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We develop a unified approach to bounding the largest and smallest singular values of an inhomogeneous random
rectangular matrix, based on the non-backtracking operator and the Ihara-Bass formula for general random Her-
mitian matrices with a bipartite block structure. We obtain probabilistic upper (respectively, lower) bounds for the
largest (respectively, smallest) singular values of a large rectangular random matrix X. These bounds are given in
terms of the maximal and minimal ¢,-norms of the rows and columns of the variance profile of X. The proofs
involve finding probabilistic upper bounds on the spectral radius of an associated non-backtracking matrix B. The
two-sided bounds can be applied to the centered adjacency matrix of sparse inhomogeneous Erdds-Rényi bipartite
graphs for a wide range of sparsity, down to criticality. In particular, for Erd6s-Rényi bipartite graphs G(n,m, p)
with p = w(logn)/n, and m/n — y € (0,1), our sharp bounds imply that there are no outliers outside the support
of the MarcCenko-Pastur law almost surely. This result extends the Bai-Yin theorem to sparse rectangular random
matrices.

Keywords: Extreme singular value; inhomogeneous random matrix; non-backtracking operator; random bipartite
graph

1. Introduction

1.1. Extreme singular values of random matrices

The asymptotic and non-asymptotic behavior of extreme singular values of random matrices is a fun-
damental topic in random matrix theory (Rudelson and Vershynin, 2010, Vershynin, 2012). They are
crucial quantities used to provide theoretical guarantees for randomized linear algebra algorithms on
large data sets, with applications in machine learning, signal processing, and data science.

Consider an n X m random matrix X with m/n — y € (0,1) with i.i.d. entries. Let opmax(X) and
omin(X) be the largest and smallest singular value of X, respectively. The classical Bai-Yin theorem
(Bai and Yin, 1993) says that, under the finite fourth-moment assumption of the distribution of entries,
almost surely,

1 1
%O'max(X) = 1+4/y, %O'min()() — 1 —A/y. 1

This implies that there are no outliers outside the support of the Marcenko-Pastur law for %X *X. A
non-asymptotic version of the Bai-Yin theorem with a sharp constant for Gaussian matrices can be
obtained from Gordon’s inequality (Gordon, 1985, Han, 2022, Vershynin, 2012); beyond the Gaussian
case, similar results were given in (Feldheim and Sodin, 2010) using the moment method for symmetric
sub-Gaussian distributions (in addition, Tracy-Widom fluctuations were also proved). Under the more
relaxed, finite second moment assumption, the convergence of the smallest singular value to the left
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edge of the Marcenko-Pastur law was proved in (Tikhomirov, 2015). Later, the convergence of the
smallest and largest singular values to the edge of the spectrum was proved in (Chafai and Tikhomirov,
2018, Heiny and Mikosch, 2018), for more general models. Finally, for sparse, heavy-tailed random
matrices, the convergence of the largest singular value was considered in (Auffinger and Tang, 2016).

Besides the sharp asymptotic behavior for the extreme singular values, non-asymptotic bounds
(which do not capture the sharp constants, but the correct order) for opax(X) and opin(X) were con-
structed by using other arguments, including e-nets (Vershynin, 2012), matrix deviation inequalities
(Vershynin, 2018), and the variational principle (Zhivotovskiy, 2021). Largest singular values can also
be bounded using the moment method (Latata, van Handel and Youssef, 2018) or by using the spec-
tral norm bound for Hermitian matrices of size (n + m) X (n + m) (Bandeira and van Handel, 2016,
Benaych-Georges, Bordenave and Knowles, 2020).

Similar results for the smallest singular values of rectangular random matrices are harder to ob-
tain, especially when the matrices are sparse, partly because there are fewer methods of approach.
A lower bound without forth-moment assumptions was given by (Koltchinskii and Mendelson, 2015,
Tikhomirov, 2016), and for heavy-tailed distributions in (Guédon, Litvak and Tatarko, 2020, Guédon
et al., 2017, Tikhomirov, 2018); None of the results above capture the sharp constant in (1). Litvak and
Rivasplata (2012) considered the smallest singular values for random matrices with a prescribed pattern
of zeros (which does not cover sparse Bernoulli random matrices); and Goétze and Tikhomirov (2023)
considered sparse Bernoulli random matrices with p = w(log* n/n). Very recently, Brailovskaya and
van Handel (2022) provided a very general, non-asymptotic universality principle on the spectrum of
inhomogeneous random matrices that captures the sharp constant for extreme singular values in a gen-
eral setting, including inhomogeneous and sparse random rectangular matrices when p = w(log* n/n).
We compare their results with ours in Remarks 2.2.

We should also note that the smallest singular value of a square random matrix behaves differently
from the rectangular one in (1), and our lower bounds on the smallest singular value (Theorems 2.3
and 2.5) do not cover the square case. Specifically, in the square case, with high probability, oy (X)
is of order 1/+/n. A unified bound in both square and rectangular cases can be found in (Rudelson and
Vershynin, 2009), which gives a lower bound Q(+/n — Vm — 1). For the square random matrices, the
smallest singular value bounds were proved in (Cook, 2018, Livshyts, 2021, Livshyts, Tikhomirov and
Vershynin, 2021) for inhomogeneous random matrices, and in (Basak and Rudelson, 2017, 2021, Che
and Lopatto, 2019) for sparse random matrices.

Another related topic is the study of the concentration of spectral norm for inhomogeneous random
matrices, including sparse random matrices (Alt, Ducatez and Knowles, 2021, Benaych-Georges, Bor-
denave and Knowles, 2019, 2020, Le, Levina and Vershynin, 2017, Tikhomirov and Youssef, 2021),
Gaussian matrices with independent entries (Bandeira and van Handel, 2016, Latata, van Handel and
Youssef, 2018, van Handel, 2017), Wishart-type matrices (Cai, Han and Zhang, 2022), general random
matrices (Bandeira, Boedihardjo and van Handel, 2023, Brailovskaya and van Handel, 2022, Tropp,
2015), and non-backtracking matrices (Benaych-Georges, Bordenave and Knowles, 2020, Bordenave,
Coste and Nadakuditi, 2023, Stephan and Massoulié, 2022).

1.2. Sparse random bipartite graphs

Extreme singular values of sparse random bipartite graphs are important quantities in the study of com-
munity detection (Florescu and Perkins, 2016, Wan and Meila, 2015, Zhou and Amini, 2019), coding
theory (Janwa and Lal, 2003), matrix completion (Bhojanapalli and Jain, 2014, Brito, Dumitriu and
Harris, 2022), numerical linear algebra (Avron, Druinsky and Toledo, 2019), and theoretical computer
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science (Deshpande et al., 2019, Guruswami, Manohar and Mosheiff, 2022). However, classical esti-
mates for sub-Gaussian random matrices (Vershynin, 2012) cannot be directly applied to sparse random
matrices due to the lack of concentration.

Recently, the non-backtracking operator has proved to be a powerful tool in the study of spectra of
sparse random graphs, specifically, when the average degree of the random graph is bounded (Borde-
nave, 2020, Bordenave, Coste and Nadakuditi, 2023, Bordenave, Lelarge and Massoulié, 2018, Brito,
Dumitriu and Harris, 2022, Dumitriu and Zhu, 2021, Stephan and Zhu, 2022) or slowly growing (Alt,
Ducatez and Knowles, 2021, Benaych-Georges, Bordenave and Knowles, 2020, Coste and Zhu, 2021,
Stephan and Massoulié, 2022, Wang and Wood, 2023). Most results obtained with the help of non-
backtracking operators are concerned with the largest eigenvalues and spectral gaps, with the exception
of (Brito, Dumitriu and Harris, 2022), which gives a lower bound on the smallest singular value of
a random biregular bipartite graph, and (Coste and Zhu, 2021), which gives the location of isolated
real eigenvalues inside the bulk of the spectrum for the non-backtracking operator. Lower bounds on
smallest singular values for sparse random rectangular matrices were also considered in (Gotze and
Tikhomirov, 2023, Guruswami, Manohar and Mosheiff, 2022, Zhu, 2023) by other methods for vari-
ous models.

