
Bioprinting 36 (2023) e00321

Available online 31 October 2023
2405-8866/© 2023 Elsevier B.V. All rights reserved.

Cybersecurity and privacy in smart bioprinting 

Joan C. Isicheia,c, Sajad Khorsandroob,c, Salil Desaia,c,* 

a Department of Industrial and Systems Engineering, 1601 E Market Street, Greensboro, NC, 27401, USA 
b Department of Computer Science, North Carolina A&T State University, Greensboro, NC, 27411, USA 
c Center of Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, 1601 E Market Street, Greensboro, NC, 27401, USA   

A R T I C L E  I N F O   

Index Terms: 
3D printing 
Artificial intelligence 
Bioprinting 
Cybersecurity 
Digital twin (DT) 
Internet of things (IoT) 

A B S T R A C T   

Bioprinting  is  a  versatile  technology  gaining  rapid  adoption  in  healthcare  fields  such  as  tissue  engineering, 
regenerative medicine, drug delivery, and surgical planning. Although the current state of the technology is in its 
infancy,  it  is  envisioned  that  its  evolution  will  be  enabled  by  the  integration  of  the  following  technologies: 
Internet of Things (IoT), Cloud computing, Artificial Intelligence/Machine Learning (AI/ML), NextGen Networks, 
and Blockchain. The product of this integration will eventually be a smart bioprinting ecosystem. This paper 
presents the smart bioprinting ecosystem as a multilayered architecture and reviews the cyber security chal-
lenges, vulnerabilities, and threats in every layer. Furthermore, the paper presents privacy preservation solutions 
and provides a purview of the open research challenges in the smart bioprinting ecosystem.   

1. Introduction 

In  recent  times,  the  spotlight  has  been  cast  on  advances  in  bio-
printing technology. The primary advantage of bioprinting technology 
stems from its ability to overcome engineering challenges endemic to 
tissue engineering [1,2], regenerative medicine [3], drug delivery [4], 
and surgical planning [5]. Bioprinting can create complex tissue scaf-
folds [6,7], implants, patient-specific geometries and devices [8]. Bio-
printing entails the detailed layer-by-layer positioning of biocompatible 
materials, biochemicals, living cells, and other supporting elements in 
building complex 3D functional living tissues [9]. Attempts have been 
made using bioprinting technologies to construct tissues such as bone, 
skin, cartilage, and other complicated tissues such as vasculature and 
human-scale ear cartilage. Bioprinting includes the use of the following 
methodologies: “biomimicry, autonomous self-assembly and mini-tissue 
building  blocks” [2,10–13]for  the  construction  of  functional  living 
human-like organs. The following section delves into the leading bio-
printing  technologies,  the  primary  targeted  tissues,  and  this  field’s 
remarkable possibilities. 

1.1. An overview of bioprinting: technologies, challenges, and future 

Bioprinting  is  an  emerging  technology  that  has  the  potential  to 
revolutionize regenerative medicine, providing new ways to treat and 

repair damaged or diseased tissues and organs. It could also create new 
drug discovery and toxicology testing models. Bioprinting combines 3D 
printing concepts with biological materials in a complex process that 
involves the precise deposition of cells and biomaterials to construct 
structures  that  mimic  the  natural  functions  of  tissues  and  organs. 
Numerous medical challenges can be addressed by using this innovative 
approach, such as organ transplantation shortages, tissue repair, and 
personalized medicine. In bioprinting, the most common target tissues 
and organs include: 1) Bones and cartilage, 2) Heart, Kidney, and Liver 
Organs, 3) Vascular Tissues, and 4) Skin and Soft Tissues. Despite its 
growing popularity, bioprinting is still a relatively new technology, and 
it faces many challenges before widespread adoption. One major chal-
lenge  is  developing  bioprinters  that  print  tissues  and  organs  at  high 
speeds  and  precision.  Reproducing  the  incredibly  complex  micro-
architecture and functionality of these organs is an arduous task. Cell 
viability is another challenge: During and after printing, it is essential to 
ensure that cells remain viable and functional. Immunological compat-
ibility is another challenge: Transplanted bioprinted tissues or organs 
must  not  trigger  immune  responses.  Lastly,  navigating  regulatory 
pathways  and  developing  standardized  procedures  are  crucial  to  the 
mainstream adoption of bioprinting. Given the complexity of working 
with cells and biomaterials, bioprinting technology is still in its infancy. 
However, it is envisaged that with the advent of artificial intelligence/ 
machine  learning (AI/ML) algorithms, IoT  sensors, cloud computing, 
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next  generation  (NextGen)  networks,  and  blockchain  technology,  a 
smart bioprinting ecosystem or smart biomanufacturing system would 
emerge in the near future. It is also envisioned that this ecosystem would 
help solve the multiscale challenges of current bioprinting processes and 
applications. A brief overview of machine learning is presented in sec-
tion 1.2. 

1.1.1. Bioprinting Technologies 
There are  three  major bioprinting techniques available,  including 

extrusion-based, inkjet,  and  laser-assisted bioprinting. They  are 
described as follows. 

1.1.1.1. Extrusion based bioprinting.In extrusion-based bioprinting 
(EBB),  bioink  is  precisely  deposited  layer-by-layer,  ultimately  trans-
forming into complex tissue structures using a syringe-like mechanism 
[14]. The bioink materials used in EBB are primarily viscous hydrogels, 
with or without cells, that are extruded through nozzles, pneumatically 
or mechanically, onto substrates. Extrusion-based bioprinters are known 
for  their  ability  to  handle  high-viscosity  materials  and  incorporate 
multiple cell types, allowing for heterogeneous tissue constructs. The 
technique is essential for tissue engineering, regenerative medicine, and 
drug testing as it offers the potential to generate functional tissues and 
organoids similar to their natural counterparts. A wide range of bio-
printing applications can be addressed using this approach because of its 
versatility  and  adaptability. However,  precise  control  of printing  pa-
rameters,  cell  viability,  and  tissue  quality  is  essential  for  successful 
extrusion-based bioprinting applications. 

1.1.1.2. Inkjet bioprinting.Like traditional inkjet printing, the principle 
behind  3D  inkjet  bioprinting  involves  depositing  bioinks  (biological 
materials)  in  droplets  to  form  2D  or  3D  biological  structures  using 
piezoelectricity or a heating strategy. It is commonly used for printing 
tissues with complex vascular networks [7]. A critical component of 3D 
inkjet bioprinting is investigating how the combination of individual ink 
drops  occurs.  Since  the  dimension  of  printable  droplets  is  tiny,  bio-
printing  of  a  large  structure  like  an  organ  may  prove  challenging; 
however, since the droplet size is miniscule, printing designs of high 
quality will be achievable. Moreover, in-situ deposition of biochemical 
growth-factors  within  pre-extruded  biostructures  can  promote  differ-
entiation of specific cell lineages for complex tissue constructs. 

1.1.1.3. Laser-assisted  bioprinting.In  laser-assisted  bioprinting  (LAB), 
bioinks are deposited onto a substrate using laser energy. This method 
offers exceptional control and precision in the placement of cells and 
biomaterials. In laser-assisted bioprinting, a laser is focused on a ribbon 
containing the bioink material. When the laser strikes the material, the 
energy created by the laser beam creates a “cavitation” that propels a 
cell-containing droplet onto the receiving substrate [15].  LAB  is 
particularly effective for printing delicate cell types and creating com-
plex tissue structures with high resolution. Its ability to maintain cell 
viability and deposit biomaterials precisely makes it a suitable candidate 
for tissue engineering, regenerative medicine, and the development of 
organ-on-a-chip models for drug testing and disease research. 

1.2. Artificial Intelligence/Machine Learning 

Machine learning is one of the fastest-growing technical fields today. 
As a subset of artificial intelligence, it is a diverse approach focusing 
primarily on designing algorithms using training, validation, and test 
datasets that can make predictions, decisions, or actions without explicit 
programming.  Additionally,  a  cost  function  is  used  to determine  the 
effectiveness of the ML model by comparing predicted values to actual 
values.  Optimal  model  parameters  are  determined  by  finding  the 
minima of the cost functions using the optimization algorithms in the 
cost function. In optimizing bioprinting parameters, a set of prioritized 

criteria and constraints may be considered to achieve the best printing 
environment. ML algorithms can provide insight into the complexities of 
biological systems and enable the extraction of new biological knowl-
edge from complex bioprinting experimental data. It is expected that ML 
will bring the smart and intelligent bioprinting ecosystem much closer to 
reality. Based on the signals and feedback the ML algorithm receives, 
there are three standard machine learning methodologies: supervised 
ML, unsupervised ML, and reinforcement ML [15]. The following par-
agraphs provide a  detailed description of  each machine-learning 
method. 

1.2.1. Supervised machine learning 
Supervised learning involves training the algorithm using a labeled 

dataset consisting of input features and their associated target values. In 
order for the algorithm to make accurate predictions based on new data, 
it must learn a mapping between inputs and outputs. The parameters for 
bioprinting can be optimized through supervised learning. Researchers 
can create labeled datasets incorporating various bioprinting parame-
ters (e.g., nozzle size, printing speed, temperature, pressure) and cor-
responding  outcomes  (e.g.,  tissue  quality,  cell  viability,  structural 
integrity). The use of these data to train ML models can help predict 
optimal printing parameters and reduce the number of trials and errors 
associated with achieving desired tissue properties. The most commonly 
used supervised ML  algorithms include linear regression, logistic 
regression, decision trees, support vector machines, and  neural 
networks. 

1.2.2. Unsupervised machine learning 
In unsupervised learning, target labels are not explicitly defined for 

the  dataset.  Instead,  the algorithm finds  patterns,  structures, and  re-
lationships in the data. In particular, it automatically learns, and extracts 
features from input data and divides them into clusters. It is the best 
approach for identifying hidden patterns or relationships within data. In 
bioprinting, unsupervised learning can  group similar data points 
together, helping researchers identify meaningful patterns and subtypes 
within their datasets. For instance, it can distinguish between healthy 
and diseased tissues or classify tissues according to their developmental 
stage. Unsupervised learning techniques include 1) clustering methods 
(e.g., K-Means, hierarchical clustering) that group similar data points 
together and 2) dimensionality reduction methods (e.g., PCA, t-SNE) 
that simplify complex data. 

1.2.3. Reinforcement learning 
A reinforcement learning approach involves teaching agents how to 

interact  with  an environment  in  order to  maximize  their  cumulative 
rewards by learning the optimal actions to take. In bioprinting, tissues 
are built up layer-by-layer. The RL algorithm can optimize various pa-
rameters for each layer, such as bioink type, printing speed, tempera-
ture, and pressure. These parameters can be adjusted by RL agents based 
on feedback to improve tissue quality. Q-Learning, Deep Q-Networks 
(DQN), and policy gradient methods are some of the most common RL 
algorithms. 

1.3. Application of AI/ML in bioprinting 

The application of artificial intelligence to bioprinting is increasingly 
becoming more common as a way to enhance its capabilities and address 
complex challenges. Ruberu et al. [16], investigated the feasibility of 
using machine learning to optimize the printability of extrusion printing 
of GelMA and GelMA/HAMA bioinks to achieve a reproducible 3D print 
with good shape fidelity. Bayesian optimization, an efficient optimiza-
tion algorithm, was employed to find the optimal printing parameters 
while  minimizing  the  number  of  experiments  required.  The  study 
considered various bioink concentrations and printer settings as input 
parameters for  the  optimization process. The  “black-box” model 
generated  recommendations  for  the  experimenter  based  on  visual 
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assessments of filament morphology and pore architecture in the 3D 
scaffolds. Optimization continued until an optimal total score was ach-
ieved,  streamlining  the  traditionally tedious  and  time-consuming  tri-
al-and-error approach. This research highlights the effectiveness of AI in 
enhancing the extrusion printability of GelMA and GelMA/HAMA bio-
inks. Bonatti, Chua, and De Maria [17] proposed an AI-based quality 
control loop that automatically optimizes printing parameters for spe-
cific materials and printing setups while providing real-time monitoring 
with  rapid  response  times.  They  generated  an  extensive  dataset  that 
incorporated videos of bioprinting processes, including parameters such 
as layer height, extrusion material, infill density, and extrusion system. 
Pluronic  F-127  bioink  was  used  as  the  primary  material,  and  other 
materials were simulated by adding color to the Pluronic solution. In 
order  to  facilitate  quick  feedback  during  bioprinting,  they  trained  a 
convolutional neural network architecture on the dataset to create a 
robust  model  that  enables  rapid  and  accurate  classification  of  video 
frames. The AI model demonstrated excellent classification performance 
and stability, making it a viable candidate for feedback loop integration. 
Furthermore, the AI system’s rapid response allowed it to monitor suc-
cessive prints and adjust certain parameters incrementally to resolve 
potential issues, like varying material properties over time. With this 
AI-based quality control and optimization approach, bioprinting can be 
implemented more efficiently, with reduced resource consumption, and 
enhanced quality assurance. 

