
State Reconciliation Defects in Infrastructure as Code

MD MAHADI HASSAN, Auburn University, USA

JOHN SALVADOR, Auburn University, USA

SHUBHRA KANTI KARMAKER SANTU, Auburn University, USA

AKOND RAHMAN, Auburn University, USA

In infrastructure as code (IaC), state reconciliation is the process of querying and comparing the infrastructure
state prior to changing the infrastructure. As state reconciliation is pivotal to manage IaC-based computing
infrastructure at scale, defects related to state reconciliation can create large-scale consequences. A categoriza-
tion of state reconciliation defects, i.e., defects related to state reconciliation, can aid in understanding the
nature of state reconciliation defects. We conduct an empirical study with 5,110 state reconciliation defects
where we apply qualitative analysis to categorize state reconciliation defects. From the identified defect
categories, we derive heuristics to design prompts for a large language model (LLM), which in turn are used
for validation of state reconciliation.

From our empirical study, we identify 8 categories of state reconciliation defects, amongst which 3 have not
been reported for previously-studied software systems. The most frequently occurring defect category is
inventory, i.e., the category of defects that occur when managing infrastructure inventory. Using an LLM
with heuristics-based paragraph style prompts, we identify 9 previously unknown state reconciliation defects
of which 7 have been accepted as valid defects, and 4 have already been fixed. Based on our findings, we
conclude the paper by providing a set of recommendations for researchers and practitioners.

CCS Concepts: • Software and its engineering → Software defect analysis; Empirical software valida-
tion.

Additional Key Words and Phrases: defect, devops, empirical study, infrastructure as code, state reconciliation

ACM Reference Format:

Md Mahadi Hassan, John Salvador, Shubhra Kanti Karmaker Santu, and Akond Rahman. 2024. State Rec-
onciliation Defects in Infrastructure as Code. Proc. ACM Softw. Eng. 1, FSE, Article 83 (July 2024), 24 pages.
https://doi.org/10.1145/3660790

1 INTRODUCTION
Infrastructure as code (IaC) is the practice of automatically managing computing infrastructure
at scale with scripts written in dedicated programming languages, such as Ansible [NIST 2023;
Authors’ Contact Information: Md Mahadi Hassan, Auburn University, Auburn, Alabama, USA, mzh0167@auburn.edu;
John Salvador, Auburn University, Auburn, Alabama, USA, jms0256@auburn.edu; Shubhra Kanti Karmaker Santu, Auburn
University, Auburn, Alabama, USA, sks0086@auburn.edu; Akond Rahman, Auburn University, Auburn, Alabama, USA,
akond@auburn.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2994-970X/2024/7-ART83
https://doi.org/10.1145/3660790

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0001-6139-3133
HTTPS://ORCID.ORG/0009-0009-8360-4734
HTTPS://ORCID.ORG/0000-0001-5744-6925
HTTPS://ORCID.ORG/0000-0002-5056-757X
https://doi.org/10.1145/3660790
https://orcid.org/0000-0001-6139-3133
https://orcid.org/0009-0009-8360-4734
https://orcid.org/0000-0001-5744-6925
https://orcid.org/0000-0002-5056-757X
https://doi.org/10.1145/3660790

83:2 Hassan, Salvador, Santu, Rahman

Rahman et al. 2018]. The practice of IaC has gained popularity in recent years, yielding benefits
for information technology (IT) organizations. For example, the use of Ansible scripts was a
contributing factor for NetApp to reduce the software delivery time from days to seconds [RedHat
2022b]. As another example, the use of Ansible scripts helped the Asian Development Bank (ADB)
to save hundreds of work hours while managing thousands of servers [ansible 2022].

IaC uses state reconciliation, which is unique to IaC and pivotal to manage computing infrastruc-
ture [Rahman and Parnin 2023]. In state reconciliation, a state represents the software artifacts and
their corresponding configurations for the infrastructure of interest. As part of state reconciliation,
an IaC orchestrator, i.e., the tool that executes IaC scripts, infers the desired infrastructure state
from the script [Rahman and Parnin 2023]. Then, the orchestrator will identify the differences be-
tween the desired and existing infrastructure states, and only apply changes if there are differences
between desired and existing infrastructure states [Rahman and Parnin 2023].

The importance of state reconciliation in IaC necessitates pro-active detection of defects related
with state reconciliation as these defects can cause create serious consequences. Let us consider
the defect shown in Listing 1 in this regard. The defect is related to state reconciliation that
occurred for the Ansible orchestrator [abadger 2017]. The defect exposes sensitive information,
such as passwords into log files while performing state reconciliation. According to a GitHub
Advisory [GitHub Advisory Database 2022] entry, this defect is ‘critical’ with a severity score of
9.8 out of 10. The existence of such defects can be consequential for organizations, such as ADB
who use Ansible to manage thousands of servers [RedHat 2022a]. If remained undetected and
unmitigated, the defect in Listing 1 would have exposed sensitive information generated from
thousands of ADB’s servers.

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

FSE 2024, 15 - 19 July, 2024, Porto de Galinhas, Brazil Anon.

1 - module.params.update(module.params[�params�])
2 - # Remove the params
3 - module.params.pop(�params�, None)
4 ...
5 + if module.params[�params�]:
6 + module.fail_json(msg=�The params option
7 to jenkins_plugin was removed in Ansible 2.5�
8 �since it circumvents Ansible�s option handling�)
9 name = module.params[�name�]
10 state = module.params[�state�]

Listing 1. An example of a state reconciliation defect.

Space Administration (NASA) to reduce its multi-day software update process to 45minutes [Ansible
2023].

IaC uses state reconciliation, a pivotal approach to manage computing infrastructure. In state
reconciliation a state represents the software artifacts and their corresponding con�gurations
for the infrastructure of interest. As part of state reconciliation, an IaC orchestrator [Zhang et al.
2023], i.e., the tool that executes IaC scripts, infers the desired infrastructure state from the script.
Then, the orchestrator will identify the di�erences between the desired and existing infrastructure
states, and only apply changes if there are di�erences between desired and existing infrastructure
states [Rahman and Parnin 2023].

The importance of state reconciliation necessitates reliable implementation of state reconciliation
with IaC orchestrators. Yet, we observe evident of defects related to state reconciliation, which in
turn can create serious consequences. Let us consider the defect shown in Listing 1 in this regard.
The defect is related to state reconciliation and occurred for the Ansible orchestrator [abadger
2017]. The defect exposes sensitive information, such as username and password into log �les while
performing state reconciliation. According to the GitHub Advisory [GitHub Advisory Database
2022] listing this defect is ‘critical’ with a severity score of 9.8 out of 10. Existence of such defects
can be consequential for organizations, such as NEC who use Ansible to manage thousands of
servers [RedHat 2022a]. If remained unmitigated, the defect in Listing 1 would have exposed
sensitive information generated from thousands of NEC’s servers.

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

FSE 2024, 15 - 19 July, 2024, Porto de Galinhas, Brazil Anon.

1 - module.params.update(module.params[�params�])
2 - # Remove the params
3 - module.params.pop(�params�, None)
4 ...
5 + if module.params[�params�]:
6 + module.fail_json(msg=�The params option
7 to jenkins_plugin was removed in Ansible 2.5�
8 �since it circumvents Ansible�s option handling�)
9 name = module.params[�name�]
10 state = module.params[�state�]

Listing 1. An example of a state reconciliation defect.

Space Administration (NASA) to reduce its multi-day software update process to 45minutes [Ansible
2023].

IaC uses state reconciliation, a pivotal approach to manage computing infrastructure. In state
reconciliation a state represents the software artifacts and their corresponding con�gurations
for the infrastructure of interest. As part of state reconciliation, an IaC orchestrator [Zhang et al.
2023], i.e., the tool that executes IaC scripts, infers the desired infrastructure state from the script.
Then, the orchestrator will identify the di�erences between the desired and existing infrastructure
states, and only apply changes if there are di�erences between desired and existing infrastructure
states [Rahman and Parnin 2023].

The importance of state reconciliation necessitates reliable implementation of state reconciliation
with IaC orchestrators. Yet, we observe evident of defects related to state reconciliation, which in
turn can create serious consequences. Let us consider the defect shown in Listing 1 in this regard.
The defect is related to state reconciliation and occurred for the Ansible orchestrator [abadger
2017]. The defect exposes sensitive information, such as username and password into log �les while
performing state reconciliation. According to the GitHub Advisory [GitHub Advisory Database
2022] listing this defect is ‘critical’ with a severity score of 9.8 out of 10. Existence of such defects
can be consequential for organizations, such as NEC who use Ansible to manage thousands of
servers [RedHat 2022a]. If remained unmitigated, the defect in Listing 1 would have exposed
sensitive information generated from thousands of NEC’s servers.

Existence of defects similar to Listing 1 necessitates a systematic categorization of state recon-
ciliation defects, i.e., defects related to state reconciliation for IaC. The importance of defect
categorization for software validation has been acknowledged by the software engineering research
community [Garcia et al. 2020; Humbatova et al. 2020; Rahman et al. 2020]. A categorization of
state reconciliation defects can aid researchers and practitioners to (i) understand how state recon-
ciliation defects occur, (ii) understand what defect categories are unique to state reconciliation in
IaC, (iii) measure quality of state reconciliation implementation, and (iv) perform validation related
with state reconciliation.

Accordingly, we conduct an empirical study where we answer the following research questions:

• RQ1:What categories of state reconciliation defects occur for infrastructure as code? How frequently
do identi�ed defect categories occur?

• RQ2:How can we use identi�ed defect categories to perform validation related to state reconciliation?

ii

Fig. 1. Example of a state reconciliation de-
fect.

Existence of defects similar to Listing 1 necessitates a
systematic categorization of state reconciliation defects,
i.e., defects related to state reconciliation for IaC. The
importance of defect categorization for software valida-
tion has been acknowledged by the software engineering
research community [Garcia et al. 2020; Humbatova et al.
2020; Rahman et al. 2020]. A categorization of state rec-
onciliation defects can aid researchers and practitioners
to (i) understand how state reconciliation defects occur,
(ii) understand what defect categories are unique to state
reconciliation in IaC, (iii) measure quality of state recon-
ciliation implementation, and (iv) perform validation related with state reconciliation.

Accordingly, we conduct an empirical study where we answer the following research questions:

ii

Listing 1. Example of a state reconciliation defect.

The existence of defects similar to
Listing 1 necessitates a systematic cat-
egorization of state reconciliation de-
fects, i.e., defects related to state rec-
onciliation for IaC. The importance
of defect categorization for software
validation has already been acknowl-
edged by the software engineering re-
search community [Garcia et al. 2020;
Humbatova et al. 2020; Rahman et al.
2020]. Categorization of state reconciliation defects, an area that remains under-explored, can
be useful for researchers and practitioners in (i) understanding how state reconciliation defects
occur, (ii) measuring the quality of state reconciliation implementation of IaC orchestrators, and
(iii) performing validation related to state reconciliation.

Accordingly, we conduct an empirical study where we answer the following research questions:
• RQ1: What categories of state reconciliation defects occur in infrastructure as code? How frequently
do identified defect categories occur?

• RQ2:How can we use identified defect categories to perform validation related to state reconciliation?

We conduct an empirical study with 5,110 state reconciliation defects mined from the open source
software (OSS) Ansible orchestrator [ansible 2023]. We use multi-phase open coding [Hickey
and Kipping 1996] to derive defect categories for state reconciliation. Upon derivation of defect
categories, we conduct a scoping review [Arksey and O’Malley 2005] of defect-related publications
to determine which of the identified defect categories have not been reported for previously studied

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

State Reconciliation Defects in Infrastructure as Code 83:3

Derived Heuristics

Commit and Issue
Report Mining

Ansible
Repository

Reported
Defects Defect Categories

Multi-phase
Open Coding Open Coding

RQ1

Prompt
Engineering

Paragraph Style
Prompt Design (PPD)

Heuristics-based
Paragraph Style
Prompt Design

(HPPD)

LLM
Execution

Text
 Filtering

Previously
Unknown Defects

Crash Collection

PLAYBOOK: 1. yaml * * * * * *

. . .

