-1Gu+1 + A1qu-1, p>1
Gu = § —qu + Goq1 + a—1q2 + a1qp, w=1.
—qu + aogp + a—1q1 + aiqgp-1, w=Pr.

Note that the periodic equations may not match the solutions to the nonperiodic equations exactly, even as P — oco. This
makes our simulations important for verifying that the approximations are useful.
The periodic equations can be written

4g=-q+Aq
where
ao a—1 0 0 ai
a ao a_1 0 0
0 a ao a—1 - 0
A =

0 0 0 ai ap a-1
a—1 0 0 0 ai ag.

Since A is circulant, it can be diagonalized by Fourier modes. Specifically, the uth eigenvalue and eigenvector of —I + A can be
written A\, = —1+ ao + a_1e M P o Gl e2umi/P and vl = 672Mk7”/P/\/F for u, k € {0, ..., P — 1}. Using the initial condition
q.(0) = 6(p — 1), the solution can then be written

P
Quti(t) = —= % €XP Art [A.26]
122 \/* ;

which becomes for P — oo
e(~1+ao)t . ~ o —si - _si
q;t+l(t) / 71us€(a,le +aje )tdS.

Note that in taking P — oo, we still require that N is much larger than P so that the mean-field equations are valid. Simplifying

the integrand results in
e(—1+ao)t

) e o .
q,u—O—l(t) _ o / et(a1+a_1)cossel(t(alfa_l)slnsfus)dsl
0

and using the 27-periodicity of the integrand
o(—1+a0)t

Qut1(t) = o

/ﬂ et(&1+&_1) cos sei(t(ﬁ.lfﬁ_l) sin sf,us)ds. [A27}
‘We next have some choice of method for approximating this integral. A simple approach would involve taking a truncated
Taylor expansion of the trigonometric functions in the integrand, with the hope that this resolves into an integral that can be
evaluated. A more sophisticated and principled approach would be to use a saddle point approximation, where ¢ is treated as a
variable that is becoming large. We will start with saddle point approximations and show the limitations of this approach in
this instance. We will then compare the result with the naive Taylor expansion approach. To get the essential information, the
reader may wish to skip to this Taylor expansion approach.
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Bidirectional connectivity — saddle point approximation. We proceed by performing a saddle point approximation of the integral
in Eq. (A.27). To do so, we write the integral as
I(t) = / e ds

where ¢(s) = Scoss +iasins —ys and f = a1 +a—1 and @ = a1 — a—1 and v = p/t. Note that we are treating p/t as a finite
scalar, so p and ¢ are growing large together.

For the saddle point approximation, we first extend ¢ to a function over the complex numbers and find the critical points of
¢ (N¢ are saddle points at these critical points in the complex plane). When + is large enough, there are two saddle points
that both lie on the imaginary axis. To find these, we can take s = iy and find the roots of ¢'(iy). Letting u = €Y, ¢'(iy) can
be written ¢’ (iy) = —iB(u — 1/u)/2 + ia(u + 1/u)/2 — iy. The roots of the resulting quadratic are

us = (v£ VB —a"+7?) /(a - B).

Here we see that the condition that these roots exist is that 4% > 82 — o since v must be real. We next need to calculate
the angle of approach for these saddle points. This is given by arg ¢ evaluated at the saddle points. This shows that the
angles are —m/2 and 0 for the saddle points in the y > 0 positive half-space and y < 0 negative half-space, respectively. The
contribution of the saddle point in the positive half-space is pure imaginary, so we can focus on the saddle point in the negative
half space, which we denote s*. Given the negative root u_ above, it is straightforward to compute that

/32 — A2 2
¢(s") = /B2 — a® + 12 +log (7—/804—(1;7)’ ¢"(s") = /B —a? + 2.

The resulting saddle point approximation yields
[ 2T ee(s)
I(t) = Isp(t) =4 | ————
( ) P( ) t‘¢//(8*)|e

s p(~1H+30) 1 to(s™) A28
‘ 2ntl ¢ 14.28]

so that
Qu+1()

To find the peak times, we seek the roots of qL(t). Given the saddle point approximation above, it is straightforward to compute
q,,(t). This expression, even in the asymptotic limit ¢ — oo (with u/¢ constant), does not appear to have roots that can be
expressed in an explicit equation for t.