The adoption of artificial intelligence (AI) in bioprinting has also 
been  used to  address the  challenge  of  understanding  and optimizing 
hydrogel ink formulations for 3D printing. Hydrogel-based inks, often 
incorporating rheology additives, have gained popularity for enabling 
the 3D printing of biologically relevant materials that were previously 
non-printable. However, the diversity of these formulations has made it 
difficult  to  establish a  generalized understanding of  printability. 
Nadernezhad  and Groll [18] employed an interpretable 
machine-learning  approach  to  shed  light  on  the  printability  process, 
focusing on bulk rheological indices. This approach was objective and 
avoided bias toward specific formulation components or rheology ad-
ditives.  Drawing  from a  vast database of  rheological  data  and print-
ability  scores  for  180  unique  formulations,  the  study  identified  13 
critical rheological measures that describe the printability of hydrogel 
formulations. It  was then demonstrated with  advanced statistical 
methods  that  the  collaborative  nature  of  these  rheological  measures 
provides a  qualitative and  physically interpretable guideline for 
designing  new  printable  materials,  even  though  establishing  unique 
global criteria for predicting printability might be challenging. Their 
study reveals how AI can offer valuable insights into developing novel, 
printable materials by deciphering the complex relationship between 
rheology and printability in hydrogel-based bioprinting. Another study 
by Huang, Ng, and Yeong [15] examines how AI can be integrated into 
inkjet-based bioprinting processes to predict and control the number of 
printed cells within  ejected droplets. Two  key applications were 
addressed: firstly, the detection of cell presence or absence in individual 
droplets, and secondly, the prediction of the total number of cells in 
multiple droplets. The study employed five machine learning algorithms 
to evaluate the performance of each model. The first method proved 
effective for droplets with low cell occupancy but less accurate for those 
with high cell occupancy. The second method significantly improved 
cell count prediction accuracy by analyzing the cell count in multiple 
droplets rather than individual ones, reducing the error in cell count 
prediction.  In  addition,  the  study  showed  that  bio-ink  without  cells 
should  not  be  included  as  input  for  machine  learning  models,  as  it 
negatively affects model accuracy and overall performance. Overall, this 
research demonstrated the ability of AI to monitor and control localized 
cell concentrations within bioprinted droplets, paving the way for pre-
cise and dynamic cell placement in bioprinted structures. 

1.4. The smart bioprinting ecosystem 

Presently, Industry 4.0 is revolutionizing advanced manufacturing 
[16–18] including  the  biotech/biomanufacturing industry  [19]. 
Another aspect to consider with this is big data. Data is currently the new 
‘gold’  –  it  is  the  foundation  and  engine  of  every  decision  and  the 
knowledge derived from data has helped transform the lives of people 
around the world. As bioprinting evolves, and with the emergence of the 
bioprinting  ecosystem,  copious  data  will  be  generated  from  the  bio-
manufacturing process. These may include sensor data, patient records, 
scaffold designs, medical images, biomaterials, input, and output pro-
cess parameters [5,14,20–22]. This data will be collected, stored, and 
processed via the use of cloud computing services. The data will ulti-
mately be employed in developing (AI/ML) models for automation and 
real-time monitoring of the bioprinting processes [5]. Real time moni-
toring  will  also  entail  the  use  of  NextGen  networks  such  as  5G.  Ac-
cording to Sanicola et al. [5], in order to achieve the full potential of a 
smart bioprinting ecosystem, a cyber-physical system (CPS) architecture 
that  integrates  the  physical  laboratory  components  (e.g.  bioprinters, 
sensors,  computers,  and  interconnecting  devices)  with  the  software 
components  (e.g.  machine  learning  algorithms  and  data)  should  be 
established. The smart bioprinting ecosystem with its multilayered ar-
chitecture is shown in Fig. 1. 

Despite the advanced nature of the smart bioprinting ecosystem, a 
crucial challenge that must be overcome is security. “The medical in-
dustry is ranked among the top 10 most-regulated industries because of 
its high volume of data and rapidly shifting requirements. Additionally, 
medical manufacturing is a $156B market and is one of the top five 
most-targeted  industries  for  cyber-attacks  [23].”  With  the  growth  of 
industrialization in the healthcare and medical industry, the potential of 
attacks  on  bioprinting  infrastructure  to  inflict  damage  is  a  foremost 
concern.  Consider,  for  example,  a  case  whereby  an  attacker  injects 
spurious data into software (e.g., ANNs) used in monitoring the printing 
process or another case in which medical images used in the printing 
process are manipulated which in turn leads to printing of suboptimal or 
non-functional bioprinter parts [24]. Therefore, it is important to safe-
guard smart bioprinting systems against such adversarial cyber-attacks. 

The research on cybersecurity for a smart bioprinting ecosystem is in 
its early stages, therefore the primary objective of this paper is to pro-
vide a broad and encompassing view of cybersecurity research in the 
smart bioprinting ecosystem. As illustrated in Fig. 2, the key contribu-
tions of this paper are: 1) it extensively reviews and analyzes potential 
cyber  security  threats,  vulnerabilities,  and  attacks  based  on  the  four 
facets of the smart bioprinting ecosystem: (AI/ML, Cloud Computing, 
NextGen Networks and Blockchain technology). 2) it presents privacy 
preservation solutions in the smart bioprinting ecosystem. 3) it provides 
a  purview  of  the  open  research  challenges  in  a  smart  bioprinting 
ecosystem. The remainder of the paper is as follows: Section 2 and 3, 
discusses  different  internal  and  external  AI/ML  threats,  respectively. 
Sections  4,  5,  and  6  examine  attacks,  threats,  and  vulnerabilities  in 
Cloud  Computing,  NextGen  Network,  and  Blockchain  layers,  respec-
tively. Section 7 expounds on privacy preservation solutions. Section 8 
highlights Compliance, Regulations, and Standards. Section 9 features 
open research challenges and potential techniques that can be applied to 
resolving these challenges. Finally, Section 10 concludes this research 
paper. 

2. INTERNAL AL/ML THREATS 

AI algorithms rely on multiple datasets to produce a model with a 
given  set  of  outputs.  In  light  of  this,  pertinent  safety  concerns  exist 
within  the  domain  of  AI.  These  security  issues  are  reviewed  in  this 
section. Also, (see Table 1) for a summary of AI/ML threats in the smart 
bioprinting ecosystem. 
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2.1. AI bias 

Algorithm bias arises from AI algorithms that produce outcomes with 
anomalies due to prejudices present in the training data or prejudiced 
assumptions held by the model’s human designer [25]. According to 
Refs. [26,27], AI bias mainly originates from insufficient training data, 
the algorithm itself, and the designer (cognitive bias). Cognitive bias 
stems from a systematic and unconscious error in thinking, which affects 
an  individual’s  judgment,  information  interpretation,  and  decision 
making. Cognitive bias may inadvertently be introduced in the AI al-
gorithm by the model’s human designer or via a poorly curated dataset 
that contains such biases. The second reason for bias is inherent in the 

algorithm, specifically, the bias introduced by the algorithm itself. This 
could be a consequence of the algorithms’ “design choices, such as the 
use of  certain optimization functions, regularizations, choices in 
applying regression models on the data as a whole or considering sub-
groups, and the general use of statistically biased estimators in algo-
rithms” [27].  The  third  reason  for  AI  bias  occurs  is  because  of 
insufficient training data. Training data may not be representative of the 
entire population and thus may include bias. 

2.1.1. AI bias in bioprinting 
AI bias can seep into the bioprinting process if the training dataset 

contains  biased  or  incorrectly  labeled  attributes.  For  example,  the 

Fig. 1. Multilayered bioprinting ecosystem.  

Fig. 2. A taxonomy of cybersecurity in a bioprinting ecosystem.  
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objective of the bioprinting digital twin (a replica of the bioprinting 
system which comprises two elements: a physical and virtual segment 
[28,29])  is  to  classify  and  predict  defective  tissue  constructs  and  to 
optimize input process parameters such as print temperature, feed rate, 
printing distance, extrusion pressure, and printing speed.  Fig. 3 illus-
trates a digital twin system. Erroneous labels or instances will result in 
an incorrect model output. Thus, a tissue construct that possesses defects 
may be classified as defect-free, resulting in a detrimental effect when 
the  tissue  is  transplanted  into  a  human  subject.  Another  scenario  in 
which AI bias may be introduced in a bioprinting dataset is as follows: a 
bioprinting ecosystem is developed to assist with creating new skin for 
burn victims. If the training set containing information about a patient’s 
wound is only fed with information not representative of a population, 
or for example, data from darker skinned patients is underrepresented. 
The AI algorithm will be biased towards lighter-skinned patients and 
will  be  unable  to  print  new  skin  tissue  that  matches  a  dark-skinned 
patient’s skin tone. 

One  way  to  adjust  for  cognitive  bias  is  to  apply  the  label  bias 
correction  method  in  Ref.  [30].  This  method  assumes  that  a  biased 
process has altered an unbiased and unspecified label function to create 
the labels in the training data. Thus, it corrects for bias by altering the 
sample point  distribution through re-weighting adjustments. This 

method produced an unbiased classifier irrespective of having biased 
labels as input. Another countermeasure for AI Bias is false data rejec-
tion. Researchers at the Max Planck Institute [31] conducted research 
bias correction via the introduction of false training data into the algo-
rithm. Their methodology entailed the generation of false training data 
elicited from the rate of contrasting treatment. This was defined as the 
variance  in  the  misclassification  rate  between  different  groups  –  the 
higher the misclassification rate, the more false data generated for that 
group. The false data aided the improvement of the model’s accuracy 
and thus proved its effectiveness in combating the problem of biased 
training data due to discrimination. Finally, the training dataset should 
be  thoroughly  examined  to  ascertain  if  it  is  representative  and  sub-
stantial enough to inhibit common biases such as sampling bias. For 
example, subpopulation analysis may be conducted, which encompasses 
calculating model metrics for particular groups in the dataset [32]. This 
ensures model performance remains the same within subpopulations. 
The National Institute of Standards and Technology (NIST) has provided 
a standard for identifying and managing bias in AI [33]. 

2.2. Dataset shift 

A dataset or distributional shift develops when there is a mismatch 

Table 1 
Summary of AI/ML threats in bioprinting.  

Threats Effects Countermeasure 

Internal 
Threats. 

AI Bias [25–33] Poses threats such as false positive rates, inconsistencies or high 
misclassification rate. For instance, a tissue construct which possesses defects 
may be classified as defect-free resulting in a detrimental effect when the tissue 
is transplanted into a human subject. 

Label Bias Correction, False data injection, Dataset 
Evaluation 

Dataset Shift 
[34–39] 

Poor bioprinting model performance when the AI algorithm/model processes 
data retrieved from unseen distributions, Reduces the robustness of the 
bioprinting AI model. 

Importance Weighting, Uncertainty Estimation, 
Generalizing to Unseen Domains via Adversarial Data 
Augmentation 

Reward Hacking 
[45–49] 

Gaming of the bioprinting model’s objective function. The agent can game the 
system by only detecting/recognizing certain types of defects and ignoring the 
rest in order to accumulate a high reward output. 

Shielding, Online User Feedback 

External 
Threats 

Black & White Box 
Attacks [47–56] 

It can result in deletion of certain feature types such as blood vessels from CT 
scan images which can be critical to survival of the entire tissue construct. 

Black Box: Training Model with private datasets and high 
input dimensionality, Utilization of Self-developed deep 
learning models. 
White Box: Adversarial Training, Randomized Smoothing. 

Evasion Attacks 
[57–60] 

High image misclassification rate which can affect the viability and health of 
the cells within the printed tissue construct, potentially leading to issues post- 
implantation. 

Adversarial Feature Selection, Region Based Classification. 

Poisoning [61–67] Increases bioprinting model’s performance error. Label Flipping correction, Forensic traceback, Reject on 
Negative Impact (RONI).  

Fig. 3. Bioprinting digital twin system.  
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between the joint distribution of inputs and outputs between training 
and test stages [34]. It occurs primarily within the machine learning 
domains of supervised learning. According to Ref. [35], other reasons 
behind dataset shift vary from the bias present in experimental design to 
the irreproducibility of the testing conditions at training time. It also 
stems from the fact that the data fed into a machine-learning model is 
mainly characterized using samples from a minimal number of distri-
butions. The shift can also occur when input data is defined by changing 
demographics [36]. Therefore, the risk of the model performing poorly 
when it processes data retrieved from unseen distributions increases. 
Dataset shift is a common problem in AI or machine learning models 
[35].  The  machine  learning  model’s  susceptibility  to  a  dataset  or 
distributional shift impacts its robustness and  may  result  in 
less-than-ideal outcomes or situations. It can also produce methodical 
errors that cannot be corrected by obtaining larger datasets and neces-
sitates  specialized  methodological  care.  Krueger  and  Moreno-Torres 
[37,38] mention two types of distributional shift in their papers: Co-
variate  and Concept  shift.  A  covariate  shift  is  a  change  in  the  input 
variables (x). In other words, a change in the distribution of inputs over 
time, while the conditional probability P(y|x) remains unchanged. In 
contrast, a Concept shift is a change in the relationship between the 
input  and  class  variables.  Specifically,  a  change  in  the  conditional 
probability P(y|x). Two examples of dataset shift are discussed in the 
following sections. 