PLAYBOOK: 1. yaml * * * * * *

. . .

Traceback: 1. yaml * * * * * *

. . .

Unknown Defect
Identification

Environment Setup
and Playbook

Execution

Human
Evaluation

Report Identified
Unknown Defects

Generated Ansible Playbooks

- name: Ansi bl e Pl aybook N

. . .

- name: Ansi bl e Pl aybook 2

. . .

- name: Ansi bl e Pl aybook 1

. . .

RQ2

Fig. 1. An overview of our methodology.

software systems. Next, we derive heuristics for each identified defect category that are used to
design prompts for GPT-3.5, a large language model (LLM) [OpenAI 2023]. These prompts are
used to perform validation for state reconciliation by identifying crashes and previously unknown
defects. An overview of our methodology is presented in Figure 1.

Contributions:We list our contributions as follows:
• A derived list of defects categories for state reconciliation in IaC;
• An empirical evaluation of how frequently identified defect categories occur; and
• A technique that uses identified defect categories to perform validation related to state reconcili-
ation.

Data Availability Statement: Datasets and source code used for our paper is available on-
line [Akond Rahman and Salvador 2023b].

2 RQ1: CATEGORIZATION OF STATE RECONCILIATION DEFECTS
We first provide the necessary background in Section 2.1. Next, in Sections 2.2 and 2.3, we, respec-
tively, provide the methodology and answers for RQ1: What categories of state reconciliation
defects occur in infrastructure as code? How frequently do identified state reconciliation
defect categories occur?

2.1 Background
In the case of IaC, practitioners can use configuration files called scripts, which provide necessary
information for the desired state of an infrastructure. IaC orchestrators, i.e., tools that execute
IaC scripts, use the state reconciliation approach during script execution. The state reconciliation
process involves three steps: inventory assessment, state inquiry, and state regulation. First, the
orchestrator will identify what the necessary inventories are, e.g., what computing clusters need
to be managed along with their configurations. Second, the orchestrator will perform a state
inquiry where the orchestrator will determine the availability and then the current state of the
infrastructure. If the current state is different from the desired state as specified in the script, only
then will the orchestrator perform state regulation, which involves performing necessary changes
to the infrastructure as specified with the configurations specified in the script. For state regulation,
the orchestrator uses auxiliaries that extend the core functionality of an orchestrator.

We use Figure 2 to demonstrate the state reconciliation approach. Figure 2a shows an example
of an Ansible script that will create a file called ‘simple.txt’. To execute the script, the Ansible

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

83:4 Hassan, Salvador, Santu, Rahman

1---
2- hosts: all
3 tasks:
4 - name: Creating a file with content
5 copy:
6 dest: "/tmp/simple.txt"
7 content: |
8 Line-1
9 Line-2

1

a

1[server3]
218.25.191.255
3ansible_ssh_user=simple
4ansible_ssh_private_key_file=<HIDDEN>/simple.pem

1

b

Fig. 2. An example to demonstrate Ansible’s state reconciliation approach. Figures 2a and 2b respectively,
presents that desired state expressed in YAML and the inventory infrastructure.

orchestrator will first identify the necessary inventory. The inventory for the example is presented
in Figure 2b, which shows the necessary internet protocol (IP) addresses and PEM files to establish
communication with an Amazon EC2 instance. Once communication is established, the orchestrator
will perform state inquiry, where the orchestrator determines the current state of the infrastructure.
If the current infrastructure state shows that a file called ‘simple.txt’ is absent then, the orchestrator
will create the file as part of state regulation.

2.2 Methodology to Answer RQ1
We provide the methodology to answer RQ1 in the following subsections:

2.2.1 Detect Defects by Mining the Ansible Orchestrator Repository. We use the following steps:

Step#1 - Mine Commits and Issue Reports from the Ansible Orchestrator Repository: We
download the Ansible IaC orchestrator repository [ansible 2023] on September 2022 to conduct our
analysis. We use Ansible as it is one of the most popular technologies to implement IaC. Attributes
of the repository is available in Table 1. From the downloaded repository, we mine commit messages
from 53,195 commits and content from 31,505 issue reports. Upon mining these artifacts, we first
apply a keyword search to identify commit messages and issue reports that are related to a defect.
We use the following keywords similar to prior work [Rahman et al. 2020; Ray et al. 2014]: ‘bug’,
‘defect’, ‘error’, ‘fault’, ‘fix’, ‘flaw’, ‘incorrect’, ‘issue’, and ‘mistake’. With our keyword search, we
identify 22,854 commits and 2,492 issue reports that are defect-related.

Table 1. Attributes of the Downloaded
Ansible Orchestrator

Attribute Data
Commits 53,195
Contributors 5,509
Issues 31,505
Snapshot Stable-2.14.0

Step#2 - Detect Defects byApplyingQualitativeAnalysis:
We apply qualitative analysis to identify defects from defect-
related commits and issue reports. We use qualitative analysis
as only relying on keyword search can lead to false positives.
We use two raters to apply qualitative analysis. One rater is
the last author of the paper with 12 years of experience in
software engineering. The other rater is a graduate student in
the department, who is not an author of the paper. For each defect-related commit and issue report,
the 2 raters individually identify if one or multiple defects appear. Both raters use the following
IEEE definition [IEEE 2010] for a software defect: “an imperfection or deficiency in the code that
needs to be repaired”.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

State Reconciliation Defects in Infrastructure as Code 83:5

Criteria to Identify Defects - For defect identification, the raters inspected each commit message
and issue report to determine if any of the following criterion is satisfied:

(1) if problematic code exists in the commit message or the issue report;

(2) if problematic code leads to an incorrect or undesired consequence that is explicitly expressed
by a practitioner;

(3) the commit/issue text describes an immediate consequence of the defect; and

(4) if the problematic code was repaired.

Upon completion of the inspection process, we calculate Krippendorff’s 𝛼 [Krippendorff 2018] to
quantify agreement, similar to prior work [Rahman et al. 2023a,b]. The Krippendorff’s 𝛼 is 0.62,
indicating ‘unacceptable’ agreement [Krippendorff 2018]. The disagreements because of the second
rater’s misclassification when applying the above-mentioned criteria. One example issue that the
second rater misclassified is “While applying these criteria, the second rater misclassified commits,
which resulted in a lower agreement rate. An example misclassification is “want to be able to use a
variable for the value of ignore_errors” [marcusphi 2013]. Both raters discussed their disagreements
and identified the cause of disagreements to the perception of features or defects. Upon discussion,
both raters conduct the inspection process again. After this stage, we obtain a Krippendorff’s 𝛼 of
1.0, indicating ‘perfect’ agreement [Krippendorff 2018].

2.2.2 Identify State Reconciliation Defects. As our RQ1 focuses on categorizing state reconciliation
defects, we conduct another round of qualitative analysis to identify state reconciliation defects.
The raters conduct closed coding [Saldaña 2015] to identify state reconciliation defects using the
set of 5,898 defects from 22,854 commits and 1,263 defects from the set of 2,492 issue reports. Both
raters use the following definition to determine if the content of a commit message or an issue
reported can be used to label a defect as a state reconciliation defect: “State reconciliation is defined
as the approach of managing computing infrastructure by comparing the inferred state and the desired
state with inventory discovery, inventory communication, state comparison, and provisioning”. For
example, the defect described in the issue report titled “Ansible command fails when we try to access
it on bastion from a remote server. ssh error..Unreachable nodes” [ansible/ansible 2023] is an example
of a state reconciliation defect as it is related to Ansible’s approach to communicating with a remote
host that is specified as an inventory.

Criteria to Identify State Reconciliation Defects - The raters inspect if any of the following
criterion is satisfied:

(1) the defect resides in orchestrator source code;

(2) the defect occurs when: (i) performing inventory discovery; (ii) performing inventory man-
agement; (iii) establishing communication with the inventory; (iv) comparing the desired and
provided state; and (v) instantiating and provisioning the inventory.

We conduct closed coding in two rounds as in the first round, the Krippendorff’s 𝛼 is 0.41, indicating
‘unacceptable’ agreement [Krippendorff 2018]. The disagreements occurred because of the second
rater misclassifying generic defects as state reconciliation defects. For example the commit message
‘add jmainguy as author fix hash check’ 1 was identified as a state reconciliation defect even though
it does not follow any of the above-mentioned criterion. Prior to conducting the next round, the
first rater provided the second rater necessary context on what commits and issue reports can we
1https://github.com/ansible/ansible/commit/b86224a7ec

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

83:6 Hassan, Salvador, Santu, Rahman

classify as state reconciliation defects. In the next round, the Krippendorff’s 𝛼 is 0.93, which is
‘acceptable’ [Krippendorff 2018]. Altogether, we identified 4,410 state reconciliation defects from
commits and 1,263 state reconciliation defects from issue reports. Upon elimination of duplicates,
we end up with 5,110 state reconciliation defects that we use to conduct our categorization.

2.2.3 Categorization of State Reconciliation Defects. We use a qualitative analysis technique called
open coding [Saldaña 2015] to derive categories for state reconciliation defects. Open coding
identifies similarities in unstructured text to form categories [Saldaña 2015]. We apply open coding
in two phases as multi-phase open coding [Hickey and Kipping 1996] facilitates rater reliability
and achieves rater consensus. The two phases are:

Synchronized Open Coding: In this phase, the two raters categorize defects together by applying
open coding with 475 defects identified from 475 issue reports and 2,080 defects identified from
2,080 defect-related commits. In this phase, the two raters discuss their rating procedures in order
to achieve an acceptable level of agreement. While applying open coding, both raters inspect the
commit message, commits diffs for the collected commits, along with title, description, comments,
and associated code changes for the issue reports. Upon completion, the raters agree upon all but 8
defects with respect to categories. The Krippendorff’s 𝛼 is 0.83, indicating an ‘acceptable’ agreement.
The disagreements are resolved by an expert in IaC with 10 years of professional experience in
software engineering. The expert’s categorization is final for the defects that are disagreed upon.
The expert is not an author of the paper.

Independent Open Coding: In this phase, the two raters independently categorize defects by applying
open coding with the remaining 2,555 defects that we do not use during synchronized open coding.
Of the 2,555 defects, 475 are identified from 475 issue reports, and 2,080 defects are identified from
2,080 defect-related commits. Similar to the synchronized open coding phase, both raters inspect
the commit message, commits diffs for the collected commits, along with the title, description,
comments, and associated code changes for the issue reports. Upon completion, the raters agree
upon all but 15 defects with respect to categories, with Krippendorff’s 𝛼 being 0.81, indicating
‘acceptable’ agreement. The disagreements are resolved by the same expert who acted as a resolver
in the synchronized open coding phase. The expert’s categorization is final for disagreed upon
defects.

