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We develop a unified approach to bounding the largest and smallest singular values of an inhomogeneous random
rectangular matrix, based on the non-backtracking operator and the Ihara-Bass formula for general random Her-
mitian matrices with a bipartite block structure. We obtain probabilistic upper (respectively, lower) bounds for the
largest (respectively, smallest) singular values of a large rectangular random matrix X . These bounds are given in
terms of the maximal and minimal �2-norms of the rows and columns of the variance profile of X . The proofs
involve finding probabilistic upper bounds on the spectral radius of an associated non-backtracking matrix B. The
two-sided bounds can be applied to the centered adjacency matrix of sparse inhomogeneous Erdős-Rényi bipartite
graphs for a wide range of sparsity, down to criticality. In particular, for Erdős-Rényi bipartite graphs G(n,m,p)
with p = ω(logn)/n, and m/n→ y ∈ (0,1), our sharp bounds imply that there are no outliers outside the support
of the Marčenko-Pastur law almost surely. This result extends the Bai-Yin theorem to sparse rectangular random
matrices.

Keywords: Extreme singular value; inhomogeneous random matrix; non-backtracking operator; random bipartite
graph

1. Introduction

1.1. Extreme singular values of random matrices

The asymptotic and non-asymptotic behavior of extreme singular values of random matrices is a fun-
damental topic in random matrix theory (Rudelson and Vershynin, 2010, Vershynin, 2012). They are
crucial quantities used to provide theoretical guarantees for randomized linear algebra algorithms on
large data sets, with applications in machine learning, signal processing, and data science.

Consider an n × m random matrix X with m/n → y ∈ (0,1) with i.i.d. entries. Let σmax(X) and
σmin(X) be the largest and smallest singular value of X , respectively. The classical Bai-Yin theorem
(Bai and Yin, 1993) says that, under the finite fourth-moment assumption of the distribution of entries,
almost surely,

1
√
n
σmax(X) → 1 +

√
y,

1
√
n
σmin(X) → 1 −√

y. (1)

This implies that there are no outliers outside the support of the Marčenko-Pastur law for 1
nX

∗X . A
non-asymptotic version of the Bai-Yin theorem with a sharp constant for Gaussian matrices can be
obtained from Gordon’s inequality (Gordon, 1985, Han, 2022, Vershynin, 2012); beyond the Gaussian
case, similar results were given in (Feldheim and Sodin, 2010) using the moment method for symmetric
sub-Gaussian distributions (in addition, Tracy-Widom fluctuations were also proved). Under the more
relaxed, finite second moment assumption, the convergence of the smallest singular value to the left
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edge of the Marčenko-Pastur law was proved in (Tikhomirov, 2015). Later, the convergence of the
smallest and largest singular values to the edge of the spectrum was proved in (Chafaï and Tikhomirov,
2018, Heiny and Mikosch, 2018), for more general models. Finally, for sparse, heavy-tailed random
matrices, the convergence of the largest singular value was considered in (Auffinger and Tang, 2016).

Besides the sharp asymptotic behavior for the extreme singular values, non-asymptotic bounds
(which do not capture the sharp constants, but the correct order) for σmax(X) and σmin(X) were con-
structed by using other arguments, including ε-nets (Vershynin, 2012), matrix deviation inequalities
(Vershynin, 2018), and the variational principle (Zhivotovskiy, 2021). Largest singular values can also
be bounded using the moment method (Latała, van Handel and Youssef, 2018) or by using the spec-
tral norm bound for Hermitian matrices of size (n + m) × (n + m) (Bandeira and van Handel, 2016,
Benaych-Georges, Bordenave and Knowles, 2020).