2.2.1. Dataset shift in bioprinting 
Dataset  shift  may  be  introduced  in  a  bioprinting  dataset.  For 

instance, assuming the use case of the bioprinting AI model is to provide 
a real-time defect detection and monitoring system using historical data 
from the previous five years. The model in question may have been built 
using bio-ink  materials such as  Alginate or  Pluronic  hydrogels. 
Supposing the same model is used for defect detection in a situation 
whereby there has been a change in material composition applied, the 
model may give a poor performance due to this difference. In medical 
diagnostics, consider the following real-life example: the case of an ML 
classifier algorithm built to detect a disease that mostly affected older 
men. The company in charge of building the ML model was tasked with 
developing  a  blood  test  to  be  used  in  curing  the  disease.  Blood  test 
sample data were collected from sick patients within the system and the 
samples of young healthy men were gathered from students on a uni-
versity campus. The data collected was used to train the algorithm. It 
was easy for the ML algorithm to differentiate between healthy and sick 
people with near-perfect accuracy. However, this would be implausible 
with real patients because the test subjects differ in age, hormone levels, 
physical activity, diet, alcohol consumption, and many more factors that 
were unrelated to the disease. Therefore, a covariate shift would occur 
because of the sampling procedure. 

2.2.2. Dataset shift mitigation 
Importance weighting is a technique that has been applied in miti-

gating  dataset  shift.  It  entails  reweighting  observations  according  to 
their  “importance  weights,"—  which  is  defined  as  the  ratio  of  their 
likelihood in target data over input data [34]. Specifically, observations 
or labels more likely to be present in the target than input data are given 
higher weights. Dockes, Varoquaux, and Poline [34] refer to another 
related  approach in their work known  as “importance sam-
pling"—resampling  the  training  data  according  to  the  importance 
weights. Another technique involves creating models that perform well 
on unseen data distributions via adversarial data augmentation. Volpi 
and Murino [39] offer a worst-case formulation for data distributions 
close to or similar to the work input variables. They use training data 
from a single input distribution to run an iterative process that amplifies 
the dataset with examples from a fictitious target domain that is “hard” 
under the current model. Their iterative procedure is an adaptive data 
augmentation method wherein adversarial examples are introduced at 
each iteration. 

2.3. Reward hacking 

Generally, reinforcement learning (RL) uses conventional rewards or 
objective functions to represent the designer’s informal intent. Every so 
often,  the  application  of  these  objectives  is  completed  such  that  the 
solutions achieved are acceptable in some literal sense but do not attain 
the designer’s objective [40]. In more specific terms, reward hacking 
occurs  in  the  RL  domain,  wherein  an  intelligent  agent  attempts  to 
manipulate its reward function and locate a strategy that completes a 
task with very high returns but does so without achieving the designer’s 
intended goal [41]. 

2.3.1. Reward hacking in bioprinting 
The reward hacking problem can be extended to the area of bio-

printing,  especially  with  the  application  of  AI  models  such  as  rein-
forcement learning. Bioprinting process parameters include print 
temperature, feed rate, printing distance, extrusion pressure, and 
printing  speed.  These  process  parameters,  along  with  data  extracted 
from cameras, thermal,  and acoustic sensors, can be used to build a 
digital twin of the bioprinting process. Consider the following hypo-
thetical case whereby the objective of a bioprinting digital twin agent is 
to create a tissue construct without defects in any layer, i.e., to attain a 
high-quality print that approximates the intended design and guarantees 
robust functionality. The agent learns to identify defects or other items 
of interest from structured data. If the agent prints a defect-free layer, a 
reward is granted, and if any defect is present in a particular layer, a 
penalty is applied. Given that there are several types of defects (filament 
collapse, broken lines, etc.) that may occur during the printing process, 
the agent can game the system by only detecting/recognizing certain 
types of defects and ignoring the rest in order to accumulate a high 
reward output. A mitigation strategy in bioprinting would be to ensure 
that all process parameters and their expected outcomes are measured 
and, thus, all possible validation measures applied to construct a bio 
scaffold structure. 

2.3.2. Reward hacking mitigation 
Strategies that have been applied in mitigating the reward hacking 

problem  include  online  user  feedback  and  shielding.  In  the  former 
strategy, a user (human) is introduced in the training loop to provide 
online  feedback  to  the  agent  [42,43].  The  user  gives  uninterrupted 
feedback to the system in order to update the reward function. To be 
more  specific,  each  time  the  agent  discovers  a  strategy  with  a  high 
reward  but  negative  impact  or  low  user  function,  the  user  provides 
feedback to discourage the agent from its current behavior. Shielding 
involves the application of a shield to RL such that it ensures the mini-
mum interference and correctness of the system [44]. In other words, the 
shield evaluates the actions of the learning agent and provides correc-
tion only in a case where the learning agent’s action is deemed unsafe. 
Alshiekh et al. [44] applied shielded RL in four main areas: (1) a robot in 
a grid world, (2) a self-driving car scenario, (3) a water tank scenario, 
and (4) a Pacman game example. For instance, using a self-driving car 
scenario, the aim is for the agent to discover how to drive around a block 
in a clockwise direction in an environment with the size of 480 × 480 
pixels. The safety specification of this self-driving car system is to pre-
vent wall collisions. The car was equipped with 8, uniformly attached 
sensors such that a trigger warning was activated each time the agent 
was less than 60 pixels away from a wall. A positive reward is assigned 
for each correct step in a clockwise direction, and a penalty is exacted for 
each step in a counterclockwise direction. If a wall collision occurs, a 
penalty is given, and a system restart occurs. The result demonstrated 
that although the accrued rewards of the unshielded RL increased over 
time, wall collisions still occurred. The shielded version of the RL agent 
exhibited rapid learning and experienced no collisions. 
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3. External AL/ML threats 

The spotlight is currently on adopting artificial intelligence (AI) and 
machine learning (ML) models in various application areas. These Ma-
chine  learning  (ML)  models  are  susceptible  to  adversarial  attacks. 
Several  studies  have  shown  that  these  AI  models  can  be  altered  at 
random  with  subtle  and  unnoticeable  changes  to  their  inputs.  These 
attack types are mainly of two classes: White and Black Box attacks [45, 
46]. 

3.1. Black box attacks 

A black box attack assumes the attacker has no knowledge of the AI 
model’s network or architecture. In some cases, it only permits querying 
the network output [47]. For instance, the black box attack in Ref. [48] 
“has no knowledge of the architectural choices made to design the deep 
neural network (DNN) which includes the number, type, and size of 
layers, nor of the training data used to learn the DNN’s parameters”. 
Fig. 4 represents a Visual illustration of black-box untargeted attacks. 
The columns from left to right are original images with correct labels, 
additive  adversarial  noises  from  our  attack  (gray  color  means  no 
modification) and crafted adversarial images with misclassified labels. 
Image courtesy of Chen et al. [49]. 

3.1.1. Black box attacks in bioprinting 
This is the most prominent example of black box attacks. In Ref. [50], 

the black-box attack assumes the adversary is able to gain access to their 
image  classifier.  The  attack  is  a  straightforward  but  very  efficient 
strategy that manipulates the continuous-value confidence score pre-
dictions of the classifier. The attack process is based on the premise that 
“natural  images  tend  to  be  close  to  decision  boundaries  learned  by 
machine  learning  classifiers”.  Therefore,  a  small  decision  boundary 
translates to a small and compact search space, and this limits the di-
rection required for perturbation. A random direction can be selected 
from a pre-specified set of orthogonal search directions. The confidence 
scores are evaluated against this set of directions to verify their position 
with respect to the decision boundary. Next, the image is perturbed via 
addition and subtraction of the vector from the image. The process is 
repeated such that each update causes the image to deviate from the 
original image and in the direction of the decision boundary. 

Consider a black box attack on the bioprinting AI algorithm that is 
query-based, and one in which the attacker has no knowledge of its 
internal structure. The black-box attack can consist of modifying the 
class of foreground pixels of the images retrieved from the bioprinting 
process such that there is no effect on the background. Therefore, even 
though the modification is subtle, it is disruptive enough to trigger the AI 

model  into  misclassifying  images.  An  example  of  this  attack  type  is 
demonstrated  in  Ref.  [51]. In another  bioprinting example,  typically 
MRI or CT scan images are used to build a 3D model of the intended 
biostructure to be printed (e.g., skin tissue or ear cartilage, etc.). These 
images are then translated to a 3D modeling software to build intricate 
features such as the extracellular matrix, vasculature (blood vessels), 
etc. Layer-by-layer using the bioprinter. A black box attack on these 
image stacks can result in the deletion of certain feature types such as 
blood vessels which can be critical to the survival of the entire tissue 
construct. Black box attacks may be hard to discern as the manipulation 
of certain printed layers may not be identified after the completion of the 
3D-printed tissue construct. This type of attack can be debilitating for 
the patient after implantation due to the lack of functionality of the 
tissue construct. 

3.1.2. Countermeasures/mitigation 
Utilization  of  self-developed  deep  learning  models  is  one  way  of 

mitigating black box attacks. Avoiding the use of open-source models as 
suggested in Ref. [52] can diminish the likelihood of attacks. This is 
because, for a self-developed deep learning model, it is difficult to train 
qualified student models to imitate the teacher model according to the 
manner in which the black box attack in their study was performed. 
Therefore, the absence of a qualified student reduces the attack’s success 
rate. A second option that may be considered in mitigating black box 
attacks  is  to  train  the  model  with  private  datasets  and  high  input 
dimensionality. The AI model should be trained using a private rather 
than a public dataset in order to decrease the chances of an attack. If the 
AI model within the app is trained on a public dataset, the attacker may 
discover the same dataset without difficulty. The cost of an attack may 
be increased by training models with higher input dimensionality or 
modeling complexity. In Ref. [48], this suggestion was performed, and 
the results showed that there was a growth in the number of queries 
needed to train the local substitute model used in their attack strategy. 

3.2. White box attacks 

On the other hand, in a white box attack, the attacker may possess 
various levels of knowledge about the target model. Knowledge may 
include  the  model’s  parameters,  defense  mechanisms,  gradients,  and 
loss functions. White box attacks differ across models and the applica-
tion domain. According to Ref. [50], their study poses the argument that 
in various real-world settings, white-box assumptions are improbable. 
Their study presented an example whereby the model could be visible to 
the public as an API and as such, could only permit queries on inputs. 

Fig. 4. Visual illustration of black-box untargeted attacks. Source [49].  
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3.2.1. White box attacks in bioprinting 
Assuming a white box attack threat in which the attacker has some 

knowledge about the AI model such as its input parameters and gradient 
function, the attacker can manipulate images retrieved from the bio-
printing process and cause the AI classifier to classify images that are 
otherwise free from defects to be classified as defects. This can lead to 
enormous waste and a colossal increase in process costs. Alternatively, 
images  that  are  without  defects  can  be  classified  as  defect-free  thus 
subverting  the  end-use  utility  of  the  tissue  construct.  In  bioprinting, 
maintaining the viability and health of the cells within the printed tissue 
construct  is  paramount.  Structural  health  monitoring  can  be  used  to 
evaluate the viability and metabolic activity of the cells during and after 
printing.  It can also be  used to uncover any complications that may 
compromise cell health and provide real-time feedback to the bioprinter, 
allowing for adaptive printing strategies. For instance, if a structural 
weakness or cell viability issue is detected during printing, the system 
can vary parameters such as printing speed, temperature, or material 
composition to address the problem. In their study, Champneys et al., 
demonstrate white-box attacks on  a  data-driven structural health 
monitoring (SHM) model [53]. The attack consists of two phases: the 
listening (first) phase and the training (second) phase. In the listening 
phase, the adversarial transformation network is trained to replicate the 
inputs, thus generating an inner core model which is then optimized to 
produce adversarial samples. In the second phase, the network adjusts 
its internal parameters – weights and biases – so that it maps true inputs 
to  adversarial  examples.  Their  attack  success  rate  was  measured  by 
taking the test set of adversarial examples not used during adversarial 
training and passing them through the perturbing network for classifi-
cation. The confusion matrix results showed a 99.58 % false-negative 
classification rate and a 100 % false-positive classification rate. 