2.2.4 Comparison of State Reconciliation Defect Categories with Other Software Systems. We conduct
a comparison between derived defect categories for state reconciliation in IaC and defect categories
for previously studied software systems. Our assumption is that such comparison will identify defect
categories unique to state reconciliation. We use two types of papers: first, existing taxonomies
reported in the following three publications: “Orthogonal Defect Classification: A Concept for In-
process Measurements” [Chillarege et al. 1992], “Bug characteristics in open source software” [Tan
et al. 2014], and “Defect Categorization: Making Use of a Decade of Widely Varying Historical
Data” [Seaman et al. 2008]. We select these publications as these “are seminal publications with
high impact in the domain of software engineering research” [Rahman et al. 2023a]. Second, defect
categories reported in publications accepted at the technical research tracks of the International
Conference of Software Engineering (ICSE), Foundations of Software Engineering (FSE), and Journal
of Systems and Software (JSS). We select ICSE, FSE, and JSS as they are well-recognized venues to
publish software engineering research. We perform a scoping review [Arksey and O’Malley 2005]
of papers published in the last five editions of ICSE, FSE, and JSS from 2018 to 2022. A scoping
review is a reduced form of systematic literature review [Arksey and O’Malley 2005].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

State Reconciliation Defects in Infrastructure as Code 83:7

From our scoping review, we identify the following: “A Comprehensive Study of Autonomous Vehi-
cle Bugs” [Garcia et al. 2020], “A Comprehensive Study on Deep Learning Bug Characteristics [Islam
et al. 2019]”, “A Comprehensive Study of Deep Learning Compiler Bugs” [Shen et al. 2021], “An
empirical characterization of software bugs in open-source cyber-physical systems” [Zampetti et al.
2022], “An Exploratory Study of Autopilot Software Bugs in Unmanned Aerial Vehicles [Wang et al.
2021]”, “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems” [Gao
et al. 2018], “An Empirical Study on Deployment Faults of Deep Learning Based Mobile Applica-
tions” [Chen et al. 2021], “An Empirical Study on Program Failures of Deep Learning Jobs” [Zhang
et al. 2020], “Characterizing and Detecting Bugs in WeChat Mini-Programs” [Wang et al. 2022],

Fig. 3. State Reconciliation Defect Categories.

“Gang of Eight: A Defect Taxonomy for In-
frastructure as Code Scripts” [Rahman et al.
2020], “How Bad Can a Bug Get? An Empiri-
cal Analysis of Software Failures in the Open-
Stack Cloud Computing platform [Cotroneo
et al. 2019]”, “IoT Bugs and Development Chal-
lenges” [Makhshari and Mesbah 2021], “Not
All Bugs Are the Same: Understanding, Charac-
terizing, and Classifying Bug Types” [Catolino
et al. 2019], “Taxonomy of Real Faults in Deep
Learning Systems” [Humbatova et al. 2020],
“The symptoms, causes, and repairs of bugs in-
side a deep learning library” [Jia et al. 2021],
“Towards understanding bugs in an open source cloud management stack: An empirical study of
OpenStack software bugs” [Zheng et al. 2019], “Understanding Performance Problems in Deep
Learning Systems [Cao et al. 2022]”, and “Using Orthogonal Defect Classification to characterize
NoSQL database defects” [Agnelo et al. 2020]. In all, we use 21 publications, of which 7, 6, 5, 1, 1,
and 1 are, respectively, published at ICSE, FSE, JSS, TSE, EMSE, and ESEM.

2.3 Answer to RQ1: Defect Categories and Their Frequency
1 value = value.rstrip()
2 # ...and non-printable characters
3 - value = filter(lambda x: x in string.printable,

value)↩→
4 + value = ''.join(x for x in value if x in

string.printable)↩→
5 # ...tabs prevent blocks from expanding
6 value = value.expandtabs()

Listing 2. Example of an auxiliary defect, which occurred
because of incorrect iteration logic for string.printable
using filter().

We answer RQ1:What categories of state
reconciliation defects occur in infrastructure
as code? How frequently do identified state
reconciliation defect categories occur? in the
following subsections:

2.3.1 Answer to RQ1: Defect Categories.
We identify eight defect categories related
to state reconciliation. An overview of the
identified state reconciliation defect cate-
gories is available in Figure 3. We describe
these defect categories with examples as follows:

1 - if original_task.action in ['include',

'include_role']:↩→
2 + if original_task.action not in ['include',

'include_role']:↩→
Listing 3. An example of a conditional defect where the in
operator was incorrectly for the condition of an if block.

I Auxiliary: Defects that occur due to the
auxiliary’s inadequate handling of events.
Auxiliaries extend the core functionality
of an orchestrator and handle events to
augment the existing state reconciliation
process [Ansible 2023]. These events are typically triggered by scripts.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

83:8 Hassan, Salvador, Santu, Rahman

Example: Listing 2 shows an example of an auxiliary defect [Jim Gu 2018]. Due to this defect, a
callback auxiliary fails to handle JSON objects in response to events triggered by scripts.

II Conditional: Defects that appear because of incorrect conditional logic.

Example: Listing 3 presents an example of a conditional logic defect, which caused incorrect display
of results [bcoca 2016a]. 1 - child_template_ids =

template.get_template_ids(link_templates)↩→
2 - existing_child_templates = None
3 ...
4 + for macroitem in template_macros:
5 + for key in macroitem:
6 + macroitem[key] = str(macroitem[key])

Listing 4. An example of an idempotence defect, which oc-
curred because of not adding code that prevents executions
with diverse outcomes for the same template.

III Idempotence: Defects that occur when
the idempotency property is violated.
Idempotency is the property that ensures
that the provisioning results will be ex-
actly the same even after multiple execu-
tions of the same IaC script [Burgess 2011;
Hummer et al. 2013].

Example: Listing 4 shows an example of an idempotence defect that occurred for ‘zabbix_tem-
plate’ [D3DeFi 2018], which is used to integrate monitoring utilities [Zabbix 2018].

1 - elbs = elb.get_all_load_balancers()
2 + elbs = []
3 + marker = None
4 ...
5 + newelbs =

elb.get_all_load_balancers(marker=marker)↩→
6 + elbs.extend(newelbs)

Listing 5. An example of an inventory defect related with
load balancers that occurred because of using incorrect API
methods for ELB-related inventory
.

IV Inventory: Defects that occur when
managing infrastructure inventory while
performing state reconciliation. We iden-
tify four sub-categories:

IV-a. Load Balancer: Defects that oc-
cur while performing state reconciliation
for inventory related to load balancers.
Load balancing is used to distribute net-
work or application traffic across multiple
servers [Cardellini et al. 1999].

1 def populate(self, collected_facts=None):
2 hardware_facts = {}
3 ...
4 - cpu_facts = self.get_processor_facts()
5 - memory_facts = self.get_memory_facts()
6 - device_facts = self.get_device_facts()
7 ...
8 + hardware_facts.update(self.get_processor_facts())
9 + hardware_facts.update(self.get_memory_facts())
10 + hardware_facts.update(self.get_device_facts())

Listing 6. An example of an inventory defect that occurred
because of using the wrong API methods needed to specify
hardware resources for OpenBSD-based computing clusters.

Example: Listing 5 shows an exam-
ple [bcoca 2016b] of an inventory-related
defect when managing Amazon Elastic
Load Balancers (ELBs) [Amazon 2023].

IV-b. Computing Clusters: Defects that oc-
cur while performing state reconciliation
for inventory related to computing and
storage instances, such as Amazon Web
Services (AWS) EC2 instances.

Example: Listing 6 shows an example of
an inventory-related defect while installing the ‘sysctl’ utility 2 for OpenBSD-based computing
clusters [Rick Elrod 2020].

1 - self.module.run_command(self.yum_basecmd +

['makecache'])↩→
2 + self.module.run_command(self.yum_basecmd +

['makecache', 'fast'])↩→
Listing 7. Example of a cache-related inventory defect,
which occurred because of not providing fast for run_-
command.

IV-c. Cache: Defects that occur due to in-
correct caching of inventory.

Example: Listing 7 shows an example of
an inventory-related defect that leads to

2https://man7.org/linux/man-pages/man8/sysctl.8.html

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

State Reconciliation Defects in Infrastructure as Code 83:9

performance issues while caching inven-
tory [mkrizek 2021]. Because of the defect,
unnecessary inventory data was being cached.

1 - this_module_function = getattr(this_module,

invocations[module.params['query']])↩→
2 + this_module_function =

globals()[invocations[module.params['query']]]↩→
Listing 8. An example of a serverless inventory defect, which
occurred because of using getattr() instead of globals() that
contains AWS Lambda-related data)
.

IV-d. Serverless Inventory: Defects
that occur when managing serverless
inventory [Castro et al. 2019], such
as AWS Lambda 3. AWS Lambda is
a framework that allows practition-
ers to deploy software applications
on serverless computing inventories.
Unlike virtual or physical computing
inventories, in the case of serverless
computing inventories, practitioners
are not expected to control resources, configuration management, and fault tolerance for serverless
inventories [Castro et al. 2019].

Example: Listing 8 shows an example of a defect related with serverless inventory [Jill R 2021].
Because of the defect, erroneous data was being returned to and from AWS Lambdas.

V State Regulation: Defects that occur during state regulation, i.e., the process when the orches-
trator performs necessary changes to the desired computing infrastructure. Necessary changes
that are needed are configured using the script. We identify three sub-categories:

1 - task_fields=self._task.dump_attrs(),
2 + task_fields=async_task.dump_attrs(),

Listing 9. An example of a state regulation defect related to async,
where self is used to access an async task.

V-a. Async: Defects that occur when
performing state regulation in an
asynchronous fashion.

Example: Listing 9 shows an example
of a state regulation defect related with async [sivel 2022].

1 - delegated_host = self._inventory.localhost
2 + for h in self._inventory.get_hosts(ignore_limits=True,

ignore_restrictions=True):↩→
Listing 10. An example of a state regulation defect related to delega-
tion that occurred because of not accessing delegate-related data with
self._inventory.get_hosts.

V-b. Delegate: Defects that occur
when the orchestrator attempts
to perform state regulation for
an inventory that is not specified
by the ‘hosts‘ attribute.

Example: Listing 10 provides an
example of a state regulation defect related with delegates [bcoca 2020].

1 - flag = True
2 - for res in self._result.get('results', []):
3 - if isinstance(res, dict):
4 - flag &= res.get('skipped', False)
5 - return flag
6 + results = self._result['results']
7 + return results and all(isinstance(res, dict) and

res.get('skipped', False) for res in results)↩→

Listing 11. An example of an executor-related state regulation defect
because of the incorrect assumption that a task with non-dictionary
loop would be skipped.

V-c. Executor. Defects that occur
because of incorrect code snip-
pets, such as tasks.

Example: Listing 11 presents an
example of a state regulation de-
fect related to executor [zenbot
2016].

3https://aws.amazon.com/lambda/

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

83:10 Hassan, Salvador, Santu, Rahman

VI State Inquiry: Defects that
occur when inquiring about the
state of the desired infrastructure. We identify two sub-categories:

1 ipaddr = ipaddr[1:-1]
2 if parts[1]:
3 - port_binds = [(parts[0], port) for port in

parse_port_range(parts[1], self.client)]↩→
4 + port_binds = [(ipaddr, port) for port in

parse_port_range(parts[1], self.client)]↩→
Listing 12. An example of a state inquiry defect related to routing. The
defect occurred because of using the incorrect variable (parts[0]) to
obtain ports needed for routing.

VI-a. Routing: Defects that oc-
cur when routing infrastructure
traffic from one destination to
another. This category of defect
occurs due to incorrect routing
rules, incorrect binding, or incor-
rect specification of IP addresses
and/or port numbers.

Example: Listing 12 presents an example of a state inquiry defect related to routing [felixfontein
2019] that occurred because of not properly binding IP addresses and ports.

1 - res = self.cs.expungeVirtualMachine(id=instance['id'])
2 + res = self.cs.destroyVirtualMachine(id=instance['id'],

expunge=True)↩→

Listing 13. An example of a state inquiry defect related to infer-
ence. Because of using expungeVirtualMachine, Ansible incor-
rectly inferred instance state as ‘expunged’.

VI-b. State Inference: Inquiry defects
that occur when the orchestrator fails
to determine the state or incorrectly
determines the state of the infrastruc-
ture. This category of defects occurs
after the orchestrator becomes suc-
cessful in establishing a connection
with the target infrastructure.

