19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49

50

52

Defect Categorization in Compilers: A Multi-vocal Literature Review

AKOND RAHMAN, Auburn University, USA
DIBYENDU BRINTO BOSE, Virginia Tech, USA
FARHAT LAMIA BARSHA, Tennessee Technological University, USA

RAHUL PANDITA, Github, USA

Context: Compilers are the fundamental tools for software development. Thus, compiler defects can disrupt development productivity
and propagate errors into developer-written software source code. Categorizing defects in compilers can inform practitioners and

researchers about the existing defects in compilers and techniques that can be used to identify defects systematically.

Objective: The goal of this paper is to help researchers understand the nature of defects in compilers by conducting a review of Internet

artifacts and peer-reviewed publications that study defect characteristics of compilers.

Methodology: We conduct a multi-vocal literature review (MLR) with 26 publications and 32 Internet artifacts to characterize compiler

defects.

Results: From our MLR, we identify 13 categories of defects, amongst which optimization defects have been the most reported defects
in our artifacts publications. We observed 15 defect identification techniques tailored for compilers and no single technique identifying

all observed defect categories.

Conclusion: Our MLR lays the groundwork for practitioners and researchers to identify defects in compilers systematically.
CCS Concepts: » Software and its Engineering — Compilers.
Additional Key Words and Phrases: compiler, defect, internet artifact, review

ACM Reference Format:

Akond Rahman, Dibyendu Brinto Bose, Farhat Lamia Barsha, and Rahul Pandita. 2023. Defect Categorization in Compilers: A
Multi-vocal Literature Review. ACM Comput. Surv. 1, 1, Article 1 (January 2023), 37 pages. https://doi.org/10.1145/3626313

Authors’ addresses: Akond Rahman, Auburn University, Auburn, AL, USA, akond@auburn.edu; Dibyendu Brinto Bose, Virginia Tech, Blacksburg, VA,
USA, brintodibyendu@vt.edu; Farhat Lamia Barsha, Tennessee Technological University, Cookeville, TN, USA, fbarsha42@tntech.edu; Rahul Pandita,
Github, Denver, CO, USA, rahulpandita@github.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM i

https://doi.org/10.1145/3626313

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

ii Rahman et al.

1 INTRODUCTION

According to the State of the Developer 2021 report, 26.8 million professionals worldwide are software developers [15].
These software developers rely on compilers to develop computer programs. Compilers are software systems that
convert a computer program written in one programming language(typically higher-level) to low-level instructions,
such as machine code. While performing this translation, the compilers also ensure computer programs that are being
compiled abide by the syntactic and semantic rules of the programming language, and later the translated machine
code is semantically equivalent to the compiled computer program. In this manner, compilers help software developers
ensure the program performs desirable when executed, which allows developers to become productive. According to
Sun et al. [56], “Compilers are among the most important, widely-used system software, on which all programs depend for

compilation”. A compiler is considered an important part of the software supply chain [17].

Despite being a ‘fundamental programming tool’ in software development [65], compilers themselves are software
programs and thus prone to defects that can have severe consequences for software development. A compiler defect can
propagate into all computer programs that are compiled by the defective compiler [51]. Defects in compilers have also
been attributed to catastrophic consequences in safety-critical domains [56]. These defects are prevalent in well-known
compilers: according to Marcozzi et al. [35], multiple defects in the Clang/LLVM and GCC compilers are fixed each
month. Defects in compilers can be consequential for software developers with respect to productivity. For example,

one software developer was stuck for five days due to a compiler defect [64].

The prevalence and consequences of defects in compilers necessitate systematic endeavors from the practitioner and
research community to identify latent defects in compilers. These endeavors can be informed by a review of existing
literature related to the defect characteristics of compilers. Such a review can systematically categorize the defects in

compilers and also map techniques that are used to identify each of the defect categories.

As compilers play a pivotal role in professional software development that involves software practitioners, we want
to get a practitioner’s perspective of reported compiler defects. In that manner, we cannot only synthesize compiler
defects reported by academics but also synthesize the defects reported by practitioners. Such analysis can aid the entire
software engineering community by finding the commonalities and differences in the analyses and derive insightful
recommendations. According to Garousi et al. [22] review of Internet artifacts can “enable a rigorous identification of
emerging research topics in SE as many research topics already stem from software industry”. Internet artifacts was used
to curate best practices for continuous deployment [46], devops security [59], securing Kubernetes installations [53],

and managing secrets with secret management tools [41].

Multi-vocal literature review incorporates both: review of Internet artifacts and a review of peer-reviewed publica-
tions [23]. Accordingly, we use a multi-vocal literature review (MLR) so that we can capture insights from academics as

from software practitioners.

Objective: The goal of this paper is to help researchers understand the nature of defects in compilers by conducting a review

of Internet artifacts and peer-reviewed publications that study defect characteristics of compilers.
To achieve our goal, in this work, we answer the following research questions:

o RQ1: Which compilers have been studied in Internet artifacts and peer-reviewed publications that have investigated

defects in compilers?
Manuscript submitted to ACM

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

Defect Categorization in Compilers: A Multi-vocal Literature Review iii

e RQ2: What categories of defects have been reported in Internet artifacts and peer-reviewed publications that have

investigated defects in compilers?

o RQ3: What techniques have been reported in Internet artifacts and peer-reviewed publications to identify defects in

compilers?

We conduct our MLR with 32 Internet artifacts and 26 publications. We have conducted an MLR that requires analysis of
two kinds of resources: Internet artifacts that are not peer-reviewed and publications that are peer-reviewed. Without
the analysis of Internet artifacts, an MLR will be deemed incomplete and incorrect. Our use of Internet artifacts makes
the MLR complete and also is useful to generate interesting insights. Using Kithchenham et al. [27] and Gharousi
et al. [22]’s guidelines, respectively, we perform a quality evaluation of the 26 publications and 32 Internet artifacts.
We apply a qualitative analysis technique called open coding [48] to determine defect categories reported in Internet
artifacts and peer-reviewed publications. We have added the results from our multi-vocal literature reviews as a PDF in

our replication package [40].

For the scope of our study, we define a compiler as a special type of software that takes source code as input and
provides machine code or binary executables as input. This software category can support multiple languages and
have multiple compilation engines to support each of these languages. Furthermore, based on our definition, this type
of software can provide interfaces to develop even more compilation units and provide rich software development
experience so that along with generating machine code or binary executables, users can perform testing, linting, and

version control.

Compilers are used by a wide range of users, including academics who conduct scientific research and practitioners
who use compilers to develop software. As such, the experiences of compiler usage as manifested in terms of defects
needs to be included while conducting a review of compiler defect categories. Accordingly, we select an MLR instead of
a systematic literature review (SLR) so that we can gain the perspectives of both academics and practitioners when it
comes to defect categories for compilers. An MLR consists of reviewing two types of artifacts: academic publications that
are peer-reviewed and artifacts that are practitioner-reported and not peer-reviewed by the research community [22].
The goal of using an MLR is to capture evidence from both worlds: the academic world and the practitioner world. Many
practitioners tend not to participate in academic conferences, where academics come and present their findings. Instead,
practitioners participate in practitioner-focused conferences and report their experiences in practitioner-oriented online
platforms in the form of artifacts [22, 46]. With the help of an MLR, we are able to capture both: insights presented in
academic conferences as well as insights presented in non-academic conferences. In this manner, the MLR complements
the knowledge that a SLR provides. We still acknowledge the value of reviewing academic publications and that is
why we review Internet artifacts as well as academic publications, which is a form of SLR. We also acknowledge that
including Internet artifacts in the analysis can add bias to the derived results, which we mitigate using raters who read

each Internet artifact to ensure the artifact of interest is in fact related to compiler defects.

We also report a comparison of the identified techniques as part of RQ3. We observe that if we considered only a review
of academic publications we could have not known that commercial static analysis tool usage and user action are also

used to identify defects in the compiler.

Manuscript submitted to ACM

157

159

160

162

163

164

165

166

1

N
3

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

iv Rahman et al.

Soiio
—_— —_—
\ RQ1: Compilers
Scholar Databases Filtering Publications N
- —_—
Qualitatfve RQ2: Categories
/ Analysis
—f — -
(B

Internet Artifact Filtering Internet Artifacts .—J

Search RQ3: Techniques

&

Fig. 1. An overview of our methodology.

We also would have not known that the techniques that are commonplace in academic peer-reviewed publications
are not that commonly used by the practitioner community. For example, the techniques that are reported in peer-
reviewed publications but not in Internet artifacts are address discrepancy analysis, deep learning, equivalence modulo
input, Markov chains, optimization pattern synthesis, reinforcement learning, semantic specification, skeletal program
enumeration, and tenor mutation. This indicates a gap between research and practice. Just by using SLR, we would

have not learned this information.

In short, using MLR we can synthesize evidence from both types of artifacts: academic peer-reviewed publications and
Internet artifacts that are not peer-reviewed. Therefore, MLR provides analysis that complements insights generated

only by conducting an SLR.

Contributions: This work makes the following contributions:

o A list of defect categories for compilers derived from publications and Internet artifacts;

o A list of techniques used to identify defects in compilers as reported in publications and Internet artifacts; and
o A mapping between identified defect categories and the techniques used to identify defect categories.

We organize the rest of the paper as follows: we provide the methodology in Section 2. We report our findings in
Section 3 and discuss these findings in Section 4. We discuss the limitations of our MLR and related work, respectively,

in Sections 5 and 6. Finally, we conclude the paper in Section 7.

2 METHODOLOGY

We describe the methodology to conduct our MLR in this section. An MLR is a variant of systematic literature review
that includes two types of resources: (i) Internet artifacts, such as blog posts and conference presentations, and (ii)
peer-reviewed publications. Internet artifacts are an example of grey literature that has been well-regarded by literature
review experts as an established source to obtain and synthesize practitioner perceptions [21]. According to Rainer et
Manuscript submitted to ACM

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

Defect Categorization in Compilers: A Multi-vocal Literature Review

Table 1. Criteria to Plan the MLR

Criteria

Third Author

Second Author

1. Is the subject complex and not solvable by
considering only the formal literature?

Yes. Currently, available peer-reviewed pub-
lications have not synthesized existing litera-
ture related to compiler defects.

Yes. To date, no paper has systematically cat-
egorized defects in compilers.

2. Is there a lack of volume or quality of evi-
dence or a lack of consensus on outcome mea-
surement in the formal literature?

Yes. Internet artifacts, such as blog posts, tuto-
rials, videos, and white papers, are prevalent
compared to peer-reviewed publications in
Kubernetes.

Yes. Peer-reviewed research lacks discussion
of defect-related issues in compilers.

3.Is the contextual information important to
the subject under study?

Yes. Understanding defects in compilers is im-
portant to build quality assurance into any
software ecosystem.

Yes. Compiler defects are crucial to under-
standing how to integrate reliability into a
software ecosystem.

4.1s it the goal to validate or corroborate sci-
entific outcomes with practical experiences?

Yes. The goal is to compare the defect cate-
gories identified from Internet artifacts to that
of peer-reviewed publications.

Yes.The goal of this research is to compare de-
fects reported in peer-reviewed publications
and Internet artifacts.

5. Is it the goal to challenge assumptions or fal-
sify results from practice using peer-reviewed
research or vice versa?

No. The goal is not to challenge current as-
sumptions but to compare the defect cate-
gories studied by researchers and practition-
ers.

No. The goal of this research is not to chal-
lenge existing research related to compiler de-
fects.

6. Would a synthesis of insights and evidence
from the industrial and academic community
be useful to one or even both communities?

Yes. A synthesis of insights and evidence from
the industrial and academic community for
compiler defects will help both communities.

Yes. Industry and academia would benefit
from combining industry knowledge and aca-
demic knowledge related to compiler defects.

No. No such evidence was recorded.

No. We have not observed such evidence.

7. Is there a large volume of practitioner
sources indicating high practitioner interest
in a topic?

al. [47], with grey literature, such as with Internet artifacts practitioners provide stories, analogies, examples, and popular
opinions as evidence, which they further use to justify their beliefs or refute existing beliefs. Use of internet artifact
analysis has helped the software engineering community understand the best practices for contiguous deployment [46],

devops security [59], securing Kubernetes installations [53], and managing secrets with secret management tools [41].

For the scope of our study, we define a compiler as a special type of software that takes source code as input and
provides machine code or binary executables as input. This category of software can support multiple languages and
have multiple compilation engines to support each of these languages. Furthermore, based on our definition, this type
of software can provide interfaces to develop even more compilation units and provide rich software development
experience so that along with generating machine code or binary executables, users can perform testing, linting, and

version control.

In particular, we follow Garousi et al. [22]’s guidelines for conducting MLR. Figure 1 shows an overview of our

methodology.

2.1 Plan for MLR

Garousi et al. [22] recommend that the researchers need to evaluate themselves if an MLR is appropriate for a specific
research topic [22] before conducting the MLR. To that end, we use a set of criteria provided by Garousi et al. [22] that
is listed in Table 1. If researchers involved in MLR agree on most of the criteria, then the researchers can move forward
with the MLR. From Table 1 we observe the two researchers, i.e., the second and third authors of the paper, responded

with ‘Yes’ for five of the seven criteria, and responded with ‘No’ for criteria #5 and #7.

Manuscript submitted to ACM

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

279

281
282
283
284

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

306
307
308
309
310
311
312

vi Rahman et al.