3.2.2. White box attack mitigation 
Adversarial Training and Randomized Discretization is one of the 

tactics used for mitigating box attacks. It involves constant training of 
the AI model using adversarial examples. It is one of the few strong 
defenses against white box attacks. Adversarial-trained AI models have 
the best low attack success rate when trained with adversarial examples. 
Specifically,  according  to  Lee  [54],  attaining  a  “high  accuracy  on 
adversarial examples, not only on clean input samples, has become an 
important  factor  in  designing  machine  learning  systems.”  However, 
adversarial training for white box attacks has mostly been successful in 
defending against adversarial attacks on small images [55]. For larger 
images, Zhang and Liang developed a randomized discretization strat-
egy  that injects Gaussian noise into individual pixels  and substitutes 
each  pixel  with  the  nearest  cluster  center.  Next,  it  loads  the  altered 
image into any pre-trained classifier. Another tactic for mitigating white 
box attacks is randomized smoothing. Randomized smoothing injects 
large-scale Gaussian noise into each pixel thereby preventing the like-
lihood  of any small perturbation altering  the classifier  output. Noise 
should be calibrated to maintain both accuracy and robustness against 
adversarial  attacks  [56].  In  other  words,  the  noise  should  be  large 
enough to preserve robustness and small enough to preserve accuracy. 
This  is  because  of  a  decline  in  accuracy  due  to an  increase  in  noise 
intensity. 

3.3. Evasion attacks 

AI  systems  can  be  externally  compromised  through  sophisticated 
malware attacks such as ransomware and botnets. The delivery of the 
commands, payloads, and other components of these types of attacks 
must be performed in a clandestine, stealthy, and evasive manner in 
order  to  avoid  the  malware  being  detected.  These  give  rise  to  their 
name–evasion attacks. Evasion attacks are the most prevalent kind of 
attacks often deployed against AI systems [57]. Evasion attacks involve 
controlling input data such that it fools a trained classifier at test time. 
These include feeding the AI algorithm an adversarial example for the 

manipulation of images to distort object recognition or the manipulation 
of  malware  code  to  have  the  corresponding  sample  misclassified  as 
legitimate” [58]. Unlike their counterpart – poisoning attacks, evasion 
attacks have no influence on training data. 

3.3.1. Evasion attacks in bioprinting 
Using the same digital twin example from before, there are sensors 

and cameras mounted on the bioprinting system. Images captured from 
a mounted camera in the bioprinter are fed into an AI model for clas-
sification purposes. These images can be altered through the injection of 
tiny and unnoticeable perturbations. These adversarial samples can then 
fool  the  AI  classifier  such  that  the  infected  image  is  classified  as  a 
genuine image. This can result in the creation of subpar or sub-quality 
constructs  by  the  bioprinter.  Evasion  attacks  could  also  affect  the 
viability  and  health  of  the  cells  within  the  printed  tissue  construct, 
potentially leading to issues post-implantation. 

3.3.2. Evasion attack mitigation 
Zhang et al. [59], proposed an adversarial feature selection method 

that enhances the generalization capability of a wrapped classifier, and 
also, provides defense against evasion attacks at test time. The funda-
mental idea is to select a feature subset that maximizes the generaliza-
tion capability of the classifier. This mitigation method was applied to 
the detection of malware in PDF files and Spam Filters and its perfor-
mance surpassed that of traditional approaches with regard to classifier 
security.  Another  mitigation  for  evasion  attacks  involves  the  use  of 
region-based classification. This procedure works based on the premise 
“that adversarial examples are close to the classification boundary.” In 
their study, Cao and Gong [60] develop new deep neural networks that 
could  vigorously withstand state-of-the-art evasion attacks using 
region-based classification. 

3.4. Training/poisoning attacks 

Poisoning attacks are an external security threat which affects Arti-
ficial Intelligence systems. A poisoning attack is one in which a malev-
olent external agent attempts to manipulate training data or network 
weights such that it gains influence over the system [61]. Thus, it is 
denoted as a training-only attack. AI models rely on training data to 
make accurate predictions, and data poisoning renders these predictions 
inaccurate. A recent study [62] discovered that 28 organizations iden-
tified data poisoning as the foremost threat vector to the security of their 
AI systems. Therefore, this type of attack poses a serious threat to AI 
systems, most especially deep learning models – these models employ 
big  training  datasets  that  are  scoured  from  the  internet.  However, 
poisoning attacks are not only endemic to neural or deep learning net-
works, but they can also be observed in regular traditional models such 
as Naïve bayes [63]. Case in point, a study performed by Biggio, Nelson 
and Laskov [64] demonstrated that support vector machines (SVM) are 
susceptible  to  poisoning  attacks.  These  attacks  increased  the  SVM’s 
performance error. In addition, Nelson et al. [65], revealed that spam 
filtering algorithms which utilize Naïve Bayes classifiers are vulnerable 
to poisoning attacks. 

3.4.1. Training/poisoning attacks in bioprinting 
Poisoning attacks can target the training data extracted from a 3D 

bioprinter. The infected dataset can be used to fabricate defective or 
dangerous tissue constructs. This malicious data could also be used to 
change the properties of the tissue construct, making it unsafe or inef-
fective. For example, the attacker might introduce subtly altered bio-
printing  parameters or inject  erroneous material properties or 
environmental conditions into the training dataset, creating inaccurate 
models  that  produce  suboptimal  bioprinted  constructs  with  compro-
mised structural integrity or reduced cellular viability. These attacks 
could potentially undermine the reliability and effectiveness of a ma-
chine learning-driven bioprinting ecosystem. 
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3.4.2. Training/poisoning attack mitigation 
Label-flipping correction is a method used to assuage the effect of 

label-flippin  attacks. Paudice et  al.,  developed an  algorithm  that 
employed K-Nearest Neighbors (KNN) to relabel points suspected to be 
malevolent  [66].  The  objective  of  the  mitigating  algorithm  was  to 
implement label consistency between instances that were similar, most 
especially  in  regions  that  were  distant  from  the  decision  boundary. 
Therefore, k-NN allocated the label to each instance in the training set. 

A second method for mitigating poison attacks on deep neural net-
works was implemented by Shan et al. [67]. The tool developed in their 
work utilizes an iterative clustering and trimming solution that prunes 
benign training samples, such that the remnants are the set of poisoned 
data culpable for the attack. Their algorithm works as follows: in each 
step, training samples are grouped into clusters based on their influence 
and  effect  on  model  parameters.  Next,  it  detects  benign  clusters  by 
applying  an  efficient  data  unlearning  algorithm  (a  proposed  binary 
measure of event responsibility). The identified benign cluster is deno-
ted  as  such  and  excluded  from  the  next  clustering  operation.  Since 
benign clusters are trimmed, the algorithm “converges on a minimal set 
of training samples responsible for inducing the observed misclassifi-
cation behavior.” 

4. Cloud computing 

Cloud  computing  is  a  new  technology  that  is  currently  gaining 
traction as a model for delivering virtual and internet-based computing 
services.  Cloud  computing  offers  a  robust  and  efficient  distributed 
computing model that reduces infrastructure costs and increases an or-
ganization’s resources by shifting processes performed on an organiza-
tion’s servers to cloud servers. Specifically, it dispenses with the need for 
training new employees or creating new software packages. Further-
more, cloud computing has been acknowledged as a notable means for 
offering flexibility, scalability, reliability, sustainability, and affordability of 
high-quality computing services [68]. A wide range of cloud computing 
services are currently available today and these can be classified into 
three major service categories (see Fig. 5) [69]: (1) Infrastructure as a 
Service (IaaS) – refers to on-demand computational resources in a vir-
tual environment that provides remote services for clients. These include 
networking, data storage, servers, etc. [68]; (2) Platform as a Service 
(PaaS) – According to Ref. [70], PaaS provides clients with a complete 
cloud infrastructure that includes hardware, software, and infrastruc-
ture for “developing, running, and managing applications without the 
cost, complexity, and inflexibility that often comes with building and 
maintaining that platform on-premises”. (3) Software as a Service (SaaS) 
– in this model, a client utilizes an application software located in the 
cloud as if it were installed on a local computer, thus allowing several 
clients to execute the software concurrently. 

According to NIST [71], cloud storage infrastructures/environments 
can be private, public, community, or hybrid. A public cloud environ-
ment is one in which the cloud infrastructure is managed by the cloud 
provider and exists on the provider’s premises. In a private cloud, the 
infrastructure can be managed by an organization, a third party, or a 
combination of both, and the cloud infrastructure may be present on or 
off  the  premises  of  the  cloud  provider.  The  community  cloud  infra-
structure is designed for exclusive use by a specific community of con-
sumers  from  organizations  that  have  shared  concerns  and  may  be 
managed by one or more of the organizations in the community, a third 
party, or some combination of them, and it may exist on or off-premises. 

The cloud infrastructure is a combination of “two or more distinctive 
cloud  infrastructures  (private,  community,  or  public)  that  remain 
unique entities, but are bound together by standardized or proprietary 
technology that enables data and application portability [71]”. 

Cloud  computing  plays  a  major  role  in  modern  technology  as  its 
application  cuts  across  a  vast  range  of  industries  including  but  not 
limited to healthcare, manufacturing, finance, automotive and educa-
tion. In the context of this paper, cloud computing will be discussed with 
respect to the biomanufacturing industry, specifically, the area of bio-
printing. The combination of bioprinting and cloud computing can help 
accomplish extraordinary outcomes such as facilitating an automated 
workflow of the bioprinting ecosystem, a reduction in the ecosystem’s 
physical and computational costs, and provision of virtual storage fa-
cilities. A decrease in computational cost easily translates to faster turn- 
around times for the bioprinting process. Navale and Bourne [72] pro-
posed cloud adoption in healthcare systems since it offers reliable and 
safe  on-demand  storage  in  addition  to  flexibility,  rapid  availability, 
scalability, and reliability of services. These same benefits will also be 
extant in a cloud computing and bioprinting combination paradigm. In 
addition,  cloud  services  have  been  orchestrated  to  mitigate  big  data 
problems and improve the prospect of “big data and analytics exchange, 
reproducibility, and reuse”. This will prove advantageous in expanding 
and improving the field of bioprinting in the near future. Navale and 
Bourne [72] illustrate past and current use cases of cloud services in 
biomedical  work.  Despite  all  the  above-mentioned  advantages,  the 
bioprinting cloud environment is vulnerable to various types of attacks. 

4.1. Software as a service 

In recent years, the Software as a Service (SaaS) platform has wit-
nessed  rapid  and  progressive  use  by  organizations.  SaaS  is  the  most 
frequently used cloud infrastructure. It operates in the cloud and dis-
penses with the need for installing and running applications on an or-
ganization’s  physical  server  or  client  PC.  SaaS  provides  robust  and 
strong  competition  against  traditional  “on  site”  platforms  or  models 
because it is hosted, controlled and maintained by an external cloud 

Fig. 5. Cloud storage services (left) and storage infrastructures (right).  
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provider and is made available to the organization via the Internet as a 
pay-as-you-go-service. In bioprinting, a SaaS platform also provides a 
digital avenue for collaboration between users such that these users can 
individually set up file sharing permissions, design intricate structures, 
simulate  biological  processes,  and  execute  3D  printing  operations 
without the need for extensive hardware resources. Data processing on 

the SaaS cloud platform consists of the following: generation, selection, 
collection, input, storage, analysis, and output [73]. 

4.1.1. Security challenges of SaaS in bioprinting 
The advancement of SaaS as a sustainable computing platform for 

bioprinting presents new security concerns. These security threats are 

Table 2 
Summary of cloud computing threats and vulnerabilities in bioprinting.  

Cloud 
Computing 
Services 

Threats/Vulnerability Category/ 
Type 

Attack Mode Countermeasure 

Software as a 
Service 

Data Security and 
Backup [74] 

Vulnerability Data/Security Breach: unauthorized access, exposure, 
or leakage of sensitive data related to bioprinting 
processes, bioprinted designs, patient information, or 
other critical data within the bioprinting ecosystem. 

Use of encryption to encryption to protect both data and 
back up data. Implementation of a concrete data back 
up plan. 

Data Location/ 
Citizenship [75] 

Vulnerability Data stored and collected from the bioprinting SaaS 
platform could be subject to legal issues. Inappropriate 
usage and management of this data poses severe legal 
consequences. 

Provision of a cloud-based resolution which provides 
regulatory compliance concerning data storage locality 

Encryption [76] Vulnerability A malicious agent may gain access to decrypted data in 
the bioprinting database if it uses other methods of 
cyber-attacks such as email phishing to obtain data such 
as patient information, proprietary bioprinting CAD 
designs etc. 

Encryption should not be considered a one-shot panacea 
for data security. Overall system integrity must be 
protected/preserved in order to ensure total security.  

Authentication/ 
Authorization [77,78] 

Vulnerability These vulnerabilities can be exploited by hackers 
through the application of brute force attacks, session 
manipulation, and other similar cyber-attacks to cause 
data breaches, intellectual property theft, etc. 

The least privilege model can be used “with users and 
CSP (Content Security Policy) administrators only 
possessing the rights that they require to achieve their 
tasks. In addition, authentication and authorization be 
managed externally either by the organization or a third 
party component  

Web Application 
Security [73–81] 

Vulnerability Application security issues may occur via a design 
defect within the program or via unreliable 
configuration of the user interface or web service-based 
APIs through which the user can access critical assets in 
the bioprinting ecosystem. 