Example: Listing 13 presents an example of a state inquiry defect related to inference [resmo 2016].

1 matched = True
2 if rule.get('description', None) !=

r['description']:↩→
3 changed = True
4 - r['description'] = rule['description']
5 + r['description'] = rule.get('description', None)

Listing 14. An example of a security defect related to access
control. The defect occurred because of incorrect implemen-
tation of access control rules where an incorrect data struc-
ture (rule) was queried instead of using the rule.get()
method.

VII Security: Defects that occur due to
violating the principles of confidentiality,
integrity, or availability while performing
state reconciliation. We identify three sub-
categories:

VII-a. Access Control: Security-related de-
fects that occur due to incorrect or inade-
quate restriction of access.

Example: Listing 14 shows an example of
a security defect related to access con-
trol [Zim Kalinowski 2018]. The defect occurred while setting up access control policies with
security groups for Azure.

1 module = AnsibleModule(
2 argument_spec = dict(
3 username = dict(default=None),
4 - password = dict(default=None),
5 + password = dict(default=None, no_log=True),
6 host = dict(default='localhost'),

Listing 15. An example of a security defect related to secret man-
agement. Because of not using no_log=True, passwords were
being exposed to Ansible orchestrator logs.

VII-b. Secrets: Security-related defects
that occur due to inadequate manage-
ment of secrets, such as user pass-
words and secure socket layer (SSL)
certificates.

Example: Listing 15 shows an exam-
ple of a security defect related to se-
cret management [mscherer 2016].
The defect resulted in the exposure of passwords.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

State Reconciliation Defects in Infrastructure as Code 83:11

Table 2. Comparison of Defect Categories.

Category Previously-studied Software System
Auxiliary Not reported for prior software systems
Conditional Autonomous Vehicle [Garcia et al. 2020], Cyber-physical systems [Zampetti et al. 2022],

Deep Learning Libraries [Islam et al. 2019], IaC Script [Rahman et al. 2020], IBM Pro-
prietary Software [Chillarege et al. 1992], NASA Software Projects [Seaman et al. 2008],
NoSQL Database [Agnelo et al. 2020], Linux Kernel [Tan et al. 2014]

Idempotence IaC Scripts [Rahman et al. 2020]
Inventory Not reported for prior software systems
Security Apache Projects [Catolino et al. 2019], Autonomous Vehicle [Garcia et al. 2020], Deep

learning compilers [Shen et al. 2021], Distributed Systems [Gao et al. 2018], Eclipse
Projects [Catolino et al. 2019], IaC Scripts [Rahman et al. 2020], Mozilla Projects [Tan
et al. 2014], Openstack [Zheng et al. 2019], WeChat [Wang et al. 2022]

State Inquiry Apache Projects [Catolino et al. 2019], Distributed systems [Gao et al. 2018], Eclipse
Projects [Catolino et al. 2019]

State Regulation Not reported for prior software systems
Type Cloud Computing Platform [Cotroneo et al. 2019], Deep Learning Compilers [Shen et al.

2021], Deep Learning Deployment [Chen et al. 2021; Zhang et al. 2020], Deep Learning
Libraries [Islam et al. 2019; Jia et al. 2021], Deep Learning Projects [Humbatova et al.
2020]

1 - if module._diff:
2 - diff['before'] = to_native(b('').join(b_lines))
3 # NOTE: Avoid opening the same file in this context !
4 + with open_locked(dest, module.check_mode) as fd:
5 + if b_lines is None:
6 + b_lines = fd.readlines()

Listing 16. An example security defect related to race condition.
The defect occurred because of not adding code that can lock a
file when used by a single process.

VII-c. Race Condition: Security-related
defects that occur due to multiple pro-
cesses using the same variable or re-
source at a given time.

Example: Listing 16 shows an exam-
ple of a security defect related to race
condition [dagwieers 2019]. The de-
fect allowed the simultaneous reading and writing of files by multiple processes.

1 for b_type in ('force', 'follow', 'trim_blocks'):
2 value = locals()[b_type]
3 - value = ensure_type(value, 'string')
4 + value = ensure_type(value, 'boolean')

Listing 17. An example of a type defect, where the string type
was used instead of boolean
.

VIII Type: Defects that occur due to
incorrect use of types.

Example: Listing 17 shows an exam-
ple of a type-related defect [bcoca
2018].

Comparison: In Table 2 we report the defect categories that have appeared for other software
systems with our scoping review. As highlighted in green, we observe three categories that do not
appear for previously-studied software systems: auxiliary, inventory, and state regulation.

2.3.2 Answer to RQ1: Frequency of Identified Defect Categories for State Reconciliation. We report
the count of defects that belong to each category in Table 3, which is sorted alphabetically by
category names. The most frequently occurring defect category is inventory. ‘N/A’ indicates no
sub-category to exist for a category. ‘Category Total’ provides the total count of defects for a
category with sub-categories.

Answer to RQ1: We derive eight defect categories for state reconciliation in IaC, of which three
have not been reported in previously-studied software systems.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

83:12 Hassan, Salvador, Santu, Rahman

Determine Adequate
Prompt Design

Apply Paragraph
Style Prompt

Apply Heuristics-based
Paragraph Style Prompt

LLM
Selection

Syntactic
Evaluation

Playbook
Execution

Crash
Collection

Identify
New Defects

Fig. 4. An overview of our methodology to answer RQ2.

3 RQ2: STATE RECONCILIATION-RELATED VALIDATION
In this section, we answer RQ2: How can we use identified defect categories to perform
validation related to state reconciliation? One utility of defect categorization is it provides clues
on how to improve software validation efforts [Catolino et al. 2019; Chillarege et al. 1992], such as
identifying new defects in the software. Accordingly, we expect our identified defect categories
could aid in identifying new defects. The goal of RQ2 is to help practitioners in identifying new state
reconciliation defects by using insights from the derived defect categories from RQ1-related findings.
We accomplish our goal by generating heuristics from the derived defect categories to perform
prompt engineering [Liu et al. 2023]. We observe that incorporation of these heuristics improve
the prompt generation process.

We provide the methodology and results related to RQ2 respectively, in Section 3.1 and 3.2. An
overview of our methodology to answer RQ2 is presented in Figure 4. In Section 3.1.1, we describe
how we leverage an existing prompt design framework called ‘TELeR’ to generate playbooks, and
how we evolved our prompt design process in order to identify new defects. We also discuss the
heuristics-based prompt engineering process in Section 3.1.3.

3.1 Methodology to Answer RQ2
We use the following steps to answer RQ2:

3.1.1 Determining the Adequate Prompt Design to Automatically Generate Ansible Playbooks. RQ2
focuses on deriving a validation technique that will identify previously unknown defects related
to state reconciliation. Accordingly, we generate Ansible playbooks that can identify previously
unknown state reconciliation defects for the Ansible orchestrator using LLMs with prompt en-
gineering [Liu et al. 2023]. We use LLMs for two reasons: (i) first, use of hand-crafted Ansible
playbooks is manual and limiting [Cummins et al. 2018]; and (ii) second, use of existing OSS Ansible
playbooks is limiting as OSS playbooks developed by practitioners solely focus on functionality,
and does not account for state inference, state comparison, and script execution—all of which are
pivotal to discover state reconciliation defects.

Prior research [Liu et al. 2023] has reported that LLMs’ behavior widely varies based on the degree
of details provided in prompts, which necessitates a systematic derivation of a prompt design
technique. We apply the TELeR framework [Santu and Feng 2023] that provides guidelines on how
to design prompts for LLMs. The framework includes three levels: ‘no directive’, ‘one sentence
directive’, and ‘paragraph-style prompt directive’. In the case of ‘no directive’ only data is provided
with no directions [Santu and Feng 2023]. In the case of ‘one sentence directive’ a single and simple
sentence is provided as directive [Santu and Feng 2023]. In the case of paragraph style prompt
design, we use multiple sentences as prompts. To determine which level is adequate for RQ2, we
randomly select 1,261 issues, and use each of the titles and bodies of issues as prompts, for each
of the three levels. For each level, we quantify the syntactic correctness of generated playbooks.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

State Reconciliation Defects in Infrastructure as Code 83:13

The level the yields the most syntactically correct playbooks is later used as part of our paragraph
style prompt design approach. From our exploration, we observe the proportion of syntactically
correct playbooks is 2.2%, 34.6%, and 47.5% respectively, for ‘no directive’, ‘one sentence directive’,
and ‘paragraph style prompt directive’. We use paragraph style prompt directive as it provides the
highest proportion of syntactic correctness.

Table 3. Answer to RQ1: Frequency of Defect Cate-
gories.

Category Sub-category Count
Auxiliary N/A 36
Conditional N/A 184
Idempotence N/A 179
Inventory Cache 69

Computing resource 1,782
Load balancer 8

Serverless inventory 7
——————— ——
Category Total 1,866

Security Access control 250
Race condition 38

Secret management 188
——————— ——
Category Total 476

State Inquiry State inference 562
Routing 458

——————— ——
Category Total 1,020

State Regulation Async 32
Delegate 30
Executor 597

——————— ——
Category Total 659

Type N/A 690

3.1.2 Observations from Using Paragraph Style
Prompt Design to Automatically Generate An-
sible Playbooks. Paragraph style prompt de-
sign (PPD) is the approach of crafting detailed
prompts using a description of the task along
with explicitly stating the associated sub-tasks
that the LLMmust perform [Liu et al. 2023]. We
hypothesize that the content from the title and
body of each issue report can be converted into
multiple sentences, each of which can be used
as prompt components to construct a prompt.
We extract the title and body for each issue
mapped to a state reconciliation defect and con-
vert them into multiple sentences. Each set of
sentences obtained from an issue report is used
as a prompt for GPT-3.5. The template that we
use to generate each prompt is “Your key task is
to develop a comprehensive, self-contained Ansi-
ble playbook by taking inspiration from the given
GitHub issue with title: 𝑡 and the body: 𝑏.”. Here,
𝑡 and 𝑏, respectively, correspond to the title and
body for each of the 1,263 issues that are labeled
as state reconciliation defect categories.

In total, we use the title and body of 1,263 issue
reports mapped to a state reconciliation defect
to generate 1,263 prompts. Each of the 1,263 prompts generated an Ansible playbook that we used
in Section 3.1.5 to perform syntactic validation. In all, we generate 1,263 playbooks of which 53.4%
are syntactically correct and 51.9% are executable, as shown in Table 5.