2.2 Search for Internet Artifacts and Publications

We use two types of documents for our MLR: first, Internet artifacts, such as white papers, Slide share presentations !,

and blog posts. Second, we use peer-reviewed publications that have studied compiler defects. For collecting Internet
artifacts, we use the Google search engine in incognito mode with a set of search strings. Following Kuhrmann et
al. [29]’s guidelines we use five scholar databases, namely, (i) ACM Digital Library 2, (ii) IEEE Xplore 3, (iii) Springer
Link %, (iv) ScienceDirect °, and (v) Wiley Online Library ©. Kuhrmann et al. [29] recommend these scholar databases to

use in systematic mapping studies and systematic literature reviews.

To identify Internet artifacts and peer-reviewed publications, we use a set of search strings that were derived using
snowballing technique [60] following the guidelines of Garousi et al. [22]. To derive initial search strings, we first
start with the search string ‘compiler defect’, which we use to collect the most relevant 100 Internet artifacts where
relevance is determined by the Google search engine. Our assumption is that by using a set of 100 Internet artifacts,
we will get the set of search keywords necessary to conduct our MLR. By reading each of these 100 Internet artifacts,
the third author observes that while describing compiler defects, practitioners also use other terms. Considering these
observations, we obtain a set of search strings that we use to identify Internet artifacts and peer-reviewed publications:
‘buggy compiler’, ‘compiler’ AND ‘bug’, ‘compiler’ AND ‘defect’, ‘compiler’ AND ‘failure’, ‘compiler’
AND ‘fault’, ‘compiler’ AND ‘fuzzing’, ‘incorrect behavior’ AND ‘compiler’,and ‘miscompilation’ AND

‘bug’.

For each search string, we collect the first 100 Internet artifacts provided by the Google search engine. From the five

scholarly databases, we obtain 12,619 search results for the five search strings.

The focus of our paper is to find defect categories that have been reported in both: literature that is peer-reviewed and
literature authored by practitioners that are not peer-reviewed. From our set of keywords, we are able to identify all 10

publications listed as part of a quasi-gold set.

2.3 Apply Inclusion and Exclusion Criteria

As both scholar databases and the Google search engine are susceptible to respectively yielding publications and
Internet artifacts that are not relevant to an MLR, following Garousi et al’s. [22] guidelines, we apply inclusion and

exclusion criteria that are described below:
Exclusion Criteria: We exclude peer-reviewed publications and Internet artifacts that satisfy the following criteria:
o The artifact/publication is not written in English.

e The artifact/publication is not related to compiler error management. We exclude publications that discuss how
developers comprehend and engage with compiler error messages as these publications do not discuss defects within

the compiler.

Lhttps://www.slideshare.net/

https://dl.acm.org/

Shttps://ieeexplore.ieee.org/Xplore/home.jsp
“https://link.springer.com/
Shttps://www.sciencedirect.com/book/9781843341550/digital-libraries
®https://onlinelibrary.wiley.com/

Manuscript submitted to ACM

https://www.slideshare.net/
https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://link.springer.com/
https://www.sciencedirect.com/book/9781843341550/digital-libraries
https://onlinelibrary.wiley.com/

313
314
315
316
317
318
319
320
321
322
323

324

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

357
358
359
360
361
362
363

364

Defect Categorization in Compilers: A Multi-vocal Literature Review vii

For publication names returned by scholar databases, we apply an additional exclusion criterion: we exclude publications

that are indexed in scholar databases but not peer-reviewed, such as keynote abstracts, call-for papers, and presentations.

Inclusion Criteria: We set the inclusion criteria for peer-reviewed publications and Internet artifacts as follows: (i) the
artifact/publication is available for reading; (ii) the artifact/publication is not a duplicate. We determine an Internet
artifact to be a duplicate of another if the title, content, and author(s) are the same as another Internet artifact. We
randomly picked one of the duplicated Internet artifacts and included it in our set. We consider a pre-print as a duplicate.
In the case of a journal publication that is an extension of a conference publication, we identify the conference and the
journal paper as two separate publications; (iii) the artifact/publication is related to a compiler; and (iv) the content of
the artifact/publications discusses defects that occur in a compiler. In the case of Internet artifacts, the second and third
authors individually read the content of each Internet artifact to determine this criterion. In the case of peer-reviewed
publications, the second and third authors individually read all the content of each paper to determine this criterion.
For both cases, the authors determine if defects are discussed in the content. Both authors use the IEEE definition to

determine the discussion of defects: “An imperfection in a software artifact that needs to be repaired or replaced”.

The third author filters search results and identifies peer-reviewed publications written in English and available for
reading. The third author retrieves 11,437 peer-reviewed publications from five scholarly databases. All the publications
were available on December 2021. Upon applying our inclusion and exclusion criteria, the third author identifies 377
publications. At this stage, both the second and third authors read each of the 377 publications in detail and respectively

identifies 27 and 37 publications to include a description of compiler defects.

The second and third authors disagreed on 28 publications. The Cohen’s Kappa is 0.21, which is a ‘fair’ agreement [30].
The disagreements are resolved by the last author, and the last author’s decision on the disagreed publications is final.
Upon resolving all disagreements, we obtain a set of 26 peer-reviewed publications that we use in our MLR. Table ?? in

Appendix (Section ??) lists the publication titles. A complete breakdown of the publication search process is shown in

[
ACM |EEE ScienceDirect Wiley SpringerLink
(3,295) (5,466) (1,499) (78) (1,099)

Figure 2.

Collect Search Results
(Search Result: 11,437
l Filter duplicates
{ Non-duplicates: 7,735
l Filter non peer-reviewed publications
{ Peer-reviewed: 5,477 }
l Filter non-English publications
[English-only: 2,662

l Filter unavailable publications

[Available for reading: 1,992
[Filter based on title

[Title-based Filtering: 357 J

Filtering by Second Author. Filter based on content Filtering by Third Author

[Content-based Filtering: 27 J [Content-based Filtering: 37 J
Disagreement resolution

Final Set: 26

Fig. 2. Search and filtering of peer-reviewed publications to conduct our MLR.

Manuscript submitted to ACM

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

385
386
387
388
389
390
391
392
393

394

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412

viii Rahman et al.

Upon deriving the set of 26 publications, we validate our set of obtained publications by identifying if our set includes
quasi-gold standard publications, i.e., publications that are well-regarded and deemed representative of compiler defect
research. The third author, who has ten years of experience in software engineering research and is not involved in
collecting this set of 26 publications, provided us with the quasi-gold set. The quasi-gold set includes the following
publications: “Finding and Understanding Bugs in C Compilers” [62], “An Empirical Study of Optimization Bugs in
GCC and LLVM” [67], “ Well-typed Programs Can Go Wrong: A Study of Typing-related Bugs in JVM Compilers” [5],
“Towards Understanding Tool-chain Bugs in the LLVM Compiler Infrastructure” [61], “Skeletal Program Enumeration
for Rigorous Compiler Testing” [65], “Compiler Fuzzing Through Deep Learning” [12], and “ Finding Compiler Bugs
via Live Code Mutation” [56].

Our identified set of 26 publications includes all of these ten publications used in the quasi-gold set, which gives us the
confidence that our collection of search strings is good enough to retrieve most of the relevant publications related to

compiler defect characterization.

For Internet artifacts, both the second and third authors of the paper read each of the first 100 results from the Google
Search for eight search strings. The search results are retrieved on January 2022. Initially, the third author removes
duplicates, inspects availability, and removes non-English artifacts. This set of steps gives a total of 495 artifacts. Next,
the third and second authors individually read each of the 495 artifacts and identified a set of 31 Internet artifacts
and 28 Internet artifacts. The third and second authors disagreed on 23 Internet artifacts on their relationship with
compiler defects. The Cohen’s Kappa is 0.22, which is a ‘fair’ agreement [30]. The last author resolves the disagreements
between the authors, whose decision is considered final. The last author is given a list of Internet artifacts for which the
second and third authors disagreed. By reading the title and the content for each of the 23 Internet artifacts, the last
author determines a set of 32 Internet artifacts that we use in our MLR. Table ?? in the Appendix (Section ??) lists the
32 Internet artifact URLs. A complete breakdown of our search and filtering process to collect the Internet artifacts
is shown in Figure 3. Ratings for all Internet artifact URLs and publication references used in the paper are publicly

available online [40].

2.4 Assess Quality

Following guidelines from prior work [22, 27] we conduct a quality assessment of the collected Internet artifacts and

peer-reviewed publications, respectively, in Sections 2.4.1 and 2.4.2.

2.4.1 Quality Assessment of Internet Artifacts. For the quality assessment of our set of 32 Internet artifacts, we use the

assessment criteria provided by Garousi et al. [22]. Each of the assessment criteria is listed in Table 2:

We use a 3-point scale where ‘1.0’ refers to ‘yes’; 0.5 refers to ‘partially’; 0.0 refers to ‘no’ for Q1-Q11. For Q12, we use a
3-point scale of 1.0, 0.5, and 0.0 to refer to high, moderate, and low credibility. The second and third authors individually
read all of the 314 Internet artifacts to determine a value for Q1-Q12. Then, we report the average of the scores reported

by the second and third authors.

A summary of the average rating for each of the questions for the 32 Internet artifacts is given in Table 3. The detailed
rating for each of the Internet artifacts is available in Table ?? of the Appendix (Section ??), where each cell represents
the ratings obtained by the second and third authors. From Table 3 we observe Internet artifacts to score >= 0.5 for
reputation (Q1), aim (Q3), coverage (Q5), objectivity (Q6), links to important literature (Q9), impact (Q11), and credibility
Manuscript submitted to ACM

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449

459
460
461
462
463
464
465
466
467

468

Defect Categorization in Compilers: A Multi-vocal Literature Review

Filtering by Second Auth

Collect Search Results

[Search Result: 800 J

Filter duplicates

[Non-duplicates: 653 J

Filter unavailable artifacts

[Available for reading: 562 }

l Filter non-English artifacts

{ English-only: 492 }

Filter based on content

Filtering by Third Author

[Content-based Filtering: 28 } [Content-based Filtering: 31 }

Disagreement resolution

Final Set: 32

Fig. 3. Search and filtering of Internet artifacts to conduct our MLR.

Table 2. Quality Assessment Criteria for Internet Artifacts

Criterion

Question

Criterion-1: Reputation

Q1: Is the publishing organization reputable?
Q2: Is an individual author associated with a reputable organization?

Criterion-2: Methodology (Aim,
Reference, Coverage)

Q3: Does the source have a clearly stated aim?

Q4: Is the source supported by authoritative, contemporary references?
Q5: Does the work cover a specific question?

Criterion-3: Objectivity

Q6: Is the statement in the sources as objective as possible? Or, is the statement a subjective
opinion?

Q7:Is there a vested interest? For example, a tool comparison by authors working for a particular
tool vendor.

Criterion-4: Date

Q8: Does the item have a clearly stated date?

Criterion-5: Position with re-
spect to related sources

Q9: Have key related Internet artifacts or peer-reviewed publications been linked to or discussed?

Criterion-6: Novelty

Q10: Does it strengthen or refute a current position? Does it advance a new position?

Criterion-7: Impact

Q11: What is the impact of the Internet artifact? The raters apply subjective evaluation to
determine the impact of an Internet artifact. The rater considers the following concepts to
determine impact: count of backlinks, count of comments, count of views, and count of shares.

Criterion-8: Credibility

Q12: What is the credibility of the Internet artifact? (i): High credibility: Books, magazines,
thesis documents, government reports, white papers; (ii) Moderate credibility: Annual reports,
news articles, presentations, videos, Q/A sites (e.g. StackOverflow), Wikipedia articles; (iii) Low
credibility: Blogs, emails, tweets.

(Q12). which corresponds to the date of the Internet artifact. The range of scores for each criterion is presented as

minimum and maximum in the ‘Min, Max’ column.

2.4.2 Quality Assessment of Publications. We follow the criteria provided by Kitchenham et al. [27] to assess the quality
of a peer-reviewed publication. A higher-quality score indicates that the publication clearly describes the goal, contains

actionable results, clearly discusses the limitations, and contains a clear presentation structure. The criteria set that we

use for our set of peer-reviewed publications is listed in Table 4.

Manuscript submitted to ACM

469
470

471

473
474

476

477

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

500

502
503

505

506

508
509

511

512

514

515

517

518

520

X Rahman et al.

Table 3. Quality Assessment of Internet Artifacts Related to Compiler Defects

Criterion Average Rating Min, Max
Q1 (Reputation of Publishing Organization) 0.5 0.0, 1.0
Q2 (Reputation of Author’s Organization) 0.3 0.0, 1.0
Q3 (Clearly Stated Aim) 0.6 0.0, 1.0
Q4 (References) 0.4 0.0, 1.0
Q5 (Coverage) 0.6 0.0, 1.0
Q6 (Content Objectivity) 0.5 0.0, 1.0
Q7 (Vested Interest) 0.4 0.0, 1.0
Q8 (Clearly Stated Date) 0.1 0.0, 1.0
Q9 (Links to Important Literature) 0.8 0.0, 1.0
Q10 (Strengthen/Refute Position) 0.3 0.0, 1.0
Q11 (Impact) 0.5 0.0, 1.0
Q12 (Credibility) 0.5 0.0, 1.0

Table 4. Quality Assessment Criteria for Peer-reviewed Publications

Criterion Description

Q1 (Aim) Do the authors clearly state the aim of the research?

Q2 (Units) Do the authors describe the sample and experimental units?

Q3 (Design) Do the authors describe the design of the experiment?

Q4 (Data Collection) Do the authors describe the data collection procedures and define the measures?
Q5 (Data Analysis) Do the authors define the data analysis procedures?

Q6 (Bias) Do the authors discuss potential experimenter bias?