1.3. Contributions of this paper

In this paper, we provide new non-asymptotic bounds on the extreme singular values of inhomogeneous
sparse rectangular matrices. Our main tool is the non-backtracking operator for a general n X n matrix
defined as follows.

Definition 1.1 (Non-backtracking operator). Let H € M,,(C). For e = (i, ), f = (k,l), define the non-
backtracking operator of H as an n> X n”> matrix B such that

Bey = Hg1j=i iz (2)

To associate a non-backtracking operator with a rectangular n X m random matrix X, we work with
the non-backtracking operator B of an (n + m) X (n + m) matrix

0 X
H= [X* O}. 3)

We can summarize the major steps in our proofs as follows:

1. We improve the deterministic bound given in (Benaych-Georges, Bordenave and Knowles, 2020)
on the largest singular value of rectangular matrices, in terms of the spectral radius p(B) of B;

2. We provide a new deterministic lower bound on the smallest singular value in terms of p(B);

3. We give an improved probabilistic bound on p(B) for inhomogeneous random rectangular matri-
ces;

4. Combining the deterministic and probabilistic results, we prove, in a unified way, two-sided prob-
abilistic bounds for a general inhomogeneous rectangular random matrix model; we also spe-
cialize them for inhomogeneous sparse random matrices for a wide range of sparsity. Our main
results are stated in Section 2.

Although some partial efforts were previously made in the literature ((Auffinger and Tang, 2016,
Cai, Han and Zhang, 2022, Gotze and Tikhomirov, 2023)) and some of our tools have been developed
in (Benaych-Georges, Bordenave and Knowles, 2020), the crucial contribution of this paper is a deep
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and unified understanding of the relationship between the singular values of a rectangular matrix and
the eigenvalues of its associated non-backtracking operator, which allows us to give a unified treatment
of extreme singular values. For the first time and with a minimal set of conditions, this, in turn, allows
us to extend the Bai-Yin theorem to sparse random bipartite graphs (Corollary 2.1) with average de-
gree w(logn). For inhomogeneous sparse random bipartite graphs, the smallest singular value bound
explicitly depends on the maximal and minimal expected degrees without extra constant factors. The
upper bound on the largest singular value is valid when the maximal average degree d = Q(1), and the
lower bound on the smallest singular value is valid down to the critical regime d = Q(logn).

Our proof relies on the connection between extreme singular values of X and the spectral radius of
the corresponding non-backtracking operator B. In the biregular bipartite graph case (Brito, Dumitriu
and Harris, 2022), this relation is described by the Thara-Bass formula (Bass, 1992), which results
in algebraic equations involving the spectrum of X and B. For inhomogeneous Erdds-Rényi bipartite
graphs, exact algebraic equations no longer work. Instead, we find deterministic inequalities between
the extreme singular values of X and the spectral radius of B, using a block version of the generalized
Thara-Bass formula given in Lemma 3.2.

The proof of the spectral norm bound for Hermitian random matrices in (Benaych-Georges, Borde-
nave and Knowles, 2020) relies on the relation between the largest eigenvalue of a Hermitian matrix
and the largest real eigenvalue of its associated non-backtracking matrix. In our case, to get the lower
bound on oyi(X), we connected the small singular values of X to the largest purely imaginary eigen-
value (in modulus) of B (see Lemma 3.5). This idea helped us establish here a similar phenomenon in
a general inhomogeneous setting beyond the random bipartite biregular graph case studied in (Brito,
Dumitriu and Harris, 2022).

Based on (Benaych-Georges, Bordenave and Knowles, 2020), a more refined phase transition behav-
ior of extreme eigenvalues for homogeneous ErdGs-Rényi graphs at d = logn/(log4 — 1) was shown
in (Alt, Ducatez and Knowles, 2021), and the same threshold was also obtained in (Tikhomirov and
Youssef, 2021) with a different method. It is possible to combine the techniques in (Alt, Ducatez and
Knowles, 2021) with our Theorems 2.2 and 2.3 to study the phase transition behavior for d = clogn
in homogeneous Erd6s-Rényi bipartite graphs, and we intend to consider this problem in subsequent
work.

Linear algebra notation

We say X <Y for two Hermitian matrices X and Y if Y — X is a positive semidefinite matrix. For c € R
X < ¢ means X < cl. || X|| is the spectral norm of X, and for a square matrix B, p(B) is the spectral
radius of B, and o (B) is the set of all eigenvalues of B. We denote 0ymax(X), 0min(X) the largest and
smallest singular values of a matrix X, respectively. All C,c,C;,c; for i € N are universal constants.
XV y,x Ay are the maximum and minimum of x and y, respectively. Denote (x)+ = x if x > 0 and
(x)+ =0for x <O0.

Organization of the paper

The rest of the paper is structured as follows. In Section 2, we state our main results for sparse inho-
mogeneous Erd6s-Rényi bipartite graphs and general rectangular random matrices. In Section 3, we
connect the spectra of H defined in (3) and that of its non-backtracking operator B and prove some
deterministic bounds on the extreme singular values of X. In Sections 4 and 5, we give a probabilistic
upper bound on p(B) for a general random matrix X with the moment method. In Sections 6 and 7,
we give proofs for the probabilistic bounds on extreme singular values of X and specialize them for
inhomogeneous sparse bipartite random graphs.
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2. Main results

2.1. Inhomogeneous Erdos-Rényi bipartite graphs

Definition 2.1 (Inhomogeneous Erdds-Rényi bipartite graph). An inhomogeneous Erdés-Rényi bi-
partite graph G ~ G(n,m, p;;) is a random bipartite graph defined on a vertex set V = Vj U V,, where
[Vi| = n,|V2| = m such that an edge ij, i € [n],j € [m] is included independently with probability p;;.
Let A € {0, 1} be the biadjacency matrix of G such that A;; =1 if ij is an edge in G and A;; =0

otherwise. The adjacency matrix of G is given by [fT 18] .

Notation and assumptions

In Section 2.1, we will use the following notation and assumptions and specify occasional, limited-use
additional assumptions as necessary.

e The maximal expected degree among all vertices from V| U V, is denoted by

d:= mivec[m (Zplk,Zij)

e The normalized maximal expected degrees from V, (respectively, Vi) as

1 .
Pmax : = Egﬁﬁj;ﬂ Pij>  Pmax = djnel[an)t(] Z[:]pij, 4)

and the normalized minimal expected degree in V; is defined as

1
Pmin = E]rn[ln Z Pz;(l Pu)

i€[n]

e Denote N :=nVmandn:=+/logN/d.

Assumption 1. We let v := pyax A Pmax, Where y € (0 1] and y = Q(l) Note that when all p;; = p,

nAm -1/2

Y= nvm

is the aspect ratio. Assume d >y and d? max;; p;jj < N~ .

We first state the following upper bound on the largest singular values of A —EA for a wide range of
sparsity down to d = Q(1).