By executing the set of 655 playbooks, we obtain 23 crashes, but none of them yielded any new
defects. We further examine why the generated playbooks with PPD did not yield new defects. Our
assumption is that a playbook generated with paragraph style prompt design can be syntactically
correct but the content of the playbook may be inconsistent with the prompt’s intention. We
examine our assumption by applying closed coding [Saldaña 2015], where we select a sample
of 108 playbooks that are syntactically valid to three pre-defined levels: ‘irrelevant’, ‘somewhat
relevant’, and ‘highly relevant’. An ‘irrelevant’ playbook does not follow the provided prompt. A
‘somewhat relevant’ playbook matches the prompt and is on topic through keyword matching.
However, it is not targeted towards the goal of the prompt. A ‘highly relevant’ playbook matches
the prompt well with the goal of the prompt provided. In all, we respectively, identify 52, 25, and 31
‘irrelevant’, ‘somewhat relevant’, and ‘relevant’ playbooks. Based on these evidence, we conclude
that further efforts are needed to generate necessary playbooks. As such, we apply additional steps
of generating heuristics from the derived taxonomy in RQ1 in order to design prompts.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

83:14 Hassan, Salvador, Santu, Rahman

Table 4. Example to Demonstrate the Heuristic Derivation for HPPD
Commit Initial Code Initial Heuristic Heuristic
fix a case where we mixed text and bytes in
the local connection utility

‘case’, ‘mixed’, ‘text’,
‘bytes’

Unexpected byte
strings trigger defects

Pass in byte string
values instead of
regular stringsfixmixing of bytes and str in replacer (caused

traceback on python3)
‘mixing’, ‘bytes’, ‘str’,
‘caused’, ‘traceback’

Erroneous use of byte
strings cause crashes

3.1.3 Using Heuristics-based Paragraph Style Prompt Design to Identify New State Reconciliation
Defects. As part of this step, we leverage the derived categories from Section 2.3 to conduct
heuristics-based paragraph style prompt design (HPPD). First, for each identified defect category in
Section 2.3, we extract code changes that map to a category by inspecting each of the issue reports
and commits that map to the defect category. Second, we apply open coding [Saldaña 2015] to derive
heuristics by identifying similarities in the mentioned text. The open coding process is conducted
by the last author. Third, as the open coding process is susceptible to the bias of the last author,
another rater is included to perform rater verification. We use a sample 360 state reconciliation
defects, which provides a confidence level of 95% for our set of 5,110 defects. From the sample of
360 defects, of which are 60 are issue reports, and the remaining 300 are commits, we extract code
changes. Krippendorff’s 𝛼 [Krippendorff 2018] between the last author and the additional rater is
0.86, indicating ‘acceptable’ agreement [Krippendorff 2018]. Upon completion of this step, we will
generate a set of heuristics that will be used to craft prompts, which, in turn, will be fed to the LLM.

We use Table 4 to further demonstrate the open coding process to derive heuristics. The ‘Commit’
column represents two commit messages: ‘fix a case where we mixed text and bytes in the local
connection utility’ and ‘fix mixing of bytes and str in replacer (caused traceback on python3)’. Both
of these commit messages are labeled as type-related from our analysis of defect-related commits
in Section 2.2.3. The identified codes are shown in the ‘Code’ column. As extracted codes express
a defect-related action related to unexpected and erroneous usage of byte strings, we derive the
initial heuristics ‘Unexpected byte strings trigger defects’ and ‘Erroneous use of byte strings cause
crashes’, respectively, shown in row# 1 and#2. Finally, the initial heuristics are merged as as a
heuristic called ‘Pass in byte string values instead of regular strings’. We repeat the same process
for all commits and issue reports with code changes for all eight categories.

In the case of type-related heuristics, we generate playbooks by applying an attribute-informed
approach where we include an attribute name along with the heuristic. We use the following
template: “Your key task is to develop a comprehensive, self-contained Ansible playbook for the
auxiliary𝑚 which performs 𝑑 . This playbook aims to reveal previously unknown type-based defects,
informed by a detailed understanding of the auxiliary and its unique options and attributes, including
𝑎. Your playbook should also incorporate test cases based on a specific heuristic: ℎ𝑡 ”. Here,𝑚 is an
Ansible auxiliary with a description 𝑑 , where 𝑎 is the set of attributes for auxiliary𝑚. ℎ𝑡 refers
to the type-related heuristics. We use this template as our assumption is that incorporation of
attributes will aid in identifying unknown type-related defects.

For heuristics that are not related to types, we use the following template: “Your key task is to
develop a comprehensive, self-contained Ansible playbook by taking inspiration from the given GitHub
issue with title: 𝑡 and the body: 𝑏. This playbook aims to reveal unknown 𝑐-based defects in Ansible,
using the issue description as a guide. Your playbook should also incorporate test cases based on the
following heuristic: ℎ𝑛𝑡 ”. Here, 𝑡 and 𝑏 respectively, corresponds to the title and body for each of the
1,243 issues that are labeled as state reconciliation defect categories. 𝑐 corresponds to each of the 8
categories, and ℎ𝑛𝑡 corresponds to each of the identified heuristics from our open coding analysis.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

State Reconciliation Defects in Infrastructure as Code 83:15

For each category, 𝑐 we apply the heuristic ℎ𝑛𝑡 that is only applicable for the category 𝑐 , a non-type
related defect category.

3.1.4 LLM Selection. We use OpenAI’s GPT that provides two versions: GPT-3.5 and GPT-4.0. We
use 30 Ansible playbooks generated using PPD to determine which LLMwill be adequate to generate
playbooks. In the case of GPT-3.5 and GPT-4.0 we respectively, find 93.1% and 86.6% of the generated
playbooks to be syntactically correct. We also observe GPT-3.5 to generate all 30 playbooks in 15
minutes, which is 2× faster than that of GPT-4.0. We select to use GPT-3.5 because (i) with respect
to syntactic correctness GPT-3.5 and GPT-4.0 are comparable, and (ii) GPT-3.5 is 2× faster than
that of GPT-4.0. With respect to syntactic correctness GPT-3.5 and GPT-4.0 are comparable. The
main difference between GPT 4.0 and GPT 3.5 lies in GPT-4.0’s ability to handle multi-modal inputs
(both text and images). GPT-4.0 offers improved performance in tasks requiring comprehension of
longer documents or mixed text and image data. Given our task of playbook generation, neither
long documents nor image training can provide additional boost in the performance. Hence, we see
similar performance with respect to syntactic correctness. With respect to execution time, GPT-3.5
is faster than that of GPT-4.0 because of model size. GPT-4.0 includes approximately 1.5 trillion
parameters, whereas GPT-3.5 contains 154 billion parameters. For GPT-3.5, we use 1, ‘None’, and 1,
as configuration values respectively, for GPT-3.5’s temperature, ‘logit bias’, and ‘top_p’.

3.1.5 Syntactic Evaluation of Generated Ansible Playbooks. LLM-generated source code files are
susceptible to compilation errors [Yetistiren et al. 2022].We use an automated approach to determine
the syntactic correctness of each generated playbook. We use the command: “ansible-playbook
playbook_path -i inventory_path –private-key private_key –become-password-file
become_password_file -vvv” provided by Ansible to determine the syntactic correctness of each
playbook generated with PPD and HPPD.

3.1.6 Environment Setup for Playbook Execution. Execution of the generated playbooks require
setting up an environment where we can run Ansible orchestrator. First, we download the Ansible
orchestrator (version 2.14.7) source code package [ansible 2023] with the following components: (i)
Builtin provides default functionalities of state reconciliation; (ii) Netcommon performs networking-
related tasks. As networking is pivotal for state reconciliation, we include this component of the
Ansible orchestrator; (iii) Utils includes implementations of functionalities that support the core
features; and (iv) Community includes auxiliaries developed by the Ansible community to facilitate
the implementation of state reconciliation.

Second, we use a server maintained by the university to create a execution harness using Docker
with four distributions: Ubuntu, Alpine, CentOS, and RedHat. The versions for Ubuntu, Alpine,
CentOS, and RedHat are respectively, Ubuntu 22.04.2 LTS, Alpine Linux v3.18, CentOS Linux release
8.5.2111, and Red Hat Enterprise Linux release 8.8. We create a Docker-based network with a subnet
of 10.1.1.0/24 and a gateway at 10.1.1.254. The IP assignments for the nodes are as follows: Ubuntu
is at 10.1.1.1, Alpine at 10.1.1.2, CentOS at 10.1.1.3, and RedHat at 10.1.1.4. We use a network-based
to replicate a typical Ansible-based environment where Ansible playbooks are executed by the
orchestrator to provisioning and manage computing instances.

Table 5 provides statistics on how many of the generated Ansible playbooks are syntactically valid
and are executable. We observe 53.4% and 80.0% of the generated playbooks to be syntactically
valid respectively, for PPD and HPPD. We also observe 51.9% and 80.0% of the generated playbooks
to execute and generate output with the execution environment described in Section 3.1.6.

3.1.7 Crash Collection and Inspection. Upon execution of the generated Ansible playbooks, we
record for which playbooks crashes are generated. For each of the generated crashes, we first,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

83:16 Hassan, Salvador, Santu, Rahman

Table 5. Statistics of Generated Playbooks with PPD and HPPD
Approach Playbook # Lines of Code Generation

Time (Hours)
Syntax (%) Executability (%)

PPD 1,263 28,605 8.7 53.4 51.9
HPPD 3,799 101,392 31.5 80.0 80.0

identify the location of the crash. Second, we determine if program in the Ansible orchestrator is
expected to run for the provided playbook by manually inspecting the program and documentation
for that program. Third, if the playbook of interest is expected to be executable as determined by
manual analysis, we identify the crash as a symptom of an unknown defect, which is submitted as
an issue report for the orchestrator.

3.1.8 Answer to RQ2. We answer RQ2 by reporting the following measurements: (i) count of
crashes; and (ii) count of unknown defects generated. We repeat these measurements for all the
identified defect categories from Section 2.3. We report count of crashes because crashes are
indicators of unknown defects in software source code [Theisen et al. 2015]. We report count of
unknown defects to evaluate if derived defect categories can be used to identify unknown defects.

3.2 Answer to RQ2
Using the HPPD approach, we identify 211 crashes. We identify 9 previously unknown defects from
9 crashes. Of the identified 9 unknown defects, 7 have been confirmed as valid defects, and 4 have
already been fixed. Of the two rejected defects, one is labeled as a feature request and the other
one is already fixed. A list of submitted issue reports with applicable status, i.e., ‘Fixed’, ‘Accepted
as Valid’, and ‘Rejected as Invalid’, is available in our replication package [Akond Rahman and
Salvador 2023b]. For each defect category we report the count of crashes, count of previously
unknown defects, and used heuristics in Table 6 respectively, using the ‘Crash #’, ‘Unknown Defect
#’, and ‘Heuristic’ columns. Attributes of the identified unknown defects is available in Table 7
where we tabulate identified unknown defect count based on Ansible components.

In the case of HPPD, out of 211 for 201 crashes we do not identify unknown defects. The reasons
for these crashes are described below where the count of crashes is enclosed within parenthesis:

Absent Packages (134): Crashes that occur due to Ansible and/or Python libraries necessary to
execute the generated playbooks. We observe two categories: (i) 45 out of 134 crashes occur due to
absent Ansible packages; and (ii) 89 of the 134 crashes occur due to absent Python packages.

Playbook Semantics (28): Crashes that occur due to execution of playbooks that are syntactically
correct but semantically incorrect code snippets, namely use of erroneous variable group names,
division by zero computation, and incorrect Linux commands.

Inadequate Artifacts (28): Crashes that occur due to absent artifacts, namely absent files, absent
databases, and artifacts with insufficient permissions.

Network (11): Crashes that occur due to network-related issues, e.g., unreachable hosts.

With PPD we only identify 7 crashes none of which yielded any previously unknown defects.