Given that the roots of the saddle point approximation are unhelpfully complex expressions, we next try taking a saddle
point approximation of qLH(t); i.e., instead of finding a saddle point approximation and then taking a derivative, we first take
a derivative and then find the saddle point approximation. The derivative qLH(t) is

e(—1+ao0)t

5 (=1 +ao)I(t) +1I'(t))

QL+1 (t) =

where

I'(t) = /” P(s)et® s, Y(s) = fcoss+iasins.

Taking a saddle point approximation of this involves taking a saddle point approximation of I(¢) and I'(t); we have already
done the former, and the latter is simply

P 2n o\ _td(s™)
PO\t e

where s* is the critical point of ¢ as above. Hence

/ N 1 (-1430)t (_] 4 & "
q,u+l(t)~ 27Tt|¢”(5*)‘e * (( 1+ 0)+¢(5 ))

We again look for the peak times by finding the roots of this expression, which occur at ((—1 4 ao) + 1(s*)) = 0. Evaluating ¢ (s*)
is similar to evaluating ¢"(s*) and yields 1(s*) = /82 — a2 + 2. Substituting 8 = a1 +a—1, a = a1 —a—1, ao = 1 —ar —a—1,
and v = p/t into this expression and solving (—1 + ao) + /B2 — @ + 42 =0 for ¢ yields

tym (u—1)/(a —a1). [A.29]

This is the same as Eq. (12) up to an added constant.
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While this is a fair approximation, the differences between this estimate and the true peak times typically remain non-
vanishing even as ¢t and p approach infinity; see the blue and orange lines of Fig. S2a and S2b. However, the differences between
the true peak differences d,, = t, — t,—1 and this estimate do vanish with increasing ¢ and p; see the blue and orange lines of
Fig. S2¢ and S2d.

Considering that the saddle point method yields either (1) an estimate for ¢, that doesn’t appear to have a simple closed-form
expression, or (2) an estimate that is not asymptotically precise, we seek a simpler approach. This simpler approach derived in
the next section has the additional advantage of generalizing to the case of arbitrarily many nonzero coefficients ax.

Bidirectional connectivity — Taylor expansion. In our next approach to approximating the integral Eq. (A.27), we expand the
trigonometric functions around s = 0 to get

(=14ap)t (™ P
Qi1 (t) = € o / 6t(a1+a—1)(1*82/2)el<t(a1*a—l)S*MS)ds
t(—1+ao+ay+a_ ™
_ et-1taotaita 1>/ oSt @+a_1)/2 is(t@—a_1)-p) g
27 o
=L [ —st@taa 2 ist@-a-)-w) gg
2w )

where in the last step we have used that Zk ar = 1. Letting o := a1 —a—1 and B := a1 + a—1, we rewrite the integral as

1 N — s2+i(at—p)s
Qu+1(t)%%/ e~ (Bt/DTFilat=ms g g

While we can write this integral in terms of error functions, a simpler expression results if we are able to integrate over the
whole real line. We note that across a range of reasonable choices of the ag, the integrand is vanishingly small outside of the
interval [—m, 7]. Hence we can indeed approximate the integral with one over the real line. This results in

L[ 2
Gu+1(t) = %/ e~ Bt/ +i(at—p)s 1
1 ,M

e 26
V27 Bt

The locations ¢, of the peaks are given by the positive root of ¢,(t) = 0, which when using the approximation above yields

N R T
- 202

ty
Taking the asymptotic limit of large p and taking the positive root yields Eq. (14):

,u—l_i_ u—l a—-1+ ar
(0% 20¢2 5,1 — C_Lfl 2(5,1 — 671)2 ’

t, ~

Similar to the estimate yielded by taking a saddle point approximation of q;(t), this estimate is not asymptotically exact;
see the green lines in Fig. S2a and S2b. Depending on the choice of ar, the approximation can be better or worse than the
saddle point approximation Eq. (A.29); compare Fig. S2a with Fig. S2b. However, as before the differences d,, :=t, —t,—1 are
asymptotically correct; see Fig. S2c and S2d. Hence we can consider this approximation to be practically at least as useful
as that yielded by taking saddle point approximations. An extra benefit of this approach is that it generalizes; see the next
section.