Q7 (Limitations) Do the authors discuss the limitations of their study?

Q8 (Clarity) Do the authors state the findings clearly?

Q9 (Usefulness) Is there evidence that the Experiment/Quasi-Experiment can be used by other

researchers/practitioners?

Table 5. Quality Assessment for 26 Publications

Criterion Average Rating Min, Max
Q1 (Aim) 37 35, 4.0
Q2 (Units) 3.0 1.5,4.0
Q3 (Design) 3.7 2.5,4.0
Q4 (Data Collection) 2.6 1.5,4.0
Q5 (Data Analysis) 23 1.0, 4.0
Q6 (Bias) 1.6 1.0, 2.5
Q7 (Limitations) 1.9 1.0, 4.0
Q8 (Clarity) 3.3 2.5,4.0
Q9 (Usefulness) 2.2 1.5, 4.0

We follow the procedure used by Kitchenham et al. [28] to resolve disagreements. For the resolution of disagreements,

we compute the average of the scores reported by both raters.

After answering each of the above nine questions, we provide a rating score associated with each of the answers
between 1 and 4. The rating 1 implies ‘not at all’; 2 implies ‘somewhat’; 3 implies ‘mostly,; and 4 implies ‘fully’. As
the rating process of the research articles is subjective, we assign two raters, i.e., the second and third authors, who
independently provide a rating to each publication. We report the average rating score of both raters for each publication.
We summarize the average rating of the quality assessments for the 26 publications in Table 5 and the quality assessment
rating for each of the peer-reviewed publications is described in Table ?? of the Appendix (Section ??). From Table 5, we
observe publications related to compiler defects to score > 3.5 for aim and clarity-related discussion on average. With
respect to the discussion of bias and limitations, the set of 26 publications scores < 2.0.

Manuscript submitted to ACM

524

525

526

527

528

560

561

562

563

564

566

567

568

569

570

571

572

Defect Categorization in Compilers: A Multi-vocal Literature Review xi

2.5 Answer to Research Questions

We provide the methodology to answer our research questions in this section.

2.5.1 Methodology to Answer RQ1. The first and third author individually reads each of the 32 Internet artifacts and
26 publications to identify the compilers that have been addressed. For each artifact and publication, the third author
documents the date of the artifact and publication, the specific compiler that has been addressed, and the programming

language that corresponds to the compiler.

2.5.2 Methodology to Answer RQ2. We answer RQ2 by applying a qualitative analysis technique called open coding [48].
Open coding helps researchers to summarize the underlying theme from unstructured text [48]. We hypothesize that
by applying open coding, we can group defects that have been reported in our set of artifacts and publications. The
third author performs open coding with the content from artifacts and peer-reviewed publications. Upon completion,

the third author derives a list of defect categories for compilers as reported in artifacts and publications.

Rater Verification: The open coding process is susceptible to rater bias, which we mitigate by using the second author to
perform rater verification. The second author was not involved in the open coding process. As part of rater verification,
the second author performs closed coding [48], using which the author maps an identified defect category to each of
the 26 peer-reviewed publications and 32 Internet artifacts. We do not impose any time limit on the rater to perform

verification.

Upon completion, we record a Cohen’s Kappa of 0.83 and 0.86, respectively, for Internet artifacts and peer-reviewed
publications between the second and third authors. For both artifacts and publications, the agreement is ‘substantial’ [30]

between the second and third authors.

Mapping of Defect Categories and Compiler Components: We further investigated which of the identified defect
categories are applicable to a component of a compiler. The purpose of this investigation is to generate insights into
what components are likely to include certain defect categories. For our investigation, we leverage the typical compiler
components described by Aho et al. [2], and summarized in Figure 4. Each compiler takes a computer program as input

and generates code that is executable on a target machine.
Aho et al. [2] lists the following components for a compiler that is shown in black ink in Figure 4:
o Lexical analyzer: This component of the compiler parses the program into a sequence of tokens.

e Syntax analyzer: This component of the compiler takes the output of the lexical analyzer and applies grammar to

determine if the computer program satisfies the syntactical rules of the programming language.

e Semantic analyzer: This component of the compiler uses the output of the syntax analyzer in the form of abstract

syntax trees as input, and checks whether the computer program is semantically consistent with language definition.

o Intermediate representation generator: This component of the compiler uses the output of the semantic analyzer
as input to generate an intermediate representation that is in between source code and machine code in terms of

representations.

o Code optimizer: This component of the compiler uses the intermediate code to perform optimizations so that the

computer program upon execution consumes lesser resources, such as CPU and memory.

Manuscript submitted to ACM

573

574

576
577

579

580

592

594
595

597
598

600
601
602
603
604
605
606
607
608
609
610
611
612
613

614

616
617
618
619
620
621
622
623

624

xii Rahman et al.

e Code generator: This component of the compiler converts the optimized intermediate code into machine code so

that the computer program can be executed by the computing system, e.g., an x86 processor.

As part of this investigation, we read the defect categories and corresponding examples to determine if a defect
category occurs for one or multiple components of the compiler. We repeat the procedure for both Internet artifacts

and publications.

[Lexical analyzer]
|
Syntax analyzer }

I

Semantic analyzer

|

[Intermediate representation generator }

[Code optimizer }
[Code generator]

Fig. 4. Components of a typical compiler as summarized by Aho et al. [2].

2.5.3 Methodology to Answer RQ3. RQ3 focuses on the techniques that have been used to identify defects in a certain
compiler. Answers to this research question can aid practitioners and researchers in understanding the techniques
that are used to find defects in a compiler and apply that understanding to identify defects in compilers that remain
under-explored to date. To answer RQ3, the third author reads each artifact and publication, respectively, in our sets of
32 Internet artifacts and 26 publications. The third author separates publications that clearly describe a technique that

is used to identify defects in a compiler. The third author applies the same procedure for Internet artifacts.

3 RESULTS

We provide answers to our research questions in this section. We answer our research questions by analyzing 32 Internet
artifacts and 26 peer-reviewed publications. Temporal trends of Internet artifacts and publications are respectively,

shown in Figure 5 and 6.

3.1 Answer to RQ1

In this section, we answer RQ1: Which compilers have been studied in Internet artifacts and peer-reviewed publications

that have investigated defects in compilers? We provide the count of Internet artifacts and peer-reviewed publications in
Manuscript submitted to ACM

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

Defect Categorization in Compilers: A Multi-vocal Literature Review xiii

6.
-
c
34-
o
-
13}
£
t
<
2.
0.
S S X Q ' > ' ' ' ® > N N
S S N N X N N S X S S 0 9
I N R A DN A U M
Year
Fig. 5. Temporal trends of the 32 Internet artifacts.
6.
-
54
<3
(&)
c
2
]
©
L
32
a
O.
N & & e N © N N 2 > qi\
R N N A
Year

Fig. 6. Temporal trends of the 26 peer-reviewed publications.

which a compiler has been discussed in the context of compiler defects. In Tables 6 and 7 we respectively, provide the

count of publications in which a compiler has been addressed.

We observe similarities and differences with respect to studied compilers as documented in Table 6 and 7. GCC is the
most frequently studied compiler in our set of Internet artifacts, followed by LLVM. In the case of publications, GCC
and LLVM are the most frequently mentioned compilers. Certain compilers are only studied in artifacts: GNU Fortran,
Intel Fortran, .NET Fortran, PGI Fortran, Cray Compiling Environment 7 Xilinx SDK, and CranelLift, the WebAssembly

Compiler. Compilers that are only studied in publications and not in Internet artifacts are Simulink, V8 Javascript,

"https://docs.lumi-supercomputer.eu/development/compiling/cce/

Manuscript submitted to ACM

Xiv Rahman et al.

677 Table 6. Compilers Discussed in Our Set of 32 Artifacts

678

679 Compiler Artifact Index Count
GCC IA4, IAS, IA6, IA8, 1A9 , IA14 , IA16, IA18, IA19, IA21, IA22, [A23, [A24, IA25, 16

680 1A26, IA28

681 LLVM 1A6, 1A4,1A17,1A20 4

682 Arduino SDK 1A13,1A14 2
GNU Fortran Compiler 1A2,1A27 2

683 Intel Fortran Compiler 1A2,1A27 2

684 Java 7 Compiler 1A1,1A26 2

685 PGI Fortran Compiler 1A2, 1A27 2

i .NET IA10, IA32 2
686 Clang 1A6 1
687 Code Composer Studio IA11 1

Cray Compiling Environ- IA3 1
088 ment
689 IBM Fortran Compiler 1A27 1
690 Intel C++ Compiler 1A6 1

Kotlin IA15 1
691 Solidity 1A31 1
692 WebAssembly Compiler [A30 1
03 (CranelLift)

; XCode 1A20 1
694 Xilinx SDK 1A12 1
695
696 Table 7. Compilers Discussed in Our Set of 26 Publications
697
698 Compiler Publication Index Count
699 GCC P1, P5, P9, P10, P12, P15, P16, P18, P20, P22, P23 11

LLVM P1, P4, P10, P12, P15, P16, P17, P18, P20, P22, P23 11
700 Clang P4, P9, P16, P18 4
701 Simulink P8, P14, P19 3
702 V8 Javascript P3, P22, P26 3
ChakraCore P22, P26 2
703 Javascript Core P22, P26 2
704 OpenCL P7, P11 2
705 Kotlin P6, P21 2
RustC P18, P24 2
706 Bambu P13 1
707 Commercial HLS Compiler P13 1
Glow P2 1
708 GraalJ$ P26 1
709 Groovy P6 1
710 Hermes P26 1
Intel C++ P23 1
i JerryScript P26 1
712 K-Java P19 1
s KSolidity P19 1
Legup P13 1
714 Nashorn P26 1
715 nGraph P2 1
OpenJDK P6 1
716 P4 P25 1
717 Quick]S P26 1
718 Rhino P26 1
Scala P6 1
719 SpiderMonkey P26 1
720 Turbofan P3 1
TVM P2 1

721

722
723 ChakraCore, JavascriptCore, OpenCL, RustC, Bambu, Commercial HLS Compiler, Glow, GraalJS, Grrovy, Hermes,
12 Jerryscript, K-Java, KSolidity, Legup, Nashorn, nGraph, OpenJDK, P4, Quick]S, Rhino, Scala, SpiderMonkey, Torubofan,

726 and TVM. Our findings show a disconnect between the compilers that are studied in peer-reviewed publications and

724

727 what practitioners are discussing and reporting.

728 Manuscript submitted to ACM

730

739

759
760
761
762
763
764
765
766
767
768
769

770

776
777
778
779

780

Defect Categorization in Compilers: A Multi-vocal Literature Review XV

Answer to RQ1: A wide range of compilers have been investigated in prior work, such as GCC, LLVM, and deep
learning compilers. GCC is the most frequently mentioned compiler amongst artifacts as well as in peer-reviewed

publications.

3.2 Answer to RQ2

We provide answers to RQ2: What categories of defects have been reported in Internet artifacts and peer-reviewed publications

that have investigated defects in compilers? in this section.

Bit arithmetic
Circular
validation
Identifier
resolution

| { Integer equality

Linkage

Loop induction

Defect | | Memory Erroneous root
Categories allocation cause

Misinformation

Spurious
warning

Program parsing T

conversion

—| Misinference

Tensor

Translation

Type Rule violation

il

Fig. 7. Defect categories identified from our MLR.

We identify 13 categories of defects that are shown in Figure 7, which we describe below:

Bit Arithmetic Defects: This category of defects occurs when a compiler does not adequately implement bit arithmetic.

This category of defects has been reported both in Internet artifacts as well as peer-reviewed publications.

Example: In an artifact [25], a bit arithmetic defect was reported for Cranelift, a WebAssembly compiler. The defect
occurred because of interpreting a ‘4GB’ parameter as 4,000,000,000 bytes in decimal gigabytes. The maximum heap
size was configured below 4GiB, “4,294,967,296”, which made some unexpected instructions while investigating the

Manuscript submitted to ACM

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

826
827
828
829
830
831
832

xvi Rahman et al.

disassembly code shown in Listing 1. The WebAssembly compiler’s load and store instructions include an offset
immediate, which was designed to simplify loads and stores in working with structures. However, this allows any user
to avoid the bounds check by using a heap offset that is low, then adding a large offset in a load or store, eventually
allowing the program to enter a region just before an instance’s heap, which could have serious consequences. The

code snippet in Listing 1 shows how a bit of arithmetic defect can occur. The defect resulted in a crash.

1 mov edi, 0Oxee6b27fe ; an entirely unexpected constant: 3,999,999,998
2movsxd rax, DWORD PTR [rsp+0x88] ; the incorrect sign-extended load
3 cmp eax, edi ; compare against the heap bound

4 jae ffo <guest_func_4+0x360> ; and branch to a trap site if out of bounds

Listing 1. Example of a bit arithmetic defect reported for the WebAssembly compiler.

Circular Validation Defects: This category of defects occurs when there are no checks for the presence of circular

dependencies between objects or variables.

Example: As shown in Listing 2, Chaliasos et al. [5] reported an absent circular validation defect for Scalac, the compiler
for Scala. The two classes A and B are defined with a circular dependency issue. When Scalac checks the correctness of
these declarations, it does not discover this dependence problem. As a result, it crashes when Scalac unboxes these

value classes depending on the types.

1case class A(x :B) extends AnyVal;
2 case class B(x :A) extends AnyVal;

Listing 2. Example of an absent circular validation defect that occurs for Scalac.

Identifier Resolution Defects: This category of defects occurs when a compiler fails to resolve an identifier name to

its corresponding definition or scope.