In designing web security tools, common security 
threats should be considered [73]. These 
threats/attacks range from database manipulation to 
large-scale network disruption and include sniffing, 

User Interface Attacks 
[79,82] 

Threat Cross Site Request Forgery is a common web 
application-level attack that hackers use to circumvent 
web applications security in order to gain access to the 
user’s account. 
In an advanced attack scenario, the attacker may gain 
full control and disrupt the bioprinting process and 
other functionalities in the ecoystem. 

Clickjacking Defenses, use of CSRF token on webpages. 

SQL Injection Flaws 
[81,83] 

Threat Unauthorized access to the backend database and to the 
entire bioprinting dataset. Unsanctioned access to the 
backend database, user lists and the ruin of entire tables 
are also conceivable consequences of a successful SQL 
attack 

SQLrand, Apache rewrite module. 

Infrastructure as 
a Service 

BackdoorChannel 
Attacks [87,88] 

Threat An attacker may gain remote unauthorized access to the 
target bioprinting IaaS server through unsecured points 
of entry to infect the system with malware. 

Use of Multifactor Authentication, Cybersecurity 
solutions such as Firewalls and Antivirus software. 

Man in the Middle [76, 
87,89] 

Threat The hacker hijacks a secure encryption connection or 
data exchange between the user and the bioprinting 
IaaS server 

Traffic encryption [86] and robust isolation between 
virtual machines. Use of an appropriate secure socket 
layer (SSL) configuration and the performance of data 
communication tests between authorized users 

Phishing [89] Threat The attacker steals or compromises sensitive data within 
the bioprinting IaaS server system. 

Sensitize employees on how to avoid opening spam 
mails 

Denial of Service [87] Threat A DoS attack can introduce substantial response delays, 
extreme losses, and service interruptions, resulting in an 
immediate effect on the availability of the 3d printing 
ecosystem. 

Use of intrusion detection systems (IDS), Use of 
Multifactor Authentication. 

Man in the Cloud [92] Threat The hacker siphons information via access to a 
synchronization token system employed by cloud 
applications, thereby illegal access to the cloud system 
being used to store data from the bioprinting process 

Use of encryption to protect cloud data. Use of 
Multifactor Authentication 

Platform as a 
Service 

Service Injection [87] Threat An adversary can inject a malicious service 
implementation module or a new virtual machine 
instance to a PaaS solution for the bioprinting cloud 
server causing every cloud request from the bioprinting 
ecosystem to be routed through the falsely injected 
module or virtual machine. 

Application of a service integrity checking module. 
Implementing strong isolation between VMs. 

Metadata Spoofing 
[87,93] 

Threat An adversary may modify or change the Web Services 
Description Language (WSDL) to gain access and take 
advantage of these metadata and use them for malicious 
purposes such as intellectual property theft, regulatory 
compliance failures. 

Use of encryption to protect cloud data. Use of 
Multifactor Authentication  
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discussed in the next subsections and are summarized in Table 2. 

4.1.1.1. Data security and backup.The bioprinting cloud system process 
will comprise data collection, preprocessing, storage, and analysis. The 
advent of data processing in SaaS comes with the risk of a data breach 
making it a top security concern. In the bioprinting ecosystem, this can 
be  extremely  dangerous  because  patients’  data  can  be  stolen  thus 
violating patient privacy and laws such as the United States Health In-
surance Portability and Accountability Act (HIPAA laws). Data security 
in SaaS becomes particularly challenging in a case where it is handled by 
a third-party SaaS provider. Another vital facet of SaaS security is data 
backup [74]  –  the SaaS service provider  must ensure that there  is a 
concrete backup plan for data. This will prove critical in improving and 
accelerating recovery time in the event of a cyber-attack or other similar 
security breach. The SaaS provider can use robust security tools such as 
encryption to protect both data and backup data. The SaaS provider may 
also employ the services of a third party to provide backup solutions. 

4.1.1.2. Data  location/citizenship.One  vital  aspect of processing, 
transmitting, and storing data in the cloud is where this data ends up. 
Specifically, a widespread compliance issue many organizations need to 
confront is that of data location. Bioprinting data – such as patient data 
and design files – that is stored and collected from the bioprinting SaaS 
platform  could  be  subject  to  legal  issues.  Inappropriate  usage  and 
management of this data poses severe legal consequences. Therefore, the 
onus rests on the cloud SaaS provider to offer a cloud-based resolution 
that provides regulatory compliance concerning data storage locality 
[75]. 

4.1.1.3. Encryption.There are three major levels at which data can be 
encrypted: in transit, at rest, and in use [76]. The data transmitted be-
tween remote devices as observed in the cloud environment is encrypted 
during transit and at rest. Secure Sockets Layer (SSL)/Transport Layer 
Security (TLS) protocol is used for securing data in transit over the web. 
However, encrypting data in transit does not necessarily provide total 
protection from cyber-attacks. According to Ref. [76], “encrypting data 
in transit can be compromised even if it is being performed across both 
internal and remote networks via the placement of malware on autho-
rized devices which can eavesdrop or sniff data as it traverses the en-
terprise” [76].  Therefore, encryption should not  be  considered a 
one-shot  panacea  for  data  security  in  the  bioprinting  ecosystem. For 
instance, a malevolent entity will still be able to gain access to decrypted 
data in the bioprinting database if it uses other methods of cyber-attacks 
such as email phishing to obtain valid user credentials. 

4.1.1.4. Authentication  and  authorization.Authentication and authori-
zation are the two most crucial aspects of SaaS application security. The 
manipulation  of  authentication  and  authorization  vulnerabilities  is  a 
frequent occurrence. These vulnerabilities can be exploited by hackers 
through the application of brute force attacks, session manipulation, and 
other similar cyber-attacks. SaaS security best practices establish 
whether  a  user  ought  to  be  given  legitimate  access  (authentication) 
supervened by access levels and roles (authorization). Authorization for 
access to data could be done based on an organization hierarchy access 
policy that is evaluated periodically. The Federal Office for information 
security [77] suggests the least privilege model be used “with users and 
CSP (Content Security Policy) administrators only possessing the rights 
that they require to achieve their tasks.” Another suggestion by Ref. [78] 
is that authentication and authorization be managed externally either by 
the organization or a third-party component. 

4.1.1.5. Web application security.A “must-have” requirement for a SaaS 
application is that it has to be employed and controlled over the web. 
Security gaps in the worldwide landscape of the internet make a bio-
printing SaaS application vulnerable to cyber-attacks of different levels 

of scale and complexity and from different sites or locations around the 
world. Hence the a need for tools that provide security countermeasures 
for  web  applications  and  services  especially  those  involved  in  cloud 
service operations. Application security issues may germinate at various 
stages of application design, development, implementation, and access 
to a bioprinting digital twin system. Consequently, it can be affected by a 
design defect within the program or via unreliable configuration of the 
user interface or web service-based APIs through which the user can 
access the application [79]. In designing web security tools, common 
security threats should be considered [80]. These threats/attacks range 
from  database  manipulation  to  large-scale  network  disruption  and 
include sniffing, XML spoofing [81], denial of service (Dos), SQL injec-
tion, cross-site reference scripting and cross-site request forgery. 

4.1.1.6. User  interface  attacks.Every SaaS application comprises four 
types of multi-tenanted user interface entities. “They include a) client 
software organization structure and components, b) user interface forms 
with styles, c) events, and d) user operation flows [82].”  Bioprinting 
generates complex datasets, including 3D models, patient profiles, and 
experimental results. Multi-tenancy facilitates controlled data sharing 
among tenants, enabling enhanced integration and analysis of data for 
comprehensive insights. Therefore, a bioprinting SaaS application will 
entail the use of a collection of interfaces and APIs which enables the 
implementation and execution of several client operations. Clients can 
relate with the SaaS application via client feedback fields. However, if 
these feedback fields do not authenticate the client’s input or retrieve 
valid data, they may be manipulated by malevolent entities via injection 
attacks [79]. For instance, using an approximation of the CSRF example 
in Ref. [79], suppose there is a situation in which a client or end-user is 
authenticated to a bioprinting SaaS applications site, a user can inad-
vertently click on an infected website that is within the grasp of a ma-
levolent entity, the entity can forge malicious requests and implant its 
attack in an image on the website under its control. 

4.1.1.7. SQL injection flaws.Web applications work hand in hand with 
SaaS cloud service and as a result, most of the security threats faced by 
web applications can also be encountered in a cloud SaaS platform [81]. 
As mentioned in the previous section, an SQL injection attack is one such 
web application threat. It is a type of attack vector that exposes the 
vulnerability of the SaaS cloud service platform. In this type of attack, a 
malicious SQL code is used to alter the backend database and gain un-
authorized access to the entire bioprinting dataset. Unsanctioned access 
to the backend database, user lists, and the ruin of entire tables are also 
conceivable  consequences  of  a  successful  SQL  attack.  The  Rewrite 
module of the Apache server may be used as a precaution against SQL 
injection attacks. Another mitigation technique is that of SQL random-
ization also known as SQLrand. This technique was devised by Boyd & 
Keromytis [83] and develops instances of the language that are indeci-
pherable to the attacker. In particular, the technique thwarts queries 
inserted by an attacker. 

4.2. Infrastructure as a service (IaaS) 

Infrastructure-as-a-Service,  generally  referred  to  as  “IaaS,”  is  an 
aspect of cloud computing which refers to the fundamental element of 
computing that can be rented on a pay-as-you-go basis. It consists of 
physical and virtual resources that deliver the foundation required to 
run applications and workloads in the cloud. IaaS components include 
data storage, network, virtual and physical servers, and other shared 
resources. IaaS relieves the user of the task of operating and managing 
the  virtual  and  physical  infrastructure,  and at the  same,  offers  them 
control over the operating system, configuration, and software running 
on the virtual machines in order to create user-controlled applications 
[84,85]. Unlike PaaS and SaaS, IaaS gives the lowest-level control of 
resources in the cloud [85]. Cloud computing services like IaaS can have 
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a gigantic impact on the manufacturing industry which is a part of the 
proposed concept for the 4th industrial revolution [86], especially in the 
area of bioprinting which is the focus of this paper. For instance, data 
processing  time  is  a  computational  bottleneck  for  executing  image 
analysis tasks. In addition, the application of deep learning methods for 
such tasks can lead to drastic improvements in quality assurance for 
tissue constructs. Implementing deep learning techniques often neces-
sitates  the  use  of  multiple  GPUs  for  processing  “large  batch  sizes  or 
reducing batch sizes while  training the  algorithms” [5]. Cloud 
computing services such as IaaS offer a novel way of eliminating this 
problem. However, employing the above-mentioned IaaS components 
together in a shared and outsourced environment poses various chal-
lenges, amongst which security is the most important challenge that can 
hamper  the  consolidation  of  bioprinting  with  cloud  computing  plat-
forms. The next section discusses security issues/threats that affect IaaS 
along with their proposed solutions. 

4.2.1. Backdoor channel attacks 
This is a passive attack in which a hacker attempts to gain inside 

information about the IaaS machine, network, or other systems used in 
processing bioprinting data without detection. A backdoor channel can 
allow a hacker to gain remote unauthorized access to the target bio-
printing  IaaS  server  system  through  unsecured  points  of  entry  and 
spread malware in the system or make it a zombie for attempting a DDoS 
attack  [87].  For  instance,  research  conducted  by  Eclypsium  [88] 
“revealed firmware  vulnerabilities in Supermicro systems that would 
allow malware to install backdoors and rootkits to steal information”. 
They discovered weaknesses in server update procedures for Bare Metal 
Cloud services (a cloud service provider) firmware that would enable an 
attacker  to  install  malicious  BMC  firmware.  They  also  demonstrated 
how this type of attack could be used to permanently “brick” a server. 
Backdoor channel attacks can be mitigated using multifactor authenti-
cation,  and  cybersecurity  solutions  such  as  Firewalls  and  Antivirus 
software. 

4.2.2. Man-in-the middle attack 
This  type  of  attack  exploits  vulnerabilities  in  the  network,  web, 

browser, or server OS. It allows the hacker to hijack a secure encryption 
connection or data exchange between the user and the bioprinting IaaS 
server. According to this paper [89], “Man-in-the-middle attack “is the 
one  thing  that  breaks  the  security  paradigm  for  encrypted  data  in 
transit” [89]. Modi et al. [87] suggest the use of an appropriate secure 
socket layer (SSL) configuration and the performance of data commu-
nication tests between authorized users in order to reduce the occur-
rence of this type of attack. Another mitigating element is to ensure 
traffic encryption [76] and robust isolation between virtual machines. 

4.2.3. Phishing attack 
In a phishing attack, the attacker attempts to steal or compromise 

sensitive  data  within  the  bioprinting  IaaS  server  system.  Phishing  is 
often the “tip of the spear” or the first part of an attack to hit a target 
[88].  In  Cloud  IaaS  systems,  it  may  be  possible  that  a  hacker  could 
compromise the bioprinting IaaS cloud system to host a phishing attack 
site to hijack login credentials and therefore gain access to the accounts 
and services of other users in the Cloud. To avoid phishing, the orga-
nization will need to be able to sensitize employees on how to avoid 
opening spam emails. The following elements may be used in identifying 
such emails, “Poor spelling and grammar”, suspicious links or attach-
ments, urgent calls to action, unrecognized sender, etc. 