Similar results for the smallest singular values of rectangular random matrices are harder to ob-
tain, especially when the matrices are sparse, partly because there are fewer methods of approach.
A lower bound without forth-moment assumptions was given by (Koltchinskii and Mendelson, 2015,
Tikhomirov, 2016), and for heavy-tailed distributions in (Guédon, Litvak and Tatarko, 2020, Guédon
et al., 2017, Tikhomirov, 2018); None of the results above capture the sharp constant in (1). Litvak and
Rivasplata (2012) considered the smallest singular values for random matrices with a prescribed pattern
of zeros (which does not cover sparse Bernoulli random matrices); and Götze and Tikhomirov (2023)
considered sparse Bernoulli random matrices with p = ω(log4 n/n). Very recently, Brailovskaya and
van Handel (2022) provided a very general, non-asymptotic universality principle on the spectrum of
inhomogeneous random matrices that captures the sharp constant for extreme singular values in a gen-
eral setting, including inhomogeneous and sparse random rectangular matrices when p = ω(log4 n/n).
We compare their results with ours in Remarks 2.2.

We should also note that the smallest singular value of a square random matrix behaves differently
from the rectangular one in (1), and our lower bounds on the smallest singular value (Theorems 2.3
and 2.5) do not cover the square case. Specifically, in the square case, with high probability, σmin(X)
is of order 1/

√
n. A unified bound in both square and rectangular cases can be found in (Rudelson and

Vershynin, 2009), which gives a lower bound Ω(
√
n −

√
m − 1). For the square random matrices, the

smallest singular value bounds were proved in (Cook, 2018, Livshyts, 2021, Livshyts, Tikhomirov and
Vershynin, 2021) for inhomogeneous random matrices, and in (Basak and Rudelson, 2017, 2021, Che
and Lopatto, 2019) for sparse random matrices.

Another related topic is the study of the concentration of spectral norm for inhomogeneous random
matrices, including sparse random matrices (Alt, Ducatez and Knowles, 2021, Benaych-Georges, Bor-
denave and Knowles, 2019, 2020, Le, Levina and Vershynin, 2017, Tikhomirov and Youssef, 2021),
Gaussian matrices with independent entries (Bandeira and van Handel, 2016, Latała, van Handel and
Youssef, 2018, van Handel, 2017), Wishart-type matrices (Cai, Han and Zhang, 2022), general random
matrices (Bandeira, Boedihardjo and van Handel, 2023, Brailovskaya and van Handel, 2022, Tropp,
2015), and non-backtracking matrices (Benaych-Georges, Bordenave and Knowles, 2020, Bordenave,
Coste and Nadakuditi, 2023, Stephan and Massoulié, 2022).

1.2. Sparse random bipartite graphs

Extreme singular values of sparse random bipartite graphs are important quantities in the study of com-
munity detection (Florescu and Perkins, 2016, Wan and Meila, 2015, Zhou and Amini, 2019), coding
theory (Janwa and Lal, 2003), matrix completion (Bhojanapalli and Jain, 2014, Brito, Dumitriu and
Harris, 2022), numerical linear algebra (Avron, Druinsky and Toledo, 2019), and theoretical computer
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science (Deshpande et al., 2019, Guruswami, Manohar and Mosheiff, 2022). However, classical esti-
mates for sub-Gaussian random matrices (Vershynin, 2012) cannot be directly applied to sparse random
matrices due to the lack of concentration.

Recently, the non-backtracking operator has proved to be a powerful tool in the study of spectra of
sparse random graphs, specifically, when the average degree of the random graph is bounded (Borde-
nave, 2020, Bordenave, Coste and Nadakuditi, 2023, Bordenave, Lelarge and Massoulié, 2018, Brito,
Dumitriu and Harris, 2022, Dumitriu and Zhu, 2021, Stephan and Zhu, 2022) or slowly growing (Alt,
Ducatez and Knowles, 2021, Benaych-Georges, Bordenave and Knowles, 2020, Coste and Zhu, 2021,
Stephan and Massoulié, 2022, Wang and Wood, 2023). Most results obtained with the help of non-
backtracking operators are concerned with the largest eigenvalues and spectral gaps, with the exception
of (Brito, Dumitriu and Harris, 2022), which gives a lower bound on the smallest singular value of
a random biregular bipartite graph, and (Coste and Zhu, 2021), which gives the location of isolated
real eigenvalues inside the bulk of the spectrum for the non-backtracking operator. Lower bounds on
smallest singular values for sparse random rectangular matrices were also considered in (Götze and
Tikhomirov, 2023, Guruswami, Manohar and Mosheiff, 2022, Zhu, 2023) by other methods for vari-
ous models.

