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Context: Compilers are the fundamental tools for software development. Thus, compiler defects can disrupt development productivity
and propagate errors into developer-written software source code. Categorizing defects in compilers can inform practitioners and
researchers about the existing defects in compilers and techniques that can be used to identify defects systematically.

Objective: The goal of this paper is to help researchers understand the nature of defects in compilers by conducting a review of Internet

artifacts and peer-reviewed publications that study defect characteristics of compilers.

Methodology: We conduct a multi-vocal literature review (MLR) with 26 publications and 32 Internet artifacts to characterize compiler
defects.

Results: From our MLR, we identify 13 categories of defects, amongst which optimization defects have been the most reported defects
in our artifacts publications. We observed 15 defect identification techniques tailored for compilers and no single technique identifying
all observed defect categories.

Conclusion: Our MLR lays the groundwork for practitioners and researchers to identify defects in compilers systematically.
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1 INTRODUCTION

According to the State of the Developer 2021 report, 26.8 million professionals worldwide are software developers [15].
These software developers rely on compilers to develop computer programs. Compilers are software systems that
convert a computer program written in one programming language(typically higher-level) to low-level instructions,
such as machine code. While performing this translation, the compilers also ensure computer programs that are being
compiled abide by the syntactic and semantic rules of the programming language, and later the translated machine
code is semantically equivalent to the compiled computer program. In this manner, compilers help software developers
ensure the program performs desirable when executed, which allows developers to become productive. According to
Sun et al. [56], “Compilers are among the most important, widely-used system software, on which all programs depend for

compilation”. A compiler is considered an important part of the software supply chain [17].

Despite being a ‘fundamental programming tool’ in software development [65], compilers themselves are software
programs and thus prone to defects that can have severe consequences for software development. A compiler defect can
propagate into all computer programs that are compiled by the defective compiler [51]. Defects in compilers have also
been attributed to catastrophic consequences in safety-critical domains [56]. These defects are prevalent in well-known
compilers: according to Marcozzi et al. [35], multiple defects in the Clang/LLVM and GCC compilers are fixed each
month. Defects in compilers can be consequential for software developers with respect to productivity. For example,
one software developer was stuck for five days due to a compiler defect [64].

The prevalence and consequences of defects in compilers necessitate systematic endeavors from the practitioner and
research community to identify latent defects in compilers. These endeavors can be informed by a review of existing
literature related to the defect characteristics of compilers. Such a review can systematically categorize the defects in
compilers and also map techniques that are used to identify each of the defect categories.

As compilers play a pivotal role in professional software development that involves software practitioners, we want
to get a practitioner’s perspective of reported compiler defects. In that manner, we cannot only synthesize compiler
defects reported by academics but also synthesize the defects reported by practitioners. Such analysis can aid the entire
software engineering community by finding the commonalities and differences in the analyses and derive insightful
recommendations. According to Garousi et al. [22] review of Internet artifacts can “enable a rigorous identification of
emerging research topics in SE as many research topics already stem from software industry”. Internet artifacts was used
to curate best practices for continuous deployment [46], devops security [59], securing Kubernetes installations [53],
and managing secrets with secret management tools [41].

Multi-vocal literature review incorporates both: review of Internet artifacts and a review of peer-reviewed publica-
tions [23]. Accordingly, we use a multi-vocal literature review (MLR) so that we can capture insights from academics as
from software practitioners.

Objective: The goal of this paper is to help researchers understand the nature of defects in compilers by conducting a review

of Internet artifacts and peer-reviewed publications that study defect characteristics of compilers.

To achieve our goal, in this work, we answer the following research questions:

• RQ1: Which compilers have been studied in Internet artifacts and peer-reviewed publications that have investigated

defects in compilers?
Manuscript submitted to ACM
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• RQ2: What categories of defects have been reported in Internet artifacts and peer-reviewed publications that have

investigated defects in compilers?

• RQ3: What techniques have been reported in Internet artifacts and peer-reviewed publications to identify defects in

compilers?

We conduct our MLR with 32 Internet artifacts and 26 publications. We have conducted an MLR that requires analysis of
two kinds of resources: Internet artifacts that are not peer-reviewed and publications that are peer-reviewed. Without
the analysis of Internet artifacts, an MLR will be deemed incomplete and incorrect. Our use of Internet artifacts makes
the MLR complete and also is useful to generate interesting insights. Using Kithchenham et al. [27] and Gharousi
et al. [22]’s guidelines, respectively, we perform a quality evaluation of the 26 publications and 32 Internet artifacts.
We apply a qualitative analysis technique called open coding [48] to determine defect categories reported in Internet
artifacts and peer-reviewed publications. We have added the results from our multi-vocal literature reviews as a PDF in
our replication package [40].

For the scope of our study, we define a compiler as a special type of software that takes source code as input and
provides machine code or binary executables as input. This software category can support multiple languages and
have multiple compilation engines to support each of these languages. Furthermore, based on our definition, this type
of software can provide interfaces to develop even more compilation units and provide rich software development
experience so that along with generating machine code or binary executables, users can perform testing, linting, and
version control.

Compilers are used by a wide range of users, including academics who conduct scientific research and practitioners
who use compilers to develop software. As such, the experiences of compiler usage as manifested in terms of defects
needs to be included while conducting a review of compiler defect categories. Accordingly, we select an MLR instead of
a systematic literature review (SLR) so that we can gain the perspectives of both academics and practitioners when it
comes to defect categories for compilers. An MLR consists of reviewing two types of artifacts: academic publications that
are peer-reviewed and artifacts that are practitioner-reported and not peer-reviewed by the research community [22].
The goal of using an MLR is to capture evidence from both worlds: the academic world and the practitioner world. Many
practitioners tend not to participate in academic conferences, where academics come and present their findings. Instead,
practitioners participate in practitioner-focused conferences and report their experiences in practitioner-oriented online
platforms in the form of artifacts [22, 46]. With the help of an MLR, we are able to capture both: insights presented in
academic conferences as well as insights presented in non-academic conferences. In this manner, the MLR complements
the knowledge that a SLR provides. We still acknowledge the value of reviewing academic publications and that is
why we review Internet artifacts as well as academic publications, which is a form of SLR. We also acknowledge that
including Internet artifacts in the analysis can add bias to the derived results, which we mitigate using raters who read
each Internet artifact to ensure the artifact of interest is in fact related to compiler defects.

We also report a comparison of the identified techniques as part of RQ3. We observe that if we considered only a review
of academic publications we could have not known that commercial static analysis tool usage and user action are also
used to identify defects in the compiler.

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

iv Rahman et al.

Internet Artifact 
Search

Filtering Internet Artifacts

PublicationsFilteringScholar Databases

RQ1: Compilers

RQ2: Categories

RQ3: Techniques

Qualitative
Analysis

Fig. 1. An overview of our methodology.

We also would have not known that the techniques that are commonplace in academic peer-reviewed publications
are not that commonly used by the practitioner community. For example, the techniques that are reported in peer-
reviewed publications but not in Internet artifacts are address discrepancy analysis, deep learning, equivalence modulo
input, Markov chains, optimization pattern synthesis, reinforcement learning, semantic specification, skeletal program
enumeration, and tenor mutation. This indicates a gap between research and practice. Just by using SLR, we would
have not learned this information.

In short, using MLR we can synthesize evidence from both types of artifacts: academic peer-reviewed publications and
Internet artifacts that are not peer-reviewed. Therefore, MLR provides analysis that complements insights generated
only by conducting an SLR.

Contributions: This work makes the following contributions:

• A list of defect categories for compilers derived from publications and Internet artifacts;

• A list of techniques used to identify defects in compilers as reported in publications and Internet artifacts; and

• A mapping between identified defect categories and the techniques used to identify defect categories.

We organize the rest of the paper as follows: we provide the methodology in Section 2. We report our findings in
Section 3 and discuss these findings in Section 4. We discuss the limitations of our MLR and related work, respectively,
in Sections 5 and 6. Finally, we conclude the paper in Section 7.

2 METHODOLOGY

We describe the methodology to conduct our MLR in this section. An MLR is a variant of systematic literature review
that includes two types of resources: (i) Internet artifacts, such as blog posts and conference presentations, and (ii)
peer-reviewed publications. Internet artifacts are an example of grey literature that has been well-regarded by literature
review experts as an established source to obtain and synthesize practitioner perceptions [21]. According to Rainer et
Manuscript submitted to ACM
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Table 1. Criteria to Plan the MLR

Criteria Third Author Second Author
1. Is the subject complex and not solvable by
considering only the formal literature?

Yes. Currently, available peer-reviewed pub-
lications have not synthesized existing litera-
ture related to compiler defects.

Yes. To date, no paper has systematically cat-
egorized defects in compilers.

2. Is there a lack of volume or quality of evi-
dence or a lack of consensus on outcome mea-
surement in the formal literature?

Yes. Internet artifacts, such as blog posts, tuto-
rials, videos, and white papers, are prevalent
compared to peer-reviewed publications in
Kubernetes.

Yes. Peer-reviewed research lacks discussion
of defect-related issues in compilers.

3. Is the contextual information important to
the subject under study?

Yes. Understanding defects in compilers is im-
portant to build quality assurance into any
software ecosystem.

Yes. Compiler defects are crucial to under-
standing how to integrate reliability into a
software ecosystem.

4. Is it the goal to validate or corroborate sci-
entific outcomes with practical experiences?

Yes. The goal is to compare the defect cate-
gories identified from Internet artifacts to that
of peer-reviewed publications.

Yes.The goal of this research is to compare de-
fects reported in peer-reviewed publications
and Internet artifacts.

5. Is it the goal to challenge assumptions or fal-
sify results from practice using peer-reviewed
research or vice versa?

No. The goal is not to challenge current as-
sumptions but to compare the defect cate-
gories studied by researchers and practition-
ers.

No. The goal of this research is not to chal-
lenge existing research related to compiler de-
fects.

6. Would a synthesis of insights and evidence
from the industrial and academic community
be useful to one or even both communities?

Yes. A synthesis of insights and evidence from
the industrial and academic community for
compiler defects will help both communities.

Yes. Industry and academia would benefit
from combining industry knowledge and aca-
demic knowledge related to compiler defects.

7. Is there a large volume of practitioner
sources indicating high practitioner interest
in a topic?

No. No such evidence was recorded. No. We have not observed such evidence.

al. [47], with grey literature, such as with Internet artifacts practitioners provide stories, analogies, examples, and popular
opinions as evidence, which they further use to justify their beliefs or refute existing beliefs. Use of internet artifact
analysis has helped the software engineering community understand the best practices for contiguous deployment [46],
devops security [59], securing Kubernetes installations [53], and managing secrets with secret management tools [41].