Generalizing the computation to general shift-invariant connectivity. The above technique of using Taylor expansions to find
an approximate solution for ¢, extends to the general case of Eq. (10) with periodic boundary conditions in u. As above, we
assume that A is band-limited so that we can replace A with the circulant approximation of A. The eigenvalues of the circulant

matrix I — A are then A\, = —1+ ZIZ/EP;}Q]H are?** /P Grouping terms and taking the limit as P — oo results in
eA(s)t _ 6(71+a0)t6t ZLI;/IQ] -t c;: cos 2mks+ic, sin2wks

where ¢f = @y + a—x, ¢;, = @ — a—x, and s € [0,1]. Hence, using a diagonalization of circulant matrices as in Eq. (A.26)

results in
P

27
1 1 GNOIP/21S1 (NP2
qu(t) = 2 E vl exp Mgt — o / e Zkzl Cp €08 SJ”( k=1 g SIMES ”S) ds

k=1 0
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as P — oo. Redefining the bounds of integration to [—m, 7] and expanding the trigonometric functions around s = 0 as before
yields

[p/2]—1
( e ®

(—14ap)t ™ [P/2]—1 . [P/2]—1 _ k) ™ X
qH(t) ~ € Et =1 c;r(l—(ks)2/2)+z(t Zk:l Cp ks—us) ds = e—(ﬂt/2)s2+z(at—p)sd8
2 o 2T .
where 8 = Z[P/ﬂ*l Jrl<:2 and o = 1212/12}71 ¢, k. Again extending this to an integral over the real line as before, as well as
noting that Z[P/EP;/lel ar = 1, yields the solution
1 _(at—m)?
qu+1(t) = e

3

278
As before, the positive root of ¢, (t) is asymptotically
p=1 B

ty " —— — —.
" « 202

which is Eq. (13). This approximation will be used for the remainder of the Appendices.

Two forward terms. In the case of two forward terms, the system of equations is

—qu + aogu + a1qu—1 + a2qu-2, w>2
G = —qu + aoqu + a1qu-1, n=2
—qu + QoQy, w=1

Using Eq. (12) yields the approximate peak times of Eq. (15):

P pn—1 _ a1 + 4as
" a1 + 2aso 2(&1 + 2&2)2 ’

Exponential kernels. Here we derive the peak times ¢, for exponential kernels of the form w(t) = —met/™ for t < 0
and w(t) = moe” /™ otherwise. Given the approximation Eq. (12), we need only compute a = kazl(dk — a_x)k and

B = Zf;l(&k +a_y)k?. To start we adapt Eq. (6) to the setting of equal tutor intervals (Té‘ = T¢) so that the relationship
between the coefficients ar and the kernel w takes the form

Te (k+1)T¢
ak—/ dt/ dsw(s —t).

Then, for £ > 0,

Te  (k+1)Te )
ar = m2/ / 7(877:)/7-2 dsdt = m27'22 (6T§/T2 _ 1) e*(k+1)T€/T2 [A30]
Te  (—k+1)Te ,
_ml/ / e/ dsdt = —maTy ( Te/m _ 1) e~ (B Te/m [A.31]
—kTe

These equations afford an intuitive interpretation of the relationship between the kernel and the coefficients. For positive k, ax

increases with meo and doesn’t depend on m; and 7. The coefficient ax also increases with 72: after some algebra we find
Te /T

that the derivative of ax with respect to 72 has the same sign as eTe/m 1 bTe /T2 where b = (ktl)—e 52 2(’”172), which is

positive provided 72 < T¢. An analogous relation holds for a_. From this we compute

P-1
. i
lim ax = maTs (1—6 5/”)

P—oo

k=1
P-1
. -
lim a_ =miTi (1—6 5/”)
P—oo
k=1

After computing
T, t T, Te
ap = —ml/ dt/ ds et/”—i—mg/ dt/ dse ™ = Tg(mQTQ—m1T1)—m27'22 (1 — ein/Tz)—mlrf (1 — eiTg/Tl) [A.32]
0 0 0 ¢
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we see that, for large P,