4.2.4. Denial of service 
This attack focuses on disrupting the operation of a resource such as a 

website,  a  server,  or  an  application.  An IaaS  DoS  attack  on  the  bio-
printing IaaS system could occur through the compromise of a user’s 
virtual  machines,  a  VM  level  attack,  a  Hypervisor  level  attack,  or  a 
Network  level  attack  [87].  Typically,  bioprinters  are  composed  of 

different  sub-units  to  dispense  a  variety  of  biomaterials  to  form  an 
intricate functional tissue structure. Examples of sub-units include an 
extrusion  head,  inkjet  head,  laser  scanner,  optical  microscope,  and 
nebulizer  to  name  a  few.  A  denial-of-service  attack  on  any  one  or 
combination of these devices can significantly hamper the fabrication of 
functional tissue constructs. This is because many biomaterials used in 
these sub-units have limited shelf-life (varying from minutes to a few 
hours).  A  DoS  attack  will  render  these  materials  useless  and  more 
importantly fatal to the end-user if degraded biomaterials are encapsu-
lated  within  the  tissue  construct.  A  good  mitigation  strategy  is  to 
establish  intrusion  detection  systems  (IDS)  and  to  provide  strong 
authentication (e.g., uses multi-factor authentication (MFA) to authen-
ticate a user’s identity) and authorization. 

4.3. Platform as a service 

The  Platform  as  a  Service  (PaaS)  is  a  development  platform  that 
permits users to develop their services and applications in the cloud. It 
also assists the entire web application lifecycle: design, implantation, 
testing, validation, deployment, and maintenance [90]. The major dif-
ference between PaaS and SaaS is that the latter only accommodates 
complete cloud applications while PaaS offers a development platform 
that accommodates both completed and in-progress cloud applications 
[91]. Google App Engine is an example of a PaaS platform. It allows 
developers to write and run their applications on data centers managed 
by Google. It also provides a defined application model and a set of APIs 
which allows developers the benefit of using bonus services like Mail, 
Namespaces, Datastore, Memcache, etc. Other examples of PaaS pro-
viders  are AWS  Elastic Beanstalk, Microsoft Azure, Salesforce  aPaaS, 
Red Hat OpenShift PaaS, Mendix aPaaS, IBM cloud platform (a combi-
nation of IaaS and PaaS), and Oracle cloud platform. According to Sta-
tista, PaaS revenue in the Platform is projected to reach US$79.55bn in 
2022 with an annual growth rate (CAGR) of 20.23 % from 2022 to 2026. 
It is expected that the global market size of PaaS will reach US$166.20bn 
by 2026. It should be noted that PaaS, SaaS, and IaaS each possess their 
individual security issues. In PaaS, the applications and services offered 
by the PaaS platform are shared among multiple customers thus intro-
ducing a multitenancy aspect. Consequently, a proper isolation mecha-
nism must ensure that one tenant cannot access components of other 
tenants. In the context of the bioprinting ecosystem, PaaS can transform 
how researchers and clinicians handle tissue engineering and medical 
device creation. PaaS platforms can incorporate design, simulation, and 
printing processes into a seamless workflow. This integration stream-
lines the bioprinting pipeline, reducing manual data transfers and po-
tential errors. As sharing mechanisms in the cloud computing platform 
become more widespread, and despite all the above, security remains a 
top prevailing concern, especially with the adoption of PaaS and other 
cloud computing elements in the bioprinting ecosystem. The security 
threats relating to PaaS are discussed in the next subsections and are 
summarized in Table 2. 

4.3.1. PaaS security challenges 

4.3.1.1. Man-in-the-cloud (MiTC).An adversary can siphon information 
via access to a synchronization token system employed by cloud appli-
cations.  The  omnipresent  nature  of  the  cloud  translates  to  the  same 
token  being  used  to  authenticate  a  user’s  credentials  repeatedly  and 
irrespective of a change in device. MiTC commences when an adversary 
successfully installs a malicious code on a target’s device in the bio-
printing ecosystems in order to access a user’s synchronization token 
[92].  Thus,  bypassing  security  measures  and  granting  the  adversary 
illegal  access  to  the  cloud  system  being  used  to  store  data  from  the 
bioprinting process. To mitigate the probability of MiTC attacks, the use 
of encryption to protect cloud data should be implemented. Secondly, a 
multi-factor authentication system for verifying a user’s identity in the 
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bioprinting ecosystem should be adopted. 

4.3.1.2. Service injection attack.In a service injection attack, an adver-
sary can inject a malicious service implementation module or a new 
virtual machine instance into a PaaS solution for the bioprinting cloud 
server  [87].  If  the  attack  is successful, every  cloud request  from the 
bioprinting ecosystem will be routed through the falsely injected module 
or virtual machine. This can lead to data theft or eavesdropping. Injec-
tion of malicious commands could also disrupt ongoing bioprinting ex-
periments,  potentially  damaging  valuable  biological  materials  and 
delaying research progress. To protect the cloud system from this type of 
attack, Modi et al. [87] recommend the application of a service integrity 
checking module. In addition, they suggest a “strong isolation between 
VMs” to prevent the spread of malicious code to neighboring VMs. 

4.3.1.3. Metadata spoofing.Every device generates metadata based on a 
user’s request. According to NGINX [93], certain cloud providers offer 
“a service (in the form of an API) that enables services running in a 
virtual machine to query “instance metadata”, which can include sen-
sitive  data  such  as  authentication  credentials”.  An  adversary  may 
modify or change the Web Services Description Language (WSDL) to 
gain  access  and  take  advantage  of  these  metadata  and  use  them  for 
malicious  purposes.  The  authors  in  Ref.  [93]  discuss  how  an  overly 
permissive configuration makes it easy for the manipulation of metadata 
stored on the IP address employed by the above-mentioned cloud service 
providers.  In  the  bioprinting  instance,  a  temperature  sensor  will  be 
connected  to  the  internet  using  a  wireless  network.  This  sensor  will 
transmit  data  to  the  cloud.  An  adversary  may  exploit  the  metadata 
generated during this process by accessing the internal IP address ille-
gally. The adversary could also alter metadata to falsely claim author-
ship  of  valuable  bioprinted  designs,  leading  to  intellectual  property 
disputes and potential financial losses. To mitigate a metadata spoofing 
attack, Modi et al. [87] recommend the implementation of encryption 
and strong user authorization and authentication in the cloud system. 

5. Next-generation networks: 5G technology 

The last two decades have witnessed the rapid evolution of cellular 
communication systems. These include 2G, 3G, and 4G communication 
network  systems.  The  driving  factor  behind  the  evolution  of  these 
technologies has been the need for low latency and more bandwidth. 
According to Ref. [94], “The data rate has improved from 64 kbps in 2G 
to 2 Mbps in 3G and 50–100 Mbps in 4G”  [94]. However, users are 
withdrawing  from  legacy  2G/3G  technologies  and  moving  toward 
4G/5G systems. In fact, 5G systems are currently the focal point of the 
manufacturing,  energy,  healthcare,  and  transportation  industries,  as 
well as government and academia. This is because 5G technology offers 
many innovative benefits for different industry network requirements. 
These benefits include but are not limited to ultra-low latency, reduced 
cost, energy efficiency and sustainability, high speed, and ultra-reliable 
communication [95–99]. Additional benefits include the enhancement 
of mobile network bandwidth, which will eventually lead to an upsurge 
in the number of IoT devices that can be connected at a given time. It has 
been envisaged that twenty-seven billion IOT devices are expected to be 
connected by the year 2025 [100]. A significant proportion of  these 
devices will be connected via 5G technology. 

The  implementation  of  a  bioprinting  ecosystem  will  consist  of 
physical  laboratory  components,  (such  as  computers,  bioprinters,  ro-
bots, sensors, and other IoT devices), biomaterials, and software com-
ponents such  as  cloud  computing  software,  AI, and  optimization 
algorithms [5,101]. Connectivity is a crucial facilitator of Industry 4.0., 
and  it  is  a  notable  aspect  of  the  bioprinting  ecosystem  to  consider, 
especially with the advent of IOT devices which enable digital systems to 
record, monitor, and fine-tune each interaction between linked devices. 
The connectivity needs for the multitude of connected devices in the 

bioprinting ecosystem will be handled via 5G technology. An example of 
5G  implementation  in  healthcare  is  seen  in  Yongjian  et  al.  [102]:  a 
Guangdong Provincial People’s Hospital applied AI and 5G technology 
in  a  live  broadcast of  a  traditional cardiovascular surgery. The 
experts/consultants who  strategized the  surgery’s plan  were  in 
Guangzhou, while those who were in charge of the actual operation 
were in Gaozhou. The distance between both locations is 1158 miles. 
Hence, the use of 5G technology as a guide for the operation in real-time. 
5G technology will facilitate the creation of a digital twin of the bio-
printing ecosystem. A digital twin comprises two elements: a physical 
and a virtual segment [29] as seen in Fig. 2. The physical aspect deals 
with the collection and storage of data – this data will be stored in the 
cloud. Data will be retrieved from the bioprinting process via acoustic, 
infrared,  and  temperature  sensors  which  are  connected  to  the  Bio-
printer. The virtual aspect consists of employing the data retrieved in the 
physical segment to perform real-time simulation and analysis of the 
bioprinting process. The real-time exchange of information in the bio-
printing  ecosystem  calls  for  ultra-low  latency  and  highly  reliable 
communication. In a nutshell, NextG wireless networks such as 5G form 
the building foundation for two-way communication between the digital 
twin and the physical aspect of the bioprinting ecosystem. However, 5G 
technology  also  presents  its  challenges,  security  being  the  foremost 
[103]. The next section discusses the security threats posed by using 5G 
technology. A Summary of NextGen Network Threats is also presented in 
Table 3. 

5.1. Security threats in 5G technology 

5.1.1. Network slicing attack (slice theft) 
The core of the 5G network is a paradigm that enables communica-

tion resources and attributes to be split into individual slices. Each slice 
is isolated from one another. If an adversary can gain access to a cloud 
network function, it could potentially exploit security shortcomings in 
current 5G industry standards to gain access to both the operator’s core 
network  and  the  network  slices  of  other  enterprises.  A  bioprinting 
ecosystem consists of several interconnected mechanisms, such as bio-
printers, data storage and real-time monitoring components, and 
potentially even communication networks that facilitate the transfer of 
data and  instructions. Consider a  case whereby the  bioprinting 
ecosystem is dependent on a high-speed and low-latency 5G network to 
transmit complex 3D bioprinting instructions and data. Various stages of 
this process might involve designing the tissue structure, obtaining the 
appropriate cells or bioinks, and executing the actual bioprinting. The 
network slices ensure each stage has the required bandwidth, latency, 
and quality of service to function optimally. An adversary could use a 
network slice attack to disrupt the communication between different 
components in the ecosystem, manipulate bioprinting instructions, or 
steal sensitive data related to patient-specific tissues being printed. To 
protect  against  network  slicing  attacks,  Shi  et  al.  [104]  introduced 
various defense mechanisms such as stopping Q-table updates when an 
attack is detected, employing randomness in making  network slicing 
decisions, exploiting the feedback process in network slicing in order to 
distort the attacker’s learning process. Their research demonstrates an 
effective method of defending network slicing by tricking/misdirecting 
an adversary into making incorrect decisions and thus, reducing the risk 
of an attack. 

5.1.2. Smart jamming 
A jamming attack can be defined as a malicious disruption of data 

communication in the bioprinting ecosystem. The intention of the ad-
versary in this scenario is to cause an interference in the bioprinting 
ecosystem’s network. There are several types of jamming attacks and 
these  have  been  discussed  in  detail  in  Pirayesh  &  Zeng  [105].  For 
instance, a reactive jamming attack, also referred to as a channel-aware 
jamming attack entails the adversary transmitting an interfering radio 
signal  when  it  detects  legitimate  packets  transmitted  over  the  air. 
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Jamming attacks can be mitigated by observing communication chan-
nels for any surplus amount of energy or any unexpected shift in the 
communication performance over the channel. According to Arjoune & 
Farugque [106], one common tactic in jamming detection is setting a 
threshold detection value by monitoring the channel in the presence and 
absence of a jamming attack using “performance metrics such as the 
packet  delivery  ratio  (PDR),  packet  drop  ratio  (PDR),  bit  error  rate 
(BER), and signal-to-noise ratio (SNR)”. 