For the scope of our study, we define a compiler as a special type of software that takes source code as input and
provides machine code or binary executables as input. This category of software can support multiple languages and
have multiple compilation engines to support each of these languages. Furthermore, based on our definition, this type
of software can provide interfaces to develop even more compilation units and provide rich software development
experience so that along with generating machine code or binary executables, users can perform testing, linting, and
version control.

In particular, we follow Garousi et al. [22]’s guidelines for conducting MLR. Figure 1 shows an overview of our
methodology.

2.1 Plan for MLR

Garousi et al. [22] recommend that the researchers need to evaluate themselves if an MLR is appropriate for a specific
research topic [22] before conducting the MLR. To that end, we use a set of criteria provided by Garousi et al. [22] that
is listed in Table 1. If researchers involved in MLR agree on most of the criteria, then the researchers can move forward
with the MLR. From Table 1 we observe the two researchers, i.e., the second and third authors of the paper, responded
with ‘Yes’ for five of the seven criteria, and responded with ‘No’ for criteria #5 and #7.
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2.2 Search for Internet Artifacts and Publications

We use two types of documents for our MLR: first, Internet artifacts, such as white papers, Slide share presentations 1,
and blog posts. Second, we use peer-reviewed publications that have studied compiler defects. For collecting Internet
artifacts, we use the Google search engine in incognito mode with a set of search strings. Following Kuhrmann et
al. [29]’s guidelines we use five scholar databases, namely, (i) ACM Digital Library 2, (ii) IEEE Xplore 3, (iii) Springer
Link 4, (iv) ScienceDirect 5, and (v) Wiley Online Library 6. Kuhrmann et al. [29] recommend these scholar databases to
use in systematic mapping studies and systematic literature reviews.

To identify Internet artifacts and peer-reviewed publications, we use a set of search strings that were derived using
snowballing technique [60] following the guidelines of Garousi et al. [22]. To derive initial search strings, we first
start with the search string ‘compiler defect’, which we use to collect the most relevant 100 Internet artifacts where
relevance is determined by the Google search engine. Our assumption is that by using a set of 100 Internet artifacts,
we will get the set of search keywords necessary to conduct our MLR. By reading each of these 100 Internet artifacts,
the third author observes that while describing compiler defects, practitioners also use other terms. Considering these
observations, we obtain a set of search strings that we use to identify Internet artifacts and peer-reviewed publications:
‘buggy compiler’, ‘compiler’ AND ‘bug’, ‘compiler’ AND ‘defect’, ‘compiler’ AND ‘failure’, ‘compiler’
AND ‘fault’, ‘compiler’ AND ‘fuzzing’, ‘incorrect behavior’ AND ‘compiler’, and ‘miscompilation’ AND

‘bug’.

For each search string, we collect the first 100 Internet artifacts provided by the Google search engine. From the five
scholarly databases, we obtain 12,619 search results for the five search strings.

The focus of our paper is to find defect categories that have been reported in both: literature that is peer-reviewed and
literature authored by practitioners that are not peer-reviewed. From our set of keywords, we are able to identify all 10
publications listed as part of a quasi-gold set.

2.3 Apply Inclusion and Exclusion Criteria

As both scholar databases and the Google search engine are susceptible to respectively yielding publications and
Internet artifacts that are not relevant to an MLR, following Garousi et al.’s. [22] guidelines, we apply inclusion and
exclusion criteria that are described below:

Exclusion Criteria: We exclude peer-reviewed publications and Internet artifacts that satisfy the following criteria:

• The artifact/publication is not written in English.

• The artifact/publication is not related to compiler error management. We exclude publications that discuss how
developers comprehend and engage with compiler error messages as these publications do not discuss defects within
the compiler.

1https://www.slideshare.net/
2https://dl.acm.org/
3https://ieeexplore.ieee.org/Xplore/home.jsp
4https://link.springer.com/
5https://www.sciencedirect.com/book/9781843341550/digital-libraries
6https://onlinelibrary.wiley.com/
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For publication names returned by scholar databases, we apply an additional exclusion criterion: we exclude publications
that are indexed in scholar databases but not peer-reviewed, such as keynote abstracts, call-for papers, and presentations.

Inclusion Criteria:We set the inclusion criteria for peer-reviewed publications and Internet artifacts as follows: (i) the
artifact/publication is available for reading; (ii) the artifact/publication is not a duplicate. We determine an Internet
artifact to be a duplicate of another if the title, content, and author(s) are the same as another Internet artifact. We
randomly picked one of the duplicated Internet artifacts and included it in our set. We consider a pre-print as a duplicate.
In the case of a journal publication that is an extension of a conference publication, we identify the conference and the
journal paper as two separate publications; (iii) the artifact/publication is related to a compiler; and (iv) the content of
the artifact/publications discusses defects that occur in a compiler. In the case of Internet artifacts, the second and third
authors individually read the content of each Internet artifact to determine this criterion. In the case of peer-reviewed
publications, the second and third authors individually read all the content of each paper to determine this criterion.
For both cases, the authors determine if defects are discussed in the content. Both authors use the IEEE definition to
determine the discussion of defects: “An imperfection in a software artifact that needs to be repaired or replaced”.

The third author filters search results and identifies peer-reviewed publications written in English and available for
reading. The third author retrieves 11,437 peer-reviewed publications from five scholarly databases. All the publications
were available on December 2021. Upon applying our inclusion and exclusion criteria, the third author identifies 377
publications. At this stage, both the second and third authors read each of the 377 publications in detail and respectively
identifies 27 and 37 publications to include a description of compiler defects.

The second and third authors disagreed on 28 publications. The Cohen’s Kappa is 0.21, which is a ‘fair’ agreement [30].
The disagreements are resolved by the last author, and the last author’s decision on the disagreed publications is final.
Upon resolving all disagreements, we obtain a set of 26 peer-reviewed publications that we use in our MLR. Table ?? in
Appendix (Section ??) lists the publication titles. A complete breakdown of the publication search process is shown in
Figure 2.

ACM
(3,295)

IEEE
(5,466)

ScienceDirect
(1,499)

Wiley
(78)

SpringerLink
(1,099)

Search Result: 11,437

Peer-reviewed: 5,477

English-only: 2,662

Available for reading: 1,992

Collect Search Results

Filter non peer-reviewed publications

Filter non-English publications

Filter unavailable publications

Title-based Filtering: 357 

Content-based Filtering: 27

Filter based on content

Content-based Filtering: 37

Final Set: 26

Disagreement resolution

Filtering by Second Author Filtering by Third Author

Non-duplicates: 7,735
Filter duplicates

Filter based on title

Fig. 2. Search and filtering of peer-reviewed publications to conduct our MLR.
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Upon deriving the set of 26 publications, we validate our set of obtained publications by identifying if our set includes
quasi-gold standard publications, i.e., publications that are well-regarded and deemed representative of compiler defect
research. The third author, who has ten years of experience in software engineering research and is not involved in
collecting this set of 26 publications, provided us with the quasi-gold set. The quasi-gold set includes the following
publications: “Finding and Understanding Bugs in C Compilers” [62], “An Empirical Study of Optimization Bugs in
GCC and LLVM” [67], “ Well-typed Programs Can Go Wrong: A Study of Typing-related Bugs in JVM Compilers” [5],
“Towards Understanding Tool-chain Bugs in the LLVM Compiler Infrastructure” [61], “Skeletal Program Enumeration
for Rigorous Compiler Testing” [65], “Compiler Fuzzing Through Deep Learning” [12], and “ Finding Compiler Bugs
via Live Code Mutation” [56].

Our identified set of 26 publications includes all of these ten publications used in the quasi-gold set, which gives us the
confidence that our collection of search strings is good enough to retrieve most of the relevant publications related to
compiler defect characterization.

For Internet artifacts, both the second and third authors of the paper read each of the first 100 results from the Google
Search for eight search strings. The search results are retrieved on January 2022. Initially, the third author removes
duplicates, inspects availability, and removes non-English artifacts. This set of steps gives a total of 495 artifacts. Next,
the third and second authors individually read each of the 495 artifacts and identified a set of 31 Internet artifacts
and 28 Internet artifacts. The third and second authors disagreed on 23 Internet artifacts on their relationship with
compiler defects. The Cohen’s Kappa is 0.22, which is a ‘fair’ agreement [30]. The last author resolves the disagreements
between the authors, whose decision is considered final. The last author is given a list of Internet artifacts for which the
second and third authors disagreed. By reading the title and the content for each of the 23 Internet artifacts, the last
author determines a set of 32 Internet artifacts that we use in our MLR. Table ?? in the Appendix (Section ??) lists the
32 Internet artifact URLs. A complete breakdown of our search and filtering process to collect the Internet artifacts
is shown in Figure 3. Ratings for all Internet artifact URLs and publication references used in the paper are publicly
available online [40].

2.4 AssessQuality

Following guidelines from prior work [22, 27] we conduct a quality assessment of the collected Internet artifacts and
peer-reviewed publications, respectively, in Sections 2.4.1 and 2.4.2.

2.4.1 Quality Assessment of Internet Artifacts. For the quality assessment of our set of 32 Internet artifacts, we use the
assessment criteria provided by Garousi et al. [22]. Each of the assessment criteria is listed in Table 2:

We use a 3-point scale where ‘1.0’ refers to ‘yes’; 0.5 refers to ‘partially’; 0.0 refers to ‘no’ for Q1-Q11. For Q12, we use a
3-point scale of 1.0, 0.5, and 0.0 to refer to high, moderate, and low credibility. The second and third authors individually
read all of the 314 Internet artifacts to determine a value for Q1-Q12. Then, we report the average of the scores reported
by the second and third authors.

A summary of the average rating for each of the questions for the 32 Internet artifacts is given in Table 3. The detailed
rating for each of the Internet artifacts is available in Table ?? of the Appendix (Section ??), where each cell represents
the ratings obtained by the second and third authors. From Table 3 we observe Internet artifacts to score >= 0.5 for
reputation (Q1), aim (Q3), coverage (Q5), objectivity (Q6), links to important literature (Q9), impact (Q11), and credibility
Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Defect Categorization in Compilers: A Multi-vocal Literature Review ix

Google Search Engine

Search Result: 800

Available for reading: 562

English-only: 492

Collect Search Results

Filter non-English artifacts

Content-based Filtering: 28

Filter based on content

Content-based Filtering: 31

Final Set: 32

Disagreement resolution

Filtering by Second Author Filtering by Third Author

Non-duplicates: 653

Filter duplicates

Filter unavailable artifacts

Fig. 3. Search and filtering of Internet artifacts to conduct our MLR.

Table 2. Quality Assessment Criteria for Internet Artifacts

Criterion Question
Criterion-1: Reputation Q1: Is the publishing organization reputable?

Q2: Is an individual author associated with a reputable organization?
Criterion-2: Methodology (Aim,
Reference, Coverage)

Q3: Does the source have a clearly stated aim?