Theorem 2.2 (Largest singular value for inhomogeneous sparse random matrices). Let A be the
biadjacency matrix of an inhomogeneous random graph. Under Assumption 1,

L) )
1v

Elomax(A—EA)| < 1++/y+0
logn

1
Vd
Moreover, with probability at least 1 — O(N~3), we have

1
ﬁamax(A—EA)s L++y+0

#) ©
1v4/logn
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Remark 2.1. Below, we qualitatively explain Theorem 2.2 in the various d regimes. When d =
w(logN) and d < N¢ for some constant a > 0, (5) is dominated by the first term, which gives
1+ \/7 + o(1). This is sharp, and it recovers the results of (Latata, van Handel and Youssef, 2018,
Theorem 4.9 and Example 4.10), and (Cai, Han and Zhang, 2022, Theorem 3.5). Moreover, our model
can be seen as a specific case considered in (Benaych-Georges, Bordenave and Knowles, 2019), but
their bound yields the weaker 2 + o(1) on the right-hand side of (5). The fact that we cannot cover
denser regimes is an artifact of our proof method (see Theorem 4.1).

When d = O(log N), Theorem 2.2 is optimal up to a constant factor. When d = o(log N), the second
term in (5) is dominating. Our results yield the sharp bound O(n/+/logn). This is tight up to a constant

factor, down to d > 77% , and it agrees with the results in (Benaych-Georges, Bordenave and Knowles,
2019, Krivelevich and Sudakov, 2003) for non-bipartite graphs. Note that the results in (Latata, van
Handel and Youssef, 2018) and (Cai, Han and Zhang, 2022) both imply an O(r7) upper bound, which is
strictly weaker.

The real novelty arises in the following theorem, which provides the smallest singular value bound
on A — EA, down to d = Q(logn), and it is sharp in certain cases. Our sparsity assumption on d is
optimal up to a constant factor: when d < (1 — ) log n, with high probability there are isolated vertices,
and that implies opin(A —EA) =0.

For the next result, we need the following additional assumption.

Assumption 2. Let n > m and § € (0,1). Assume pmax > Pmax> Pmin > V¥, and min{1 — /¥, fmin —
VY =Q01),d 3 max;; pij < n’%, and there exists an absolute constant C > 0 such that

d > C max {6‘1/2,6_2)/_1 logn} .

Theorem 2.3 (Smallest singular value for inhomogeneous sparse random matrices). Under As-
sumptions 1 and 2,

B4~ EA) 2 (1= VP n — V) - 06"/ @

Moreover, with probability at least 1 — O(n™>),

A= EA) 2 (1= VD) D) - 061 ®)

Remark 2.2. The very general universality principle proved in (Brailovskaya and van Handel, 2022,
Theorem 2.13) implies

A7 2 in(A = BA) 2 \/pmin — V7 — O(d™ /% 10g*3(n)) 9)

with high probability. The leading constant v/pmin — /¥ in (9) is strictly better than our leading constant

V(L = \¥)(Pmin — /) in (8) for inhomogeneous random graphs and it matches our leading constant
in the homogeneous case when P, = 1. However, their results are only valid for the regime when
d = w(log* n)—the benefit of our method is that our results extend down to d = Q(logn).

Cai, Han and Zhang (2022) studied concentration inequalities for inhomogeneous Wishart-type ma-
trices. When d = w(logn), by triangle inequality, (Cai, Han and Zhang, 2022, Theorem 3.5) implies
d"E[02. (A—EA)] > pmin — 24/y =y — O(y/n). Their leading constant is strictly weaker than ours in

min
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all regimes. In (Go6tze and Tikhomirov, 2023), the authors considered the smallest singular value of a
sparse random matrix X = AoY, where A is a sparse Bernoulli matrix, and Y is a Wigner matrix whose
entries have bounded support, and o is the Hadamard product. This covers the homogeneous Erdds-
Rényi case, but not the inhomogeneous one. The authors showed that the smallest singular value is
Q(+/np) when p = w(log* n) (see (Gétze and Tikhomirov, 2023, Theorem 1.2)). Note that our Theorem
2.5 covers a more general inhomogeneous model, which includes (Gotze and Tikhomirov, 2023).

Remark 2.3. The lower bound in (8) is \/(1 = VY)(Pmin — +¥) — o(1) when d = w(logn). When d =
Q(logn), we can obtain an Q(1) lower bound when § is sufficiently small. We have assumed y = Q(1)
for simplicity throughout. However, Theorems 2.2 and 2.3 also work for y = o(1), see Sections 6 and 7
with weaker bounds. It remains an open question to find the optimal dependence on y when y = o(1)
in (6) and (8).

For the next result, we assume d = w(logn), and the expected degree of each vertex concentrates. The
Marcéenko-Pastur law for the matrix %(A —EA)T(A-EA) can be proved in the same way the semicircle
law was proved in (Zhu, 2020, Corollary 4.3) via graphon theory. This implies the upper bound and
lower bound given by (6) and (8) are tight. We state the generalization of the Bai-Yin theorem to sparse
random bipartite graphs in the following corollary.

Corollary 2.1 (Bai-Yin theorem for supercritical random bipartite graphs). Letr A be the biad-
Jjacency matrix of an inhomogeneous Erdds-Rényi bipartite graph sampled from G(n,m,p;;). Assume
™ — y €(0,1) as n — oo and the parameters {p;;} satisfy

1

1

—E =1 =o(1), —E =yl =o0(1). 10

fﬂfﬁfﬁd, Dij o(1) }Q[an’f]d, pij —y|=o(1) (10)
jelm] i€[n]

Assume d = w(logn),d < n'!> and max;; p;; = O(d/n). Then, almost surely,

. 1 . 1
lim ﬁa-mm(A—EA)z 1=y, lim ﬁo-max(A—EA)z 1+4/y. (11)

n—oo

Corollary 2.1 covers the homogeneous ErdSs-Rényi bipartite graph G(n,m,p) with p = w(logn/n)
and p < n~*/. For denser cases when p > n~*/°, the right edge limit (11) has been obtained in (Latata,
van Handel and Youssef, 2018), and the left edge limit in (11) may be obtainable by moment methods
without using the non-backtracking operator (Bai and Yin, 1993, Feldheim and Sodin, 2010).

2.2. Inhomogeneous random rectangular matrices

To prove our results in Section 2.1, we work with a more general matrix model whose entries have
bounded support. Theorem 2.2 and Theorem 2.3 are obtained from Theorem 2.4 and Theorem 2.5 by
specifying model parameters and taking g = Vd.

Notation and assumptions

In Section 2.2, we use the following notation and assumptions:
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e The minimal column sum of variances is denoted by

o . 2
Pmin -= NMIN Z Elxijl .
jelm

i€[n]

e Denote N :=nV mandn:=+/logN/q.

Assumption 3. We assume there exist ¢ > 0,k > 1, pmax, Omax such that

1 2 K
Xiil < —, E|X;i|” < —, 12
Hglx| ljl 4 rnlilx | tJl N (12)
max > EIXi1” < pmare max > EIXy [ < fmas, (13)
jelm] . i€[n] .
i€[n] j€lm]

where pmax V Pmax = 1 and pmax A Pmax =¥ € (0,1], and y = Q(1). Assume

y %SqSNl

1
K %y

f=]
l—

Theorem 2.4 (Largest singular value). Let X be an n X m random matrix with independent entries,
and EX = 0. Then under Assumption 3,

Elomac(X)] < V7 +1+0 L) (14)
1V y/logn
Moreover, with probability at least 1 — O(N -3 ),
Tmax(X) < Wy + 140 | ——]. (15)
1V 4/logn

Assumption 4. Let n > m and 6 € (0,1). Assume pmax = Pmax> Pmin > V¥, and min{1l — \/y, min —
V7Y} =Q(1). Assume for 6 € [0, 1), g satisfies

C max {6‘1/2,6_17_1/2\/105;11} <g< n% K‘éy_%
for an absolute constant C > 0.