P—1 -1
g= (ao + Z ak> — Tgl (mame —mam) ™",

k=—P+1,k#0

Similarly,
P-1
. 2
lim kar = maTy
P—oo
k=1
P-1
. 2
lim —ka_p = —maTyi.
P—oo
k=1

Hence, for large P,

a=g Z kakzg(mleergTQ).
k=—o00

A similar calculation yields

[ TEma (eT5/72 + 1) TEma (eTf/” + 1)
5 =9 ( (eTé/Tg _ 1) - (eTE/Tl _ 1) ) [ASB}

S| Appendix 3

Here we give the details of the network simulations. Differential equations are solved with forward Euler integration with a
timestep of dt = 0.075, except for Fig. 1 which uses dt = .0375, Fig. 3e, which uses dt = 1/15, Fig. S2 which uses dt = .001,
Fig. S3e-f and S4c-d which use dt = 1/120, and Figs. S5-S6 which use a different timestep for each line color (see Github
repository linked in the main text for the precise values). Recall that the length of the input patterns is denoted by N and the
number of patterns in the sequence is P. In Figs. 1 and 3 to 5 and Fig. S2, N = 35000. In Figs. 6 and 7, N = 40000. In Fig.
1, P = 40. In Figs. 3 to 5, 6b, 6¢c and 7 and Fig. S2, P = 100. In 6d, P = 60. In Figs. 2 to 6 and Fig. S2, P = 100.

Throughout, we use the nonlinearity Eq. (A.1) with rspan = 2, Tcenter = 0, # = 0, and o = 0.1.

Error bars (shaded regions) are computed automatically by the Seaborn plotting library, which uses bootstrapping to
compute 95% confidence intervals.
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Fig. S1. The function G(z) for rspan = 2, @ = 0, and o = 0.1. The function achieves a maximum of 8 at = = 0 (x = 0 is not a vertical asymptote).
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Fig. S2. Comparing approximations of ¢,, to true peak times. In these plots, the differences between the true peak times t,, and approximations #,, are plotted across .
Blue line, orange line, and green line correspond to the peaks of the saddle point approximation of g, (t), the roots of the saddle point approximation of q:L (t), and the peaks of
the Taylor expansion approximation of q,, (), respectively. The python scipy.signal utility find_peaks is used to find the peak times numerically for the blue line. True peak
times (dashed lines) are found by numerical quadrature of the integral expression in Eq. (A.2), followed by using find_peaks. In all plots, p = 0. a) Nonzero coefficient

values a1 = —.3, ap = .1,and a; = 1.8. b) Nonzero coefficient values a1 = .2, ap = .2, and a; = .8. ¢)-d) Difference of peak differences d,, = t,, — t,,—1 with
approximations d,,. Note that the orange and green lines coincide. Dotted lines denote the precision ceiling due to the step size dt = 0.001. ¢) Nonzero coefficient values
a_1 = —.3,a0 = .1,and a; = 1.8. d) Nonzero coefficient values a_; = .2, ap = .2,and a; = .8.
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Fig. S3. Sequence dynamics over a large range of timescales. Peak differences d,, as a function of 1 and ¢,, over a wide range of parameter combinations. Throughout,
solid lines denote the full network simulations Eq. (1), dashed lines denote the mean-field simulations Eq. (9), dotted lines denote the linear approximate mean-field simulations
Eq. (10), and the dotted-dashed lines denote the approximation given by Eq. (14). In all plots, p = 0. a)—d) Two nonzero terms ao and a;. Color corresponds to coefficient
combinations (ao, a1). Additional parameters: N = 35, 000, P = 140. a), ¢) d,, as a function of pattern index ... b), d) d,, as a function of peak time t,,. a),b) Coefficient
values sumto 1.5: ap + a1 = 1.5. Corresponding legend is to the right of b. ¢),d) Coefficient values sum to .6: ap + a1 = .6. Corresponding legend is to the right of d. b)
inset shows the magnitude of the normalized integrated difference D between the mean field equation value of d,, (dashed lines) and the baseline approximate value of d,,
(dot-dash lines) as a function of the approximate value of d,,: D = |(d®P®)~! Z (ap™" field _ 4aPProxy | Note that each value of d®"P™™ corresponds to a color in b. This
measures the deviation of the mean-field tempo from the asymptotic tempo. d) description as in b but for different coefficient values. e)-f) Exponential kernel with parameters
71 = .25, m; = 2, 72 = 1, and ma = 2. Color denotes tutor signal interval T. Additional parameters: N = 100, 000, P = 80. e) d,, as a function of x. f) d,, as a
function of t,,. Inset as in b.
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Fig. S4. Magnitude of sequences over a large range of timescales. Peak magnitudes p,, as a function of 1 over a wide range of parameter combinations. Throughout,
solid lines denote the full network simulations Eq. (1), dashed lines denote the mean-field simulations Eq. (9), and dotted lines denote the linear approximate mean-field
simulations Eq. (10). In all plots, p = 0. a)—b) Color corresponds to coefficient combinations (ag, a1). Additional parameters: N = 35, 000, P = 140. a) Coefficient values
sumto 1.5: ap + a1 = 1.5. b) Coefficient values sum to .6: ap + a1 = .6. ¢) Exponential kernel with parameters 71 = .25, m1 = 2, 72 = 1, and mg = 2. Color denotes
tutor signal interval T¢. d) As in ¢, but with the kernel magnitude doubled to m; = m2 = 4. Additional parameters: N = 100, 000, P = 80.
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Fig. S5. Sequence dynamics over a large range of timescales for parameter values close to those measured in biology with double-sided exponential kernels.
a)-d) Peak differences d,, as a function of 1 and ¢, for parameter values close to those measured in biology with double-sided exponential kernels. Throughout, solid lines
denote the full network simulations Eq. (1), dashed lines denote the mean-field simulations Eq. (9), dotted lines denote the linear approximate mean-field simulations Eq. (10),
and the dotted-dashed lines denote the approximation given by Eq. (14). Color denotes the tutor signal interval T (legend to right of panel c). Here we take a timescale of
7 = 10 milliseconds (ms) in Eq. (1), and throughout time is measured in milliseconds (ms). In all plots, p = 0. a)-b) Parameters for double-sided exponential kernel, adjusted
from (3), are 71 = 16.8 ms, m1; = 1092, 7o = 16.8 ms, and mo = 3108. Note that the absolute values of m; and m» are somewhat arbitrary since scaling them has a
similar effect to multiple applications of the learning rule; their ratio is the more important factor, which we take to match that of (3). The large magnitude of m; and mo are
needed to maintain stability for small T, but can be decreased for larger T¢. a) Peak difference d,, as a function of pattern index p.. b) Peak difference d,, as a function of