Q4: Is the source supported by authoritative, contemporary references?
Q5: Does the work cover a specific question?

Criterion-3: Objectivity Q6: Is the statement in the sources as objective as possible? Or, is the statement a subjective
opinion?
Q7: Is there a vested interest? For example, a tool comparison by authors working for a particular
tool vendor.

Criterion-4: Date Q8: Does the item have a clearly stated date?
Criterion-5: Position with re-
spect to related sources

Q9:Have key related Internet artifacts or peer-reviewed publications been linked to or discussed?

Criterion-6: Novelty Q10: Does it strengthen or refute a current position? Does it advance a new position?
Criterion-7: Impact Q11: What is the impact of the Internet artifact? The raters apply subjective evaluation to

determine the impact of an Internet artifact. The rater considers the following concepts to
determine impact: count of backlinks, count of comments, count of views, and count of shares.

Criterion-8: Credibility Q12: What is the credibility of the Internet artifact? (i): High credibility: Books, magazines,
thesis documents, government reports, white papers; (ii) Moderate credibility: Annual reports,
news articles, presentations, videos, Q/A sites (e.g. StackOverflow), Wikipedia articles; (iii) Low
credibility: Blogs, emails, tweets.

(Q12). which corresponds to the date of the Internet artifact. The range of scores for each criterion is presented as
minimum and maximum in the ‘Min, Max’ column.

2.4.2 Quality Assessment of Publications. We follow the criteria provided by Kitchenham et al. [27] to assess the quality
of a peer-reviewed publication. A higher-quality score indicates that the publication clearly describes the goal, contains
actionable results, clearly discusses the limitations, and contains a clear presentation structure. The criteria set that we
use for our set of peer-reviewed publications is listed in Table 4.
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Table 3. Quality Assessment of Internet Artifacts Related to Compiler Defects

Criterion Average Rating Min, Max
Q1 (Reputation of Publishing Organization) 0.5 0.0, 1.0
Q2 (Reputation of Author’s Organization) 0.3 0.0, 1.0
Q3 (Clearly Stated Aim) 0.6 0.0, 1.0
Q4 (References) 0.4 0.0, 1.0
Q5 (Coverage) 0.6 0.0, 1.0
Q6 (Content Objectivity) 0.5 0.0, 1.0
Q7 (Vested Interest) 0.4 0.0, 1.0
Q8 (Clearly Stated Date) 0.1 0.0, 1.0
Q9 (Links to Important Literature) 0.8 0.0, 1.0
Q10 (Strengthen/Refute Position) 0.3 0.0, 1.0
Q11 (Impact) 0.5 0.0, 1.0
Q12 (Credibility) 0.5 0.0, 1.0

Table 4. Quality Assessment Criteria for Peer-reviewed Publications

Criterion Description
Q1 (Aim) Do the authors clearly state the aim of the research?
Q2 (Units) Do the authors describe the sample and experimental units?
Q3 (Design) Do the authors describe the design of the experiment?
Q4 (Data Collection) Do the authors describe the data collection procedures and define the measures?
Q5 (Data Analysis) Do the authors define the data analysis procedures?
Q6 (Bias) Do the authors discuss potential experimenter bias?
Q7 (Limitations) Do the authors discuss the limitations of their study?
Q8 (Clarity) Do the authors state the findings clearly?
Q9 (Usefulness) Is there evidence that the Experiment/Quasi-Experiment can be used by other

researchers/practitioners?

Table 5. Quality Assessment for 26 Publications

Criterion Average Rating Min, Max
Q1 (Aim) 3.7 3.5, 4.0
Q2 (Units) 3.0 1.5, 4.0
Q3 (Design) 3.7 2.5, 4.0
Q4 (Data Collection) 2.6 1.5, 4.0
Q5 (Data Analysis) 2.3 1.0, 4.0
Q6 (Bias) 1.6 1.0, 2.5
Q7 (Limitations) 1.9 1.0, 4.0
Q8 (Clarity) 3.3 2.5, 4.0
Q9 (Usefulness) 2.2 1.5, 4.0

We follow the procedure used by Kitchenham et al. [28] to resolve disagreements. For the resolution of disagreements,
we compute the average of the scores reported by both raters.

After answering each of the above nine questions, we provide a rating score associated with each of the answers
between 1 and 4. The rating 1 implies ‘not at all’; 2 implies ‘somewhat’; 3 implies ‘mostly,’; and 4 implies ‘fully’. As
the rating process of the research articles is subjective, we assign two raters, i.e., the second and third authors, who
independently provide a rating to each publication. We report the average rating score of both raters for each publication.
We summarize the average rating of the quality assessments for the 26 publications in Table 5 and the quality assessment
rating for each of the peer-reviewed publications is described in Table ?? of the Appendix (Section ??). From Table 5, we
observe publications related to compiler defects to score > 3.5 for aim and clarity-related discussion on average. With
respect to the discussion of bias and limitations, the set of 26 publications scores < 2.0.
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2.5 Answer to ResearchQuestions

We provide the methodology to answer our research questions in this section.

2.5.1 Methodology to Answer RQ1. The first and third author individually reads each of the 32 Internet artifacts and
26 publications to identify the compilers that have been addressed. For each artifact and publication, the third author
documents the date of the artifact and publication, the specific compiler that has been addressed, and the programming
language that corresponds to the compiler.

2.5.2 Methodology to Answer RQ2. We answer RQ2 by applying a qualitative analysis technique called open coding [48].
Open coding helps researchers to summarize the underlying theme from unstructured text [48]. We hypothesize that
by applying open coding, we can group defects that have been reported in our set of artifacts and publications. The
third author performs open coding with the content from artifacts and peer-reviewed publications. Upon completion,
the third author derives a list of defect categories for compilers as reported in artifacts and publications.

Rater Verification: The open coding process is susceptible to rater bias, which we mitigate by using the second author to
perform rater verification. The second author was not involved in the open coding process. As part of rater verification,
the second author performs closed coding [48], using which the author maps an identified defect category to each of
the 26 peer-reviewed publications and 32 Internet artifacts. We do not impose any time limit on the rater to perform
verification.

Upon completion, we record a Cohen’s Kappa of 0.83 and 0.86, respectively, for Internet artifacts and peer-reviewed
publications between the second and third authors. For both artifacts and publications, the agreement is ‘substantial’ [30]
between the second and third authors.

Mapping of Defect Categories and Compiler Components: We further investigated which of the identified defect
categories are applicable to a component of a compiler. The purpose of this investigation is to generate insights into
what components are likely to include certain defect categories. For our investigation, we leverage the typical compiler
components described by Aho et al. [2], and summarized in Figure 4. Each compiler takes a computer program as input
and generates code that is executable on a target machine.

Aho et al. [2] lists the following components for a compiler that is shown in black ink in Figure 4:

• Lexical analyzer: This component of the compiler parses the program into a sequence of tokens.

• Syntax analyzer: This component of the compiler takes the output of the lexical analyzer and applies grammar to
determine if the computer program satisfies the syntactical rules of the programming language.

• Semantic analyzer: This component of the compiler uses the output of the syntax analyzer in the form of abstract
syntax trees as input, and checks whether the computer program is semantically consistent with language definition.

• Intermediate representation generator: This component of the compiler uses the output of the semantic analyzer
as input to generate an intermediate representation that is in between source code and machine code in terms of
representations.

• Code optimizer: This component of the compiler uses the intermediate code to perform optimizations so that the
computer program upon execution consumes lesser resources, such as CPU and memory.
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• Code generator: This component of the compiler converts the optimized intermediate code into machine code so
that the computer program can be executed by the computing system, e.g., an x86 processor.

As part of this investigation, we read the defect categories and corresponding examples to determine if a defect
category occurs for one or multiple components of the compiler. We repeat the procedure for both Internet artifacts
and publications.

Lexical analyzer

Semantic analyzer

Intermediate representation generator

Code optimizer

Code generator

Syntax analyzer

Computer program

Assembly/Machine Instructions

Fig. 4. Components of a typical compiler as summarized by Aho et al. [2].

2.5.3 Methodology to Answer RQ3. RQ3 focuses on the techniques that have been used to identify defects in a certain
compiler. Answers to this research question can aid practitioners and researchers in understanding the techniques
that are used to find defects in a compiler and apply that understanding to identify defects in compilers that remain
under-explored to date. To answer RQ3, the third author reads each artifact and publication, respectively, in our sets of
32 Internet artifacts and 26 publications. The third author separates publications that clearly describe a technique that
is used to identify defects in a compiler. The third author applies the same procedure for Internet artifacts.

3 RESULTS

We provide answers to our research questions in this section. We answer our research questions by analyzing 32 Internet
artifacts and 26 peer-reviewed publications. Temporal trends of Internet artifacts and publications are respectively,
shown in Figure 5 and 6.

3.1 Answer to RQ1

In this section, we answer RQ1: Which compilers have been studied in Internet artifacts and peer-reviewed publications

that have investigated defects in compilers? We provide the count of Internet artifacts and peer-reviewed publications in
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Fig. 5. Temporal trends of the 32 Internet artifacts.
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Fig. 6. Temporal trends of the 26 peer-reviewed publications.

which a compiler has been discussed in the context of compiler defects. In Tables 6 and 7 we respectively, provide the
count of publications in which a compiler has been addressed.