Theorem 2.5 (Smallest singular value). Let X be an n X m random matrix with independent entries
and EX = 0. Under Assumptions 3 and 4, we have

Elomin(X)] = /(1 = y7)min 1) ~ 06 '1*). (16)

Moreover, with probability at least 1 — O(n™>), we have

Tinin(X) 2 (1= V7 (Brmin — V7) — O(6"/4). (1n)

Remark 2.4. Through standard truncation arguments, described in detail, e.g., in (Borodin, Corwin
and Guionnet, 2019, Pages 41-73) and (Bai and Silverstein, 2010, Chapter 5), our results in Section
2.2 can be applied to random variables with unbounded support. This includes, for example, the dense
Gaussian case and any other cases satisfying certain Lindeberg’s conditions (Bai and Silverstein, 2010).
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3. Spectral relation between X and B

3.1. Generalized Ihara-Bass formula

We will make use of the following generalized Thara-Bass formula proved in (Benaych-Georges, Borde-
nave and Knowles, 2020, Watanabe and Fukumizu, 2009). When H is the adjacency matrix of a graph,
Lemma 3.1 reduces to the classical IThara-Bass formula in (Bass, 1992, Kotani and Sunada, 2000).

Lemma 3.1 (Lemma 4.1 in (Benaych-Georges, Bordenave and Knowles, 2020)). Let H € M,,(C)
with associated non-backtracking matrix B. Let A € C satisfying A # H;jH;; for all i,j € [n]. Define
H(A) and M(2) = diag(m;(1));e[n] as

AH;j HiH,
Hij(d) = ———"—, mi(1):=1+ > 2”‘—’“ (18)
A* — H;;jHj; Ko A~ HikcHi

Then A € o(B) if and only if det(M (1) — H(1)) = 0.

By itself, Lemma 3.1 is not sharp enough to yield a tight upper bound for o7max(X), and it cannot
yield any results for the smallest singular values. Therefore, we have developed a customized approach
for the block matrix model, including a sharp analysis of the non-backtracking operator, which will
lead to tight results in both cases. The first step in this approach is the following customized version of
Lemma 3.1.

0

X* 0

operator associated with H. Define an n x m matrix X(Q), and two diagonal matrices M;(Q) =
. 1 . 2

dlag(mg )(/1)),-6["], M>(Q) = dlag(mg )(/l))ie[m] as follows:

Lemma 3.2. Let X be an n X m complex matrix and H = . Let B be the non-backtracking

AX;; | Xix |2 2 | X,
Xij()= s mPW=1+ pE mP=1+ % FERR T

2—|X;51% K] 22— Xyl P | X1
Assume M, (Q) is non-singular. Then A € o-(B) if and only if
det(Ma(2) — X(2)* My (1)1 X(2)) det(M, (1)) = 0. (19)
M) =X

=X*(1) M)
singular, by the determinant formula for block matrices, (19) holds.

Proof. From Lemma 3.1, A € o(B) if and only if det[ = 0. Since M;(2) is non-
3.2. Deterministic upper bound on the largest singular value

Using Lemma 3.1, we bound omax(X) in terms of the maximal Euclidean norm of rows and columns
of X and p(B) as follows.
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Lemma 3.3. Let H, X, and B be defined as in Lemma 3.2. Suppose

max | X;;| <6, max 3 Xy < pnax(1+6), (20)
ij J€lm]
i€[n]
max Z |Xij|2 < pmax(l +0), 2D
i€n] .
J€lm]

Wwith Pmax V Pmax = 1, Pmax A Pmax =7y and 6 € [0,)/%]. Let A > max{y%(l + \/5),,0(3)}. Then

1 1
Timax(X)? < (ﬂ i Z) (a+2) +6rts (21 + %) +36y726%.

Proof. From Lemma 3.1, by continuity, M(2) — H(1) = 0 for 1 > Ay := max{y%(l +V5), p(B)}. For
any 1 > Ap, we have
|H;;I? S| Hij|?

- ~3§|H: 2
|AH;j (1) = Hij| = 5= P <E-e 7 26[Hi;1" (22)

By Gershgorin circle theorem, it implies that

IAHQ) = Hll <y~ 3omax > |Hii> <y~ 36(1 +8) <2y~ 36. 23)
i J
J

For any i € V}, from (18), for any 4 > Ay,

A|H |? A(1+6 AL +27268
Ami(/l)_(/l_’_pmax):z |Hjk | _pmax<pmax( ( )_l)zpmax(s ( )

A vt I 74 R W 262
|
A1 +vy~2 _1 _ _
Spmaxéﬁ < 2Pmaxd(y"2 +7y ]) <4y 16, (24)

where in the last step we consider the cases A > 2 and A < 2 and use the inequality 1> — 62 > 7% in the
second case. For any i € V5, similarly,

ﬁmax /1|Hik |2 ﬁmax ﬁmax 1+6 -1
Ami(A) = [+ ——| = - < —-1] <4y™76. 25
mi(A) ( 1 ) k;Vl 2 |He? A 1 (121282 4 (25)

Then for A > Ay, with (23), (24), and (25),

A+ Em 6y ls 0
0 < AM() - H(A)) < _H. (26)

e Pyl

dil -X

X' dol > 0. Note that

Letdy := A+ 22 4 6y715,dy := A + 222 4 6y~15. Then from (26), A =
A A

the following matrix factorization holds:

Nail 0

0 dyI

Va1 0

0 dr

1 ~(dich) 2 X
—(dldz)i%X* 1

dil -X
-X* dyI
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Therefore, on the right-hand side of the above equation, the second matrix is positive semidefinite. We
obtain

* _ 1 -1 Y -1
X Xﬁdldz—(/l+}+6)/ 5) (/l+z+6y 5)

1 1+
=1+ - (/1+Z) +6y’16 2/l+—y +36y’262.
A A A

This gives the desired upper bound on oy« (X). |

Lemma 3.3 gives an upper bound on oy,x(X) when the parameter 6 € [O,y%]. By rescaling the
entries in H, we can obtain a general bound depending on the following quantities:

1

2

l1H]l1,00 = max |H;;|, [|H]||2,00 := max \H 17| .
ij J i J
J

without the restriction on the range of ¢. This is more convenient for us to handle sparse random
bipartite graphs in the critical and subcritical regimes. Define

(x+x_1)(x+z), ny% 2(x+—), ny%
fo=1"," U x OE x .

(y2+1), 0<x<ys 4 0<x<yi

where y € (0,1] is a constant such that
. 1
1X1l2,00 AIX " ll2,00 < ¥ 211H 2,00 27)
c e . 0 X

Lemma 3.4 (Deterministic upper bound on o-,,x(X)). Let X be an n X m matrix, H = ol and

v be the constant in (27). The following inequality holds:

B B
p(B) )+127_§Tg( p(B)
1H 112,00 14 12,00

Tamax(X) <[IHI f( ) IH.collH It oo + 36y 2N HIT o (28)

Proof. First assume ||H|l2,co = 1. Set § = ||H||j 0. From (27), 6§ < y%. By Lemma 3.3, for 4y =
max{y%(l +V6), p(B)}, we have

1
02 (X) < f(A0) + 6y~ 16 (2/10 + —; 7) +36y7268%. (29)
0

When Ay = p(B), it implies
Toax(X) < f(p(B)) + 6y~ 6g(p(B)) + 36y %5, (30)

When o = y#(1 + V3), from (29),

1+
R(X) < AZ+1+y+ % +6y7ls (210 + Ty) +36y726>
0
0
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< (V7 + 1?2 +45y716 +36y726% < f(p(B)) + 12y 16g(p(B)) + 36y 282 (31)
Combining (30) and (31), we have
Tmax(X)? < f(p(B)) + 12y ™% g(p(B)I[Hll1 o0 + 36y I HII .-
Then, for general H, by considering ﬁ and repeating the proof above, we get the desired bound.