Example: As shown in Listing 3, Chaliasos et al. [5] reported an identifier resolution defect for Java, the Java compiler.
The method error defined in line 7 is the most particular because its signature is less generic than the signature of
the error specified in line 6. Because an identifier resolution in Javac fails to resolve the identifiers in lines #6 and #7
adequately, it identifies both methods as ambiguous. The program does not get compiled even though it is a syntactically

valid program.

1class Test {
2 void test() {

3 Exception ex = null;
4 error("error", ex);
s}

¢ void error(Object o, Object... p) {3}
7 void error(Object o, Throwable t, Object... p) {}
8}

Listing 3. Example of an identifier resolution defect that occurs for Javac.

Integer Equality Defects: This category of defects occurs when a compiler does not adequately check for integer

equality.
Manuscript submitted to ACM

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

876
877
878
879
880
881
882
883
884

Defect Categorization in Compilers: A Multi-vocal Literature Review XVvii

Example: As shown in Listing 4, Zhang et al. [65] reported an integer equality defect for GCC. The defect occurred for
not checking for Integer equality via value comparison, which violated an assertion. The defect resulted in a GCC crash

and was repaired by using value comparison to check integer equality.

1struct s { char c[1]; };

2struct s a, b, c;

3int d; int e;

svoid bar (void)

s{

6 e? (d==07?b:c).c: (d==07?Db: c).c;
7}

Listing 4. Example of an integer equality defect that occurs for GCC.

Linkage Defects: This category of defects occurs due to unsuccessful linkages between components of a compiler. The
linkage defect category is not limited to the linker, i.e., the software that takes one or more object files and combines
them into a single executable file, library file, or another object file [14]. This category of defects can occur when

linkages are established between one component to another within a compiler.

Example: A linkage defect was reported for LLVM on Xcode while using the LLVM component called ‘lldb’ [61]. ‘Ildb’ is
a native debugger that is available as part of the LLVM compiler toolchain. It is more memory efficient and faster than
gdb, the GNU project debugger [61]. The defect occurs when the object method needs to be called in an undefined
entity 8. Listing 5 shows the error message for the defect. The defect is repaired by adding a link to the object method
in a configuration file essential to the 1ldb component of LLVM.

1build/Release+Asserts/x86_64/1ib/libclang_rt.cc_kext_i386_osx.a, file was built for archive which is not
— the architecture being linked (x86_64):
— /Users/buildslave/jenkins/11db/11lvm-build/Release+Asserts/x86_64/1ib/libclang_rt.cc_kext_i386_osx.a

2 Undefined symbols for architecture x86_64:

3 "PDBASTParser::~PDBASTParser()", referenced from:

4 11db_private: :ClangASTContext: :ClangASTContext(char const*) in liblldb-core.a(ClangASTContext.o)

5 11db_private: :ClangASTContext: :~ClangASTContext() in liblldb-core.a(ClangASTContext.o)

6 1d: symbol(s) not found for architecture x86_64

Listing 5. Error message for a linkage defect in LLVM.

Loop Induction Defects: This category of defects occurs when a compiler’s loop induction procedure is incorrect.

As part of the loop induction procedure, a compiler checks for loop invariants in the case of computer programs that
use recursions or iterations. Loop invariants are used to determine the progress or completion time of a computer
program [36, 38]. Loop induction defects are different from optimization defects as loop induction defects are related to

program invariants that can occur with or without the use of optimization flags.

Example: As shown in Listing 6, Yang et al. [62] reported a loop induction defect for LLVM. When the -indvars flag is
used for LLVM the code in line#5 (if (x) break ;) makes LLVM conclude that x is 1 after loop is executed, instead of
printing 5.

8https://bugs.llvm.org/show_bug.cgi?id=27362
Manuscript submitted to ACM

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

xviii Rahman et al.

1Void ; foo(void){

2 int x;

5 for (x = 0; x < 5; x++) \(
4 if (x) ; continue;

5 if (x) ; break;

6 3

7 printf("%d", x);

8}

Listing 6. Example of a loop induction defect that occurs for LLVM.

Invalid Memory Access Defects: This category of defects occurs when a program attempts to access a memory

location that is not allowed to access or tries to access a memory location in such a way that is not allowed. This

category of defects has been reported in Internet artifacts.

Example: In an artifact [63], an invalid memory access defect occurs for the Fortran compiler when the following code

snippet is executed. The defect resulted in a segmentation fault.

1 PBL_THICK(-1000000,J) = BLTHIK

Listing 7. Example of an invalid memory access defect reported for the Fortran compiler.

Misinformation Defects: This category of defects occurs when the compiler fails to provide adequate information to

the developer on how to fix a compiler error or a warning. We identify two sub-categories:
Erroneous root cause: Defects that do not adequately identify the root cause of a compilation error or a compiler warning.

Example: In an artifact [50], a misinformation defect occurred when using the PGI 14.1 Fortran compiler. The defect
occurs from not providing the correct information that caused the defect. The defect occurred for the program presented
in Listing 8. The module test_types is invalid because of the subroutine do_nothing() not accepting a class(foo)
argument. Instead of providing this information, the compiler generates a segmentation fault leaving no clues for a

developer on how to fix the issue.

1module test_types

2

stype :: foo

4+ contains

5 procedure :: do_nothing
send type foo

7

s contains

9

10 subroutine do_nothing()
11 end subroutine do_nothing
12

13 end module test_types

Listing 8. Example of an erroneous root cause defect reported for the Fortran compiler.

Spurious Warning: Defects that occur because of the compiler’s erroneous warning mechanisms that prevent a developer

from identifying the location of a compiler warning.
Manuscript submitted to ACM

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

955

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

988

Defect Categorization in Compilers: A Multi-vocal Literature Review xix

Example: As shown in Listing 9, a spurious warning defect was reported for GCC [56]. GCC is expected to give a
warning because the format string s is not null-terminated, and the printf function outputs the truncated string.

Because of a defect, the warning is not reported.

1void fn() { const char s[1] = "format"; printf(s); }

Listing 9. Example of a spurious warning defect reported for GCC.

Optimization Defects: This category of defects occurs when any undesired behavior occurs because of compiler

optimization. Compiler optimization is a procedure where algorithms take a program to transfer it in such a way that it
will execute the same output program but will use fewer resources or execution will be faster. This category of defects

has been reported in Internet artifacts and peer-reviewed publications.

Example: In a Stack Overflow post [1], we document an example of an optimization defect. The defect occurs when the

GCC compiler performs optimization that results in an infinite loop.
ifor (i =1;1i>0; 1 +=1) ++j;

Listing 10. Example of an optimization defect reported for the GCC compiler.

Program Parsing Defects: This category of defects occurs when the compiler fails to parse a computer program

adequately. This category of defects has been reported in Internet artifacts and peer-reviewed publications.

Example: In an artifact [19], a program parsing defect occurred when using the Cray Compiling Environment. The
defect occurred by using a Fortran-reserved keyword as a variable name. The Cray Compiling Environment incorrectly

parsed integerfoo as a reserved keyword instead of a variable name. The defect resulted in a compiler error.

1 program main

2 implicit none

3

4 type integerfoo

5 real :: bar

6 end type integerfoo

7

8 type(integerfoo) :: test
9

10 end program main

Listing 11. Example of a program parsing defect reported for the Fortran compiler.

Tensor Defects: This category of defects occurs when a compiler incorrectly computes tensors, which are used to

implement deep learning algorithms.

Example: As shown in Listing 12, Shen et al. [54] reported a Tensor defect occurred because of Tensor shapes being incor-

rectly calculated by TFLite, a lightweight deep learning compiler available as part of the Tensorflow project. The defect

was repaired by providing the correct batch size with target_shape = tuple((-1, weight_tensor_shape[1])).
Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

XX Rahman et al.

1- input_size =1

2 - for _, shape in enumerate(input_tensor_shape):

3= input_size*=shape

4+- batch_size = int(intput_size / weight_tensor_shape[1])

s - target_shape = tuple((batch_size, weight_tensor_shape[1]))
6+ target_shape = tuple((-1, weight_tensor_shape[1]))

Listing 12. Example of a Tensor defect that occurs for TFLite.

Translation Defects: This category of defects occurs when a compiler does not adequately translate the source code of

a computer program into intermediate forms or binaries. This category of defects has been reported in Internet artifacts

and peer-reviewed publications.

Example: In an artifact [13], a translation defect was reported for LLVM as shown in Listing 13. The defect occurs
because of translating two static functions with the same names, both of whom define a lambda function. During the
translation process, because of using lambda with async, the generated binary will have one symbol and will result in a

crash.

1 template $<typename T>$ auto async() {

2 return [J(auto func) {

3 [func] { func(O; 20O;

4 b

5 }

6 static void f(){

7 async $<int>$() ([] {});
8 }

9 void f1() { fQ; 2

Listing 13. Example of a translation defect that occurs for LLVM.

Type Defects: This category of defects occurs when a compiler inadequately handles the program types. This category

of defects has been reported in peer-reviewed publications. The category includes four sub-categories:
Incorrect conversion: Compiler defects that occur when the compiler incorrectly converts types.

Example: As shown in Listing 14, Chaliasos et al. [5] reported an example where types A and B needed to be converted
to type C, but Kotlinc failed to do such.

1interface A

2 interface B

sclass c: A, B

afun <T> T.m(): Unit where T: A, T:B {3}
s fun main(){

6 c().foo()

7}

Listing 14. Example of a an incorrect type conversion defect that occurs for Kotlinc.

Misinference: Compiler defects that occur when incorrect types are inferred for a variable or a function.

Manuscript submitted to ACM

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092

Defect Categorization in Compilers: A Multi-vocal Literature Review xxi

Example: Chaliasos et al. [5] reported a type misinference defect for Kotlinc, the Kotlin compiler. The defect occurs due
to incorrect handling of function references, which eventually caused Kotlinc to construct a constraint problem with
incomplete constraints. In Listing 15, the inference engine stops Kotlinc from instantiating the type variable T declared
in class A.

1class A<T>(val f:T)

2 fun test()ﬂ{

3 listOf<string>().map(::A)
43}

Listing 15. Example of a type misinference defect that occurs for Kotlinc.

Mismatch: Compiler defects that occur when one program within the compiler fails to provide the correct type to

another program.

Example: Shen et al. [54] reported a defect related to type mismatch for PyTorch. The output tensor type for the operator
is expected to be Float32. However, the analogous Glow operator produces Float16. The defect was repaired by using an

upcast operator as shown in Listing 16.

1 - return addValueMapping(output[0], EB->getResult());
2+ if(is4Bit){

3+ auto *CT = F.createConvertTo(

4+ "ConvertEmbeddingBag4BitRowwiseOffsetsOutput"

5+ EB.Elemkind: :FloatTy);

¢+ retun addValueMapping(output[0], CT->getResult());
7+ } else{

s+ return addValueMapping(output[@], EB->getResult());
9+ }

Listing 16. Example of a type mismatch defect that occurs for PyTorch.

Rule violation: Compiler defects that occur when the compiler violates the rules for the language’s type system.

Example: As shown in Listing 17, Chaliasos et al. [5] reported an example where violation of type rule occurs. For the
code snippet, Javac does not adhere to Java’s type rules that result in considering c<? > to be a subtype of I <? extends
X, X >.

1 Interface; I <X1, X2> {3}

2class DC<T> implements ; I<T, T> {}

spublic ; class [Jtest{

4 <X> void ; m(I<? ; extends ; X, X> arg) {3}
5 void ; test(c<?> arg){

6 m(arg);

Listing 17. Example of a type rule violation defect that occurs for Javac.
Mapping of Defect Categories with Artifacts and Publications: We provide a mapping between each identified

defect category and the corresponding artifact in Table 8. The defect categories that we did not find in any of our
Manuscript submitted to ACM

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

xxii Rahman et al.

Table 8. Mapping Between Internet Artifacts and Defect Categories

Category Artifact Index Count
Bit arithmetic 1A30 1
Invalid Memory Access 1A2 1
Misinformation 1A2,1A9, 1A10, IA12,IA13, IA16, IA20, IA23, IA25, IA26, IA27 11
Optimization 1A1,1A2, IA5, TA6, IA7, IA8, IA11, IA14, IA15, IA21, [A22, IA24, IA27, TA29, 15
1A32
Program parsing 1A3, IA19 2
Translation 1A17,1A18,1A28 3
Type IA31 1

Internet artifact sets are circular validation, identifier resolution, integer equality, linkage, loop induction, and tensor.
The defect category that we observe in Internet artifacts but not in publications is invalid memory access. We also

provide a mapping between each defect category and the corresponding publications in Table 9.

Table 9. Mapping Between Publications and Defect Categories

Category Publication Index Count
Bit arithmetic P1, P13, P20 3
Circular Validation P6 1
Identifier Resolution P6 1
Integer equality P16 1
Linkage P17 1
Loop Induction P5, P17 2
Invalid Memory Access P12, P22 2
Misinformation Pe, P8, P9, P10, P14, P21 6
Optimization P1, P3, P5, P10, P11, P15, P18, P22 8
Program parsing P7,P18 2
Tensor P2 1
Translation P4, P6, P11,P12, P16, P19, P22, P23 8
Type P2, Po, P17, P21, P22, P24, P25, P26 8

Mapping of Defect Categories with Compiler Characteristics: We also study the characteristics of the compilers
for which we documented the identified bug categories. We summarize our results in Tables 10 and 11. The tables are

sorted alphabetically based on the compiler name.