We observe similarities and differences with respect to studied compilers as documented in Table 6 and 7. GCC is the
most frequently studied compiler in our set of Internet artifacts, followed by LLVM. In the case of publications, GCC
and LLVM are the most frequently mentioned compilers. Certain compilers are only studied in artifacts: GNU Fortran,
Intel Fortran, .NET Fortran, PGI Fortran, Cray Compiling Environment 7, Xilinx SDK, and CraneLift, the WebAssembly
Compiler. Compilers that are only studied in publications and not in Internet artifacts are Simulink, V8 Javascript,

7https://docs.lumi-supercomputer.eu/development/compiling/cce/
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Table 6. Compilers Discussed in Our Set of 32 Artifacts

Compiler Artifact Index Count
GCC IA4, IA5, IA6, IA8, IA9 , IA14 , IA16, IA18, IA19, IA21, IA22, IA23, IA24, IA25,

IA26, IA28
16

LLVM IA6, IA4, IA17, IA20 4
Arduino SDK IA13, IA14 2
GNU Fortran Compiler IA2, IA27 2
Intel Fortran Compiler IA2, IA27 2
Java 7 Compiler IA1, IA26 2
PGI Fortran Compiler IA2, IA27 2
.NET IA10, IA32 2
Clang IA6 1
Code Composer Studio IA11 1
Cray Compiling Environ-
ment

IA3 1

IBM Fortran Compiler IA27 1
Intel C++ Compiler IA6 1
Kotlin IA15 1
Solidity IA31 1
WebAssembly Compiler
(CraneLift)

IA30 1

XCode IA20 1
Xilinx SDK IA12 1

Table 7. Compilers Discussed in Our Set of 26 Publications

Compiler Publication Index Count
GCC P1, P5, P9 , P10, P12, P15, P16, P18, P20, P22, P23 11
LLVM P1, P4, P10, P12, P15, P16, P17, P18, P20, P22, P23 11
Clang P4, P9, P16, P18 4
Simulink P8, P14, P19 3
V8 Javascript P3, P22, P26 3
ChakraCore P22, P26 2
Javascript Core P22, P26 2
OpenCL P7, P11 2
Kotlin P6, P21 2
RustC P18, P24 2
Bambu P13 1
Commercial HLS Compiler P13 1
Glow P2 1
GraalJS P26 1
Groovy P6 1
Hermes P26 1
Intel C++ P23 1
JerryScript P26 1
K-Java P19 1
KSolidity P19 1
Legup P13 1
Nashorn P26 1
nGraph P2 1
OpenJDK P6 1
P4 P25 1
QuickJS P26 1
Rhino P26 1
Scala P6 1
SpiderMonkey P26 1
Turbofan P3 1
TVM P2 1

ChakraCore, JavascriptCore, OpenCL, RustC, Bambu, Commercial HLS Compiler, Glow, GraalJS, Grrovy, Hermes,
Jerryscript, K-Java, KSolidity, Legup, Nashorn, nGraph, OpenJDK, P4, QuickJS, Rhino, Scala, SpiderMonkey, Torubofan,
and TVM. Our findings show a disconnect between the compilers that are studied in peer-reviewed publications and
what practitioners are discussing and reporting.
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Answer to RQ1: A wide range of compilers have been investigated in prior work, such as GCC, LLVM, and deep

learning compilers. GCC is the most frequently mentioned compiler amongst artifacts as well as in peer-reviewed

publications.

3.2 Answer to RQ2

Weprovide answers to RQ2:What categories of defects have been reported in Internet artifacts and peer-reviewed publications

that have investigated defects in compilers? in this section.

Defect 
Categories

Bit arithmetic

Circular 
validation

Identifier 
resolution

Integer equality

Linkage

Loop induction

Memory 
allocation

Misinformation

Optimization

Program parsing

Tensor

Translation

Type

Erroneous root 
cause

Spurious 
warning

Incorrect 
conversion

Misinference

Mismatch

Rule violation

Fig. 7. Defect categories identified from our MLR.

We identify 13 categories of defects that are shown in Figure 7, which we describe below:

Bit Arithmetic Defects: This category of defects occurs when a compiler does not adequately implement bit arithmetic.
This category of defects has been reported both in Internet artifacts as well as peer-reviewed publications.

Example: In an artifact [25], a bit arithmetic defect was reported for Cranelift, a WebAssembly compiler. The defect
occurred because of interpreting a ‘4GB’ parameter as 4,000,000,000 bytes in decimal gigabytes. The maximum heap
size was configured below 4GiB, “4,294,967,296”, which made some unexpected instructions while investigating the
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disassembly code shown in Listing 1. The WebAssembly compiler’s load and store instructions include an offset
immediate, which was designed to simplify loads and stores in working with structures. However, this allows any user
to avoid the bounds check by using a heap offset that is low, then adding a large offset in a load or store, eventually
allowing the program to enter a region just before an instance’s heap, which could have serious consequences. The
code snippet in Listing 1 shows how a bit of arithmetic defect can occur. The defect resulted in a crash.

1 mov edi, 0xee6b27fe ; an entirely unexpected constant: 3,999,999,998
2 movsxd rax, DWORD PTR [rsp+0x88] ; the incorrect sign-extended load
3 cmp eax, edi ; compare against the heap bound
4 jae ff0 <guest_func_4+0x360> ; and branch to a trap site if out of bounds

Listing 1. Example of a bit arithmetic defect reported for the WebAssembly compiler.

Circular Validation Defects: This category of defects occurs when there are no checks for the presence of circular
dependencies between objects or variables.

Example: As shown in Listing 2, Chaliasos et al. [5] reported an absent circular validation defect for Scalac, the compiler
for Scala. The two classes A and B are defined with a circular dependency issue. When Scalac checks the correctness of
these declarations, it does not discover this dependence problem. As a result, it crashes when Scalac unboxes these
value classes depending on the types.

1 case class A(x :B) extends AnyVal;
2 case class B(x :A) extends AnyVal;

Listing 2. Example of an absent circular validation defect that occurs for Scalac.

Identifier Resolution Defects: This category of defects occurs when a compiler fails to resolve an identifier name to
its corresponding definition or scope.

Example: As shown in Listing 3, Chaliasos et al. [5] reported an identifier resolution defect for Java, the Java compiler.
The method error defined in line 7 is the most particular because its signature is less generic than the signature of
the error specified in line 6. Because an identifier resolution in Javac fails to resolve the identifiers in lines #6 and #7
adequately, it identifies both methods as ambiguous. The program does not get compiled even though it is a syntactically
valid program.

1 class Test {
2 void test() {
3 Exception ex = null;
4 error("error", ex);
5 }
6 void error(Object o, Object... p) {}
7 void error(Object o, Throwable t, Object... p) \{}
8 }

Listing 3. Example of an identifier resolution defect that occurs for Javac.

Integer Equality Defects: This category of defects occurs when a compiler does not adequately check for integer
equality.
Manuscript submitted to ACM
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Example: As shown in Listing 4, Zhang et al. [65] reported an integer equality defect for GCC. The defect occurred for
not checking for Integer equality via value comparison, which violated an assertion. The defect resulted in a GCC crash
and was repaired by using value comparison to check integer equality.

1 struct s { char c[1]; };
2 struct s a, b, c;
3 int d; int e;
4 void bar (void)
5 {
6 e ? (d==0 ? b : c).c : (d==0 ? b : c).c;
7 }

Listing 4. Example of an integer equality defect that occurs for GCC.

Linkage Defects: This category of defects occurs due to unsuccessful linkages between components of a compiler. The
linkage defect category is not limited to the linker, i.e., the software that takes one or more object files and combines
them into a single executable file, library file, or another object file [14]. This category of defects can occur when
linkages are established between one component to another within a compiler.

Example: A linkage defect was reported for LLVM on Xcode while using the LLVM component called ‘lldb’ [61]. ‘lldb’ is
a native debugger that is available as part of the LLVM compiler toolchain. It is more memory efficient and faster than
gdb, the GNU project debugger [61]. The defect occurs when the object method needs to be called in an undefined
entity 8. Listing 5 shows the error message for the defect. The defect is repaired by adding a link to the object method
in a configuration file essential to the lldb component of LLVM.

1 build/Release+Asserts/x86_64/lib/libclang_rt.cc_kext_i386_osx.a, file was built for archive which is not
the architecture being linked (x86_64):
/Users/buildslave/jenkins/lldb/llvm-build/Release+Asserts/x86_64/lib/libclang_rt.cc_kext_i386_osx.a

↩→

↩→

2 Undefined symbols for architecture x86_64:
3 "PDBASTParser::~PDBASTParser()", referenced from:
4 lldb_private::ClangASTContext::ClangASTContext(char const*) in liblldb-core.a(ClangASTContext.o)
5 lldb_private::ClangASTContext::~ClangASTContext() in liblldb-core.a(ClangASTContext.o)
6 ld: symbol(s) not found for architecture x86_64

Listing 5. Error message for a linkage defect in LLVM.

Loop Induction Defects: This category of defects occurs when a compiler’s loop induction procedure is incorrect.
As part of the loop induction procedure, a compiler checks for loop invariants in the case of computer programs that
use recursions or iterations. Loop invariants are used to determine the progress or completion time of a computer
program [36, 38]. Loop induction defects are different from optimization defects as loop induction defects are related to
program invariants that can occur with or without the use of optimization flags.

Example: As shown in Listing 6, Yang et al. [62] reported a loop induction defect for LLVM. When the -indvars flag is
used for LLVM the code in line#5 (if (x) break ;) makes LLVM conclude that x is 1 after loop is executed, instead of
printing 5.

8https://bugs.llvm.org/show_bug.cgi?id=27362
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1 Void ; foo(void){
2 int x;
3 for (x = 0; x < 5; x++) \{
4 if (x) ; continue;
5 if (x) ; break;
6 }
7 printf("%d", x);
8 }

Listing 6. Example of a loop induction defect that occurs for LLVM.

Invalid Memory Access Defects: This category of defects occurs when a program attempts to access a memory
location that is not allowed to access or tries to access a memory location in such a way that is not allowed. This
category of defects has been reported in Internet artifacts.

Example: In an artifact [63], an invalid memory access defect occurs for the Fortran compiler when the following code
snippet is executed. The defect resulted in a segmentation fault.

1 PBL_THICK(-1000000,J) = BLTHIK

Listing 7. Example of an invalid memory access defect reported for the Fortran compiler.

Misinformation Defects: This category of defects occurs when the compiler fails to provide adequate information to
the developer on how to fix a compiler error or a warning. We identify two sub-categories:

Erroneous root cause: Defects that do not adequately identify the root cause of a compilation error or a compiler warning.

Example: In an artifact [50], a misinformation defect occurred when using the PGI 14.1 Fortran compiler. The defect
occurs from not providing the correct information that caused the defect. The defect occurred for the program presented
in Listing 8. The module test_types is invalid because of the subroutine do_nothing() not accepting a class(foo)
argument. Instead of providing this information, the compiler generates a segmentation fault leaving no clues for a
developer on how to fix the issue.

1 module test_types
2

3 type :: foo
4 contains
5 procedure :: do_nothing
6 end type foo
7

8 contains
9

10 subroutine do_nothing()
11 end subroutine do_nothing
12

13 end module test_types

Listing 8. Example of an erroneous root cause defect reported for the Fortran compiler.

Spurious Warning: Defects that occur because of the compiler’s erroneous warning mechanisms that prevent a developer
from identifying the location of a compiler warning.
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Example: As shown in Listing 9, a spurious warning defect was reported for GCC [56]. GCC is expected to give a
warning because the format string s is not null-terminated, and the printf function outputs the truncated string.
Because of a defect, the warning is not reported.

1 void fn() { const char s[1] = "format"; printf(s); }

Listing 9. Example of a spurious warning defect reported for GCC.

Optimization Defects: This category of defects occurs when any undesired behavior occurs because of compiler
optimization. Compiler optimization is a procedure where algorithms take a program to transfer it in such a way that it
will execute the same output program but will use fewer resources or execution will be faster. This category of defects
has been reported in Internet artifacts and peer-reviewed publications.

Example: In a Stack Overflow post [1], we document an example of an optimization defect. The defect occurs when the
GCC compiler performs optimization that results in an infinite loop.