O

3.3. Deterministic lower bound on the smallest singular value

The following lemma gives us a connection between the spectral radius of B and the smallest singular
value of X. The proof relies on finding a relation between purely imaginary eigenvalues of B and
singular values of X.

Lemma 3.5 (Deterministic lower bound on o,in(X)). Let H,X and B be defined as in Lemma 3.2
andn>m. Let 0 <y <1, 6 €[0,1), C; > 0 such that

max |X;;| <6, | X|><Cy,
)

max > X <y(1+6), puin(1-0)< > |XyP<1+06, Vje[m].

U o ieln

Define By = max{y%(l +5), p(B)}. Then for B > By,

— 2
ﬁg(;ﬂ i~ 5 662—6) (32)

Tnin(X) >

where Cy, = 4y~ 2(C1 + y_lé) ‘ﬁﬂs

Remark 3.1. This bound is only informative when the right-hand side is positive, which necessitates
v <1land pmin > fy.

Proof. Take A = i, with 8 > By = max{y? + V3, p(B)}. Then

2
(1 | Xik |
m: () =1- LS R S P
' kEZ[:‘n B>+ Xk B?

CA1+8) _S1L-N+\F-y NIy

= =:C, 33
VY +6 \Vy+6 \/— + 2 (33)
where C; is lower bounded by ;/: \/Z This implies M/ (1) is invertible.

Define H>(1) = X(1)*M;(1)"'X(1). From (19), 1 € o(B) if and only if det(M>(1) — Hy(1)) =
Recall that when A = i3, M,(A) is a real diagonal matrix, then H(1) is Hermitian. As 8 — oo, M5(1) —
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Hy(A) = I + O(872). By continuity, det(M>(1) — Hy(1)) > 0 for 8 > By and M»(1) — H»(A) is positive
semidefinite for any 8 > 8. Since

BEX (DM () X)) + XMy ()X
= B2X (DM (D) X (1) + AX* (DM (D) X = AX (DM ()7 X + XM ()71 X,
by triangle inequality,
IB2X* (DM (D) X() + X* My (D) X <IB2X ()M () X () + AX (DM ()T X (34)
+IAX(OM ()X = X My ()7 X (35)
For the term in (34),

182X * (DM (D) X() + AX* (DM (D) X = |2 X ()M () X (1) = AX ()M ()7 Xl

<[[AX () = XIAXONM D)™ < 1aX Q) = XNIM QO IAIX N+ 112X () = X ). (36)

Rewriting (22) with A4 =i, we obtain

|H;; 3 - S|H;j|?

AH: (1) — H: | = < 37
Then, applying the Gershgorin circle theorem to the row of H yields,
6(1+6 1
XD = X[ = |AHW) - H|| < ¢ - ) o Lsa+6)<2y7%s. (38)
B VY
Then with (36) and (38), the term in (34) satisfies
182X ()M ()7 X(2) + AX* ()M (D) X[ < @y~ 26)(Cr +2y710)C; (39)

Similarly, the second term in (35) satisfies

X ()M ()X = XMy )7 X <X = XXMM )7 < @y 2661650 @40)

Therefore from (36), (39), and (40),
1B2X* ()M ()" X() + X* My ()X < 46y72(C + y1o)cyt =G0
which implies
XM ()X = -B2X (DM () X () - C,6 = B2 Hy(2) - C,6 = —*Ma(2) - G5, (41)
where we used the condition M;(A) — Hy(A) = 0 for 8 > By. On the other hand, for any j € [m],
2x2 5

ﬂ . 2
Enl =+ 3 = <o o 3 X< B (1 -0)

_R2_y2 2 2
K B X Ken] o
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Then

BZ
ﬁZ + 52

-B*Mr() = —(ﬁz— (1= 6)Prmin | - (42)

Hence, with (42) and (41), X*M;(A)"'X > /32+52 Pmin — B — C,6 — 6. From (33), we obtain X*X >

G ( [%252 Prmin — B2 — €6 — pmmé) . Thus, the lower bound on o (X) in (32) holds. O

4. Probabilistic upper bound on p(B)

In this section, we provide a probabilistic bound on the spectral radius p(B) for a random matrix H.
This involves sharp estimates of the trace of high powers of B. We give our main result below.

0 X .. o .
Theorem 4.1. Let H = [ X 0 be an (n + m) X (n + m) random Hermitian matrix with associated
non-backtracking matrix B, where X is an n X m random matrix with centered independent entries.
Under Assumption 3, for € > 0, there exist universal constants C,c1 > 0 such that

P(p(B) > yi(1 + &) < Cy~s N3-c1alog(l+e),

Remark 4.1. The bound on p(B) in Theorem 4.1 is an inhomogenous analog to (Brito, Dumitriu and
Harris, 2022, Theorem 3) for the non-backtracking operator of random biregular bipartite graphs, and
for a broader range of the (sparsity) parameter g. Compared to (Benaych-Georges, Bordenave and
Knowles, 2020, Theorem 2.5), we improve a factor y'/# in the bound of p(B) when H has a bipartite
block structure.

The key estimate to prove Theorem 4.1 is the following trace bound on a high power of B.

Lemma 4.2. Suppose X satisfies Assumption 3. There exist universal constants co,C such that for any
6 € (0, %), and any odd positive integer | satisfying

N30
I < comin{ 5glogN, , (43)
K3 76 q
we have
ETr[B'(B')*] < Cl*¢*mny=V/2, (44)

Assuming Lemma 4.2, we can now prove Theorem 4.1.

Proof of Theorem 4.1. Choose 0 < ¢ < 3]—0 in (43), we can take [ = [%clq log N for some sufficiently
small constant ¢y > 0 then (43) is satisfied. By Markov’s inequality,

ETr[B'(B')*]

P(p(B) > y3(1 + &) < NS

21
Cl4q2mny77
l+¢

< CN2q6(10g N)4,y*%(l + 8)7c1q10g(1+8) < C77%N37C]qlog(l+8)
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for some absolute constant C. In the last inequality, we used the upper bound on ¢ in the assumption of
Theorem 4.1. This finishes the proof. O

5. Proof of Lemma 4.2

We now provide the proof Lemma 4.2. The proof is adapted from (Benaych-Georges, Bordenave and
Knowles, 2020, Proposition 5.1) to the non-backtracking operator B of a Hermitian random matrix
H with a bipartite block structure. The improvement compared to (Benaych-Georges, Bordenave and
Knowles, 2020) is the factor y*~1/2 in (44), by doing path counting on a complete bipartite graph
instead of a complete graph.