Each row lists a compiler and the defect categories that are associated with the compiler as shown in the ‘Category’
column. We further report the associated language, generated output type, and whether or not the compiler is open
or closed source. For example, for the ‘Bambu’ compiler we record the bit arithmetic defect. The compiler is used for

high-level synthesis (HLS) language, which generates hardware specification as output. The compiler is a closed source.

From Table 10 we observe defect categories to be diverse for open-source compilers compared to that of closed-source
compilers. Certain defect categories are common across multiple types of compilers. From Table 11 we observe multiple

Fortran-related compilers being studied for which practitioners have reported multiple defect categories.

Benchmarks reported in peer-reviewed publications: We report the benchmarks that have been used in our studied
publications in Table 12. The ‘Benchmark’ column in Table 12 reports the benchmarks that have been used by each
publication. If a publication does not report any benchmarks, then we report ‘No benchmark reported’. We observe

GCC and LLVM to be the most frequently used benchmarks in academic publications related to compiler defects.

Mapping of Defect Categories to Compilation Steps and Defect Categories: we provide a mapping between

compilation steps and identified defect categories in Table 13.
Manuscript submitted to ACM

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196

Defect Categorization in Compilers: A Multi-vocal Literature Review XXiii
Table 10. Mapping Between Defect Categories and Compiler Characteristics Based on Publications
Category Compiler Name Languages Used Output Open/Closed
Bit arithmetic Bambu HLS Hardware Specifications ~ Closed
Type ChakraCore Javascript Machine Code Open
Integer equality, Misinformation, Optimization, Clang C/C++, Objective C/C++, Machine Open
Translation RenderScript
Bit arithmetic Commercial HLS HLS Hardware Specifications ~ Closed
Compiler
Integer equality, Misinformation, Optimization, Clang C/C++, Objective C/C++, Machine Open
Translation RenderScript
Circular validation, Identifier resolution, Misinfor- ~ Dotty Scala 3 Java Bytecode Open
mation, Translation, Type
Integer equality, Loop induction, Bit arithmetic, In- GCC C/C++ Binary/Assembly Open
valid Memory Access, Misinformation, Optimiza-
tion, Translation
Tensor, Type Glow Dataflow graph Machine Open
Circular validation, Identifier resolution, Misinfor- ~ Groovy Groovy Java Bytecode Open
mation, Translation, Type
Circular validation, Identifier resolution, Misinfor- Kotlin Kotlin Java Bytecode Open
mation, Translation, Type
Misinformation K-Java Java Java Open
Misinformation KSolidity Solidity Java Open
Bit arithmetic Legup HLS Hardware Specifications ~ Open
Bit arithmetic, Linkage, Loop induction, Invalid =~ LLVM C/C++, C#, OpenCL, Assembly Open
Memory Access, Optimization, Translation, Type Ruby, Scala
Tensor, Type nGraph ONNX graph Machine Open
Program parsing OpenCL C/C++ Assembly Open
Circular validation, Identifier resolution, Misinfor- ~ Open JDK Java Java Bytecode Open
mation, Translation, Type
Circular validation, Identifier resolution, Misinfor- Scala Scala 2 Java Bytecode Open
mation, Translation, Type
Optimization, Program parsing RustC Rust Assembly Open
Misinformation, Translation Simulink Simulink Specification Closed
Tensor, Type TVM Python deep learning R Open
Optimization TurboFan Javascript Machine Open
Optimization, Type V8 Javascript Javascript Machine Open
Optimization, Type Intel C++ C++ Machine Open
Type Javascript Core Javascript Machine Code Closed
Program parsing, Type RustC Rust Binary Open
Type P4 Compiler P4 Programs C/JSON/Machine Code Open
Type ChakraCore Javascript Machine Code Open
Type SpiderMonkey Javascript Byte Code Open
Type Rhino Javascript Nyte Code Closed
Type Nashorn Javascript Byte Code Closed
Type Hermes Javascript Byte Code Open
Type JerryScript Javascript Byte Code Open
Type QuickJS Javascript Binary Open
Type GraalJS Javascript Byte Code Code Open

of Real Faults in Deep Learning Systems” [24].

We further investigate if the identified defect categories appear for other software systems. As part of this review activity,
we reviewed prior work on defect categorization and identified if one or multiple defect categories identified from
our MLR also appear for other software systems. By reviewing these papers, we assume to identify defect categories
that are applicable to other software systems. The papers that we reviewed are: “An Empirical Study on TensorFlow
Program Bugs” [66], “Bug Characteristics in Open Source Software” [57]”, “Orthogonal Defect Classification: A Concept
for In-process Measurements” [8]”, “Not All Bugs Are The Same: Understanding, Characterizing, and Classifying Bug
Types” [4]”, “Defect Categorization: Making Use of a Decade of Widely Varying Historical Data” [52]”, “Gang of Eight:
A Defect Taxonomy for Infrastructure as Code Scripts” [42], “IoT Bugs and Development Challenges” [34]”, “Taxonomy

Manuscript submitted to ACM

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248

XXiv Rahman et al.
Table 11. Mapping Between Defect Categories and Compiler Characteristics Based on Artifacts

Category Compiler Name Languages Used Output Open/Closed

Optimization .NET C#, F#, Visual Basic Machine Open

Misinformation, Optimization Arduino SDK C++ Machine Open

Optimization Clang C/C++, Objective C/C++, Machine Open
RenderScript

Optimization Code Composer Stu- C/C++ Assembly Closed

dio
Misinformation, Optimization, Program parsing Cray Compiling En- Fortran Machine Closed
vironment

Misinformation, Optimization, Translation GCC C/C++ Binary/Assembly Open

Invalid memory access, Misinformation, Optimiza- ~GNU Fortran Fortran Machine Open

tion

Misinformation, Optimization IBM Fortran Fortran Machine Closed

Optimization Intel C++ C++ Machine Open

Invalid memory access, Misinformation, Optimiza- Intel Fortran Fortran Machine Open

tion, Translation

Optimization Java 7 Java Java Bytecode Closed

Optimization Kotlin Kotlin Java Bytecode Open

Optimization, Translation LLVM C/C++, C#, OpenCL, Assembly Open
Ruby, Scala

Misinformation, Optimization PGI Fortran Machine Closed

Type Solc Solidity Machine Open

Misinformation, Optimization Visual Studio x64 C++ Binary/DLL/Machine Closed

Bit Arithmetic WebAssembly C/C++, Rust, C#, Kotlin, Webassembly binary Open
Go, Swift

Misinformation XCode 4 C/C++, Objective C/C++, Machine Closed
Swift

Misinformation Xilinx SDK C++ Machine Closed

Table 12. Benchmarks used in Peer-reviewed Publications

Index Benchmark

P1 120 real compiler bugs (60 GCC bugs and 60 LLVM bugs), as well as 90 bugs
collected from prior work (45 GCC bugs and 45 LLVM bugs).

P2 603 bugs (318 TVM bugs, 145 Glow bugs, and 140 nGraph bugs)

P3 No benchmark reported

P4 12% of the fixed miscompilation bugs for the Clang/LLVM C/C++ compiler

P5 GCC and LLVM

P6 320 typing-related bugs for four mainstream JVM languages, namely Java,
Scala, Kotlin, and Groovy

P7 OpenCL systems

P8 No benchmark reported

P9 60 GCC bugs

P10 83 bugs (44 GCC and 39 LLVM bugs)

P11 21 OpenCL systems

P12 124 GCC bugs and 93 LLVM bugs

P13 No benchmark reported

P14 756 tests cases of K-Java and KSolidity

P15 8,771 GCC optimization bugs and 1,564 LLVM optimization bugs

P16 136 bugs from GCC- 4.8.5 and 81 bugs from Clang-3.6.1

P17 1,723 tool-chain bugs from LLVM

P18 8 GNU bugs and 23 LLVM bugs

P19 144,847 Simulink models

P20 45 GCC bugs and 45 LLVM bugs

P21 50 bugs in the Kotlin compiler

P22 112 bugs in three versions of ChakraCore, Javascript Core, and V8

P23 220 bugs in GCC, LLVM, and Intel C++ Compiler

P24 18 bugs in the Rust Compiler

P25 4 bugs in the P4 Compiler

P26 158 bugs in V8, ChakraCore, Javascript Core, SpiderMonkey, Rhino, Nashorn,

Hermes, JerryScript, Quick]S, Graaljs

The papers related to defect categorization can be divided into two groups: (i) generic software systems: the defect
taxonomies presented in the following papers, “Orthogonal Defect Classification: A Concept for In-process Mea-

surements” [8], “Not All Bugs Are The Same: Understanding, Characterizing, and Classifying Bug Types” [4], “Bug
Manuscript submitted to ACM

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300

Defect Categorization in Compilers: A Multi-vocal Literature Review XXV

Table 13. Mapping of Defect Categories to Compilation Steps

Category Compilation Phase Code Construct

Bit arithmetic Translation Arithmetic Operations
Circular validation Translation Arithmetic Operations
Identifier resolution Translation Identifier/Objects
Integer equality Translation Arithmetic Operations
Linkage Translation Identifier/Objects
Loop induction Translation Identifier/Objects
Invalid Memory Access Translation Memory
Misinformation Translation Identifier/Objects
Optimization Optimization Identifier/Objects
Program parsing Parsing Identifier/Objects
Tensor Translation Identifier/Objects
Translation Translation Identifier/Objects
Type Translation Types

Table 14. Appearance of Defect Categories in Previously-studied Software Systems

Category

Previously-studied Software System

Bit arithmetic
Circular validation
Identifier resolution
Integer equality
Linkage

Loop induction
Invalid Memory Access
Misinformation
Optimization
Program parsing
Tensor

Translation

Type

Not reported for prior software system

Not reported for prior software system

Not reported for prior software system

IBM Proprietary Software [8]

IBM Proprietary Software [8], NASA Software Projects [52], Service-oriented Web Systems [6]
Not reported for prior software system

Mozilla Projects [57], NASA Software Projects [52]

NASA Software Projects [52], Service-oriented Web Systems [6]
NASA Software Projects [52]

IBM Proprietary Software [8]

TensorFlow-based machine learning systems [66]

Deep learning systems [24]

Deep learning systems [24]

characteristics in open source software” [57], and “Defect Categorization: Making Use of a Decade of Widely Vary-
ing Historical Data” [52] are applicable for generic software projects. Amongst these three publications, the three
papers namely, “Orthogonal Defect Classification: A Concept for In-process Measurements” [8], “Bug Characteristics
in open-source software” [58], and “Defect Categorization: Making Use of a Decade of Widely Varying Historical
Data” [52] are seminal publications with high impact in the domain of software engineering research; and (ii) specialized
software systems: the defect taxonomies presented in the following papers “Gang of Eight: A Defect Taxonomy for
Infrastructure as Code Scripts” [42], “Taxonomy of Real Faults in Deep Learning Systems” [24], and “An Empirical Study
on TensorFlow Program Bugs” [66] respectively, present defect categories for infrastructure as code, deep learning
software, and Tensorflow. All of these software systems serve a unique purpose. Our hypothesis is that as these papers
are recent and address relatively novel types of software, overlaps between our identified defect categories and existing

categories in these papers can help us contextualize the novelty of compiler defects.

By considering publications from the above-mentioned groups we assume to synthesize existing reported defect
categories, and then compare our identified compiler defect categories to that with existing defect categories for
previously studied software systems. Our findings are reported in Table 14. The defect categories that have not been

reported for prior software systems are bit arithmetic, circular validation, identifier resolution, and loop induction.

Mapping of Defect Categories with Compiler Components: We provide a mapping between each identified defect
category and compiler components in Table 15. We observe the syntax analyzer and code generator respectively, to be

mapped to 8 and 7 of the 13 defect categories. The intermediate representation generator is the least mapped component.
Manuscript submitted to ACM

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

1348

xxvi Rahman et al.

Table 15. Mapping Between Compiler Components and Defect Categories

Category Compiler Component

Bit arithmetic Semantic analyzer, Lexical analyzer, Syntax analyzer, Code generator
Circular Validation Code generator

Identifier Resolution Syntax analyzer

Integer equality Lexical analyzer, Syntax analyzer

Linkage Code generator

Loop Induction Code optimizer, Intermediate representation generator, Semantic analyzer
Invalid Memory Access Syntax analyzer, Code generator

Misinformation Syntax analyzer, Semantic analyzer, Code generator

Optimization Semantic analyzer, Code optimizer, Code generator

Program parsing Lexical analyzer

Tensor Semantic analyzer, Syntax analyzer

Translation Syntax analyzer, Code generator

Type Semantic analyzer, Syntax analyzer

Answer to RQ2: We identify 13 defect categories from our MLR of which bit arithmetic, circular validation, identifier

resolution, and loop induction have not been reported for other software systems.

3.3 Answer to RQ3

We provide answers to RQ3: What techniques have been reported in Internet artifacts and peer-reviewed publications to

identify defects in compilers? in this section.

3.3.1 Answer to RQ3: Defect Identification Techniques. Altogether, we identify 15 techniques used to identify defect

categories that we describe below:

Deep learning: We observe deep learning algorithms to be used to identify defects in compilers. Using deep learning
algorithms, programs are generated automatically, which are later executed to identify defects in compilers. For example,

Cummins et al. [12] used deep learning to generate C programs to identify defects in GCC.

Reinforcement learning: We observe reinforcement learning to be used to find defects in compilers. In reinforcement
learning, an agent is rewarded if the agent is executing steps toward the desired goal. Reinforcement learning was used
by Chen et al. [7] to identify latent defects in GCC.