1 for (i = 1; i > 0; i += i) ++j;

Listing 10. Example of an optimization defect reported for the GCC compiler.

Program Parsing Defects: This category of defects occurs when the compiler fails to parse a computer program
adequately. This category of defects has been reported in Internet artifacts and peer-reviewed publications.

Example: In an artifact [19], a program parsing defect occurred when using the Cray Compiling Environment. The
defect occurred by using a Fortran-reserved keyword as a variable name. The Cray Compiling Environment incorrectly
parsed integerfoo as a reserved keyword instead of a variable name. The defect resulted in a compiler error.

1 program main
2 implicit none
3

4 type integerfoo
5 real :: bar
6 end type integerfoo
7

8 type(integerfoo) :: test
9

10 end program main

Listing 11. Example of a program parsing defect reported for the Fortran compiler.

Tensor Defects: This category of defects occurs when a compiler incorrectly computes tensors, which are used to
implement deep learning algorithms.

Example: As shown in Listing 12, Shen et al. [54] reported a Tensor defect occurred because of Tensor shapes being incor-
rectly calculated by TFLite, a lightweight deep learning compiler available as part of the Tensorflow project. The defect
was repaired by providing the correct batch size with target_shape = tuple((-1, weight_tensor_shape[1])).
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1 - input_size =1
2 - for _, shape in enumerate(input_tensor_shape):
3 - input_size*=shape
4 - batch_size = int(intput\_size / weight_tensor_shape[1])
5 - target_shape = tuple((batch_size, weight_tensor_shape[1]))
6 + target_shape = tuple((-1, weight_tensor_shape[1]))

Listing 12. Example of a Tensor defect that occurs for TFLite.

Translation Defects: This category of defects occurs when a compiler does not adequately translate the source code of
a computer program into intermediate forms or binaries. This category of defects has been reported in Internet artifacts
and peer-reviewed publications.

Example: In an artifact [13], a translation defect was reported for LLVM as shown in Listing 13. The defect occurs
because of translating two static functions with the same names, both of whom define a lambda function. During the
translation process, because of using lambda with async, the generated binary will have one symbol and will result in a
crash.

1 template $<typename T>$ auto async() \{
2 return [](auto func) \{
3 [func] { func(); }();
4 };
5 }
6 static void f(){
7 async $<int>$()([] \{});
8 }
9 void f1() { f(); }

Listing 13. Example of a translation defect that occurs for LLVM.

Type Defects: This category of defects occurs when a compiler inadequately handles the program types. This category
of defects has been reported in peer-reviewed publications. The category includes four sub-categories:

Incorrect conversion: Compiler defects that occur when the compiler incorrectly converts types.

Example: As shown in Listing 14, Chaliasos et al. [5] reported an example where types A and B needed to be converted
to type C, but Kotlinc failed to do such.

1 interface A
2 interface B
3 class c: A, B
4 fun <T> T.m(): Unit where T: A, T:B {}
5 fun main(){
6 c().foo()
7 }

Listing 14. Example of a an incorrect type conversion defect that occurs for Kotlinc.

Misinference: Compiler defects that occur when incorrect types are inferred for a variable or a function.
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Example: Chaliasos et al. [5] reported a type misinference defect for Kotlinc, the Kotlin compiler. The defect occurs due
to incorrect handling of function references, which eventually caused Kotlinc to construct a constraint problem with
incomplete constraints. In Listing 15, the inference engine stops Kotlinc from instantiating the type variable T declared
in class A.

1 class A<T>(val f:T)
2 fun test()\{
3 listOf<string>().map(::A)
4 }

Listing 15. Example of a type misinference defect that occurs for Kotlinc.

Mismatch: Compiler defects that occur when one program within the compiler fails to provide the correct type to
another program.

Example: Shen et al. [54] reported a defect related to type mismatch for PyTorch. The output tensor type for the operator
is expected to be Float32. However, the analogous Glow operator produces Float16. The defect was repaired by using an
upcast operator as shown in Listing 16.

1 - return addValueMapping(output[0], EB->getResult());
2 + if(is4Bit){
3 + auto *CT = F.createConvertTo(
4 + "ConvertEmbeddingBag4BitRowwiseOffsetsOutput"
5 + EB.Elemkind::FloatTy);
6 + retun addValueMapping(output[0], CT->getResult());
7 + } else{
8 + return addValueMapping(output[0], EB->getResult());
9 + }

Listing 16. Example of a type mismatch defect that occurs for PyTorch.

Rule violation: Compiler defects that occur when the compiler violates the rules for the language’s type system.

Example: As shown in Listing 17, Chaliasos et al. [5] reported an example where violation of type rule occurs. For the
code snippet, Javac does not adhere to Java’s type rules that result in considering c<? > to be a subtype of 𝐼 <? 𝑒𝑥𝑡𝑒𝑛𝑑𝑠
𝑋 , 𝑋 >.

1 Interface; I <X1, X2> {}
2 class ; C<T> implements ; I<T, T> {}
3 public ; class ; test{
4 <X> void ; m(I<? ; extends ; X, X> arg) {}
5 void ; test(c<?> arg){
6 m(arg);
7 }
8 }

Listing 17. Example of a type rule violation defect that occurs for Javac.

Mapping of Defect Categories with Artifacts and Publications: We provide a mapping between each identified
defect category and the corresponding artifact in Table 8. The defect categories that we did not find in any of our
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Table 8. Mapping Between Internet Artifacts and Defect Categories

Category Artifact Index Count
Bit arithmetic IA30 1
Invalid Memory Access IA2 1
Misinformation IA2, IA9, IA10, IA12,IA13, IA16, IA20, IA23, IA25, IA26, IA27 11
Optimization IA1, IA2, IA5, IA6, IA7, IA8, IA11, IA14, IA15, IA21, IA22, IA24, IA27, IA29,

IA32
15

Program parsing IA3, IA19 2
Translation IA17, IA18, IA28 3
Type IA31 1

Internet artifact sets are circular validation, identifier resolution, integer equality, linkage, loop induction, and tensor.
The defect category that we observe in Internet artifacts but not in publications is invalid memory access. We also
provide a mapping between each defect category and the corresponding publications in Table 9.

Table 9. Mapping Between Publications and Defect Categories

Category Publication Index Count
Bit arithmetic P1, P13, P20 3
Circular Validation P6 1
Identifier Resolution P6 1
Integer equality P16 1
Linkage P17 1
Loop Induction P5, P17 2
Invalid Memory Access P12, P22 2
Misinformation P6, P8, P9, P10, P14, P21 6
Optimization P1, P3, P5, P10, P11, P15, P18, P22 8
Program parsing P7, P18 2
Tensor P2 1
Translation P4, P6, P11,P12, P16, P19, P22, P23 8
Type P2, P6, P17, P21, P22, P24, P25, P26 8

Mapping of Defect Categories with Compiler Characteristics: We also study the characteristics of the compilers
for which we documented the identified bug categories. We summarize our results in Tables 10 and 11. The tables are
sorted alphabetically based on the compiler name.

Each row lists a compiler and the defect categories that are associated with the compiler as shown in the ‘Category’
column. We further report the associated language, generated output type, and whether or not the compiler is open
or closed source. For example, for the ‘Bambu’ compiler we record the bit arithmetic defect. The compiler is used for
high-level synthesis (HLS) language, which generates hardware specification as output. The compiler is a closed source.

From Table 10 we observe defect categories to be diverse for open-source compilers compared to that of closed-source
compilers. Certain defect categories are common across multiple types of compilers. From Table 11 we observe multiple
Fortran-related compilers being studied for which practitioners have reported multiple defect categories.

Benchmarks reported in peer-reviewed publications: We report the benchmarks that have been used in our studied
publications in Table 12. The ‘Benchmark’ column in Table 12 reports the benchmarks that have been used by each
publication. If a publication does not report any benchmarks, then we report ‘No benchmark reported’. We observe
GCC and LLVM to be the most frequently used benchmarks in academic publications related to compiler defects.

Mapping of Defect Categories to Compilation Steps and Defect Categories: we provide a mapping between
compilation steps and identified defect categories in Table 13.
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Table 10. Mapping Between Defect Categories and Compiler Characteristics Based on Publications

Category Compiler Name Languages Used Output Open/Closed
Bit arithmetic Bambu HLS Hardware Specifications Closed
Type ChakraCore Javascript Machine Code Open
Integer equality, Misinformation, Optimization,
Translation

Clang C/C++, Objective C/C++,
RenderScript

Machine Open

Bit arithmetic Commercial HLS
Compiler

HLS Hardware Specifications Closed

Integer equality, Misinformation, Optimization,
Translation

Clang C/C++, Objective C/C++,
RenderScript

Machine Open

Circular validation, Identifier resolution, Misinfor-
mation, Translation, Type

Dotty Scala 3 Java Bytecode Open

Integer equality, Loop induction, Bit arithmetic, In-
valid Memory Access, Misinformation, Optimiza-
tion, Translation

GCC C/C++ Binary/Assembly Open

Tensor, Type Glow Dataflow graph Machine Open
Circular validation, Identifier resolution, Misinfor-
mation, Translation, Type

Groovy Groovy Java Bytecode Open

Circular validation, Identifier resolution, Misinfor-
mation, Translation, Type

Kotlin Kotlin Java Bytecode Open

Misinformation K-Java Java Java Open
Misinformation KSolidity Solidity Java Open
Bit arithmetic Legup HLS Hardware Specifications Open
Bit arithmetic, Linkage, Loop induction, Invalid
Memory Access, Optimization, Translation, Type

LLVM C/C++, C#, OpenCL,
Ruby, Scala

Assembly Open

Tensor, Type nGraph ONNX graph Machine Open
Program parsing OpenCL C/C++ Assembly Open
Circular validation, Identifier resolution, Misinfor-
mation, Translation, Type

Open JDK Java Java Bytecode Open

Circular validation, Identifier resolution, Misinfor-
mation, Translation, Type

Scala Scala 2 Java Bytecode Open

Optimization, Program parsing RustC Rust Assembly Open
Misinformation, Translation Simulink Simulink Specification Closed
Tensor, Type TVM Python deep learning IR Open
Optimization TurboFan Javascript Machine Open
Optimization, Type V8 Javascript Javascript Machine Open
Optimization, Type Intel C++ C++ Machine Open
Type Javascript Core Javascript Machine Code Closed
Program parsing, Type RustC Rust Binary Open
Type P4 Compiler P4 Programs C/JSON/Machine Code Open
Type ChakraCore Javascript Machine Code Open
Type SpiderMonkey Javascript Byte Code Open
Type Rhino Javascript Nyte Code Closed
Type Nashorn Javascript Byte Code Closed
Type Hermes Javascript Byte Code Open
Type JerryScript Javascript Byte Code Open
Type QuickJS Javascript Binary Open
Type GraalJS Javascript Byte Code Code Open