Let V1,V be the left and right vertex sets on the complete graph K, ,,,, and

E= {w,v):ueV,veWVu{(uv):ueWw,veV}
be the set of all oriented edges in K}, ;. For any e € E, fe E , from the definition of B,
) _ L
(B)ef = Z BeayBayay "+ Bayf = ZHfofl Hg g, - Hgp_ g,
al,..., al,IEE ‘f

where the sum on the right hand side runs over & = (¢_1,&,. ..,&;) as a path of length / + 1 in K, s,
with (£_1,&) = e,(&1-1,&1) = f,and &1 # &4 for 0 <i <[ — 1. Therefore, we have

T[B (B = > 1(B))esl? (45)
efeE
= D HegtHag He aHee - Hepo (46)
&gl

where the sum runs over paths &' = (Sl . 511)752 = (6%1,. . .,.flz) of length [ + 1 such that (fll,fé) =
(E2.60). (& .eh =& &) and gf L # gm for j=1,2and 0 <i </ 1. From (45), for fixed &' &%,
the sum in (46) is nonnegative and does not depend on fll ,le. Therefore, we can bound it by

l . .
T8 <m Z Heaaleje Mol g, Mg @0
f
‘f() §0€V1

Z HegiHegr - He giHergr o Hego,

fo ‘%‘0 EVZ

wherethe sum is over &! :(fé, . fll) 52—(53, . fl)suchthat (fo,fl l,fl) (fo fl 1 fl)andfj
forj=1,2and 1 <i <[ -1.For j=1,2, define

1+1
Ci={&= (b0, éu) b0 =En € V& = &b # & V1 i <20 = Li # 1),

We can combine each pair of ¢!,£2 in (47) into a path of length 2/ and simplify the bound as

L pl
Te[B'(B')*] <m Z Heg Hegy o Heyy 8y +1 Z Heg Hegy - Heyy 8-
£eCy £eCy
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Since the entries of H are independent up to symmetry with mean zero, taking the expectation yields

198 15%
ETr[B'(B")"] <m Z EHgye Heyg - Heyy iy +11 Z EHge Heyg - Heyy i85 (48)
£eCy &€

where C; is a subset of C; for i = 1,2 such that each edge in the graph spanned by ¢ is visited at least
twice by the path defined by &.
We will combine paths according to their equivalence classes defined as follows.

Definition 5.1 (Equivalence class). For each £ € C; U C,, we define a graph

Ge = (V1(8).Va(6). E(£))

spanned by &. Let g(£) = |E(£)| — [V(é)| + 1 be the genus of G¢ and e(¢) = |E(€)|. We say two paths
&1,& are equivalent if they are the same up to a relabelling of vertices (with the restriction that after
relabelling, vertices in V; stay in V; for i = 1,2). Define [£] the equivalence class of a path &.

Lemma 5.2. For any & € C with |Vi(€)| = 51(€),|[Va(€)| = 52(€), we have

£ £ ~ 1
B > HeeHegy - Hey g < (/N e @2 pu®) s, 49)
£e[€]
And for any & € Cy,
e
B Y Hgpe Heygy - Hey gy < m(k/NYE q2e@ 2 i1 5. (50)
£elg)

Proof. We consider a breadth-first search ordering of vertices in & Lleta=|E@) and s = 51 + 52,
where the drop the dependence on & in s1(£) and s,(€) for convenience. We order the edges in G(£)
such that the edges ey, . ..,es_| form a spanning tree of G(£), and let m, be the number of times that e,
appearin & for 1 <t <s—1. Let I, s, be the set of injection maps from [s1] X [s2] to [n] X [m]. Then
for any & € Cy,

= — — e — — m
E ) HagHae Hene = ), BH G ) Higy e@n < D HEWT(Q
£elé] 7€l .5, 7€l .5,

From Assumption 3, we can use the estimates

max Z EIH[jIk < Zmax Inax Z E|H,,|k Zmax

i k-2’ 2
IV (S Vi i,
for contribution from edges ey, . . .,es_1, and the estimate max;; E|H; J| < qu — foreg,. .., e, to obtain
E Z Hegg Hegy o Heyy 8 < 1—[ qut Z HE|H:(Z,)
fe[f] TE.[AI

a
K ~5r—1 1 1
< 5 ..
= (!:Sl qu,Z) pmaxpmax qm172 qms—1*2 (51)
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2a—22ﬂint(li

a-s+1
V)

_ S| ~So— 2a-21 51 ~s2—1
=nq PraxPrm = n(k/NYE 4 il P

where g = a — v + 1 is the genus of G(£). The factor n in (51) comes from the processing of pruning
trees, and the root of the spanning tree has at most n choices of labeling since & € C;. Then (49) holds.
(50) follows similarly. O

We can further simplify the upper bound on ETr[B!(B!)*] by counting the contributions from normal
graphs defined below.

Definition 5.3 (Normal graph). Denote a path as w = wowowiwiz - --wj—1 ;w; in a multigraph G,
where wy, ..., w; are the vertices and w; ;41,0 <7 </ — 1 are the edges visited by the path w. We say w
in G is normal if

e V(G)=[s] where s = |V(G)|;

e the vertices in V(G) are visited in increasing order by w.

Each equivalent class of C; has a unique representative & such that £ is normal in G¢. Fori = 1,2,
denote Cp; = {£ € C; : ¢ is normal in G¢}. From (48) and Lemma 5.2, we obtain

* 1
ETt[B'(B))*] < mn Z (k] N)EE) &2 (31 (€) 5aE)
£€Cp

— 1~
wmn Y (k/NEE g2 g 5 = 5y 4.8, (52)
£€Co,2

From now on, we only treat S1, and S, can be estimated similarly. We now introduce a parametriza-
tion of Cp,1 following (Benaych-Georges, Bordenave and Knowles, 2020).

Definition 5.4 (Equivalence class). Let G be a graph and V C V(G). Define
Iy(G)={v e V(G)\ V :deg(v)=2}.

Let X/(G) be the set of paths w = wgy---w; in G such that wy,...,w;_| are pairwise distinct and
belong to J/(G) and wg,w; ¢ Iq/(G). We define an equivalence relation on £4,(G) such that the path
wo . . . wy and the reverse ordered path wy - - - w| are equivalent. Denote ZZV(G) ={[w]:w e Zy(G)} the
set of equivalence classes.

We can construct a multigraph Gé: from G¢ by replacing every [w] € Z’ oy (G) with an edge in
E(Gg) as follows.

Definition 5.5 (Multigraph G§ from G¢). Let ¢ € Cp 1. Define V(Gé:) V(Gg) \ Ig),£,(G¢) and
E(Gg) Eé‘ & (G). The endpoints of [w] in E(Gg) are labeled wq, w;. Assign each edge [w] € E(Gg)

the weight k,,, which is the length of the path w.

From (Benaych-Georges, Bordenave and Knowles, 2020), any ¢ € Cp,; as a closed path &é& - - - & in
G¢ gives rise to a closed path.g? &olonéiéin--- & 1€ onthe multigraph Gg Now for any & € Cp,1, we
have constructed a triple (Gg &.k), where Gg 1sa multlgraph £ is a closed path in G.g Set 7 to be the
unique increasing bijection from V(Gé:) to {1,. |V(G4:)|} Denote by (U, ¢, k) := (U(£),L(€), k(&)) the
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triple obtained from the triple (Gf,g-c, k) by relabelling the vertices using 7. By Definition, ¢y = 7(&) =
1. We set v = v(¢£) = 7(&;). Altogether, the construction above gives a map & +— (U, {, k). The following
lemma collects some properties of this map.

Lemma 5.6 (Lemma 5.3 in (Benaych-Georges, Bordenave and Knowles, 2020)). The map & —
(U, ¢, k) satisfies the following properties:

1. The map & — (U,{, k) is an injection on Cp .

2. g(U)=g(Ge).

3. (is a closed path in the multigraph U and it is normal in U.