5.2. Eavesdropping attacks 

This is a passive attack in which an adversary takes advantage of an 
unsecured  network  and  intercepts  data  sent  or  received  over  the 
network [103]. Eavesdropping may also be referred to as a snooping or 
sniffing attack [107]. The bioprinting communication network presents 
a ripe target for this type of attack, given that there would be real-time 
monitoring of the printing process, in addition to large transmission of 
data such as build temperature, print speed, federate, flow rate, speed 
ratio, build chamber temperature and so on. An eavesdropping attack is 
considered passive because the data or information being transmitted is 
usually not disturbed or altered; the aim of the adversary is to secretly 
obtain information. As a result of its passive nature, it is usually difficult 
to detect. This type of attack can compromise sensitive and confidential 
infrastructure, especially for defense and national security-related bio-
printing ecosystems. Encryption of the signals via a wireless connection 
is the most common method of mitigation. The use of encryption pre-
vents the eavesdropper from intercepting the received signal. Informa-
tion picked up from eavesdropping attacks can be used to perform denial 
of service (DoS) attacks. 

5.2.1. Denial of service attacks 
This is an active type of attack in which the adversary manipulates 

the  bioprinting network’s service by  overloading its  capacity or 
exhausting its resources [107] thus, making the network unavailable to 
users for a period of time. DoS is a severe attack that can partially or 
devastate a bioprinting ecosystem’s network. Such an attack can result 
in tissue construct printing delays, sub-quality tissue constructs, mate-
rial wastage, and increased cost. Unlike eavesdropping attacks, in DoS, 
the adversaries typically do not attempt to steal or modify information. 
However, DoS is one of the most prominent cyber-attacks because of the 
cost of inaccessibility of services on the part of casualty networks or 

systems. The common mitigation method for DoS is detection [108]. For 
instance, in their paper, Kuadey et al. [109] proposed a deep Secure 
framework that entails the use of user equipment (UE) devices, an attack 
detection model, a slice prediction model, an infrastructure provider, 
and network slices. Their attack detection model forecasts DDoS attacks 
from the UE network traffic, “while the slice prediction model predicts 
suitable slices for legitimate UEs”. 

6. BlockChain networks 

Blockchain began to gain traction when Satoshi Nakamoto concep-
tualized [110] the first blockchain in the year 2008. Ever since tech-
nology  has  experienced  innovative  modifications  and  improvements. 
Blockchain technology can be described as a distributed peer-to-peer 
database  distributed  network  ledger  that  comprises  a  chronological 
sequence of blocks [111,112]. Blockchain technology is considered to be 
very secure due to its inherent characteristics [113–115] of immuta-
bility, decentralization, traceability, reliability, low cost, transparency, 
transaction  automation,  and  anonymity,  in  addition  to  its  ability  to 
perform cryptographic transactions. Fig. 6 represents the various char-
acteristics/features of Blockchain technology. 

Blockchain can utilize a decentralized consensus protocol and digital 
signature to validate and authenticate the integrity and accuracy of the 
transactions performed between all parties in the bioprinting ecosys-
tem’s network [116]. This will enhance the security and integrity of 
critical bioprinting data, such as patient information, tissue specifica-
tions, and printing instructions. This can also help assuage issues such as 
data  security  [117],  counterfeiting  [118],  and  IP  theft  [119].  Block-
chain’s smart contract functionality can automate certain aspects of the 
bioprinting process. For instance, when certain conditions are met (e.g., 
successful  completion  of  specific  printing  stages),  predefined  actions 
could be triggered automatically, improving efficiency, and reducing the 
risk of human error. 

In terms of counterfeiting prevention, taking additive manufacturing 
for instance, component designers can adopt blockchain technology to 
ensure that only authorized users will be able to access design files and 
submit information. This inhibits access to the design files until they are 
deleted by AM-designated machines [120]. Presently, most bioprinters 
do not come equipped with sensors. Specifically, the bioprinter’s control 
mechanism and sensor data retrieval are not explicitly linked [121], 
therefore,  these  printers  are  enhanced  using  sensors  that  are  not 

Table 3 
Summary of NextGen network threats in bioprinting.  

Technology 
Type 

Threats Mode of Attack Countermeasure 

5G 
Technology 

Network Slicing 
Theft [104] 

An adversary can gain access to a cloud network function by 
exploiting security shortcomings in current 5G industry standards to 
gain access to network slices dedicated to bioprinting. 

Stopping Q-table updates when an attack is detected. Employing 
randomness in making network slicing decisions. Exploiting the 
feedback process in network slicing in order to distort the attacker’s 
learning process 

Smart Jamming 
[105,106] 

An adversary transmits an interfering radio signal to disrupt or 
compromise the communication and control systems used in the 
bioprinting ecosystem. 

Observing communication channels for any surplus amount of 
energy or any unexpected shift in the communication performance 
over the channel. 

Eavesdropping 
[103,107] 

An adversary takes advantage of an unsecured network in the 
bioprinting ecosystem and intercepts data sent or received over the 
network 

Encryption of signals via wireless connections. 

Denial of Service 
[107]-, [109] 

A hacker manipulates the bioprinting network’s service by 
overloading its capacity or exhausting its resources 

Implementation of a dos detection system. 

Blockchain Sybil Attack [122, 
123] 

An adversary can generate multiple fake or malicious identities or 
nodes within the bioprinting blockchain network to manipulate or 
disrupt bioprinting related processes and transactions. 

Use of validation and chain of trust systems. 

Forking Attack 
[124] 

A forking attack may occur when an adversary is unable to modify 
records on the main trusted chain (MTC) of the bioprinting 
blockchain network. The adversary thereby launches an alternative 
or side chain to replace the MTC. 

Use of an MTC confirmation mechanism whereby an arbitration 
mechanism compels branches from a fork to engage in a 
competition. 

Revision Attack 
[125,126] 

A revision attack alters the blockchain’s forking rules such that it 
allows for genuine historical bioprinting-related data or 
transactions to be replaced by an alternative history, “from the 
forking point onwards” 

Use of digital signatures to verify the authenticity of transactions in 
the bioprinting blockchain network, and to guarantee that these 
transactions cannot be modified without detection.  
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included in  the original equipment manufacturer (OEM)  catalog. 
Furthermore, the information extracted from these sensors is distributed 
to and stored in the cloud network. This information is extracted from 
the cloud for advanced analytics and real time monitoring of the bio-
printing process. Blockchain technology can be used to transact records 
of sensor data between distinct sections of the bioprinting ecosystem 
[121]. However, it also suffers from security issues such as those dis-
cussed  in  the  next  section.  A  Summary  of  these  threats  is  given  in 
Table 3. 

6.1. Security threats in BlockChain technology 

6.1.1. Sybil attacks 
In a Sybil attack, an adversary can control multiple identities (Sybils) 

and force negative feedback in order to make a trusted device appear 
untrustworthy  to  its  peers  or  an  untrustworthy  device  appear  trust-
worthy” [122]. A Sybil attack in the bioprinting blockchain network can 
be used to obtain information about the IP addresses of connected users. 
This poses a risk to the security and anonymity of the networks’ users. 
Sybil attacks can be prevented via the use of validation and chain of trust 
systems. Otte et al. [123] created a “permission-less tamper-proof data 
structure for storing transaction records of agents” called TrustChain. 
TrustChain utilizes a sybil-resistant algorithm called NetFlow to ascer-
tain the credibility  and “trustworthiness of agents in an online com-
munity.” Their model ensures that “free riders” are identified. In other 
words, agents that retrieve data/information from the online network 
also contribute back to the network. 

6.1.2. Forking attack 
A fork in the blockchain is a representation of two or more chain 

branches  generated from a block and this  occurs when  two or more 
miners solve the hash function concurrently. In the bioprinting block-
chain network, a forking attack may occur when an adversary is unable 
to modify records on the main trusted chain (MTC) of the network [124]. 
The adversary thereby launches an alternative or side chain to replace 
the MTC. This alters the blockchain’s authority, making fraudulent re-
cords on the sidechain appear legitimate in order to gain access to re-
cords in the blockchain. Wang et al., suggest a novel MTC confirmation 
mechanism whereby an arbitration mechanism compels branches from a 
fork to engage in a competition [124]. The main chain contends with the 
sidechain in the arbitration section until it achieves an end threshold. 
This  end  threshold  is  set  to  guarantee  the  main  chain  wins  the 

competition if the fork structure is formed by a forking attack. 

6.1.3. Revision attack 
Short-lasting forks are often encountered in blockchains; however, 

they are usually corrected because of the blockchain rule – the chain 
with the most difficulty wins. This mechanism is effective, under the 
hypothesis  that  an  adversary  can  never  obtain  the  extremely  high 
computational power required to forge a different or alternative history 
[125,126]. If this is the case, an adversary can perform a so-called his-
tory revision attack such that the blockchain’s forking rules allow the 
genuine  history  to  be  replaced  by  the  alternative  history,  “from  the 
forking point onwards” [125]. There is yet to be a formal anti-revision 
attack strategy in the literature. However, a possible mitigation strat-
egy would be the use of digital signatures to verify the authenticity of 
transactions and guarantee that such transactions cannot be modified 
without  detection.  For  now,  such  an  attack  might  be  considered 
improbable due to the enormous computing power needed. 

7. Potential privacy-preservation solutions in SMART 
bioprinting environments 

7.1. Artificial intelligence/machine learning 

The collection of personal data from the bioprinting ecosystem will 
be  considerably  easier  with  the  use  of  AI,  IoT  devices,  and  Cloud 
Computing. However, even though AI models improve with the avail-
ability of private data, there are also significant consequences associated 
with this data collection. Specifically, the use of AI further compounds 
issues by generating data and using it in ways that were previously not 
possible.  For  instance,  as  bioprinting  technology  develops,  bone  and 
tissue information can be collected in order to build a customized bio- 
fabricated product for a particular patient/individual. In addition, the 
bioprinting  ecosystem  is  a  cyber-physical  system,  and  as  such,  one 
common  area  to  take  into  consideration  is  the  ‘‘privacy’’  and  confi-
dentiality of the patient’s information [32]. It becomes problematic if an 
attack occurs and the patient’s data is hijacked thereby breaking laws 
such  as  the  United  States  Health  Insurance  Portability  and  Account-
ability Act (HIPAA laws). Perceived risks to privacy and security may 
possibly undermine patient/client confidence necessary for bioprinting 
to reach its full potential. It is highly crucial to manage such sensitive 
data in a way that protects privacy. In the medical field, anonymization– 
processing data in an irreversible way and with the intent of preventing 
re-identification,  and  pseudonymization  –  (‘replacement  of  sensitive 
entries”  with  values  that  do  not  allow  an  individual  to  be  directly 
identified  [127],  are  two  distinct  techniques  that  offer  regulation 
compliance,  data  security  and  privacy.  These  two  methods  are  also 
applicable to the bioprinting stratosphere. A more promising mitigation 
technique to the AI data privacy attack issue is Federated Learning (FL). 
FL as proposed by Google researchers [127], is a technique that employs 
the use of a ML model in a decentralized shared learning setting such 
that the ML algorithm is executed using local client-side devices and 
local training datasets. FL dispenses with the need to send data to a 
centralized  server,  instead,  an  “extraction  in  the  form  of  machine 
learning models is sent to the server” [128]. Simply put, “FL brings the 
code  to  the  data, instead  of the data to  the code,  and addresses the 
fundamental problems of privacy, ownership, and locality of data”. A 
real-life example application of federated learning is a study conducted 
by  Mass  General  Brigham  and  NVIDIA  that  trains  a  neural  network 
model to predict the future oxygen requirements of symptomatic pa-
tients with COVID-19, using inputs of vital signs, laboratory data, and 
chest X-rays [129]. An important fact to note is that, although federated 
learning allows for easy adoption, and resolves data privacy and security 
problems, it does not by itself ensure security and privacy except it is 
combined with other methods such as homomorphic encryption, dif-
ferential privacy, and secure (multiparty) computation [127]. 

Fig. 6. Features of blockchain technology.  
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7.2. Cloud and blockchain privacy-preserving solutions: homomorphic 
encryption and differential privacy 

In bioprinting, the 3D model utilized in the process will equate to an 
individual or patient’s data. Large-scale data harnessed by AI models in 
the  bioprinting  ecosystem  will  be  processed  and  outsourced  on  a 
powerful cloud-based server and this implies the possibility of signifi-
cant data breaches. Considering the sensitive disposition of bioprinting 
data,  all  cloud  storage  and  computing  databases,  applications,  and 
software  must  be  secure  and  private  as  required  by  law.  Blockchain 
technology offers another innovative technique for storing bioprinting 
data and establishing trust in the bioprinting ecosystem. However, as 
discussed in section 3 above, it possesses shortcomings in terms of pri-
vacy and security challenges. In order to realize data privacy in the cloud 
and  blockchain  environment,  a  homomorphic  encryption  (HE)  tech-
nique can be used to encrypt bioprinting data. HE entails the encryption 
of bioprinting data such that cloud users can compute/perform analysis 
on  the  bioprinting  data  as  if  it  were  in  its  original  state  [130].  An 
example of the application of HE as a cloud computing and blockchain 
privacy solution can be found in Ref. [131]. Their work proposes a ho-
momorphic  encryption  based  efficient,  privacy-preserving  algorithm 
called  p-Impute  that  allows  computations  on  ciphertext,  therefore 
dispensing with the need for the decryption of private genotypes in the 
cloud. In summary, HE provides a safe avenue for private data to be 
retrieved from the bioprinting ecosystem and processed in the cloud. 
Differential  privacy  (DP)  proves  to  be  another  technique  for  safe-
guarding bioprinting data that has been outsourced to blockchain or 
cloud  computing  services.  Specifically,  DP  guarantees  privacy  irre-
spective  of  the  intruders’  knowledge  of  the  bioprinting  database.  In 
particular,  the  approach  in  DP  is  to  add  artificial  noise  (Laplace  of 
Gaussian) to an algorithm’s output. The scale of noise is reliant on a 
privacy loss parameter (ε) which controls the amount of randomness or 
noise injected into the data, and sensitivity, which evaluates the effect of 
a change in the algorithms’ input on the algorithm’s output [131]. 