1.3. Contributions of this paper

In this paper, we provide new non-asymptotic bounds on the extreme singular values of inhomogeneous
sparse rectangular matrices. Our main tool is the non-backtracking operator for a general n × n matrix
defined as follows.

Definition 1.1 (Non-backtracking operator). Let H ∈ Mn(C). For e = (i, j), f = (k, l), define the non-
backtracking operator of H as an n2 × n2 matrix B such that

Be f := Hkl1j=k1i�l . (2)

To associate a non-backtracking operator with a rectangular n ×m random matrix X , we work with
the non-backtracking operator B of an (n +m) × (n +m) matrix

H =
[

0 X
X∗ 0

]
. (3)

We can summarize the major steps in our proofs as follows:

1. We improve the deterministic bound given in (Benaych-Georges, Bordenave and Knowles, 2020)
on the largest singular value of rectangular matrices, in terms of the spectral radius ρ(B) of B;

2. We provide a new deterministic lower bound on the smallest singular value in terms of ρ(B);
3. We give an improved probabilistic bound on ρ(B) for inhomogeneous random rectangular matri-

ces;
4. Combining the deterministic and probabilistic results, we prove, in a unified way, two-sided prob-

abilistic bounds for a general inhomogeneous rectangular random matrix model; we also spe-
cialize them for inhomogeneous sparse random matrices for a wide range of sparsity. Our main
results are stated in Section 2.

Although some partial efforts were previously made in the literature ((Auffinger and Tang, 2016,
Cai, Han and Zhang, 2022, Götze and Tikhomirov, 2023)) and some of our tools have been developed
in (Benaych-Georges, Bordenave and Knowles, 2020), the crucial contribution of this paper is a deep
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and unified understanding of the relationship between the singular values of a rectangular matrix and
the eigenvalues of its associated non-backtracking operator, which allows us to give a unified treatment
of extreme singular values. For the first time and with a minimal set of conditions, this, in turn, allows
us to extend the Bai-Yin theorem to sparse random bipartite graphs (Corollary 2.1) with average de-
gree ω(logn). For inhomogeneous sparse random bipartite graphs, the smallest singular value bound
explicitly depends on the maximal and minimal expected degrees without extra constant factors. The
upper bound on the largest singular value is valid when the maximal average degree d =Ω(1), and the
lower bound on the smallest singular value is valid down to the critical regime d =Ω(logn).

Our proof relies on the connection between extreme singular values of X and the spectral radius of
the corresponding non-backtracking operator B. In the biregular bipartite graph case (Brito, Dumitriu
and Harris, 2022), this relation is described by the Ihara-Bass formula (Bass, 1992), which results
in algebraic equations involving the spectrum of X and B. For inhomogeneous Erdős-Rényi bipartite
graphs, exact algebraic equations no longer work. Instead, we find deterministic inequalities between
the extreme singular values of X and the spectral radius of B, using a block version of the generalized
Ihara-Bass formula given in Lemma 3.2.

The proof of the spectral norm bound for Hermitian random matrices in (Benaych-Georges, Borde-
nave and Knowles, 2020) relies on the relation between the largest eigenvalue of a Hermitian matrix
and the largest real eigenvalue of its associated non-backtracking matrix. In our case, to get the lower
bound on σmin(X), we connected the small singular values of X to the largest purely imaginary eigen-
value (in modulus) of B (see Lemma 3.5). This idea helped us establish here a similar phenomenon in
a general inhomogeneous setting beyond the random bipartite biregular graph case studied in (Brito,
Dumitriu and Harris, 2022).

Based on (Benaych-Georges, Bordenave and Knowles, 2020), a more refined phase transition behav-
ior of extreme eigenvalues for homogeneous Erdős-Rényi graphs at d = logn/(log 4 − 1) was shown
in (Alt, Ducatez and Knowles, 2021), and the same threshold was also obtained in (Tikhomirov and
Youssef, 2021) with a different method. It is possible to combine the techniques in (Alt, Ducatez and
Knowles, 2021) with our Theorems 2.2 and 2.3 to study the phase transition behavior for d = c logn
in homogeneous Erdős-Rényi bipartite graphs, and we intend to consider this problem in subsequent
work.