4. Every vertex of V(U) \ {1,v} has degree at least three. The vertices 1 and v have degrees at least
one.

5. |E(Ge)l = ZecEW) Ke-

6. me({) 22 forall e € E(U) and 2l = 3, c g7y Me (ke

For a given ¢ € Cp,; with given 51(£),52(£), we know
s1+852=[V(Ge)l=e(§)-g(U)+1 and s — 5] < g(U), (53)

where we use g(¢) = g(U) from Lemma 5.6. The second claim is due to the fact that since ¢ is odd, any
imbalance between sy, s is from creating a new cycle in £. Moreover,

e€)= D, ke 2= mDke. (54)

ecE(U) ecE(U)
Since k. > 1,m.({) > 2, we obtain
2e(§) - 21 <2|EU)| - {1 (55)

where || is the length of the closed path {. Equipped with the construction of the triple (U, {, k), we
continue to estimate S; in (52). With (53),

e(E)— S ~sp—1
S1 =mn Z (K/N)g(f)qh(f) lerqliaxprvﬁax
£€Co,1
<mn Z (K/N)g(g)qze(é)_ﬂ(pmax,[)max)(sl ts21)/f2 max{Pmax/Pmax ﬁmaX/pmaX}lsl_SZH 2
£€Co,1
1) &&+D/2
<in 3 (kN A2 el (_)
£€Co, ¢
:mn)/(l_l)/z Z (K/N)g(f)qk(f)—ﬂ7,(6(_5)—1)/2—8(6)_ (56)
£€C,

From (1) in Lemma 5.6, we can upper bound (56) by summing over (U, Z, k) instead of £. Then with

(55), and the assumption g > y i, we find

U 2|EWU)|-
S1Smn7,(l—1)/2 (Ni)g( )(qy%) |E(U)| |§|’
Wtk €
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where (U, {, k) is obtained from all { € Cy,1. Since X, ep ) keme({) =21 and m,({) > 2, for a given

(U,¢), the number of choices for k = (k.)ecpw) can be bounded by the number of k such that
2ecEW) ke = 21. For fixed (U, ¢), the number of choices for such k is bounded by

( 20— 1 )<( 6l )'E(U)'
[EQU)|-1) ~ \|EWU)| '

[EU)| U EU)|-
6l k \8W) 1\ 2IE(U)]-1<]
(I-n/2 E i
S1 < mny ( Z)(| ( )|) (Nc) (q74) . 7

Therefore

From (Benaych-Georges, Bordenave and Knowles, 2020, Lemma 5.8), we have
|[E(U)| <3g(U)+1, |V(U)| <2g(U)+2. (58)

Also, |[E(U)| = g(U) v 1 and g(U) < [ by definition. Therefore, (57) can be further bounded by

3g(U) _
121 k \ &) 1\ 6g(U)-1<|
Sy < 6lg? 12 E — 1 . 59
1= 0kgmny & gU)+1 (Nc) (qw) (59)

(58) implies the number of pairs (U, ) such that U has genus g and ¢ has length ¢ is bounded by
(3g+ 1) (2g +2)%*1. (60)

With (60) and (59), we find for some absolute constant C > 0,

S| < 6lq2mn7(l_l)/2zl:i(3g+ 1 (2g +2)%8+! (ﬁ)%( K )8 (qyi)ﬁg—t

445 2¢+2) \Nc
g 21 ?
4
Z(—gl) 1)

2 . s 1
< Clmny =2 (qy ) + CLGPmny D2y (Cl Ky2q
g=1 =1 q’yZ

t=1 N

Since g > y_%, the first term is bounded by C 12¢*>mny=1/2  For the second term, using
21
Z XM < 20(1 + X2,
m=1

it is bounded by

I
CP P mmy D12 Z

N 1
g=1

3.4 6\8 i
ClPkyiq ) +Cl3q2mny(”1)/22
qy*

21
cPryrgs\* [ 4
ﬂ) 2\ e
N
g=1

From the assumption (43), we obtain

1 613 1/(1-36) C3N
N > KW;] ! , N¥< 10 ,
< Kky2q°1
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3
N
Ky%q6l3

[ < codqlogN = % log(N3%) < % log (
By choosing ¢ small enough, we have the following inequalities:

1
N > 2Cl3/<y%q6, I < gqﬁ log( (63)

CB«y > q° ) ‘
The first term in (62) is bounded by CI3g2mny*=1/2. The second term can be written as
I
N 4
Clqumny(l_l)/2 Z exp (—g log (71) +2llog _gl) .
a1 CPxy2q® qv*
The argument in the exponential function is maximized at

21
log (71\’l )
CBky2q°

From (63), this maximizer is reached for g < %qyi, and the second term in (62) can be bounded by
Cl**mny-1/2,

Therefore, with the bound on (61) and (62), we obtain S| < Cl4q2mny(l_1)/ 2. Repeating the same
argument for S, yields the same upper bound. This completes the proof of Lemma 4.2.

g:

6. Probabilistic bounds on the largest singular value

In this section, we first prove Theorem 2.4 for general rectangular random matrices, then specify the
model parameters to prove Theorem 2.2 for sparse rectangular random matrices. The proof is based on
the deterministic spectral relations between B and H in Section 3, and the bound on p(B) in Section 4.

Proof of Theorem 2.4. From the assumption of Theorem 2.4, we have

1 ;
2 2 4 Pmax
| X < —qz, ml_ax JE E|X;;j|” < pmax, and mlax ]E E|X;;|" < _q2 .

Since }; |X,~j|2 is a sum of independent bounded random variables, applying Bennett’s inequality
(Boucheron, Lugosi and Massart, 2013, Theorem 2.9), we obtain, for § > 0,

P 21X = prac(1+8) | < exp (~a2pmanh (9)) (64)
J

where h(6) = (1 + §)log(1 + &) — 6. Similarly,

1

B DS IXy 2 pnax(1 +6)) < exp (4" pmah (6)) - (65)
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Then, by taking a union bound,
P (I1Xll,c0 = VPmax(1 +8)) <2 (I1XIIeo > Vomas - V146V 62)
=P (IXI2 . = pmax(1+6 ¥ 6) < nexp(=q>pmax (6 V 6)),
and P (|| X*]12.c0 = VPmax(1 +8)) < mexp(—g*fmaxh(6 V 6%)). From Theorem 4.1,
P(p(B) > yi(1 + ) < Cy~ s N3-1410e(1+9),

Therefore, conditioned on a high probability event, we have

IHlh e <q7", IHlo <146, and p(B)<y¥(1+6). (66)

Now we apply the deterministic upper bound on oy« (X) given in (28) conditioned on (66). If p(B) <
Y4 IH 2,co, then

2
T2 (X) < (1462 (Vy + 12 +48y (14 6)g ™" +36y 2472 < ((\/y +1)+Ci(6 + y—%q—l))

for some universal constant C; > 0. If instead y% lH]l2,00 < p(B) < y% (1 + ), we find

y%(1+5)) 5 (ﬁ(1+5)

+12y73g | Hll2,c0q™" +36y 2>
I1Hl2,c0 1H |2, 00 )

Tinax(X) < ||H||§,mf(

3 10\ 2
<((WF+D+aE+yigh)

Combining both cases, for any § > 0, with probability at least
1— C)/_%N3_Clq10g(l+5) _ 2N€_,yq2h(6\/62), (67)
3
Tmax(X) VY + 1+ C1(6+y2¢7)). (68)

Next, we simplify the probability tail bound (67) by picking a specific 6. Let K > 1 and

Kn V9log N

0=—— where 7g= . (69)

1 Vlogn q

> 1, by considering > e,n < e separately, we have for N > 2, there

From the condition that g > y_l/ 4

exists a constant ¢ = % such that

K+/logN K
= X &M, k. (70)
\/1V10g17 \/lvlogn
Therefore
19
gl<s—. (71)
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log(1+x) -1/4
X

Moreover, from (70), using the fact that is decreasing on (0,c0) and g >y > 1, we obtain

log(1+ 2K /q)

log(1 +6) = »K -
gqlog(1 +9) oK/q

> log(1 + ;K). (72)