Tensor mutation: We observe tensor mutations to be used to identify defects in deep learning compilers. Shen et al. [54]
studied defect characteristics in deep learning compilers and observed intermediate representation pre-processors to be
the most defect prone. Using this observation, Shen et al. [54] constructed TVMFuzz that randomly mutates tensor

types, tensor shapes, and tensor element values.

Optimization pattern synthesis: We observe researchers synthesizing patterns when a compiler performs opti-
mizations to identify defects in compilers. Lim and Debray [32] mined and synthesized patterns in intermediate
representation forms to identify defects in JIT compilers. Listing 18 shows an example of a program that is generated
using optimization pattern synthesis [32]. The code snippet a = i & -0; is generated by (i) mutating a set of
input programs, (ii) executing the mutated programs, and (iii) synthesizing an intermediate representation from the

executions.

Differential testing: We observe differential testing to be used to identify defects in compilers. Differential testing

applies the same input combinations to different variants of the same computer program and observes differences in
Manuscript submitted to ACM

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404

Defect Categorization in Compilers: A Multi-vocal Literature Review xxvii

1var a, b;

2for (var i = 0; i < 100000; i++) {

3 b =1;

4 a=1& -0; // Changed from '+' to '&"'.
5 b = a,

¢}

sprint(a === b);

s8cO);

sprint(a === b);

Listing 18. Javascript code snippet generated by optimization pattern synthesis [32].

the execution profile to detect unexpected behaviors in the program. Differential testing is used by Yang et al., where
they constructed CSmith to identify defects in GCC. As another example, differential testing is used by Sun et al. [56] to
find compiler defects for GCC. A variant of differential testing is the equivalence of modulo input, which was used by

Chowdhury et al. [10] to identify defects in the Simulink compiler.

Markov Chains: We observe Monte Carlo Markov Chains (MCMCs) to be used to identify defects in compilers. Le et
al. [31] constructed Athena, which uses MCMC to generate programs that are executed to identify defects in GCC and
LLVM. Le et al. [31] used MCMC to find samples of program statements to generate programs.

Address Discrepancy Analysis: We observe address discrepancy analysis to be used to find defects in high-level
synthesis (HLS) compilers. Fezzardi et al. [18] used address discrepancy analysis to identify invalid memory access
defects in HLS compilers. As part of this analysis technique, Fezzardi et al. [18] uses HLS information to map software

pointers with hardware memory access by constructing finite state machines.

Skeletal Program Enumeration: We observe skeletal program enumeration to be used to identify defects in compilers.
Zhang et al. [65] observed that a computer program could be represented as a skeleton, i.e., a syntactic structure
parameter by a collection of identifiers, for example, variables. Zhang et al. [65] applied partitioning to apply skeletal

program enumeration to identify defects in GCC and Clang.

Semantic specifications: We observe skeletal semantic specifications to be used to identify defects in compilers.
Schumi and Sun [51] used semantic specification where they generated structural operational semantic rules to generate

programs to identify defects in the Java and the Solidity compiler.

Commercial static analysis tool usage: We observe practitioners use commercial static analysis tools to identify
defects in compilers. For example, in a blog post, a practitioner mentioned how ‘PVS Studio’, a commercial static analysis

tool was used to identify a invalid memory access defect in the GCC compiler.

Aspect preserving mutation: We observe Park et al. [39] to identify aspects, i.e., desirable properties in Javascript-like
programs, and preserve aspects through stochastic mutation of the programs to identify defects for JavaScript compilers,

such as the V8 JavaScript compiler.

Type-centric enumeration: We observe Stepanov et al. [55] to use type-centric enumeration to identify defects

type-related defects for the Kotlin compiler. Type-centric enumeration is inspired by skeletal program enumeration,

which leverages typed expression generation and type placeholder filling where generated expressions are mutated.
Manuscript submitted to ACM

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

1456

xxviii Rahman et al.

Constraint logic programming: We observe Dewey et al. [16] to use constraint logic programming to identify
type-related defects for the Rust compiler. The goal is to generate well-typed Rust programs that can expose latent
type-related defects in the Rust compiler. Dewey et al. [16] leveraged the Curry-Howard Correspondence where logical

propositions correspond to types and programs correspond to proof terms.

Equivalence modulo input: We observe researchers use the concept of equivalence module input (EMI) to identify
defects in compilers. EMI takes a computer program and a set of values as input and executes the program from which
program profiles are extracted. Next, from the extracted program profiles EMI generates a set of program inputs by

mutating the original input set so that the execution of the program is exactly the same as the original inputs.

User action: We observe regular user actions to lead to the discovery of defects in compilers. Unlike the above-
mentioned techniques, for this category, users do not intentionally use a technique to identify defects in compilers.

Instead, while using a compiler in a particular context, the defect in the compiler gets exposed.

Unlike all other reported techniques, for user action, no systematic technique is applied to discover a defect in the
compiler. This category includes all actions performed by a compiler user when executing a computer program
with a compiler. Let us consider the case of identifying a defect in the MingW64 component of GCC [64]. The
user in this case was developing a model for ocean environments in order to approximate the health of fish stocks.
The user was refactoring an existing implementation of the model to instantiate multiple models as threads. As
part of this refactoring operation, the user identified a defect that resulted in erroneous calculations. Instead of
receiving 1999.818926297566804, the user received 1999.8189264475995515 with the refactored implementation.
The erroneous calculation was attributed to a linkage defect where a function call was not linked to the implementation
of _fpreset. The user further added: “All in all I spent around 5 days chasing this bug through my code. I generated
Gigabytes of log files and had to get down to the precision of 7.5 grains of sand on the planet Earth. The compiler missing a key
function call turned out to be the cause of the issue. Many times, while trying to find the root cause I found myself questioning

my ability to write code, diagnose bugs and remain sane. I'm glad I found an answer and have a way forward” [64].

The identified 15 techniques can be divided into two groups: techniques identified from Internet artifacts and techniques
identified from peer-reviewed publications. Two techniques namely, commercial static analysis tool usage and user
action have been reported in Internet artifacts but not in peer-reviewed publications. The only technique that appears
for both Internet artifacts and peer-reviewed publications is differential testing. Also, the techniques that we only
obtain from peer-reviewed publications: address discrepancy analysis, aspect preserving mutation, constraint logic
programming, deep learning, equivalence modulo input, Markov chains, optimization pattern synthesis, reinforcement

learning, semantic specification, skeletal program enumeration, type-centric enumeration, and tensor mutation.

We provide a mapping between the applied technique and the corresponding Internet artifact in Table 16. We observe

user action to be the most frequently applied technique to identify defects in compilers for Internet artifacts.

We also provide a mapping between the applied technique and the corresponding publication in Table 17. We observe
differential testing to be the most frequently applied technique to identify defects in compilers for our set of peer-
reviewed publications. P6, P15, and P17 use qualitative analysis to characterize reported defects and hence are not
mapped to any technique in Table 17.

Manuscript submitted to ACM

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494

1495

Defect Categorization in Compilers: A Multi-vocal Literature Review XXIX

Table 16. Mapping Between Internet Artifacts and Techniques

Category Artifact Index Count
Differential testing 1A5 1
Commercial static analy- 1A16 1
sis tool
User action IA1,1A2, IA3, 1A4, 1A6, IA7, IA8, IA9, IA10, IA11, IA12, IA13, IA14, IA15, IA17, 30
1A18,1A19, IA20, [A21, IA22, IA23, IA24, TA25, IA26, IA27, IA28, IA29, IA30, IA31,
1A32

Table 17. Mapping Between Publications and Techniques

Category Publication Index Count
Address discrepancy analysis P13 1
Deep learning P7, P26 2
Differential testing P4, P5, P8, P9, P11, P12, P14, P18, P19, P23, P25 11
Equivalence modulo input P22 1
Markov chains P10, P20 2
Optimization pattern synthesis P3 1
Reinforcement learning P1 1
Semantic specification P19 1
Skeletal program enumeration P16, P20 2
Tensor mutation P2 1
Aspect preserving mutation P22 1
Type-centric enumeration P21 1
Constraint logic programming P24 1

Table 18. Mapping Between Defect Categories and Techniques

Technique Defect Category

Address discrepancy analysis Bit arithmetic

Deep learning Program Parsing, Type

Differential testing Translation, Loop Induction, Misinformation, Optimization, Invalid Memory Access, Program parsing,
Type

Equivalence modulo input (EMI) Invalid Memory Access, Optimization, Transalation

Markov chains Misinformation, Optimization, Bit arithmetic

Optimization pattern synthesis Optimization

Reinforcement learning Bit arithmetic, Optimization

Semantic specification Misinformation

Skeletal program enumeration Integer equality, Translation, Bit arithmetic

Commercial static analysis tool ~ Misinformation

Tensor mutation Tensor, Type

User action Bit Arithmetic, Invalid Memory Access, Misinformation, Optimization, Program parsing, Translation,
Type

Aspect preserving mutation Type

Type-centric enumeration Type

Constraint logic programming Type

We further provide details on techniques used to identify certain defect categories in Table 18. We observe two techniques
to be dominant: differential testing and user action. Unlike user action, differential testing is systematic and can be
used to generate programs to automatically find defects in compilers. We also observed no one technique is enough to

identify all identified defect categories in compilers.

3.3.2 Answer to RQ3: Challenges Addressed by Identified Techniques. We describe the challenges that are addressed by
the 15 techniques. We identify five categories of challenges that we describe below. A mapping between each identified
technique and the challenge it identifies is listed in Table 19.

Manuscript submitted to ACM

XXX Rahman et al.

Table 19. Mapping Between Techniques and Addressed Challenges

Technique Addressed Challenge

Address discrepancy analysis Optimized memory localization for HLS
Deep learning Automated generation of test programs
Differential testing Automated generation of test programs
Equivalence modulo input (EMI) Automated generation of inputs for test programs
Markov chains Automated generation of test programs
Optimization pattern synthesis Automated generation of test programs
Reinforcement learning Automated generation of test programs
Semantic specification Automated generation of test programs
Skeletal program enumeration Automated generation of test programs
Commercial static analysis tool usage N/A

Tensor mutation Tensor attribute mining

User action N/A

Aspect preserving mutation Aspect Pre-condition Analysis

Optimized memory localization for HLS: This category corresponds to the unique challenge of identifying the
memory location to expose memory-related defects in the HLS compiler. To address this unique challenge authors of

P13 used address discrepancy analysis.

Automated generation of inputs for test programs: This category corresponds to the challenge of generating input
data for existing computer programs that are used to trace compiler executions. To address this challenge researchers

have used equivalence modulo input.

Automated generation of test programs: This category corresponds to the challenge of generating computer
programs in a certain programming language so that these programs can identify latent defects in compilers. This
category is different from the automated generation of inputs, as the category only considers the generation of test
programs and not the generation of inputs for existing programs. From our analysis we find generating test programs
accurately and effectively to find compiler bugs is challenging. To address this challenge researchers have used a wide
range of techniques, namely, deep learning, differential testing, reinforcement learning, Markov chains, optimization

pattern synthesis, semantic specification, and skeletal program enumeration.

Tensor attribute mining: This category corresponds to the challenge of transforming deep learning programs into
adequate forms so that deep learning compilers can be fuzzed. To address this challenge, authors of P2 apply tensor
mutation using the following steps: (i) construction of directed graphs based on API calls, and (ii) select random

subgraphs from step (i) and mutate the graphs for tensor type, tensor shape, and primitive tensor values.

Aspect Pre-condition Analysis: This category corresponds to the challenge of the pre-condition necessary to identify
and model an aspect, i.e., a desirable property in Javascript programs. We observe Park et al. [39] to address this

challenge with aspect-preserving mutation.

In Table 19 ‘N/A’ corresponds to a technique not addressing challenges as reported in an Internet artifact. The two
techniques commercial static analysis tool usage and user action are reported in Internet artifacts that have not

mentioned any challenge the mentioned technique it addresses.

We also report the temporal trends of the studied challenges reported in Figure 8. We observe the most frequently studied
challenge is the automated generation of test programs (‘GENERATE-PROGRAM’ in Figure 8). The first publication
related to the automated generation of test programs in our set was published in 2011. We observe Tensor attribute

mining (‘TENSOR-MINING’) to be a relatively recent topic of interest amongst researchers.
Manuscript submitted to ACM

1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

1598

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

1612

Defect Categorization in Compilers: A Multi-vocal Literature Review xxxi

6.
4- CHALLENGE
- ASPECT-PRECONDITION
S GENERATE-INPUT
3 GENERATE-PROGRAM
[MEMORY-LOCALIZATION
2- I TENSOR-MINING
O.
N Q > > © © A ® o N N
N N N N N N N N N Q a
I N I N N M
Year

Fig. 8. Temporal trends of studied challenges in our set of 26 peer-reviewed publications.

Answer to RQ3: We identify 15 techniques to identify defects in compilers. The most frequently used technique
amongst publications is differential testing, whereas the most frequently used technique in Internet artifacts is user

action.

4 DISCUSSION

We discuss the findings of our MLR paper as follows:

Usefulness of Differential Testing From Table 17, we observe differential testing to be the most frequently used
technique to identify defects in compilers. 11 papers use differential testing, and each of these 11 papers has reported
differential testing and its variants to be effective in identifying defects. Despite documented benefits reported in
publications, we observe differential testing under-reported in Internet artifacts. Only one artifact reported this
technique to be used to find defects in compilers. These observations imply that for the systematic identification of
defects in compilers, practitioners can rely on differential testing, as there is documented evidence of the effectiveness

of differential testing for finding defects in a diverse set of compilers, such as GCC, LLVM, and Simulink.