Linear algebra notation

We say X � Y for two Hermitian matrices X and Y if Y − X is a positive semidefinite matrix. For c ∈ R
X � c means X � cI. ‖X ‖ is the spectral norm of X , and for a square matrix B, ρ(B) is the spectral
radius of B, and σ(B) is the set of all eigenvalues of B. We denote σmax(X),σmin(X) the largest and
smallest singular values of a matrix X , respectively. All C,c,Ci,ci for i ∈ N are universal constants.
x ∨ y, x ∧ y are the maximum and minimum of x and y, respectively. Denote (x)+ = x if x ≥ 0 and
(x)+ = 0 for x < 0.

Organization of the paper

The rest of the paper is structured as follows. In Section 2, we state our main results for sparse inho-
mogeneous Erdős-Rényi bipartite graphs and general rectangular random matrices. In Section 3, we
connect the spectra of H defined in (3) and that of its non-backtracking operator B and prove some
deterministic bounds on the extreme singular values of X . In Sections 4 and 5, we give a probabilistic
upper bound on ρ(B) for a general random matrix X with the moment method. In Sections 6 and 7,
we give proofs for the probabilistic bounds on extreme singular values of X and specialize them for
inhomogeneous sparse bipartite random graphs.
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2. Main results

2.1. Inhomogeneous Erdős-Rényi bipartite graphs

Definition 2.1 (Inhomogeneous Erdős-Rényi bipartite graph). An inhomogeneous Erdős-Rényi bi-
partite graph G ∼ G(n,m,pi j) is a random bipartite graph defined on a vertex set V = V1 ∪ V2, where
|V1 | = n, |V2 | = m such that an edge i j, i ∈ [n], j ∈ [m] is included independently with probability pi j .
Let A ∈ {0,1}n×m be the biadjacency matrix of G such that Ai j = 1 if i j is an edge in G and Ai j = 0

otherwise. The adjacency matrix of G is given by
[

0 A
A
 0

]
.

Notation and assumptions

In Section 2.1, we will use the following notation and assumptions and specify occasional, limited-use
additional assumptions as necessary.

• The maximal expected degree among all vertices from V1 ∪V2 is denoted by

d := max
i∈[n], j∈[m]

(
m∑
k=1

pik,
n∑

k=1

pk j

)
• The normalized maximal expected degrees from V2 (respectively, V1) as

ρmax : =
1
d

max
i∈[n]

∑
j∈[m]

pi j, ρ̃max :=
1
d

max
j∈[m]

∑
i∈[n]

pi j, (4)

and the normalized minimal expected degree in V2 is defined as

ρ̃min =
1
d

min
j∈[m]

∑
i∈[n]

pi j(1 − pi j ).

• Denote N := n ∨m and η :=
√

logN/d.

Assumption 1. We let γ := ρmax ∧ ρ̃max, where γ ∈ (0,1] and γ = Ω(1). Note that when all pi j = p,

γ = n∧m
n∨m is the aspect ratio. Assume d ≥ γ−1/2 and d

7
2 maxi j pi j ≤ N− 1

10 .

We first state the following upper bound on the largest singular values of A−EA for a wide range of
sparsity down to d =Ω(1).

Theorem 2.2 (Largest singular value for inhomogeneous sparse random matrices). Let A be the
biadjacency matrix of an inhomogeneous random graph. Under Assumption 1,

1
√
d
E[σmax(A− EA)] ≤ 1 +

√
γ +O

(
η

1 ∨
√

logη

)
. (5)

Moreover, with probability at least 1 −O(N−3), we have

1
√
d
σmax(A− EA) ≤ 1 +

√
γ +O

(
η

1 ∨
√

logη

)
. (6)
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Remark 2.1. Below, we qualitatively explain Theorem 2.2 in the various d regimes. When d =
ω(logN) and d ≤ Na for some constant a > 0, (5) is dominated by the first term, which gives
1 +

√
γ + o(1). This is sharp, and it recovers the results of (Latała, van Handel and Youssef, 2018,

Theorem 4.9 and Example 4.10), and (Cai, Han and Zhang, 2022, Theorem 3.5). Moreover, our model
can be seen as a specific case considered in (Benaych-Georges, Bordenave and Knowles, 2019), but
their bound yields the weaker 2 + o(1) on the right-hand side of (5). The fact that we cannot cover
denser regimes is an artifact of our proof method (see Theorem 4.1).