We further investigate if the identified defect categories appear for other software systems. As part of this review activity,
we reviewed prior work on defect categorization and identified if one or multiple defect categories identified from
our MLR also appear for other software systems. By reviewing these papers, we assume to identify defect categories
that are applicable to other software systems. The papers that we reviewed are: “An Empirical Study on TensorFlow
Program Bugs” [66], “Bug Characteristics in Open Source Software” [57]”, “Orthogonal Defect Classification: A Concept
for In-process Measurements” [8]”, “Not All Bugs Are The Same: Understanding, Characterizing, and Classifying Bug
Types” [4]”, “Defect Categorization: Making Use of a Decade of Widely Varying Historical Data” [52]”, “Gang of Eight:
A Defect Taxonomy for Infrastructure as Code Scripts” [42], “IoT Bugs and Development Challenges” [34]”, “Taxonomy
of Real Faults in Deep Learning Systems” [24].
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Table 11. Mapping Between Defect Categories and Compiler Characteristics Based on Artifacts

Category Compiler Name Languages Used Output Open/Closed
Optimization .NET C#, F#, Visual Basic Machine Open
Misinformation, Optimization Arduino SDK C++ Machine Open
Optimization Clang C/C++, Objective C/C++,

RenderScript
Machine Open

Optimization Code Composer Stu-
dio

C/C++ Assembly Closed

Misinformation, Optimization, Program parsing Cray Compiling En-
vironment

Fortran Machine Closed

Misinformation, Optimization, Translation GCC C/C++ Binary/Assembly Open
Invalid memory access, Misinformation, Optimiza-
tion

GNU Fortran Fortran Machine Open

Misinformation, Optimization IBM Fortran Fortran Machine Closed
Optimization Intel C++ C++ Machine Open
Invalid memory access, Misinformation, Optimiza-
tion, Translation

Intel Fortran Fortran Machine Open

Optimization Java 7 Java Java Bytecode Closed
Optimization Kotlin Kotlin Java Bytecode Open
Optimization, Translation LLVM C/C++, C#, OpenCL,

Ruby, Scala
Assembly Open

Misinformation, Optimization PGI Fortran Machine Closed
Type Solc Solidity Machine Open
Misinformation, Optimization Visual Studio x64 C++ Binary/DLL/Machine Closed
Bit Arithmetic WebAssembly C/C++, Rust, C#, Kotlin,

Go, Swift
Webassembly binary Open

Misinformation XCode 4 C/C++, Objective C/C++,
Swift

Machine Closed

Misinformation Xilinx SDK C++ Machine Closed

Table 12. Benchmarks used in Peer-reviewed Publications

Index Benchmark
P1 120 real compiler bugs (60 GCC bugs and 60 LLVM bugs), as well as 90 bugs

collected from prior work (45 GCC bugs and 45 LLVM bugs).
P2 603 bugs (318 TVM bugs, 145 Glow bugs, and 140 nGraph bugs)
P3 No benchmark reported
P4 12% of the fixed miscompilation bugs for the Clang/LLVM C/C++ compiler
P5 GCC and LLVM
P6 320 typing-related bugs for four mainstream JVM languages, namely Java,

Scala, Kotlin, and Groovy
P7 OpenCL systems
P8 No benchmark reported
P9 60 GCC bugs
P10 83 bugs (44 GCC and 39 LLVM bugs)
P11 21 OpenCL systems
P12 124 GCC bugs and 93 LLVM bugs
P13 No benchmark reported
P14 756 tests cases of K-Java and KSolidity
P15 8,771 GCC optimization bugs and 1,564 LLVM optimization bugs
P16 136 bugs from GCC- 4.8.5 and 81 bugs from Clang-3.6.1
P17 1,723 tool-chain bugs from LLVM
P18 8 GNU bugs and 23 LLVM bugs
P19 144,847 Simulink models
P20 45 GCC bugs and 45 LLVM bugs
P21 50 bugs in the Kotlin compiler
P22 112 bugs in three versions of ChakraCore, Javascript Core, and V8
P23 220 bugs in GCC, LLVM, and Intel C++ Compiler
P24 18 bugs in the Rust Compiler
P25 4 bugs in the P4 Compiler
P26 158 bugs in V8, ChakraCore, Javascript Core, SpiderMonkey, Rhino, Nashorn,

Hermes, JerryScript, QuickJS, Graaljs

The papers related to defect categorization can be divided into two groups: (i) generic software systems: the defect
taxonomies presented in the following papers, “Orthogonal Defect Classification: A Concept for In-process Mea-
surements” [8], “Not All Bugs Are The Same: Understanding, Characterizing, and Classifying Bug Types” [4], “Bug
Manuscript submitted to ACM
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Table 13. Mapping of Defect Categories to Compilation Steps

Category Compilation Phase Code Construct
Bit arithmetic Translation Arithmetic Operations
Circular validation Translation Arithmetic Operations
Identifier resolution Translation Identifier/Objects
Integer equality Translation Arithmetic Operations
Linkage Translation Identifier/Objects
Loop induction Translation Identifier/Objects
Invalid Memory Access Translation Memory
Misinformation Translation Identifier/Objects
Optimization Optimization Identifier/Objects
Program parsing Parsing Identifier/Objects
Tensor Translation Identifier/Objects
Translation Translation Identifier/Objects
Type Translation Types

Table 14. Appearance of Defect Categories in Previously-studied Software Systems

Category Previously-studied Software System
Bit arithmetic Not reported for prior software system
Circular validation Not reported for prior software system
Identifier resolution Not reported for prior software system
Integer equality IBM Proprietary Software [8]
Linkage IBM Proprietary Software [8], NASA Software Projects [52], Service-oriented Web Systems [6]
Loop induction Not reported for prior software system
Invalid Memory Access Mozilla Projects [57], NASA Software Projects [52]
Misinformation NASA Software Projects [52], Service-oriented Web Systems [6]
Optimization NASA Software Projects [52]
Program parsing IBM Proprietary Software [8]
Tensor TensorFlow-based machine learning systems [66]
Translation Deep learning systems [24]
Type Deep learning systems [24]

characteristics in open source software” [57], and “Defect Categorization: Making Use of a Decade of Widely Vary-
ing Historical Data” [52] are applicable for generic software projects. Amongst these three publications, the three
papers namely, “Orthogonal Defect Classification: A Concept for In-process Measurements” [8], “Bug Characteristics
in open-source software” [58], and “Defect Categorization: Making Use of a Decade of Widely Varying Historical
Data” [52] are seminal publications with high impact in the domain of software engineering research; and (ii) specialized
software systems: the defect taxonomies presented in the following papers “Gang of Eight: A Defect Taxonomy for
Infrastructure as Code Scripts” [42], “Taxonomy of Real Faults in Deep Learning Systems” [24], and “An Empirical Study
on TensorFlow Program Bugs” [66] respectively, present defect categories for infrastructure as code, deep learning
software, and Tensorflow. All of these software systems serve a unique purpose. Our hypothesis is that as these papers
are recent and address relatively novel types of software, overlaps between our identified defect categories and existing
categories in these papers can help us contextualize the novelty of compiler defects.

By considering publications from the above-mentioned groups we assume to synthesize existing reported defect
categories, and then compare our identified compiler defect categories to that with existing defect categories for
previously studied software systems. Our findings are reported in Table 14. The defect categories that have not been
reported for prior software systems are bit arithmetic, circular validation, identifier resolution, and loop induction.

Mapping of Defect Categories with Compiler Components: We provide a mapping between each identified defect
category and compiler components in Table 15. We observe the syntax analyzer and code generator respectively, to be
mapped to 8 and 7 of the 13 defect categories. The intermediate representation generator is the least mapped component.
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Table 15. Mapping Between Compiler Components and Defect Categories

Category Compiler Component
Bit arithmetic Semantic analyzer, Lexical analyzer, Syntax analyzer, Code generator
Circular Validation Code generator
Identifier Resolution Syntax analyzer
Integer equality Lexical analyzer, Syntax analyzer
Linkage Code generator
Loop Induction Code optimizer, Intermediate representation generator, Semantic analyzer
Invalid Memory Access Syntax analyzer, Code generator
Misinformation Syntax analyzer, Semantic analyzer, Code generator
Optimization Semantic analyzer, Code optimizer, Code generator
Program parsing Lexical analyzer
Tensor Semantic analyzer, Syntax analyzer
Translation Syntax analyzer, Code generator
Type Semantic analyzer, Syntax analyzer

Answer to RQ2: We identify 13 defect categories from our MLR of which bit arithmetic, circular validation, identifier

resolution, and loop induction have not been reported for other software systems.

3.3 Answer to RQ3

We provide answers to RQ3: What techniques have been reported in Internet artifacts and peer-reviewed publications to

identify defects in compilers? in this section.

3.3.1 Answer to RQ3: Defect Identification Techniques. Altogether, we identify 15 techniques used to identify defect
categories that we describe below:

Deep learning: We observe deep learning algorithms to be used to identify defects in compilers. Using deep learning
algorithms, programs are generated automatically, which are later executed to identify defects in compilers. For example,
Cummins et al. [12] used deep learning to generate C programs to identify defects in GCC.

Reinforcement learning: We observe reinforcement learning to be used to find defects in compilers. In reinforcement
learning, an agent is rewarded if the agent is executing steps toward the desired goal. Reinforcement learning was used
by Chen et al. [7] to identify latent defects in GCC.

Tensormutation: We observe tensor mutations to be used to identify defects in deep learning compilers. Shen et al. [54]
studied defect characteristics in deep learning compilers and observed intermediate representation pre-processors to be
the most defect prone. Using this observation, Shen et al. [54] constructed TVMFuzz that randomly mutates tensor
types, tensor shapes, and tensor element values.

Optimization pattern synthesis: We observe researchers synthesizing patterns when a compiler performs opti-
mizations to identify defects in compilers. Lim and Debray [32] mined and synthesized patterns in intermediate
representation forms to identify defects in JIT compilers. Listing 18 shows an example of a program that is generated
using optimization pattern synthesis [32]. The code snippet a = i & -0; is generated by (i) mutating a set of
input programs, (ii) executing the mutated programs, and (iii) synthesizing an intermediate representation from the
executions.

Differential testing: We observe differential testing to be used to identify defects in compilers. Differential testing
applies the same input combinations to different variants of the same computer program and observes differences in
Manuscript submitted to ACM
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1 var a, b;
2 for (var i = 0; i < 100000; i++) {
3 b = 1;
4 a = i & -0; // Changed from '+' to '&'.
5 b = a;
6 }
7 print(a === b);
8 gc();
9 print(a === b);

Listing 18. Javascript code snippet generated by optimization pattern synthesis [32].

the execution profile to detect unexpected behaviors in the program. Differential testing is used by Yang et al., where
they constructed CSmith to identify defects in GCC. As another example, differential testing is used by Sun et al. [56] to
find compiler defects for GCC. A variant of differential testing is the equivalence of modulo input, which was used by
Chowdhury et al. [10] to identify defects in the Simulink compiler.