Answer to RQ2: Using heuristics-based paragraph style prompts we identify nine previously
unknown defects in the Ansible orchestrator, of which seven have been accepted as valid defects
and four have been fixed.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

State Reconciliation Defects in Infrastructure as Code 83:17

Table 6. Answer to RQ2: Count of Crashes and Unknown Defects Identified with HPPD

Category Crash # Unknown
Defect #

Heuristic

Type 188 7
i. Mixed case sensitivity for string configuration values can trigger
defects
ii. Pass in byte string values instead of regular strings
iii. Generate configuration values that includes both bytes and
strings

Inventory 7 1

i. Create symlink paths with space
ii. Generate malformed Unicode strings for inventory
iii. Negative cache timeout values will lead to unknown defects
iv. Recreate embedded code in the issue report

State Inquiry 3 1 i. Create Base-10 problem for subnet masks
ii. Create mismatching network and router names

Security 6 0 Recreate embedded code in the issue report
State Regulation 6 0 Recreate embedded code in the issue report
Idempotence 1 0 Recreate embedded code in the issue report
Auxiliary 0 0 Recreate embedded code in the issue report
Conditional 0 0 Recreate embedded code in the issue report
All 211 9

Table 7. Answer to RQ2: Attributes of Unknown Identified Defects
Component Defect # Category Status
Builtin 3 Inventory:1, Type:2 Fixed:2, Rejected: 1
Community 5 State Inquiry: 1, Type:4 Fixed:2, Accepted:2, Rejected: 1
Netcommon 1 Type:1 Accepted:1

4 DISCUSSION
We discuss the implications of our empirical study as follows:

4.1 Implications for Prompt Engineering
Results reported in Table 6 show promise with respect to HPPD being useful for identifying
previously unknown state reconciliation defects. We observe that prompt engineering with PPD
alone does not identify unknown state reconciliation defects. These findings lay the groundwork
for further investigations in the following directions: first, we advocate for further research on
generating better heuristics that can be used with PPD to generate Ansible playbooks that will
identify unknown state reconciliation defects. The heuristic generation process can be manual or
semi-automated with the possible use of information retrieval techniques, such as probabilistic
retrieval [Van Rijsbergen et al. 1980]. Second, we advocate for further enhancements to LLM usage.
Prompt design alone is limited with respect to generating Ansible playbooks that help identify
unknown state reconciliation defects. One possible enhancement could be the use of fine-tuning
methods or pre-trained LLMs that have been optimized for code generation, such as Code LLama
[Rozière et al. 2023]. While it is a known problem that LLMs suffer from ‘hallucinations’ where
nonsensical or incorrect text can be generated [Lin et al. 2022], LLMs could possibly be used to
identify defects with playbooks that we have not included in our analysis.

4.2 Implications Related to Inventory Hardening
According to Table 3, the most frequently occurring defect category is inventory for which the
Ansible orchestrator incorrectly manages inventory that needs to be provisioned. As shown in

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

83:18 Hassan, Salvador, Santu, Rahman

Table 6, the heuristics-based prompt composition approach yielded a lesser amount of inventory
defects compared to that of type-related defects. As such, we advocate for the generation and
evaluation of novel testing techniques that may yield previously unknown inventory-related defects.
Possible approaches include but are not limited to (i) grammar-based fuzzing, where the underlying
grammars of different types of computing inventories can be leveraged, and (ii) cache-aware
fuzzing, where the capabilities of cache management of orchestrators will be tested by performing
cache-aware mutation testing.

4.3 Type Related State Reconciliation Defects
Results reported in Section 3.2 showcase that all of the seven previously unknown state reconcilia-
tion defects are type-related defects. According to Table 3, type-related defects are the third most
frequent category after inventory and state inquiry. As we have only focused on crashes, we con-
jecture that further investigations can yield more previously unknown type-related defects for IaC
orchestrators. One possible avenue of exploration could be unexpected compile time errors, where
the Ansible orchestrator throws a syntax error for a syntactically valid Ansible playbook because
of an underlying defect within the orchestrator. According to Chaliasos [Chaliasos et al. 2021], the
frequency of unexpected compile-time errors is higher than that of crashes for type-related defects.

4.4 Generalizability Related Implications
As IaC has become the de-facto standard to automatically manage computing infrastructure, reliable
state reconciliation is pivotal. If the state reconciliation approach is defective, then that can cause
serious consequences. Our empirical study shows state reconciliation defects to be prevalent—as
many as 5,110 defects. We have derived a taxonomy of state reconciliation defects that includes
three categories of defects not reported for prior software systems. The derived defect categories
helped us in identifying 9 new defects.

Genralizability of Findings Related to RQ1: While we acknowledge that our findings are obtained
from Ansible, our results could be applicable for other IaC languages, such as Chef and Terraform.
Similar to Ansible, Chef [chef 2009] and Terraform [hashicorp 2015] also use state reconciliation
to provision and manage required infrastructure. Similar to Ansible, both Chef and Terraform
orchestrators include components, such as parser and executors, using which IaC scripts written
in Chef and Terraform are parsed and executed. Our methodology is technology-agnostic as it
relies on commits and issue reports of IaC orchestrators. Furthermore, with respect to code quality
issues, such as security weaknesses, multiple IaC languages, such as Ansible, Chef, and Terraform
share commonalities [Saavedra and Ferreira 2023] that further increases the likelihood that our
RQ1-related findings could be generalizable for other IaC languages, apart from Ansible.

Based on the above-mentioned observations we conjecture that our derived categories will also
appear for Chef and Terraform. A replication of our methodology can provide empirical evidence to
our conjecture. Anecdotally, we observe some of our identified defect categories, such as condition-
als [seventieskid 2022; ttdgcp 2018], idempotency [rahulgoel1 2021], and security [mmeintker-tc
2023] to appear for other IaC orchestrators, which further substantiates our conjecture.

Genralizability of Findings Related to RQ2: Our HPPD-based methodology used for RQ2 is language-
agnostic as it can be applied for other orchestrators, such as Chef and Terraform. Yet, we hypothesize
differences in defect detection for non-Ansible orchestrators when our HPPD-based methodology
is applied. The Ansible, Chef, and Terraform orchestrators are respectively, developed in Python,
Ruby, and Go. Go is strongly-typed, whereas Python and Ruby are dynamically typed [Ray et al.
2014]. Because of these differences related to languages, our HPPD-based approach may identify

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

State Reconciliation Defects in Infrastructure as Code 83:19

more type-related defects for Ansible and Chef, compared to that of Terraform. This statement is
subject to empirical evaluation that future research can address.

5 THREATS TO VALIDITY
We discuss the limitations of our paper as follows:

Conclusion Validity: The identified defect categories for RQ1 are limited to the commit messages
and issue reports that we mined from the Ansible repository. We may have missed defect categories
that are reported in other IaC orchestrators. The derived heuristics are limited to the code changes
that map to each identified defect category. We mitigate this limitation by generating prompts by
setting the temperature of GPT-3.5 at 1.0 so that it generates a diverse set of playbooks.

Construct Validity: Our paper is susceptible to construct validity as in the case of playbook
generation we execute GPT-3.5 twice. Such execution may miss generation of playbooks that are
syntactically correct and potentially lead to the discovery of new defects. Also, the HPPD approach
is applied differently for heuristics obtained from type and non-type defects, which can influence
the defect identification process. Also, while resolving disagreements the first rater may have
influenced the second rater that might in turn influence the RQ1-related findings.

External Validity: Our empirical study is limited to IaC orchestrators that are open source.
Therefore, our findings may not generalize to proprietary orchestrators that are closed source.
We mitigate this limitation by analyzing 5,110 defects mined from the orchestrator repository for
Ansible, which is one of the most popular IaC technologies.

6 RELATEDWORK
6.1 Prior Research Related with Defect Categorization
Defect categorization of software systems has gained interest amongst researchers over decades. In
1992, Chillarege et al. [Chillarege et al. 1992] proposed the Orthogonal Defect Classification (ODC)
classification scheme that included eight defect categories. Since then, we observe researchers to
use and extend ODC to derive defect taxonomies for other software systems. Categories proposed
by Chillarege et al. [Chillarege et al. 1992] were used by Cinque et al. [Cinque et al. 2014] to
categorize defects for air traffic control software. Later, in 2008, Seaman et al. [Seaman et al. 2008]
extended ODC to derive 7 categories of test plan defects. Seaman et al. [Seaman et al. 2008]’s
defect categorization was used and extended by Garcia et al. [Garcia et al. 2020] who identified
13 defect categories for autonomous vehicle software. Seaman et al. [Seaman et al. 2008]’s defect
categorization was also used by Tan et al. [Tan et al. 2014] to categorize defects in Mozilla projects.

Use of existing defect categorization frameworks, such as ODC and Seaman et al. [Seaman et al.
2008]’s work, may be inadequate for state reconciliation, as prior research [Humbatova et al.
2020] has reported pre-defined defect categorization frameworks to be inappropriate for emerging
ecosystems. As a result, researchers have also constructed bottom-up defect taxonomies for domain-
specific software systems. For example, Islam et al. [Islam et al. 2019] studied 2,716 SO posts
to categorize defects in deep learning libraries, such as Keras and Tensorflow. Humbatova et
al. [Humbatova et al. 2020] mined GitHub issues and SO posts to derive a fault taxonomy for
software projects that use deep learning. Makhshari and Mesbah [Makhshari and Mesbah 2021]
mined 5,565 issue reports to derive a defect taxonomy for the internet of things (IoT) software
projects. Chen et al. [Chen et al. 2021] used Stack Overflow posts to derive a taxonomy of defects
for deep learning-based deployment in mobile apps. Cotreno et al. [Cotroneo et al. 2013], Gao et
al. [Gao et al. 2018], Shen et al. [Shen et al. 2021], and Rahman et al. [Rahman et al. 2020] constructed

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

83:20 Hassan, Salvador, Santu, Rahman

defect taxonomies in a bottom-up fashion with qualitative analysis respectively, for OpenStack,
distributed systems, deep learning compilers, and IaC scripts.

6.2 Prior Research Related withQuality Aspects of IaC
In recent years, quality assurance for IaC has garnered a lot of interest among researchers where
majority of techniques related to quality assurance use coding pattern-based approaches. Re-
searchers [Sharma et al. 2016] have studied code properties that cause maintainability problems.
Researchers have also derived a catalog of code properties in IaC scripts [Dalla Palma et al. 2022]
that correlate with defects. Defect-related research was also conducted by Shambaugh et al. [Sham-
baugh et al. 2016] to identify non-determinism defects, and by Sotiropoulos et al. [Sotiropoulos et al.
2020] to identify dependency-related defects in Puppet scripts. Researchers have also investigated
security weaknesses for IaC scripts, such as Ansible scripts [Opdebeeck et al. 2023; Saavedra and
Ferreira 2023], Chef scripts [Saavedra and Ferreira 2023], and Puppet scripts [Rahman and Parnin
2023; Reis et al. 2023; Saavedra and Ferreira 2023].

In short, we observe a lack of research that has systematically characterized state reconciliation
defects in IaC. We address this gap by (i) categorizing state reconciliation defects, and (ii) using the
categorization to automatically identify unknown state reconciliation defects in IaC orchestrators.

7 CONCLUSION
Similar to script development and execution, reliable implementation of state reconciliation is
pivotal to reliable IaC-based infrastructure management. However, state reconciliation defects
hinder the reliability of IaC-based infrastructure provisioning and management. A characterization
of state reconciliation defects can aid in gaining an understanding of state reconciliation defects and
also yield insights on how to perform validation for state reconciliation by identifying previously
unknown state reconciliation defects. We have conducted an empirical study with 5,110 state
reconciliation defects mined from the OSS repository of the Ansible orchestrator. We have derived
a taxonomy for state reconciliation defects where we identify 8 defect categories, of which 3
have not been reported in prior research related to software defect taxonomies. By applying a
heuristics-based prompt design approach, we identify 9 previously unknown defects, of which 7
have been accepted as valid defects, and 4 have already been fixed. Our paper lays the groundwork
for future research that can identify previously unknown state reconciliation defects.

DATA AVAILABILITY STATEMENT
The artifact for the paper is publicly-available online [Akond Rahman and Salvador 2023a].

ACKNOWLEDGMENTS
We thank the PASER group at Auburn University for their valuable feedback. This research was
partially funded by the U.S. National Science Foundation (NSF) Award # 2247141, Award # 2312321,
and the U.S. National Security Agency (NSA) Award # H98230-21-1-0175. This work has benefited
from Dagstuhl Seminar 23082 ‘Resilient Software Configuration and Infrastructure Code Analysis.’