Studied Compilers - Differences and Similarities Between Publications and Internet Artifacts: From Section 3.1,
we notice both differences and similarities with respect to the studied compiler in our MLR. In both Internet artifacts
and publications, GCC and LLVM are well-investigated compilers. However, in the set of Internet artifacts, we observe
the following compilers to be investigated, which are absent in publications: Arduino SDK, GNU Fortran, Intel Fortran,
Java 7 Compiler, PGI Fortran, Code Composer Studio, Cray Compiling Environment, IBM Fortran, Kotlin, MingW64,
Visual Studio x64, WebAssembly, XCode, and Xilinix SDK. One possible explanation is practitioners report defects for
compilers that they use to perform their professional responsibilities. On the other hand, in the case of peer-reviewed

Manuscript submitted to ACM

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

1650

1658
1659
1660
1661
1662
1663

1664

xxxii Rahman et al.

publications defects are reported as part of the scientific discovery that may not overlap with compilers that practitioners

use in niche domains.

The results of RQ1 have implications for researchers. Results of RQ1 reveal that there is a wide range of compilers that
practitioners use and include defects. The implication of this finding is that researchers can apply existing defect finding
techniques for compilers that practitioners use but have not thoroughly investigated by researchers. For example, for
four Fortran-related compilers, namely, IBM Fortran, Intel Fortran, PGI Fortran, and GNU Fortran practitioners, have
reported defects. Researchers can investigate if techniques applicable for GCC are applicable to these Fortran-related
compilers. According to enlyft °, 13,031 companies use Fortran. Defect identification techniques for Fortran compilers
can help practitioners who use Fortran for commercial and scientific purposes [26]. As another example, researchers
can investigate if existing defect identification techniques can be applied to Kotlin, which is used by 60% of professional
Android app developers !°. Our hypothesis is existing defect identification techniques used in existing research may

not work for unexplored compilers, such as Kotlin and Fortran.

Implication#1: By comparing the studied compilers between Internet artifacts and peer-reviewed publications, we
observe Arduino SDK, GNU Fortran, Intel Fortran, Java 7 Compiler, PGI Fortran, Code Composer Studio, Cray
Compiling Environment, IBM Fortran, MingWeé4, Visual Studio x64, WebAssembly, XCode, and Xilinix SDK not
to be studied peer-reviewed publications. We advocate researchers apply existing and novel defect identification
techniques for compilers that practitioners use but have not thoroughly investigated by researchers, such as Fortran

compilers.

Identified Defect Categories of Compilers: From Section 3.2, we observe specific defect categories to be unique to
compilers that do not appear for other software systems. These defect categories are bit arithmetic, circular validation,
identifier resolution, and loop induction. This observation implies that defects in compilers have unique characteristics
and thus require systematic investigation specific to compilers. Defect categories that appear for compilers and other
software systems are integer equality, linkage, invalid memory access, misinformation, optimization, program parsing,

tensor, translation, and type.

We identify the following defect categories that we observe in peer-reviewed publications but not in Internet artifacts:
circular validation, identifier resolution, integer equality, linkage, loop induction, and tensor. All six defect categories
observed for Internet artifacts are documented in peer-reviewed publications. One possible explanation is that researchers
who author peer-reviewed publications systematically apply a set of techniques in order to identify defects in compilers.
Unlike software practitioners who use compilers, researchers of our studied peer-reviewed publications are experts in
the domain of compiler testing. Their expertise, as demonstrated through their research activities, might have helped in

yielding the defect categories not reported in peer-reviewed publications.

Implication#2: Practitioners might not systematically apply techniques to find defects in the compilers they
use. Researchers should proactively engage in defect identification research in compilers that have relevance for

practitioners and aid in making the software supply chain resilient.

“https://enlyft.com/tech/products/fortran
1Ohttps://developer.android.com/kotlin

Manuscript submitted to ACM

1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702

1703

1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

1716

Defect Categorization in Compilers: A Multi-vocal Literature Review xxxiil

Defect Identification Techniques: From Section 3.3, we observe three techniques that have been reported in Internet
artifacts. The count of defect categories reported in Internet artifacts is also lower than that of peer-reviewed publications.
One possible explanation is practitioners are aware of defect identification techniques used by researchers, but such
analyses are not reported publicly, especially for compilers that are closed source, such as Code Composer Studio.
Another possible explanation is that practitioners are more users of compilers who may not have the necessary expertise
to perform compiler testing. As a result, practitioners only use a handful set of techniques to identify defects in compilers.
Such explanation can partially be substantiated by findings reported in Table 16. We observe user action to be the most
frequently reported technique amongst Internet artifacts. User action is the technique when a compiler user uses a
compiler to perform a task, but while performing the task, a defect in the compiler is exposed. User action is not a
systematic compiler testing technique, which may not yield all possible defect categories. Our explanation is subject to

empirical substantiation, which researchers can investigate further.

Implication#3: Researchers can systematically investigate if practitioners are aware of defect identification tech-
niques for compilers through interviews and/or survey analysis. Based on the conducted research, researchers
can further investigate how defect identification techniques that are common in peer-reviewed research can be
transitioned to industry. Existing research [3, 33] related to software quality assurance could be of interest to

researchers in this regard.

Latent Defects in Infrastructure Orchestrators: Modern day computing infrastructure is managed with domain-
specific languages called infrastructure as code (IaC) languages [43, 44]. IaC is the practice of automatically managing
computing infrastructure at scale with dedicated programming languages [43, 44]. Languages used for IaC are examples
of domain specific languages, which are different from general purpose programming languages, such as C and
Java [45]. From our results reported in Section 3.2, we observe a lack of research related defects in IaC orchestrators,
i.e., software tools that parse and compile IaC software artifacts to manage large-scale computing infrastructure. As
these languages are pivotal in automated provisioning of computing infrastructure, the underlying compilers that
process and translate IaC scripts need to be robust and resilient. To that end, we propose the following research
directions: (i) gain an understanding of defects in IaC orchestrators through categorization; (ii) discover latent defects
in IaC orchestrators with established techniques, such as differential testing and fuzzing; and (iii) formal verification of

orchestrator components with theorem proving.

Implication#4: As IaC is an emerging domain, as part of future work, researchers can investigate techniques to

identify latent defects in IaC orchestrators, i.e., software tools that parse and compiler IaC scripts.

5 THREATS TO VALIDITY

We discuss the limitations of our paper as follows:

Conclusion Validity: Our application of inclusion and exclusion criteria is susceptible to rater bias, which can limit the
sets of Internet artifacts and peer-reviewed publications that we have used in our MLR. We mitigate this limitation by
using two raters and a resolver who resolved the disagreements between the two raters. Our approach to deriving defect

Manuscript submitted to ACM

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768

XXXiv Rahman et al.

categories is susceptible to rater bias, as these categories are derived by the third author. We mitigate this limitation by

performing rater verification.

We acknowledge that our list of keywords to search Internet artifacts and peer-reviewed publications might not be
comprehensive. We mitigate this limitation by using a quasi-gold set. We also acknowledge that our results are limited
to the quality of the Internet artifacts and peer-reviewed publications, which we mitigate by conducting a quality

analysis.

Construct Validity: Our MLR involves the application of qualitative analysis conducted by the third author, which we use
to answer RQ1, RQ2, and RQ3. The third author is a Ph.D. student with two years of experience in professional software
engineering. Such experience of the rater makes the conducted qualitative analysis susceptible to mono-method bias, i.e.,
the phenomenon of rater expectation to influence the outcomes of the qualitative analysis. We mitigate this limitation

by performing rater verification and allocating another rater.

External Validity: Our answers to RQ1, RQ2, and RQ3 are limited to the sets of Internet artifacts and publications that
we collected. With the evolution of time, the count of Internet artifacts and publications related to compiler defects can
grow. Therefore, a potential future review of Internet artifacts and publications related to compiler defects can identify

defect categories that are not included in our paper.

6 RELATED WORK

Our paper is closely related to MLRs that have been conducted in the domain of automated software engineering.
Myrbakken and Colomo-Palacios [37] performed an MLR to identify the benefits and challenges of adopting security in
development and operations (DevOps) with two peer-reviewed publications and 50 Internet artifacts. Sanchez-Gordon
et al. [49] reported growing interest in DevOps adoption for developing e-learning systems with their MLR. Garousi
and Mantyla [23] performed an MLR study and provided a checklist of practical advice for practitioners for better
software test automation. In another work, Garousi et al. [20] performed an MLR with 130 peer-reviewed publications
and 51 Internet artifacts and reported 58 software test maturity models, five driving factors, three benefits, and eight

challenges for conducting successful test maturity assessment and test process improvement.

The examples mentioned earlier showcase the community’s interest in using MLRs to derive novel and actionable

insights for practitioners related to software engineering.

Our paper is also related to prior research on defect categories for software. In 1992, Chillarege et al. [9] proposed
Orthogonal Defect Classification (ODC) that included eight defect categories. Categories proposed by Chillarege et
al. [9] were used by Cinque et al. [11] to categorize defects for air traffic control software. Later in 2008, Seaman et
al. [52] extended ODC to derive 7 categories of requirements defects and 7 categories of test plan defects. Use of existing
defect categorization frameworks, such as ODC and Seaman et al. [52]’s work, may be inadequate for compilers, as

observed in Table 14.

Researchers have also categorized defects for domain-specific software systems. For example, Humbatova et al. [24]
mined GitHub issues and Stack Overflow posts to derive a fault taxonomy for software projects that use deep learning.
Rahman et al. [42] used open coding with commits to derive defect categories for Puppet scripts.

Manuscript submitted to ACM

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819

1820

Defect Categorization in Compilers: A Multi-vocal Literature Review XXXV

We observe a lack of research related to compiler defect categorization. We have used an MLR to characterize defects in

compilers, which can help practitioners to improve the quality of compilers.

7 CONCLUSION

Compilers play a pivotal role in software development as they compile code into a format that the processor can execute.
Hence, defects in compilers can be disruptive for software developers and thus needs to be systematically identified.
We have conducted an MLR to help practitioners and researchers identify defects in compilers. From our MLR, we
identify 13 defect categories. We also identify 15 techniques, amongst which differential testing is the most frequently
used technique in the 26 publications used for our MLR. However, we also observe that one technique is not enough
to identify all defect categories reported in publications and Internet artifacts. Based on our findings, we recommend
the systematic application of techniques listed in peer-reviewed publications to identify defects in compilers. These

techniques can automatically generate computer programs, which in turn can expose latent defects in compilers.

ACKNOWLEDGMENTS

We thank the PASER group at Auburn University for their valuable feedback. This research was partially funded by the
U.S. National Science Foundation (NSF) Award # 2247141, Award # 2310179, and Award # 2312321.

REFERENCES

[1] 2010. Can compiler optimization introduce bugs? https://stackoverflow.com/questions/2722302/can-compiler-optimization-introduce-bugs

[2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles, techniques. Addison wesley 7, 8 (1986), 9.

[3] Jeffrey C. Carver, Oscar Dieste, Nicholas A. Kraft, David Lo, and Thomas Zimmermann. 2016. How Practitioners Perceive the Relevance of ESEM
Research. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (Ciudad Real, Spain)
(ESEM ’16). Association for Computing Machinery, New York, NY, USA, Article 56, 10 pages. https://doi.org/10.1145/2961111.2962597

[4] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019. Not All Bugs Are the Same: Understanding, Characterizing, and
Classifying Bug Types. J. Syst. Softw. 152, C (jun 2019), 165-181. https://doi.org/10.1016/].jss.2019.03.002

[5] Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos, Charalambos Mitropoulos, Dimitris Mitropoulos, and Diomidis Spinellis. 2021.
Well-typed programs can go wrong: a study of typing-related bugs in JVM compilers. Proceedings of the ACM on Programming Languages 5, OOPSLA
(2021), 1-30.

[6] KS Chan, Judith Bishop, Johan Steyn, Luciano Baresi, and Sam Guinea. 2007. A fault taxonomy for web service composition. In International
Conference on Service-Oriented Computing. Springer, 363-375.

[7] Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced compiler bug isolation via memoized search. In Proceedings of the 35th [EEE/ACM
International Conference on Automated Software Engineering. 78-89.

[8] R. Chillarege, LS. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, and M.-Y. Wong. 1992. Orthogonal defect classification-a concept for
in-process measurements. IEEE Transactions on Software Engineering 18, 11 (1992), 943-956. https://doi.org/10.1109/32.177364

[9] Ram Chillarege, Inderpal Bhandari, Jarir Chaar, Michael Halliday, Diane Moebus, Bonnie Ray, and Man-Yuen Wong. 1992. Orthogonal defect
classification-a concept for in-process measurements. IEEE Transactions on Software Engineering 18, 11 (Nov 1992), 943-956. https://doi.org/10.
1109/32.177364

[10] Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T Johnson, and Christoph Csallner. 2020. SLEMI: Finding Simulink compiler bugs through
equivalence modulo input (EMI). In 2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 1-4.

Marcelo Cinque, Dominico Cotroneo, Raffaele D. Corte, and Antonio Pecchia. 2014. Assessing Direct Monitoring Techniques to Analyze Failures of
Critical Industrial Systems. In 2014 IEEE 25th International Symposium on Software Reliability Engineering. 212-222. https://doi.org/10.1109/ISSRE.
2014.30

[12] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018. Compiler fuzzing through deep learning. In Proceedings of the 27th

ACM SIGSOFT International Symposium on Software Testing and Analysis. 95-105.

[13] Philippe Daouadi. 2019. Miscompilation: clang generates a weak symbol for a generic lambda that depends on a lambda in a static function.