Markov Chains: We observe Monte Carlo Markov Chains (MCMCs) to be used to identify defects in compilers. Le et
al. [31] constructed Athena, which uses MCMC to generate programs that are executed to identify defects in GCC and
LLVM. Le et al. [31] used MCMC to find samples of program statements to generate programs.

Address Discrepancy Analysis: We observe address discrepancy analysis to be used to find defects in high-level
synthesis (HLS) compilers. Fezzardi et al. [18] used address discrepancy analysis to identify invalid memory access
defects in HLS compilers. As part of this analysis technique, Fezzardi et al. [18] uses HLS information to map software
pointers with hardware memory access by constructing finite state machines.

Skeletal Program Enumeration: We observe skeletal program enumeration to be used to identify defects in compilers.
Zhang et al. [65] observed that a computer program could be represented as a skeleton, i.e., a syntactic structure
parameter by a collection of identifiers, for example, variables. Zhang et al. [65] applied partitioning to apply skeletal
program enumeration to identify defects in GCC and Clang.

Semantic specifications: We observe skeletal semantic specifications to be used to identify defects in compilers.
Schumi and Sun [51] used semantic specification where they generated structural operational semantic rules to generate
programs to identify defects in the Java and the Solidity compiler.

Commercial static analysis tool usage: We observe practitioners use commercial static analysis tools to identify
defects in compilers. For example, in a blog post, a practitioner mentioned how ‘PVS Studio’, a commercial static analysis
tool was used to identify a invalid memory access defect in the GCC compiler.

Aspect preserving mutation: We observe Park et al. [39] to identify aspects, i.e., desirable properties in Javascript-like
programs, and preserve aspects through stochastic mutation of the programs to identify defects for JavaScript compilers,
such as the V8 JavaScript compiler.

Type-centric enumeration: We observe Stepanov et al. [55] to use type-centric enumeration to identify defects
type-related defects for the Kotlin compiler. Type-centric enumeration is inspired by skeletal program enumeration,
which leverages typed expression generation and type placeholder filling where generated expressions are mutated.
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Constraint logic programming: We observe Dewey et al. [16] to use constraint logic programming to identify
type-related defects for the Rust compiler. The goal is to generate well-typed Rust programs that can expose latent
type-related defects in the Rust compiler. Dewey et al. [16] leveraged the Curry-Howard Correspondence where logical
propositions correspond to types and programs correspond to proof terms.

Equivalence modulo input: We observe researchers use the concept of equivalence module input (EMI) to identify
defects in compilers. EMI takes a computer program and a set of values as input and executes the program from which
program profiles are extracted. Next, from the extracted program profiles EMI generates a set of program inputs by
mutating the original input set so that the execution of the program is exactly the same as the original inputs.

User action: We observe regular user actions to lead to the discovery of defects in compilers. Unlike the above-
mentioned techniques, for this category, users do not intentionally use a technique to identify defects in compilers.
Instead, while using a compiler in a particular context, the defect in the compiler gets exposed.

Unlike all other reported techniques, for user action, no systematic technique is applied to discover a defect in the
compiler. This category includes all actions performed by a compiler user when executing a computer program
with a compiler. Let us consider the case of identifying a defect in the MingW64 component of GCC [64]. The
user in this case was developing a model for ocean environments in order to approximate the health of fish stocks.
The user was refactoring an existing implementation of the model to instantiate multiple models as threads. As
part of this refactoring operation, the user identified a defect that resulted in erroneous calculations. Instead of
receiving 1999.818926297566804, the user received 1999.8189264475995515 with the refactored implementation.
The erroneous calculation was attributed to a linkage defect where a function call was not linked to the implementation
of _fpreset. The user further added: “All in all I spent around 5 days chasing this bug through my code. I generated

Gigabytes of log files and had to get down to the precision of 7.5 grains of sand on the planet Earth. The compiler missing a key

function call turned out to be the cause of the issue. Many times, while trying to find the root cause I found myself questioning

my ability to write code, diagnose bugs and remain sane. I’m glad I found an answer and have a way forward” [64].

The identified 15 techniques can be divided into two groups: techniques identified from Internet artifacts and techniques
identified from peer-reviewed publications. Two techniques namely, commercial static analysis tool usage and user
action have been reported in Internet artifacts but not in peer-reviewed publications. The only technique that appears
for both Internet artifacts and peer-reviewed publications is differential testing. Also, the techniques that we only
obtain from peer-reviewed publications: address discrepancy analysis, aspect preserving mutation, constraint logic
programming, deep learning, equivalence modulo input, Markov chains, optimization pattern synthesis, reinforcement
learning, semantic specification, skeletal program enumeration, type-centric enumeration, and tensor mutation.

We provide a mapping between the applied technique and the corresponding Internet artifact in Table 16. We observe
user action to be the most frequently applied technique to identify defects in compilers for Internet artifacts.

We also provide a mapping between the applied technique and the corresponding publication in Table 17. We observe
differential testing to be the most frequently applied technique to identify defects in compilers for our set of peer-
reviewed publications. P6, P15, and P17 use qualitative analysis to characterize reported defects and hence are not
mapped to any technique in Table 17.
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Table 16. Mapping Between Internet Artifacts and Techniques

Category Artifact Index Count
Differential testing IA5 1
Commercial static analy-
sis tool

IA16 1

User action IA1, IA2, IA3, IA4, IA6, IA7, IA8, IA9, IA10, IA11, IA12, IA13, IA14, IA15, IA17,
IA18, IA19, IA20, IA21, IA22, IA23, IA24, IA25, IA26, IA27, IA28, IA29, IA30, IA31,
IA32

30

Table 17. Mapping Between Publications and Techniques

Category Publication Index Count
Address discrepancy analysis P13 1
Deep learning P7, P26 2
Differential testing P4, P5, P8, P9 , P11, P12, P14, P18, P19, P23, P25 11
Equivalence modulo input P22 1
Markov chains P10, P20 2
Optimization pattern synthesis P3 1
Reinforcement learning P1 1
Semantic specification P19 1
Skeletal program enumeration P16, P20 2
Tensor mutation P2 1
Aspect preserving mutation P22 1
Type-centric enumeration P21 1
Constraint logic programming P24 1

Table 18. Mapping Between Defect Categories and Techniques

Technique Defect Category
Address discrepancy analysis Bit arithmetic
Deep learning Program Parsing, Type
Differential testing Translation, Loop Induction, Misinformation, Optimization, Invalid Memory Access, Program parsing,

Type
Equivalence modulo input (EMI) Invalid Memory Access, Optimization, Transalation
Markov chains Misinformation, Optimization, Bit arithmetic
Optimization pattern synthesis Optimization
Reinforcement learning Bit arithmetic, Optimization
Semantic specification Misinformation
Skeletal program enumeration Integer equality, Translation, Bit arithmetic
Commercial static analysis tool Misinformation
Tensor mutation Tensor, Type
User action Bit Arithmetic, Invalid Memory Access, Misinformation, Optimization, Program parsing, Translation,

Type
Aspect preserving mutation Type
Type-centric enumeration Type
Constraint logic programming Type

We further provide details on techniques used to identify certain defect categories in Table 18.We observe two techniques
to be dominant: differential testing and user action. Unlike user action, differential testing is systematic and can be
used to generate programs to automatically find defects in compilers. We also observed no one technique is enough to
identify all identified defect categories in compilers.

3.3.2 Answer to RQ3: Challenges Addressed by Identified Techniques. We describe the challenges that are addressed by
the 15 techniques. We identify five categories of challenges that we describe below. A mapping between each identified
technique and the challenge it identifies is listed in Table 19.
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Table 19. Mapping Between Techniques and Addressed Challenges

Technique Addressed Challenge
Address discrepancy analysis Optimized memory localization for HLS
Deep learning Automated generation of test programs
Differential testing Automated generation of test programs
Equivalence modulo input (EMI) Automated generation of inputs for test programs
Markov chains Automated generation of test programs
Optimization pattern synthesis Automated generation of test programs
Reinforcement learning Automated generation of test programs
Semantic specification Automated generation of test programs
Skeletal program enumeration Automated generation of test programs
Commercial static analysis tool usage N/A
Tensor mutation Tensor attribute mining
User action N/A
Aspect preserving mutation Aspect Pre-condition Analysis

Optimized memory localization for HLS: This category corresponds to the unique challenge of identifying the
memory location to expose memory-related defects in the HLS compiler. To address this unique challenge authors of
P13 used address discrepancy analysis.

Automated generation of inputs for test programs: This category corresponds to the challenge of generating input
data for existing computer programs that are used to trace compiler executions. To address this challenge researchers
have used equivalence modulo input.

Automated generation of test programs: This category corresponds to the challenge of generating computer
programs in a certain programming language so that these programs can identify latent defects in compilers. This
category is different from the automated generation of inputs, as the category only considers the generation of test
programs and not the generation of inputs for existing programs. From our analysis we find generating test programs
accurately and effectively to find compiler bugs is challenging. To address this challenge researchers have used a wide
range of techniques, namely, deep learning, differential testing, reinforcement learning, Markov chains, optimization
pattern synthesis, semantic specification, and skeletal program enumeration.

Tensor attribute mining: This category corresponds to the challenge of transforming deep learning programs into
adequate forms so that deep learning compilers can be fuzzed. To address this challenge, authors of P2 apply tensor
mutation using the following steps: (i) construction of directed graphs based on API calls, and (ii) select random
subgraphs from step (i) and mutate the graphs for tensor type, tensor shape, and primitive tensor values.

Aspect Pre-condition Analysis: This category corresponds to the challenge of the pre-condition necessary to identify
and model an aspect, i.e., a desirable property in Javascript programs. We observe Park et al. [39] to address this
challenge with aspect-preserving mutation.

In Table 19 ‘N/A’ corresponds to a technique not addressing challenges as reported in an Internet artifact. The two
techniques commercial static analysis tool usage and user action are reported in Internet artifacts that have not
mentioned any challenge the mentioned technique it addresses.

We also report the temporal trends of the studied challenges reported in Figure 8. We observe the most frequently studied
challenge is the automated generation of test programs (‘GENERATE-PROGRAM’ in Figure 8). The first publication
related to the automated generation of test programs in our set was published in 2011. We observe Tensor attribute
mining (‘TENSOR-MINING’) to be a relatively recent topic of interest amongst researchers.
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Fig. 8. Temporal trends of studied challenges in our set of 26 peer-reviewed publications.