Now we give a lower bound on a; := yg*h(6 V 6%). If n < e, using the fact that A(x) > c(x? A x) for all
x > 0 and some universal constant ¢ > 0, we find

a = C'yc]262 = C’yK2 logN. (73)
When 7 > e, using the inequality 2(x) > ¢(x> A x)(1 V logx) for all x > 0, we obtain for § > e,
h(5 V 6%) > 2¢62 log(6).
Since from (69),1og(8) > ¢’ log(n) for some absolute constant ¢’ > 0, we obtain
ay > 2¢yq*6%1og(8) > 2cc’yq*6* log(n) > 2cc’yK? log N. (74)
From (73) and (74), we conclude
a = C)/K2 log N (75)

for an absolute constant ¢ > 0. With (71), (72), and (75), we can simplify (67) and (68) to conclude that
with probability at least

1= C(ySloniartoalieak) | y1=eyK?) (76)
Omax(X) satisfies
Tmax(X) < W'F 1+Ci(0 +'y_%q_l) < W+ 1+ Cll(l + K_17_3/2)6
_Gin
VIViogn

This finishes the proof of (15). Now we turn to the expectation bound (14). Since entries in X are
bounded by ¢!, from the concentration of operator norm in (Boucheron, Lugosi and Massart, 2013,
Example 8.7),

=y +1+(K+y73?)

P (|0max(X) — E[0max (X)]] = 6) < 2exp(—¢*62/4) < 2exp(-c3K?/4), (77)

where the last inequality is due to (70). From (76) and (77), we can take K = y’l/ 2K, for an large
enough absolute constant Ky > 0 such that

P (| omax (X) = E[max(X)]] < 6) + P (a'max(X) <VF+1+C)(1+ K(;ly—l)(s) S1. (78)
This implies the intersection of the two events

{|Tmax(X) = E[omax(X)]| <6} and {o’maX(X) <VF1+C)(1+ K(;‘y—l)a}
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are non-empty. Hence for some absolute constants C;,C, > 0,

C -3/2
Elomax(X)] S V7 + 1+ Cy 5= yy+ 1+ L —L (79)
V1 Vlogn
This finishes the proof of Theorem 2.4 by using the assumption y = Q(1). O

Based on Theorem 2.4, we prove Theorem 2.2.
Proof of Theorem 2.2. Take g = Vd and X = %(A —EA) in Theorem 2.4. We have

1

max;; pij
Xyl < =, EIX;P < <. with «x= il

<K
N’ d/N
Also

?el[a;ﬁ Z E|X,j| < E m[fle Z Pij = Pmax,

j€lm] Jj€ln]
max E|X;;|* < = max pii=p
jelm iez[n] v Z v e
Equation (6) follows from (15) by taking K = C37/’3/ 2 for a sufficiently large constant C3, and the

probability estimate can be lower bounded by 1 — Cy~>/®N=3 for some absolute constants C > 0. The
expectation bound in (5) follows directly from (14). ]

Remark 6.1. The probability bound in the statement of Theorem 2.2 can be improved to 1 —
O(y~>/°N=%) for any constant a > 0 by taking a larger constant Cj in the proof.
7. Probabilistic bounds on the smallest singular value

We now turn to the probabilistic lower bound on the smallest singular values for a general random
matrix model.

Proof of Theorem 2.5. Using Bennett’s inequality (Vershynin, 2018, Theorem 2.9.2), we obtain for
any j € [m]and r >0,

Bl (|xl-‘,-|2 - ElX[‘,'IZ) < —t) =P (Z (—|xl-j|2 + E|Xl-‘,-|2) > r) <exp (—%q2h(2t)) .

i i

Taking ¢ = 6 opin implies for any j € [m],

1
B| D 1% < pmin(1 = 6)) < exp (—Zqzh <26ﬁmin>) : (80)

Combined with (64) and (65), after a union bound, with probability at least

1 — mexp (—%qzh (2apmm)) —nexp (—yqzh(é)) , (81)
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we have for all j € [m],

Pmin(1-0)< > X <1+6, and  max Z |X;j1* < (1 +0).

= i€l

Moreover, from the concentration of spectral norm of H given in (Benaych-Georges, Borde-
nave and Knowles, 2020, Equations (2.4) and (2.6)), for g > +/logn, with probability at least
1 — 2exp(—4?), ||X]| < C4 for some absolute constant C4 > 0. From Theorem 4.1, with probability

1- Cy_%n3‘clq1°g(l+\/g), p(B) < y%(l + V6). Note that for x € (0,2],

2

3
A(x) = (1 + x)log(1 + x) — x > m > —x

2

andlog(1+\/_)> _1\/_
With the assumptlon that Pmin = /¥, conditioned on all events above, from Lemma 3.5, we have
with probability at least

3
1 —3nexp (—Eyqzéz) —2exp(—¢°) - Cy_%n3_%‘1\/3, (82)
2 Y-y (B 2
mm(X) = +o (ﬁ2 +62pmln_ﬂ -G36 _6)+7 (83)

where 8 =y'/4(1 + V6) and C3 = 4y~ 2(C4 + 7‘16) \/—ﬂs
Since 6§ € (0,1] and Pmin < 1, (83) implies

2 oy (oo PSS B
‘Tmin(X)Zw_,_(g(pmm W(l+3\/5) g 7,2(1_\/7)5); (84)

where Cs is an absolute constant. Using the Assumption 4, (84) implies (17).
Next, we consider the expectation bound. Repeating the proof of (Boucheron, Lugosi and Massart,
2013, Example 8.7), we have the following concentration inequality for oy, (X):

P(|0min(X) — E[omin(X)]| = 6'7%) < 2exp(-¢>6'/%/4). (85)

We can take g > Cp max {6‘1/2,6‘1y‘1/2\/10g n} for a sufficiently large Cy such that
P (Jowmin(X) ~ Blomn()]] < 5'74)

\/7_ Cs
+P( mlﬂ(X)—\/—_f_(S(pmm W(1+3\/5)_6_’}/2(1——\/’)—/)52))>1

This implies the intersection of the event {|o-min(X) —E[omin(X)]| < 61/4} and (84) is nonempty.
Therefore, under Assumption 4, we obtain

E[O-min(X)] > \/(1 — W)(ﬁmin —_ W) _ 0(61/4)
This finished the proof of (16). -
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Proof of Theorem 2.3. We take ¢ = Vd in Theorem 2.5. Then, under Assumption 2, with probability
at least 1 — O(n3), (8) holds. (7) follows directly from Theorem 2.5. O

With Theorems 2.2 and 2.3, we prove Corollary 2.1.

Proof of Corollary 2.1. From the assumption (10), Theorem 2.2 implies with probability 1 — O(n~3),

1
— 0max(A —EA) < 1 ++/y + o(1). (86)
Vd
From (10), fmin = 1 + o(1). Taking 62 = 10% in Theorem 2.3, we obtain with probability 1 — O(n™),
1
Z5mn(4=BA) 2 1= F = o(1), (87)

We can apply the proof of (Zhu, 2020, Corollary 4.3 and Theorem 8.2) to inhomogeneous Erdds-
Rényi bipartite graphs. One can show in the same way that, almost surely, the empirical spectral dis-
tribution of é(A —EA)T(A — EA) converges to the Mar&enko-Pastur law supported on the interval
[(1- \/i)z,(l + \/W]. Therefore almost surely,

1 1
%O'max(A —EA) > 1 +4/y —o(1), ﬁo-min(A —EBA) <1 —-4/y+o(l). (88)
From (86), (87), and (88), the convergence results in (11) hold. O
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