[11

https://bugs.llvm.org/show_bug.cgi?id=44368
[14] Henry Davie. 1979. Assemblers and loaders: DW Barron, Macdonald and Janes Computer Monographs (1978)£ 3.95 102pp.
[15] developernation. 2021. State of the Developer Report. https://www.developernation.net/developer-reports/de20

Manuscript submitted to ACM

https://stackoverflow.com/questions/2722302/can-compiler-optimization-introduce-bugs
https://doi.org/10.1145/2961111.2962597
https://doi.org/10.1016/j.jss.2019.03.002
https://doi.org/10.1109/32.177364
https://doi.org/10.1109/32.177364
https://doi.org/10.1109/32.177364
https://doi.org/10.1109/ISSRE.2014.30
https://doi.org/10.1109/ISSRE.2014.30
https://bugs.llvm.org/show_bug.cgi?id=44368
https://www.developernation.net/developer-reports/de20

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871

1872

XXxvi Rahman et al.

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

(35]

[36
[37]

[38]
[39]

[40]

[41]

[42]

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Typechecker Using CLP (T). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 482-493. https://doi.org/10.1109/ASE.2015.65

Robert J Ellison, John B Goodenough, Charles B Weinstock, and Carol Woody. 2010. Evaluating and mitigating software supply chain security risks.
Technical Report. Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst.

Pietro Fezzardi and Fabrizio Ferrandi. 2016. Automated bug detection for pointers and memory accesses in High-Level Synthesis compilers. In 2016
26th International Conference on Field Programmable Logic and Applications (FPL). IEEE, 1-9.

Friesen. 2022. The setup. https://www.nhn.ou.edu/~friesen/cray_compiler_bug.html

Vahid Garousi, Michael Felderer, and Tuna Hacaloglu. 2017. Software test maturity assessment and test process improvement: A multivocal literature
review. Information and Software Technology 85 (2017), 16-42.

Vahid Garousi, Michael Felderer, and Mika V Méntyla. 2016. The need for multivocal literature reviews in software engineering: complementing
systematic literature reviews with grey literature. In Proceedings of the 20th international conference on evaluation and assessment in software
engineering. 1-6.

Vahid Garousi, Michael Felderer, and Mika V Mantyla. 2019. Guidelines for including grey literature and conducting multivocal literature reviews in
software engineering. Information and Software Technology 106 (2019), 101-121.

Vahid Garousi and Mika V Méantyla. 2016. When and what to automate in software testing? A multi-vocal literature review. Information and
Software Technology 76 (2016), 92-117.

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep
Learning Systems. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE °20). Association
for Computing Machinery, New York, NY, USA, 1110-1121. https://doi.org/10.1145/3377811.3380395

Chris Fallin iximeow. 2021. Defense in depth: stopping a Wasm compiler bug before it became a problem. https://www.fastly.com/blog/defense-in-
depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem

Upulee Kanewala and James M Bieman. 2014. Testing scientific software: A systematic literature review. Information and software technology 56, 10
(2014), 1219-1232.

Barbara Kitchenham, Dag IK Sjeberg, Tore Dyba, O Pearl Brereton, David Budgen, Martin Host, and Per Runeson. 2012. Trends in the Quality of
Human-Centric Software Engineering Experiments—A Quasi-Experiment. IEEE Transactions on Software Engineering 39, 7 (2012), 1002-1017.
Barbara Kitchenham, Dag IK Sjeberg, Tore Dyba, O Pearl Brereton, David Budgen, Martin Host, and Per Runeson. 2012. Trends in the Quality of
Human-Centric Software Engineering Experiments—A Quasi-Experiment. IEEE Transactions on Software Engineering 39, 7 (2012), 1002-1017.
Marco Kuhrmann, Daniel Méndez Fernandez, and Maya Daneva. 2017. On the pragmatic design of literature studies in software engineering: an
experience-based guideline. Empirical software engineering 22, 6 (2017), 2852-2891.

J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agreement for Categorical Data. Biometrics 33, 1 (1977), 159-174.
http://www.jstor.org/stable/2529310

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via guided stochastic program mutation. ACM SIGPLAN Notices 50, 10
(2015), 386-399.

HeuiChan Lim and Saumya Debray. 2021. Automated bug localization in JIT compilers. In Proceedings of the 17th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. 153-164.

David Lo, Nachiappan Nagappan, and Thomas Zimmermann. 2015. How Practitioners Perceive the Relevance of Software Engineering Research. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Computing
Machinery, New York, NY, USA, 415-425. https://doi.org/10.1145/2786805.2786809

Amir Makhshari and Ali Mesbah. 2021. IoT Bugs and Development Challenges. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). 460-472. https://doi.org/10.1109/ICSE43902.2021.00051

Michaél Marcozzi, Qiyi Tang, Alastair F Donaldson, and Cristian Cadar. 2019. Compiler fuzzing: How much does it matter? Proceedings of the ACM
on Programming Languages 3, OOPSLA (2019), 1-29.

Robert Morgan. 1998. Building an optimizing compiler. Digital Press.

Hévard Myrbakken and Ricardo Colomo-Palacios. 2017. DevSecOps: a multivocal literature review. In International Conference on Software Process
Improvement and Capability Determination. Springer, 17-29.

George C Necula and Peter Lee. 1998. The design and implementation of a certifying compiler. ACM SIGPLAN Notices 33, 5 (1998), 333-344.
Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing JavaScript Engines with Aspect-preserving Mutation. In 2020 IEEE
Symposium on Security and Privacy (SP). 1629-1642. https://doi.org/10.1109/SP40000.2020.00067

Akond Rahman. 2023. Dataset for Paper. https://tigermailauburn-my.sharepoint.com/:f:/g/personal/azr0154_auburn_edu/
Eh9ifbPqv8dLjZ5H9bmSUsUBs23QaCCs7850t-JveewNaQ?e=vOqlju. [Online; accessed 20-August-2023].

Akond Rahman, Farhat Lamia Barsha, and Patrick Morrison. 2021. Shhh!: 12 practices for secret management in infrastructure as code. In 2021 IEEE
Secure Development Conference (SecDev). IEEE, 56-62.

Akond Rahman, Effat Farhana, Chris Parnin, and Laurie Williams. 2020. Gang of Eight: A Defect Taxonomy for Infrastructure as Code Scripts. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE "20). Association for Computing
Machinery, New York, NY, USA, 752-764. https://doi.org/10.1145/3377811.3380409 pre-print: https://akondrahman.github.io/papers/icse20_acid.pdf.

Manuscript submitted to ACM

https://doi.org/10.1109/ASE.2015.65
https://www.nhn.ou.edu/~friesen/cray_compiler_bug.html
https://doi.org/10.1145/3377811.3380395
https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem
https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem
http://www.jstor.org/stable/2529310
https://doi.org/10.1145/2786805.2786809
https://doi.org/10.1109/ICSE43902.2021.00051
https://doi.org/10.1109/SP40000.2020.00067
https://tigermailauburn-my.sharepoint.com/:f:/g/personal/azr0154_auburn_edu/Eh9ifbPqv8dLjZ5H9bmSUsUBs23QaCCs785ot-Jv6ewNaQ?e=vOqIju
https://tigermailauburn-my.sharepoint.com/:f:/g/personal/azr0154_auburn_edu/Eh9ifbPqv8dLjZ5H9bmSUsUBs23QaCCs785ot-Jv6ewNaQ?e=vOqIju
https://doi.org/10.1145/3377811.3380409

1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923

1924

Defect Categorization in Compilers: A Multi-vocal Literature Review xxxvil

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60

[61

[62

[63]
[64]
[65]

[66]

[67]

Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2018. A systematic mapping study of infrastructure as code research. Information
and Software Technology (2018). https://doi.org/10.1016/j.infsof.2018.12.004

A. Rahman and C. Parnin. 2023. Detecting and Characterizing Propagation of Security Weaknesses in Puppet-Based Infrastructure Management.
IEEE Transactions on Software Engineering 49, 06 (June 2023), 3536-3553. https://doi.org/10.1109/TSE.2023.3265962

Akond Rahman and Laurie Williams. 2018. Characterizing Defective Configuration Scripts Used for Continuous Deployment. In 2018 IEEE 11th
International Conference on Software Testing, Verification and Validation (ICST). 34-45. https://doi.org/10.1109/ICST.2018.00014

Akond Ashfaque Ur Rahman, Eric Helms, Laurie Williams, and Chris Parnin. 2015. Synthesizing Continuous Deployment Practices Used in Software
Development. In Proceedings of the 2015 Agile Conference (AGILE ’15). IEEE Computer Society, USA, 1-10. https://doi.org/10.1109/Agile.2015.12
Austen Rainer. 2017. Using Argumentation Theory to Analyse Software Practitioners Defeasible Evidence, Inference and Belief. Inf. Softw. Technol.
87, C (jul 2017), 62-80. https://doi.org/10.1016/j.infsof.2017.01.011

Johnny Saldana. 2015. The Coding Manual for Qualitative Researchers. SAGE.

Mary Sanchez-Gordén and Ricardo Colomo-Palacios. 2018. A multivocal literature review on the use of DevOps for e-learning systems. In Proceedings
of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality. 883-888.

Sean Patrick Santos. 2014. Fortran derived type (mostly structure constructor) bugs. https://forums.developer.nvidia.com/t/fortran-derived-type-
mostly-structure-constructor-bugs/134017

Richard Schumi and Jun Sun. 2021. SpecTest: Specification-Based Compiler Testing. In International Conference on Fundamental Approaches to
Software Engineering. Springer, Cham, 269-291.

Carolyn B. Seaman, Forrest Shull, Myrna Regardie, Denis Elbert, Raimund L. Feldmann, Yuepu Guo, and Sally Godfrey. 2008. Defect Categorization:
Making Use of a Decade of Widely Varying Historical Data. In Proceedings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (Kaiserslautern, Germany) (ESEM ’08). Association for Computing Machinery, New York, NY, USA, 149-157.
https://doi.org/10.1145/1414004.1414030

M. Islam Shamim, F. Ahamed Bhuiyan, and A. Rahman. 2020. XI Commandments of Kubernetes Security: A Systematization of Knowledge
Related to Kubernetes Security Practices. In 2020 IEEE Secure Development (SecDev). IEEE Computer Society, Los Alamitos, CA, USA, 58-64.
https://doi.org/10.1109/SecDev45635.2020.00025

Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung, and Xiang Chen. 2021. A comprehensive study of deep learning
compiler bugs. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 968-980.

Daniil Stepanov, Marat Akhin, and Mikhail Belyaev. 2021. Type-Centric Kotlin Compiler Fuzzing: Preserving Test Program Correctness by Preserving
Types. In 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). 318-328. https://doi.org/10.1109/ICST49551.2021.00044
Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and analyzing compiler warning defects. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, 203-213.

Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai. 2014. Bug characteristics in open source software. Empirical
software engineering 19, 6 (2014), 1665-1705.

Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai. 2014. Bug characteristics in open source software. Empirical
software engineering 19 (2014), 1665-1705.

Akond Ashfaque Ur Rahman and Laurie Williams. 2016. Software Security in DevOps: Synthesizing Practitioners’ Perceptions and Practices. In
Proceedings of the International Workshop on Continuous Software Evolution and Delivery (Austin, Texas) (CSED ’16). ACM, New York, NY, USA,
70-76. https://doi.org/10.1145/2896941.2896946

Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th
international conference on evaluation and assessment in software engineering. 1-10.

Xiaoyuan Xie, Haolin Yang, Qiang He, and Lin Chen. 2021. Towards Understanding Tool-chain Bugs in the LLVM Compiler Infrastructure. In 2021
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 1-11.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation. 283-294.

Bob Yantosca. 2010. Segmentation faults. http://wiki.seas.harvard.edu/geos-chem/index.php/Segmentation_faults

Zaita. 2021. The weirdest compiler bug. https://blog.zaita.com/mingw64-compiler-bug/. [Online; accessed 20-Sep-2022].

Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enumeration for rigorous compiler testing. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 347-361.

Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018. An Empirical Study on TensorFlow Program Bugs. In Proceedings
of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam, Netherlands) (ISSTA 2018). Association for
Computing Machinery, New York, NY, USA, 129-140. https://doi.org/10.1145/3213846.3213866

Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. 2021. An empirical study of optimization bugs in GCC and LLVM. Journal of Systems and
Software 174 (2021), 110884.

Manuscript submitted to ACM

https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1109/TSE.2023.3265962
https://doi.org/10.1109/ICST.2018.00014
https://doi.org/10.1109/Agile.2015.12
https://doi.org/10.1016/j.infsof.2017.01.011
https://forums.developer.nvidia.com/t/fortran-derived-type-mostly-structure-constructor-bugs/134017
https://forums.developer.nvidia.com/t/fortran-derived-type-mostly-structure-constructor-bugs/134017
https://doi.org/10.1145/1414004.1414030
https://doi.org/10.1109/SecDev45635.2020.00025
https://doi.org/10.1109/ICST49551.2021.00044
https://doi.org/10.1145/2896941.2896946
http://wiki.seas.harvard.edu/geos-chem/index.php/Segmentation_faults
https://blog.zaita.com/mingw64-compiler-bug/
https://doi.org/10.1145/3213846.3213866

	Abstract
	1 Introduction
	2 Methodology
	2.1 Plan for MLR
	2.2 Search for Internet Artifacts and Publications
	2.3 Apply Inclusion and Exclusion Criteria
	2.4 Assess Quality
	2.5 Answer to Research Questions

	3 Results
	3.1 Answer to RQ1
	3.2 Answer to RQ2
	3.3 Answer to RQ3

	4 Discussion
	5 Threats to Validity
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