When d =O(logN), Theorem 2.2 is optimal up to a constant factor. When d = o(logN), the second
term in (5) is dominating. Our results yield the sharp bound O(η/

√
logη). This is tight up to a constant

factor, down to d ≥ γ− 1
2 , and it agrees with the results in (Benaych-Georges, Bordenave and Knowles,

2019, Krivelevich and Sudakov, 2003) for non-bipartite graphs. Note that the results in (Latała, van
Handel and Youssef, 2018) and (Cai, Han and Zhang, 2022) both imply an O(η) upper bound, which is
strictly weaker.

The real novelty arises in the following theorem, which provides the smallest singular value bound
on A − EA, down to d = Ω(logn), and it is sharp in certain cases. Our sparsity assumption on d is
optimal up to a constant factor: when d < (1− ε) logn, with high probability there are isolated vertices,
and that implies σmin(A− EA) = 0.

For the next result, we need the following additional assumption.

Assumption 2. Let n ≥ m and δ ∈ (0,1). Assume ρ̃max ≥ ρmax, ρ̃min >
√
γ, and min{1 − √

γ, ρ̃min −
√
γ} =Ω(1), d 7

2 maxi j pi j ≤ n−
1
10 , and there exists an absolute constant C > 0 such that

d ≥ C max
{
δ−1/2, δ−2γ−1 logn

}
.

Theorem 2.3 (Smallest singular value for inhomogeneous sparse random matrices). Under As-
sumptions 1 and 2,

1
√
d
Eσmin(A− EA) ≥

√
(1 −√

γ)(ρ̃min −
√
γ) −O(δ1/4). (7)

Moreover, with probability at least 1 −O(n−3),

1
√
d
σmin(A− EA) ≥

√
(1 −√

γ)(ρ̃min −
√
γ) −O(δ1/4). (8)

Remark 2.2. The very general universality principle proved in (Brailovskaya and van Handel, 2022,
Theorem 2.13) implies

d−1/2σmin(A− EA) ≥
√
ρ̃min −

√
γ −O(d−1/6 log2/3(n)) (9)

with high probability. The leading constant
√
ρ̃min −

√
γ in (9) is strictly better than our leading constant√

(1 −√
γ)(ρ̃min −

√
γ) in (8) for inhomogeneous random graphs and it matches our leading constant

in the homogeneous case when ρ̃min = 1. However, their results are only valid for the regime when
d = ω(log4 n)—the benefit of our method is that our results extend down to d =Ω(logn).

Cai, Han and Zhang (2022) studied concentration inequalities for inhomogeneous Wishart-type ma-
trices. When d = ω(logn), by triangle inequality, (Cai, Han and Zhang, 2022, Theorem 3.5) implies
d−1
E[σ2

min(A− EA)] ≥ ρ̃min − 2
√
γ − γ −O(√η). Their leading constant is strictly weaker than ours in
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all regimes. In (Götze and Tikhomirov, 2023), the authors considered the smallest singular value of a
sparse random matrix X = A◦Y , where A is a sparse Bernoulli matrix, and Y is a Wigner matrix whose
entries have bounded support, and ◦ is the Hadamard product. This covers the homogeneous Erdős-
Rényi case, but not the inhomogeneous one. The authors showed that the smallest singular value is
Ω(√np) when p = ω(log4 n) (see (Götze and Tikhomirov, 2023, Theorem 1.2)). Note that our Theorem
2.5 covers a more general inhomogeneous model, which includes (Götze and Tikhomirov, 2023).

Remark 2.3. The lower bound in (8) is
√
(1 −√

γ)(ρ̃min −
√
γ) − o(1) when d = ω(logn). When d =

Ω(logn), we can obtain an Ω(1) lower bound when δ is sufficiently small. We have assumed γ =Ω(1)
for simplicity throughout. However, Theorems 2.2 and 2.3 also work for γ = o(1), see Sections 6 and 7
with weaker bounds. It remains an open question to find the optimal dependence on γ when γ = o(1)
in (6) and (8).