peak time ¢,,. Inset is as defined in Fig. S3b. c)-d) Parameters for double-sided exponential kernel are adjusted so that the tutor signal is stored faithfully, :f:z ;Z; :1
1 2

This results in 71 = 4.8 ms, m; = 1638, 7o = 4.8 ms, and my = 4662. ¢) Peak difference d,, as a function of pattern index 1. d) Peak difference d,, as a function of peak
time ¢,,. Inset is as defined in Fig. S3b. e) Overlaps g, (t) for network with decay rates 71 and 7 taken directly from (3): 7, = 33.7 ms, m; = 1092, 72 = 16.8 ms, and
ms = 3108. Color denotes p from . = 2. f) lllustration of a double-sided exponential kernel, copied from Fig. 6a. Additional parameters: N = 100, 000, P = 40.

T =1
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Fig. S6. Sequence magnitude over a large range of timescales for parameter values close to those measured in biology with double-sided exponential kernels.
Peak magnitudes p,, as a function of 1 for parameter values close to those measured in biology with double-sided exponential kernels. Throughout, solid lines denote the full
network simulations Eq. (1), dashed lines denote the mean-field simulations Eq. (9), and dotted lines denote the linear approximate mean-field simulations Eq. (10). Color
denotes the tutor signal interval T¢. Here we take a timescale of 7 = 10 milliseconds (ms) in Eqg. (1). In all plots, p = 0. a) Parameters for double-sided exponential kernel,
adjusted from (3), are 71 = 16.8 ms, m1 = 1092, 7o = 16.8 ms, and m2 = 3108. Note that the absolute values of m and m2 are somewhat arbitrary since scaling them
has a similar effect to multiple applications of the learning rule; their ratio is the more important factor, which we take to match that of (3). The large magnitude of m and m»
are needed to maintain stability for small T, but can be decreased for larger T¢. b) Parameters for double-sided exponential kernel are adjusted so that the tutor signal is
stored faithfully, 7 = 1. Thisresults in 71 = 4.8 ms, m; = 1638, 7o = 4.8 ms, and ma = 4662. ¢) As in b, but with the kernel magnitude doubled to

maTg—miTy
myTZ+mar?
my = 3276 and mo = 9324. Additional parameters: N = 100, 000, P = 40.
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