REFERENCES
abadger. 2017. jenkins_plugin “params” argument is insecure. https://github.com/ansible/ansible/issues/30874. [Online;

accessed 30-March-2024].
João Agnelo, Nuno Laranjeiro, and Jorge Bernardino. 2020. Using orthogonal defect classification to characterize nosql

database defects. Journal of Systems and Software 159 (2020), 110451.
Md Mahdi Hassan Akond Rahman and John Salvador. 2023a. Artifact for Paper. 10.6084/m9.figshare.24129996.v1. [Online;

accessed 19-April-2024].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

https://github.com/ansible/ansible/issues/30874
10.6084/m9.figshare.24129996.v1

State Reconciliation Defects in Infrastructure as Code 83:21

Md Mahdi Hassan Akond Rahman and John Salvador. 2023b. Verifiability Package for Paper. 10.6084/m9.figshare.24129996.
[Online; accessed 15-April-2024].

Amazon. 2023. Elastic Load Balancing. https://aws.amazon.com/elasticloadbalancing/. [Online; accessed 24-March-2023].
ansible. 2022. ADB uses Red Hat Ansible Automation Platform to boost infrastructure management. https://www.redhat.

com/en/resources/asian-development-bank-case-study. [Online; accessed 25-Sep-2023].
Ansible. 2023. Ansible Documentation. https://docs.ansible.com/. [Online; accessed 19-December-2022].
ansible. 2023. ansible/ansible. https://github.com/ansible/ansible. [Online; accessed 25-Sep-2023].
ansible/ansible. 2023. Ansible command fails when we try to access it on bastion from remote server. ssh error..Unreachable

nodes. https://github.com/ansible/ansible/issues/45898. [Online; accessed 28-March-2023].
Hilary Arksey and Lisa O’Malley. 2005. Scoping studies: towards a methodological framework. Interna-

tional Journal of Social Research Methodology 8, 1 (2005), 19–32. https://doi.org/10.1080/1364557032000119616
arXiv:https://doi.org/10.1080/1364557032000119616

bcoca. 2016a. fixed bad condition hiding results. https://github.com/ansible/ansible/commit/65c373c. [Online; accessed
20-March-2023].

bcoca. 2016b. loop to get all load balancers, boto limited to 400 at a time fixes. https://github.com/ansible/ansible/commit/
90d084d. [Online; accessed 23-March-2023].

bcoca. 2018. Ensure string types (#42362) * actually enforce string types. https://github.com/ansible/ansible/commit/4a7940c.
[Online; accessed 10-March-2023].

bcoca. 2020. fix delegation vars usage (debug still shows inventory_hostname). https://github.com/ansible/ansible/commit/
2165f9a. [Online; accessed 26-March-2023].

Mark Burgess. 2011. Testable System Administration. Commun. ACM 54, 3 (March 2011), 44–49. https://doi.org/10.1145/
1897852.1897868

Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin Peng. 2022. Understanding Performance
Problems in Deep Learning Systems. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 357–369. https://doi.org/10.1145/3540250.3549123

Valeria Cardellini, Michele Colajanni, and Philip S Yu. 1999. Dynamic load balancing on web-server systems. IEEE Internet
computing 3, 3 (1999), 28–39.

Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2019. The Rise of Serverless Computing.
Commun. ACM 62, 12 (nov 2019), 44–54. https://doi.org/10.1145/3368454

Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019. Not All Bugs Are the Same: Understanding,
Characterizing, and Classifying Bug Types. J. Syst. Softw. 152, C (jun 2019), 165–181. https://doi.org/10.1016/j.jss.2019.
03.002

Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos, Charalambos Mitropoulos, Dimitris Mitropoulos, and
Diomidis Spinellis. 2021. Well-typed programs can go wrong: A study of typing-related bugs in jvm compilers. Proceedings
of the ACM on Programming Languages 5, OOPSLA (2021), 1–30.

chef. 2009. chef/chef: Chef. https://github.com/chef/chef. [Online; accessed 17-Feb-2024].
Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, and Xuanzhe Liu. 2021. An Empirical

Study on Deployment Faults of Deep Learning Based Mobile Applications. In Proceedings of the 43rd International
Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 674–685. https://doi.org/10.1109/ICSE43902.
2021.00068

Ram Chillarege, Inderpal Bhandari, Jarir Chaar, Michael Halliday, Diane Moebus, Bonnie Ray, and Man-Yuen Wong. 1992.
Orthogonal defect classification-a concept for in-process measurements. IEEE Transactions on Software Engineering 18,
11 (Nov 1992), 943–956. https://doi.org/10.1109/32.177364

Marcelo Cinque, Dominico Cotroneo, Raffaele D. Corte, and Antonio Pecchia. 2014. Assessing Direct Monitoring Techniques
to Analyze Failures of Critical Industrial Systems. In 2014 IEEE 25th International Symposium on Software Reliability
Engineering. 212–222. https://doi.org/10.1109/ISSRE.2014.30

Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella, and Nematollah Bidokhti. 2019. How Bad Can a Bug
Get? An Empirical Analysis of Software Failures in the OpenStack Cloud Computing Platform. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA, 200–211.
https://doi.org/10.1145/3338906.3338916

Domenico Cotroneo, Roberto Pietrantuono, and Stefano Russo. 2013. Testing techniques selection based on ODC fault types
and software metrics. Journal of Systems and Software 86, 6 (2013), 1613–1637.

Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018. Compiler Fuzzing through Deep Learning. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam, Netherlands)
(ISSTA 2018). Association for ComputingMachinery, NewYork, NY, USA, 95–105. https://doi.org/10.1145/3213846.3213848

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

10.6084/m9.figshare.24129996
https://aws.amazon.com/elasticloadbalancing/
https://www.redhat.com/en/resources/asian-development-bank-case-study
https://www.redhat.com/en/resources/asian-development-bank-case-study
https://docs.ansible.com/
https://github.com/ansible/ansible
https://github.com/ansible/ansible/issues/45898
https://doi.org/10.1080/1364557032000119616
https://arxiv.org/abs/https://doi.org/10.1080/1364557032000119616
https://github.com/ansible/ansible/commit/65c373c
https://github.com/ansible/ansible/commit/90d084d
https://github.com/ansible/ansible/commit/90d084d
https://github.com/ansible/ansible/commit/4a7940c
https://github.com/ansible/ansible/commit/2165f9a
https://github.com/ansible/ansible/commit/2165f9a
https://doi.org/10.1145/1897852.1897868
https://doi.org/10.1145/1897852.1897868
https://doi.org/10.1145/3540250.3549123
https://doi.org/10.1145/3368454
https://doi.org/10.1016/j.jss.2019.03.002
https://doi.org/10.1016/j.jss.2019.03.002
https://github.com/chef/chef
https://doi.org/10.1109/ICSE43902.2021.00068
https://doi.org/10.1109/ICSE43902.2021.00068
https://doi.org/10.1109/32.177364
https://doi.org/10.1109/ISSRE.2014.30
https://doi.org/10.1145/3338906.3338916
https://doi.org/10.1145/3213846.3213848

83:22 Hassan, Salvador, Santu, Rahman

D3DeFi. 2018. zabbix_template: fixed idempotency issues. https://github.com/ansible/ansible/commit/a9aa105. [Online;
accessed 21-March-2023].

dagwieers. 2019. Use locking for concurrent file access. https://github.com/ansible/ansible/commit/
e152b277cfc055a3b7bfdaa41db024168ca7a2a. [Online; accessed 31-March-2023].

Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri. 2022. Within-Project Defect Prediction
of Infrastructure-as-Code Using Product and Process Metrics. IEEE Transactions on Software Engineering 48, 6 (2022),
2086–2104. https://doi.org/10.1109/TSE.2021.3051492

felixfontein. 2019. docker_container: fix port bindings with IPv6 addresses. https://github.com/ansible/ansible/commit/
a757310. [Online; accessed 28-March-2023].

Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui Huang, Li Zhou, and Yongming Wu. 2018.
An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA, 539–550.
https://doi.org/10.1145/3236024.3236030

Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, Chen, and Qi Alfred. 2020. A Comprehensive Study of
Autonomous Vehicle Bugs. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA, 385–396. https://doi.org/10.1145/
3377811.3380397

GitHub Advisory Database. 2022. Ansible Insertion of Sensitive Information into Log File vulnerability. https://github.com/
advisories/GHSA-588w-w6mv-3cw5. [Online; accessed 31-March-2024].

hashicorp. 2015. hasicorp/terraform - Terraform. https://github.com/hashicorp/terraform/. [Online; accessed 16-Feb-2024].
Gary Hickey and Cheryl Kipping. 1996. A multi-stage approach to the coding of data from open-ended questions. Nurse

researcher 4, 1 (1996), 81–91.
Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2020. Taxonomy

of Real Faults in Deep Learning Systems. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA, 1110–1121.
https://doi.org/10.1145/3377811.3380395

Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. 2013. Testing idempotence for infrastructure as
code. In ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing.
Springer, 368–388.

IEEE. 2010. IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993) (Jan
2010), 1–23. https://doi.org/10.1109/IEEESTD.2010.5399061

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A Comprehensive Study on Deep Learning Bug
Characteristics. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing
Machinery, New York, NY, USA, 510–520. https://doi.org/10.1145/3338906.3338955

Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2021. The symptoms, causes, and repairs of bugs
inside a deep learning library. Journal of Systems and Software 177 (2021), 110935.

Jill R. 2021. Fix to return data when using lambda_info module. https://github.com/ansible/ansible/commit/6fa070e82.
[Online; accessed 25-March-2023].

Jim Gu. 2018. yaml callback fails on python3. https://github.com/ansible/ansible/commit/5839f07. [Online; accessed
19-March-2023].

Klaus Krippendorff. 2018. Content analysis: An introduction to its methodology. Sage publications.
Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. TruthfulQA: Measuring How Models Mimic Human Falsehoods. In

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Dublin, Ireland, 3214–3252. https://doi.org/10.18653/v1/2022.acl-long.229

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-Train, Prompt, and
Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9, Article
195 (jan 2023), 35 pages. https://doi.org/10.1145/3560815

Amir Makhshari and Ali Mesbah. 2021. IoT Bugs and Development Challenges. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). 460–472. https://doi.org/10.1109/ICSE43902.2021.00051

marcusphi. 2013. want to be able to use a variable for the value of ignore_errors. https://github.com/ansible/ansible/issues/
4892. [Online; accessed 18-Feb-2024].

mkrizek. 2021. yum: avoid storing unnecessary cache data. https://github.com/ansible/ansible/commit/461f30c. [Online;
accessed 25-March-2023].

mmeintker-tc. 2023. Terraform ignores skip_credentials_validation flag for s3 backend with custom endpoint. https:
//github.com/hashicorp/terraform/issues/33983. [Online; accessed 15-Feb-2024].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

https://github.com/ansible/ansible/commit/a9aa105
https://github.com/ansible/ansible/commit/e152b277cfc055a3b7bfdaa41db024168ca7a2a
https://github.com/ansible/ansible/commit/e152b277cfc055a3b7bfdaa41db024168ca7a2a
https://doi.org/10.1109/TSE.2021.3051492
https://github.com/ansible/ansible/commit/a757310
https://github.com/ansible/ansible/commit/a757310
https://doi.org/10.1145/3236024.3236030
https://doi.org/10.1145/3377811.3380397
https://doi.org/10.1145/3377811.3380397
https://github.com/advisories/GHSA-588w-w6mv-3cw5
https://github.com/advisories/GHSA-588w-w6mv-3cw5
https://github.com/hashicorp/terraform/
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1109/IEEESTD.2010.5399061
https://doi.org/10.1145/3338906.3338955
https://github.com/ansible/ansible/commit/6fa070e82
https://github.com/ansible/ansible/commit/5839f07
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.1145/3560815
https://doi.org/10.1109/ICSE43902.2021.00051
https://github.com/ansible/ansible/issues/4892
https://github.com/ansible/ansible/issues/4892
https://github.com/ansible/ansible/commit/461f30c
https://github.com/hashicorp/terraform/issues/33983
https://github.com/hashicorp/terraform/issues/33983

State Reconciliation Defects in Infrastructure as Code 83:23

mscherer. 2016. Do not leak mail password by error. https://github.com/ansible/ansible/commit/b8706a1. [Online; accessed
31-March-2023].