7.3. NextGen networks – TOR and onion routing 

In the bioprinting ecosystem of the future, it is envisaged that the 
bioprinter  will  be  fed  sensitive  patient  or  client  data  which  will  be 
transmitted to the cloud or to other machines via a Wi-Fi or 5G network 
interface.  This  data  exchange  between  machines  may  be  propagated 
through the internet, especially in cases when hospitals and their partner 
bioprinting labs are in separate and distant locations. This opens the 
network up to malicious attackers who can passively observe or monitor 
routing information and therefore plan a cyber-attack to siphon patient 
information.  From  a  privacy  and  NextGen  network  standpoint,  Tor 
onion routing presents an excellent solution for safeguarding data or 
information belonging to  clients or  end users in  the bioprinting 
ecosystem. Onion routing was created by computer scientists and re-
searchers  working  for  the  Naval  Research  Laboratory  and  Defense 
Advanced Research Projects Agency (DARPA) [132]. Onion routing can 
be used to protect user data in the bioprinting ecosystem by establishing 
multiple  layers  of  encrypted  connections  to  safeguard  data  from  po-
tential malicious attackers. Onion routing (aka Tor) is an open-source 
decentralized  private  network  that  constitutes  thousands  of  volun-
tarily hosted servers [133]. It uses onion routing encryption to enable 
users  to  browse  the  internet  anonymously.  As  its  name  implies,  Tor 
onion  routing  works  as  follows:  bioprinting  data  –  such  as  the  CAD 
model of a patient’s tissue – transmitted by a user is the center of the 
“onion,” and comprises the content of the message [134]. Upon incep-
tion of the transmission process “by connecting to a Tor client, several 
layers of encryption surround the core, one atop the other like Russian 
nesting dolls, so that the core bioprinting data payload is inaccessible to 
outside actors” [161]. Tor offers anonymous connections that are greatly 
impervious to eavesdropping and traffic analysis. 

8. Compliance, regulations, and standards 

A cyber-secure bioprinting ecosystem offers various benefits such as 
allowing researchers to produce simple tissue constructs and complex 
scaffolds with spatial heterogeneity. However, this advent of this tech-
nology  brings  along  certain  expectations,  especially  in  regard  to  the 
following. 

8.1. Data privacy 

When  personal information is collected by the  bioprinting 
ecosystem, care and consideration will be given in determining who (e. 
g., doctors, nurses, patients, etc.) maintains and controls the informa-
tion, and for what purposes it will be used [32]. One hurdle to overcome 
in bioprinting AI/ML implementation is that of compliance and regu-
lations especially in relation to data and privacy laws. AI/ML service 
providers have to conform to demanding and rigorous data protection 
regulations such as the California Consumer Privacy Act (CCPA), the 
Brazilian General Data Protection Law (LGPD), and EU/UK General Data 
Protection Regulation (GDPR), and the proposed federal privacy law, 
the American Data Privacy Protection Act (ADPPA) – which is yet to be 
passed into law (as such, there is no comprehensive federal data privacy 
law in the U.S for now). However, on October 4, 2022, the White House 
released a set of guidelines to help lead the drive on companies limiting 
AI-based surveillance and deploying AI in a responsible manner [135]. 

8.2. Standards: zero trust architecture 

The traditional network security approach is to readily trust all users, 
devices, and networks within the bioprinting ecosystems’ perimeter: as 
long as any operation conducted within this perimeter has undergone 
appropriate authentication. However, this model places the bioprinting 
ecosystem at risk of unauthorized access by malicious agents and wide- 
reaching extensive system compromise. In addition, due to the hetero-
geneity of 5G networks, this model has become obsolete and has resulted 
in considerable cybersecurity issues [136]. Based on the foregoing, a 
“zero trust model which assumes no implicit trust granted to access or 
user accounts” is required [137]. NIST has recommended the adoption 
of a zero-trust architecture standard as a strategic approach to cyber-
security. This standard can be applied to the bioprinting ecosystem. A 
zero-trust  architecture  is  a  security  framework  that  will  require  all 
exterior  actors  and  actions  (those  existing  outside  the  ecosystem’s 
network) and interior users in the bioprinting ecosystem to be authen-
ticated, authorized, and endlessly validated prior to gaining or main-
taining access to the bioprinting ecosystem’s applications, network and 
data  [138].  A  zero-trust  network  for  the bioprinting  ecosystems will 
work based on the following six tenets and assumptions [137]: 1) The 
network  is  always  assumed  to  be  hostile  and  should  not  be  tacitly 
trusted. 2) Remote resources such as cloud services are not within the 
private  network.  3)  Remote/outsourced  resources  cannot  fully  trust 
their local network connection. 4) No resource should be fully trusted. 5) 
Users may connect external devices such as USBs to the network. These 
devices aren’t owned or configurable by the organization. 6) Any asset 
or workflow that moves between internal and external infrastructure 
must have a consistent security posture. 

8.3. Regulation 

In  2021,  President  Biden  issued  an  executive  order  [139]  on 
improving the nation’s cybersecurity. The nascent technology of a smart 
and cybersecure Bioprinting ecosystem presents a challenge to the na-
ture  of  legal  regulation.  Bioprinted  organs  are  regulated  within  the 
statutory  purview  of  the  FDA.  Existing  legal  definitions  permit  bio-
printed organs to be regulated under the “medical devices, biologics, 
drugs, or any combination of these three items’’  classification [140]. 
However, according to Singh and Thomas [140], there is a problematic 
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sparsity when it comes to legal frameworks that provide guidance on the 
use of substances of human origin with nonliving materials”. So far, the 
FDA has only provided guidelines for 3D printing, specifically, medical 
devices fabricated using 3D printing [6,141–144]. The National Institute 
of  Standards  and  Technology  (NIST)  has  presented  a  Cybersecurity 
Framework that can be adopted by any industry [145]. The zero-trust 
architecture standard which has been discussed in detail in the previ-
ous section represents a sub-aspect of this framework. In April 2022, the 
FDA issued a guideline titled “Cybersecurity in Medical Devices: Quality 
System Considerations and Content of Premarket submissions” to assist 
the  medical industry and  healthcare organizations in detecting 
cybersecurity-related  incidents  that  impact  medical  device  functions 
and  to  promote  awareness,  preparedness,  and  responses  for  such  in-
cidents.  Lastly,  to  promote  transparency,  the  FDA  publishes  public 
communications  about  medical  device  cyber  vulnerabilities  that,  if 
acted on, could result in patient harm [146,147]. The FDA encourages 
medical  device  manufacturers  to  monitor  and  assess  cybersecurity 
vulnerability risks, and to be proactive about divulging vulnerabilities 
and  coming  up  with  solutions  to  address  them.  It  also  maintains  a 
database  named  “Manufacturer  and  User  Facility  Device  Experience 
(MAUDE)” [148] that highlights the life-threatening dangers of medical 
device safety and security failures. However, a cursory search of the 
product  class  in  the  MAUDE  database  produces  no  results  for  bio-
printers. Thus, ongoing cybersecurity strategies and evolving regulatory 
standards need to be explored in the biomanufacturing domain. 

9. Open research and existing challenges 

A cyber-secure smart bioprinting ecosystem offers various benefits 
such as allowing researchers to produce simple tissue constructs and 
complex scaffolds with spatial heterogeneity. However, the advent of 
this technology brings along certain expectations. In particular, it raises 
a  number  of  questions  that  remain  to  be  answered.  These  questions 
pertain mostly to privacy and security issues. The bioprinting ecosystem 
will  utilize  cellular  data  retrieved  from  patients.  This  attribute  in 
conjunction with the use of IoT devices, AI/ML algorithms, cloud ser-
vices, and NextGen networks to create a smart ecosystem leads to data 
privacy and security concerns. Data sharing is another unique feature of 
e-health systems [149], such as the smart bioprinting ecosystem. For 
instance, producing a custom-made implant using the smart bioprinting 
ecosystem will involve the extraction of patient data such as bioimages 
or CT scans. This data will be transmitted to the bioprinter, which is in 
turn monitored by sensors that transmit data to the cloud for research 
purposes,  where  it  will  be  accessible  to  various  stakeholders  in  the 
ecosystem  such  as  doctors,  hospitals,  healthcare  organizations,  engi-
neers, clinical data analysts/biostatisticians, cloud service companies, 
etc. The exchange of data between the ecosystem’s stakeholders, espe-
cially  for  research  intent,  increases  the  number  of  people  within  a 
stakeholder group who have access to such data. This in turn increases 
the  likelihood  of  data  leakage  and  in  a  more  serious  case  like  a 
cyber-attack, a data breach. Another example is a case whereby cellular 
data extracted from a patient or donor is used and stored in the cloud. In 
the event of a data breach, patient data can be stolen and sold to third 
parties to be used in printing tissues for other patients across the world. 
Patients lose control over their data when it is stored in cloud servers, 
and this can be seen as a threat to patient privacy. Consequently, the 
who, how, and when of information sharing should entail the use of an 
adaptive access control model to oversee data exchange in the smart 
bioprinting ecosystem. 

Given  that  smart  bioprinting  is  currently  in  the  early  stages  of 
development, there has been little to no attention paid to these concerns. 
Furthermore, privacy and security concerns also arise from the fact that 
in the distant future, bioprinting of transplantable tissues and organs 
will become more commonplace. As the technology develops, the larger 
the potential for tissues/organs to be tracked, hacked, and in more dire 
cases,  controlled.  For  instance,  an  embedded  sensor  implanted  in 

transplantable 3D printed blood vessels or in cardiac tissue for moni-
toring heartbeat or for detecting acute allograft rejection can be hacked 
to monitor and retrieve the transplant recipients’ tissue information and 
release the same to the public, thus breaking HIPAA laws. 

An additional aspect that needs to be explored in more detail is tissue 
construct quality/integrity. For example, in the event of a side-channel 
cyber-attack,  a  malicious  actor  can  potentially  hack  the  bioprinting 
ecosystem and alter the digital model to be used in printing the tissue/ 
organ. This will have devastating consequences for transplant patients. 
It is imperative that a thorough in-cyber secure in-situ defect process in 
addition to post-printing quality inspection checks be set up to ensure 
that an organ is free from flaws or defects. In traditional 3D printing for 
example, researchers at Georgia Tech & Rutgers University developed a 
three-layer system made up of acoustic monitors, inexpensive micro-
phones, detectable nanorods, and filtering software that detect changes 
in the usual sound a printer makes to tackle the issue of part integrity 
[150]. Based on the foregoing, it is crucial that security and data privacy 
concerns for the IoT-enabled smart bioprinting ecosystem be resolved 
before the technology becomes widely adopted by large biotech com-
panies, the military, and other stakeholders. 

10. Conclusion 

Bioprinting technology signifies a novel area within the field of ad-
ditive  manufacturing.  This  technology  is  currently  receiving  intense 
attention in the research domain. Thus, making it appealing to various 
stakeholders  that  cut  across  manufacturing,  healthcare,  and  other 
interrelated  industries.  This  also  demonstrates  its  huge  potential  for 
rapid evolution especially when integrated with the following technol-
ogies: AI/ML, cloud computing, NextGen networks, and blockchain to 
form a smart bioprinting ecosystem of the future. The integration of 
these technologies gives rise to myriad security challenges. This paper 
presents a multilayered architecture to illustrate the interaction between 
the aforementioned technologies in the smart bioprinting ecosystem. It 
also  uses  a  layer-by-layer  approach  to  highlight  the  cyber  security 
challenges that may occur in the ecosystem. Another pertinent challenge 
that will arise from operating the bioprinting ecosystem is that of pri-
vacy, especially when taking into consideration that patient data will be 
collected, processed, and stored in the cloud. Consequently, the paper 
discusses privacy-preserving solutions for  different facets of  the 
ecosystem. It also touches on compliance, regulations, and standards 
involved  in  operating  such  an  ecosystem,  and  finally,  it  provides  an 
outlook on open research questions. The open research challenges dis-
cussed in this paper call for innovative scientific solutions that could 
probably be  derived from  conventional additive manufacturing 
research. 
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