Answer to RQ3: We identify 15 techniques to identify defects in compilers. The most frequently used technique

amongst publications is differential testing, whereas the most frequently used technique in Internet artifacts is user

action.

4 DISCUSSION

We discuss the findings of our MLR paper as follows:

Usefulness of Differential Testing From Table 17, we observe differential testing to be the most frequently used
technique to identify defects in compilers. 11 papers use differential testing, and each of these 11 papers has reported
differential testing and its variants to be effective in identifying defects. Despite documented benefits reported in
publications, we observe differential testing under-reported in Internet artifacts. Only one artifact reported this
technique to be used to find defects in compilers. These observations imply that for the systematic identification of
defects in compilers, practitioners can rely on differential testing, as there is documented evidence of the effectiveness
of differential testing for finding defects in a diverse set of compilers, such as GCC, LLVM, and Simulink.

Studied Compilers - Differences and Similarities Between Publications and Internet Artifacts: From Section 3.1,
we notice both differences and similarities with respect to the studied compiler in our MLR. In both Internet artifacts
and publications, GCC and LLVM are well-investigated compilers. However, in the set of Internet artifacts, we observe
the following compilers to be investigated, which are absent in publications: Arduino SDK, GNU Fortran, Intel Fortran,
Java 7 Compiler, PGI Fortran, Code Composer Studio, Cray Compiling Environment, IBM Fortran, Kotlin, MingW64,
Visual Studio x64, WebAssembly, XCode, and Xilinix SDK. One possible explanation is practitioners report defects for
compilers that they use to perform their professional responsibilities. On the other hand, in the case of peer-reviewed
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publications defects are reported as part of the scientific discovery that may not overlap with compilers that practitioners
use in niche domains.

The results of RQ1 have implications for researchers. Results of RQ1 reveal that there is a wide range of compilers that
practitioners use and include defects. The implication of this finding is that researchers can apply existing defect finding
techniques for compilers that practitioners use but have not thoroughly investigated by researchers. For example, for
four Fortran-related compilers, namely, IBM Fortran, Intel Fortran, PGI Fortran, and GNU Fortran practitioners, have
reported defects. Researchers can investigate if techniques applicable for GCC are applicable to these Fortran-related
compilers. According to enlyft 9, 13,031 companies use Fortran. Defect identification techniques for Fortran compilers
can help practitioners who use Fortran for commercial and scientific purposes [26]. As another example, researchers
can investigate if existing defect identification techniques can be applied to Kotlin, which is used by 60% of professional
Android app developers 10. Our hypothesis is existing defect identification techniques used in existing research may
not work for unexplored compilers, such as Kotlin and Fortran.

Implication#1: By comparing the studied compilers between Internet artifacts and peer-reviewed publications, we

observe Arduino SDK, GNU Fortran, Intel Fortran, Java 7 Compiler, PGI Fortran, Code Composer Studio, Cray

Compiling Environment, IBM Fortran, MingW64, Visual Studio x64, WebAssembly, XCode, and Xilinix SDK not

to be studied peer-reviewed publications. We advocate researchers apply existing and novel defect identification

techniques for compilers that practitioners use but have not thoroughly investigated by researchers, such as Fortran

compilers.

Identified Defect Categories of Compilers: From Section 3.2, we observe specific defect categories to be unique to
compilers that do not appear for other software systems. These defect categories are bit arithmetic, circular validation,
identifier resolution, and loop induction. This observation implies that defects in compilers have unique characteristics
and thus require systematic investigation specific to compilers. Defect categories that appear for compilers and other
software systems are integer equality, linkage, invalid memory access, misinformation, optimization, program parsing,
tensor, translation, and type.

We identify the following defect categories that we observe in peer-reviewed publications but not in Internet artifacts:
circular validation, identifier resolution, integer equality, linkage, loop induction, and tensor. All six defect categories
observed for Internet artifacts are documented in peer-reviewed publications. One possible explanation is that researchers
who author peer-reviewed publications systematically apply a set of techniques in order to identify defects in compilers.
Unlike software practitioners who use compilers, researchers of our studied peer-reviewed publications are experts in
the domain of compiler testing. Their expertise, as demonstrated through their research activities, might have helped in
yielding the defect categories not reported in peer-reviewed publications.

Implication#2: Practitioners might not systematically apply techniques to find defects in the compilers they

use. Researchers should proactively engage in defect identification research in compilers that have relevance for

practitioners and aid in making the software supply chain resilient.

9https://enlyft.com/tech/products/fortran
10https://developer.android.com/kotlin
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Defect Identification Techniques: From Section 3.3, we observe three techniques that have been reported in Internet
artifacts. The count of defect categories reported in Internet artifacts is also lower than that of peer-reviewed publications.
One possible explanation is practitioners are aware of defect identification techniques used by researchers, but such
analyses are not reported publicly, especially for compilers that are closed source, such as Code Composer Studio.
Another possible explanation is that practitioners are more users of compilers who may not have the necessary expertise
to perform compiler testing. As a result, practitioners only use a handful set of techniques to identify defects in compilers.
Such explanation can partially be substantiated by findings reported in Table 16. We observe user action to be the most
frequently reported technique amongst Internet artifacts. User action is the technique when a compiler user uses a
compiler to perform a task, but while performing the task, a defect in the compiler is exposed. User action is not a
systematic compiler testing technique, which may not yield all possible defect categories. Our explanation is subject to
empirical substantiation, which researchers can investigate further.

Implication#3: Researchers can systematically investigate if practitioners are aware of defect identification tech-

niques for compilers through interviews and/or survey analysis. Based on the conducted research, researchers

can further investigate how defect identification techniques that are common in peer-reviewed research can be

transitioned to industry. Existing research [3, 33] related to software quality assurance could be of interest to

researchers in this regard.

Latent Defects in Infrastructure Orchestrators: Modern day computing infrastructure is managed with domain-
specific languages called infrastructure as code (IaC) languages [43, 44]. IaC is the practice of automatically managing
computing infrastructure at scale with dedicated programming languages [43, 44]. Languages used for IaC are examples
of domain specific languages, which are different from general purpose programming languages, such as C and
Java [45]. From our results reported in Section 3.2, we observe a lack of research related defects in IaC orchestrators,
i.e., software tools that parse and compile IaC software artifacts to manage large-scale computing infrastructure. As
these languages are pivotal in automated provisioning of computing infrastructure, the underlying compilers that
process and translate IaC scripts need to be robust and resilient. To that end, we propose the following research
directions: (i) gain an understanding of defects in IaC orchestrators through categorization; (ii) discover latent defects
in IaC orchestrators with established techniques, such as differential testing and fuzzing; and (iii) formal verification of
orchestrator components with theorem proving.

Implication#4: As IaC is an emerging domain, as part of future work, researchers can investigate techniques to

identify latent defects in IaC orchestrators, i.e., software tools that parse and compiler IaC scripts.

5 THREATS TO VALIDITY

We discuss the limitations of our paper as follows:

Conclusion Validity: Our application of inclusion and exclusion criteria is susceptible to rater bias, which can limit the
sets of Internet artifacts and peer-reviewed publications that we have used in our MLR. We mitigate this limitation by
using two raters and a resolver who resolved the disagreements between the two raters. Our approach to deriving defect
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categories is susceptible to rater bias, as these categories are derived by the third author. We mitigate this limitation by
performing rater verification.

We acknowledge that our list of keywords to search Internet artifacts and peer-reviewed publications might not be
comprehensive. We mitigate this limitation by using a quasi-gold set. We also acknowledge that our results are limited
to the quality of the Internet artifacts and peer-reviewed publications, which we mitigate by conducting a quality
analysis.

Construct Validity: Our MLR involves the application of qualitative analysis conducted by the third author, which we use
to answer RQ1, RQ2, and RQ3. The third author is a Ph.D. student with two years of experience in professional software
engineering. Such experience of the rater makes the conducted qualitative analysis susceptible to mono-method bias, i.e.,
the phenomenon of rater expectation to influence the outcomes of the qualitative analysis. We mitigate this limitation
by performing rater verification and allocating another rater.

External Validity: Our answers to RQ1, RQ2, and RQ3 are limited to the sets of Internet artifacts and publications that
we collected. With the evolution of time, the count of Internet artifacts and publications related to compiler defects can
grow. Therefore, a potential future review of Internet artifacts and publications related to compiler defects can identify
defect categories that are not included in our paper.

6 RELATEDWORK

Our paper is closely related to MLRs that have been conducted in the domain of automated software engineering.
Myrbakken and Colomo-Palacios [37] performed an MLR to identify the benefits and challenges of adopting security in
development and operations (DevOps) with two peer-reviewed publications and 50 Internet artifacts. Sanchez-Gordon
et al. [49] reported growing interest in DevOps adoption for developing e-learning systems with their MLR. Garousi
and Mantyla [23] performed an MLR study and provided a checklist of practical advice for practitioners for better
software test automation. In another work, Garousi et al. [20] performed an MLR with 130 peer-reviewed publications
and 51 Internet artifacts and reported 58 software test maturity models, five driving factors, three benefits, and eight
challenges for conducting successful test maturity assessment and test process improvement.

The examples mentioned earlier showcase the community’s interest in using MLRs to derive novel and actionable
insights for practitioners related to software engineering.

Our paper is also related to prior research on defect categories for software. In 1992, Chillarege et al. [9] proposed
Orthogonal Defect Classification (ODC) that included eight defect categories. Categories proposed by Chillarege et
al. [9] were used by Cinque et al. [11] to categorize defects for air traffic control software. Later in 2008, Seaman et
al. [52] extended ODC to derive 7 categories of requirements defects and 7 categories of test plan defects. Use of existing
defect categorization frameworks, such as ODC and Seaman et al. [52]’s work, may be inadequate for compilers, as
observed in Table 14.

Researchers have also categorized defects for domain-specific software systems. For example, Humbatova et al. [24]
mined GitHub issues and Stack Overflow posts to derive a fault taxonomy for software projects that use deep learning.
Rahman et al. [42] used open coding with commits to derive defect categories for Puppet scripts.
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We observe a lack of research related to compiler defect categorization. We have used an MLR to characterize defects in
compilers, which can help practitioners to improve the quality of compilers.

7 CONCLUSION

Compilers play a pivotal role in software development as they compile code into a format that the processor can execute.
Hence, defects in compilers can be disruptive for software developers and thus needs to be systematically identified.
We have conducted an MLR to help practitioners and researchers identify defects in compilers. From our MLR, we
identify 13 defect categories. We also identify 15 techniques, amongst which differential testing is the most frequently
used technique in the 26 publications used for our MLR. However, we also observe that one technique is not enough
to identify all defect categories reported in publications and Internet artifacts. Based on our findings, we recommend
the systematic application of techniques listed in peer-reviewed publications to identify defects in compilers. These
techniques can automatically generate computer programs, which in turn can expose latent defects in compilers.
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