NIST. 2023. infrastructure as code. https://csrc.nist.gov/glossary/term/infrastructure_as_code. [Online; accessed 25-Sep-
2023].

Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2023. Control and Data Flow in Security Smell Detection for
Infrastructure as Code: Is It Worth the Effort?. In 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR). 534–545. https://doi.org/10.1109/MSR59073.2023.00079

OpenAI. 2023. GPT-4 Technical Report. http://arxiv.org/abs/2303.08774 arXiv:2303.08774 [cs].
Akond Rahman, Dibyendu Brinto Bose, Raunak Shakya, and Rahul Pandita. 2023a. Come for Syntax, Stay for Speed,

Understand Defects: An Empirical Study of Defects in Julia Programs. Empirical Software Engineering 28, 93 (2023), 33.
Akond Rahman, Effat Farhana, Chris Parnin, and LaurieWilliams. 2020. Gang of Eight: A Defect Taxonomy for Infrastructure

as Code Scripts. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York, NY, USA, 752–764. https://doi.org/10.1145/3377811.3380409
pre-print: https://akondrahman.github.io/papers/icse20_acid.pdf.

Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2018. A systematic mapping study of infrastructure as
code research. Information and Software Technology (2018). https://doi.org/10.1016/j.infsof.2018.12.004

Akond Rahman and Chris Parnin. 2023. Detecting and Characterizing Propagation of Security Weaknesses in Puppet-Based
Infrastructure Management. IEEE Transactions on Software Engineering 49, 6 (2023), 3536–3553. https://doi.org/10.1109/
TSE.2023.3265962

Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pandita. 2023b. Security Misconfigurations in
Open Source Kubernetes Manifests: An Empirical Study. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 99 (May 2023),
36 pages. https://doi.org/10.1145/3579639

rahulgoel1. 2021. Yum package idempotency fixes. https://github.com/chef/chef/issues/12382. [Online; accessed 12-Feb-
2024].

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A Large Scale Study of Programming
Languages and Code Quality in Github. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (Hong Kong, China) (FSE 2014). ACM, New York, NY, USA, 155–165. https://doi.org/10.1145/
2635868.2635922

RedHat. 2022a. Customer Case Study - NEC. https://www.ansible.com/hubfs/pdf/Ansible-Case-Study-NEC.pdf. [Online;
accessed 12-Sep-2023].

RedHat. 2022b. Customer Case Study - NetApp. https://www.ansible.com/hubfs/2018_Content/RH-netapp-case-study.pdf.
[Online; accessed 02-Sep-2023].

Sofia Reis, Rui Abreu, Marcelo d’Amorim, and Daniel Fortunato. 2023. Leveraging Practitioners’ Feedback to Improve
a Security Linter. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering
(Rochester, MI, USA) (ASE ’22). Association for Computing Machinery, New York, NY, USA, Article 66, 12 pages.
https://doi.org/10.1145/3551349.3560419

resmo. 2016. cloudstack: fix state=expunged in cs_instance. https://github.com/ansible/ansible/commit/4020ebaecff. [Online;
accessed 29-March-2023].

Rick Elrod. 2020. sysctl/openbsd fact fixes. https://github.com/ansible/ansible/commit/7094849. [Online; accessed 24-March-
2023].

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen, Yossi Adi, Jingyu Liu, Tal Remez,
Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code. (2023).

Nuno Saavedra and João F. Ferreira. 2023. GLITCH: Automated Polyglot Security Smell Detection in Infrastructure as Code.
In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering (Rochester, MI, USA)
(ASE ’22). Association for Computing Machinery, New York, NY, USA, Article 47, 12 pages. https://doi.org/10.1145/
3551349.3556945

Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
Shubhra Kanti Karmaker Santu and Dongji Feng. 2023. TELeR: A General Taxonomy of LLM Prompts for Benchmarking

Complex Tasks. arXiv:2305.11430 [cs.AI]
Carolyn B. Seaman, Forrest Shull, Myrna Regardie, Denis Elbert, Raimund L. Feldmann, Yuepu Guo, and Sally Godfrey. 2008.

Defect Categorization: Making Use of a Decade of Widely Varying Historical Data. In Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement (Kaiserslautern, Germany) (ESEM ’08).
Association for Computing Machinery, New York, NY, USA, 149–157. https://doi.org/10.1145/1414004.1414030

seventieskid. 2022. Invalid index - Output from a conditional resource contained in a module. https://github.com/hashicorp/
terraform/issues/32044. [Online; accessed 09-Feb-2024].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

https://github.com/ansible/ansible/commit/b8706a1
https://csrc.nist.gov/glossary/term/infrastructure_as_code
https://doi.org/10.1109/MSR59073.2023.00079
http://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3377811.3380409
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1109/TSE.2023.3265962
https://doi.org/10.1109/TSE.2023.3265962
https://doi.org/10.1145/3579639
https://github.com/chef/chef/issues/12382
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://www.ansible.com/hubfs/pdf/Ansible-Case-Study-NEC.pdf
https://www.ansible.com/hubfs/2018_Content/RH-netapp-case-study.pdf
https://doi.org/10.1145/3551349.3560419
https://github.com/ansible/ansible/commit/4020ebaecff
https://github.com/ansible/ansible/commit/7094849
https://doi.org/10.1145/3551349.3556945
https://doi.org/10.1145/3551349.3556945
https://arxiv.org/abs/2305.11430
https://doi.org/10.1145/1414004.1414030
https://github.com/hashicorp/terraform/issues/32044
https://github.com/hashicorp/terraform/issues/32044

83:24 Hassan, Salvador, Santu, Rahman

Rian Shambaugh, AaronWeiss, and Arjun Guha. 2016. Rehearsal: A Configuration Verification Tool for Puppet. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara, CA, USA)
(PLDI ’16). Association for Computing Machinery, New York, NY, USA, 416–430. https://doi.org/10.1145/2908080.2908083

Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your Configuration Code Smell?. In Proceedings of
the 13th International Conference on Mining Software Repositories (Austin, Texas) (MSR ’16). ACM, New York, NY, USA,
189–200. https://doi.org/10.1145/2901739.2901761

Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung, and Xiang Chen. 2021. A Comprehensive
Study of Deep Learning Compiler Bugs. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for
Computing Machinery, New York, NY, USA, 968–980. https://doi.org/10.1145/3468264.3468591

sivel. 2022. Resolve perf issue with async callback events. https://github.com/ansible/ansible/commit/96ce480. [Online;
accessed 25-March-2023].

Thodoris Sotiropoulos, Dimitris Mitropoulos, and Diomidis Spinellis. 2020. Practical Fault Detection in Puppet Programs.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20).
Association for Computing Machinery, New York, NY, USA, 26–37. https://doi.org/10.1145/3377811.3380384

Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai. 2014. Bug characteristics in open
source software. Empirical software engineering 19 (2014), 1665–1705.

Christopher Theisen, Kim Herzig, Patrick Morrison, Brendan Murphy, and Laurie Williams. 2015. Approximating Attack
Surfaces with Stack Traces. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2. 199–208.
https://doi.org/10.1109/ICSE.2015.148

ttdgcp. 2018. Chef14: broken powershell version check. https://github.com/chef/chef/issues/7166. [Online; accessed
11-Feb-2024].

Cornelis J Van Rijsbergen, Stephen Edward Robertson, and Martin F Porter. 1980. New models in probabilistic information
retrieval. Vol. 5587. British Library Research and Development Department London.

Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021. An Exploratory Study of Autopilot Software
Bugs in Unmanned Aerial Vehicles. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for
Computing Machinery, New York, NY, USA, 20–31. https://doi.org/10.1145/3468264.3468559

Tao Wang, Qingxin Xu, Xiaoning Chang, Wensheng Dou, Jiaxin Zhu, Jinhui Xie, Yuetang Deng, Jianbo Yang, Jiaheng Yang,
Jun Wei, and Tao Huang. 2022. Characterizing and Detecting Bugs in WeChat Mini-Programs. In Proceedings of the
44th International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing
Machinery, New York, NY, USA, 363–375. https://doi.org/10.1145/3510003.3510114

Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the Quality of GitHub Copilot’s Code Generation. In Proceedings
of the 18th International Conference on Predictive Models and Data Analytics in Software Engineering (Singapore, Singapore)
(PROMISE 2022). Association for Computing Machinery, New York, NY, USA, 62–71. https://doi.org/10.1145/3558489.
3559072

Zabbix. 2018. Monitoring and Integration Solutions. https://www.zabbix.com/integrations?cat=monitoring_systems.
[Online; accessed 22-March-2023].

Fiorella Zampetti, Ritu Kapur, Massimiliano Di Penta, and Sebastiano Panichella. 2022. An empirical characterization of
software bugs in open-source cyber-physical systems. Journal of Systems and Software 192 (2022), 111425.

zenbot. 2016. Don’t assume a task with non-dict loop results has been skipped.). https://github.com/ansible/ansible/commit/
85868e07a9a4641c845ad1be3d036e716ff89bad. [Online; accessed 27-March-2023].

Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang. 2020. An Empirical Study on Program
Failures of Deep Learning Jobs. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA, 1159–1170. https://doi.org/
10.1145/3377811.3380362

Wei Zheng, Chen Feng, Tingting Yu, Xibing Yang, and Xiaoxue Wu. 2019. Towards understanding bugs in an open source
cloud management stack: An empirical study of OpenStack software bugs. Journal of Systems and Software 151 (2019),
210–223.

Zim Kalinowski. 2018. fix for security group description crash. https://github.com/ansible/ansible/commit/
5d2c23e2a3ec9ed81a4cbb8bd6bf28785fbadf4d. [Online; accessed 30-March-2023].

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 83. Publication date: July 2024.

https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/3468264.3468591
https://github.com/ansible/ansible/commit/96ce480
https://doi.org/10.1145/3377811.3380384
https://doi.org/10.1109/ICSE.2015.148
https://github.com/chef/chef/issues/7166
https://doi.org/10.1145/3468264.3468559
https://doi.org/10.1145/3510003.3510114
https://doi.org/10.1145/3558489.3559072
https://doi.org/10.1145/3558489.3559072
https://www.zabbix.com/integrations?cat=monitoring_systems
https://github.com/ansible/ansible/commit/85868e07a9a4641c845ad1be3d036e716ff89bad
https://github.com/ansible/ansible/commit/85868e07a9a4641c845ad1be3d036e716ff89bad
https://doi.org/10.1145/3377811.3380362
https://doi.org/10.1145/3377811.3380362
https://github.com/ansible/ansible/commit/5d2c23e2a3ec9ed81a4cbb8bd6bf28785fbadf4d
https://github.com/ansible/ansible/commit/5d2c23e2a3ec9ed81a4cbb8bd6bf28785fbadf4d

	Abstract
	1 Introduction
	2 RQ1: Categorization of State Reconciliation Defects
	2.1 Background
	2.2 Methodology to Answer RQ1
	2.3 Answer to RQ1: Defect Categories and Their Frequency

	3 RQ2: State Reconciliation-related Validation
	3.1 Methodology to Answer RQ2
	3.2 Answer to RQ2

	4 Discussion
	4.1 Implications for Prompt Engineering
	4.2 Implications Related to Inventory Hardening
	4.3 Type Related State Reconciliation Defects
	4.4 Generalizability Related Implications

	5 Threats to Validity
	6 Related Work
	6.1 Prior Research Related with Defect Categorization
	6.2 Prior Research Related with Quality Aspects of IaC

	7 Conclusion
	References