For the next result, we assume d = ω(logn), and the expected degree of each vertex concentrates. The
Marčenko-Pastur law for the matrix 1

d (A−EA)

(A−EA) can be proved in the same way the semicircle

law was proved in (Zhu, 2020, Corollary 4.3) via graphon theory. This implies the upper bound and
lower bound given by (6) and (8) are tight. We state the generalization of the Bai-Yin theorem to sparse
random bipartite graphs in the following corollary.

Corollary 2.1 (Bai-Yin theorem for supercritical random bipartite graphs). Let A be the biad-
jacency matrix of an inhomogeneous Erdős-Rényi bipartite graph sampled from G(n,m,pi j). Assume
m
n → y ∈ (0,1) as n→∞ and the parameters {pi j } satisfy

max
i∈[n]

������ 1d ∑
j∈[m]

pi j − 1

������ = o(1), max
j∈[m]

������ 1d ∑
i∈[n]

pi j − y

������ = o(1). (10)

Assume d = ω(logn),d ≤ n1/5 and maxi j pi j =O(d/n). Then, almost surely,

lim
n→∞

1
√
d
σmin(A− EA) = 1 −√

y, lim
n→∞

1
√
d
σmax(A− EA) = 1 +

√
y. (11)

Corollary 2.1 covers the homogeneous Erdős-Rényi bipartite graph G(n,m,p) with p = ω(logn/n)
and p ≤ n−4/5. For denser cases when p ≥ n−4/5, the right edge limit (11) has been obtained in (Latała,
van Handel and Youssef, 2018), and the left edge limit in (11) may be obtainable by moment methods
without using the non-backtracking operator (Bai and Yin, 1993, Feldheim and Sodin, 2010).

2.2. Inhomogeneous random rectangular matrices

To prove our results in Section 2.1, we work with a more general matrix model whose entries have
bounded support. Theorem 2.2 and Theorem 2.3 are obtained from Theorem 2.4 and Theorem 2.5 by
specifying model parameters and taking q =

√
d.

Notation and assumptions

In Section 2.2, we use the following notation and assumptions:
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• The minimal column sum of variances is denoted by

ρ̃min := min
j∈[m]

∑
i∈[n]
E|Xi j |2.

• Denote N := n ∨m and η :=
√

logN/q.

Assumption 3. We assume there exist q > 0, κ ≥ 1, ρmax, ρ̃max such that

max
i j

|Xi j | ≤
1
q
, max

i j
E|Xi j |2 ≤

κ

N
, (12)

max
j∈[m]

∑
i∈[n]
E|Xi j |2 ≤ ρmax, max

i∈[n]

∑
j∈[m]

E|Xi j |2 ≤ ρ̃max, (13)

where ρmax ∨ ρ̃max = 1 and ρmax ∧ ρ̃max = γ ∈ (0,1], and γ =Ω(1). Assume

γ−
1
4 ≤ q ≤ N

1
10 κ−

1
9 γ−

1
18 .

Theorem 2.4 (Largest singular value). Let X be an n × m random matrix with independent entries,
and EX = 0. Then under Assumption 3,

E[σmax(X)] ≤
√
γ + 1 +O

(
η

1 ∨
√

logη

)
. (14)

Moreover, with probability at least 1 −O(N−3),

σmax(X) ≤
√
γ + 1 +O

(
η

1 ∨
√

logη

)
. (15)

Assumption 4. Let n ≥ m and δ ∈ (0,1). Assume ρ̃max ≥ ρmax, ρ̃min >
√
γ, and min{1 − √

γ, ρ̃min −√
γ} =Ω(1). Assume for δ ∈ [0,1), q satisfies

C max
{
δ−1/2, δ−1γ−1/2

√
logn

}
≤ q ≤ n

1
10 κ−

1
9 γ−

1
18

for an absolute constant C > 0.

Theorem 2.5 (Smallest singular value). Let X be an n × m random matrix with independent entries
and EX = 0. Under Assumptions 3 and 4, we have

E[σmin(X)] ≥
√
(1 −√

γ)(ρ̃min −
√
γ) −O(δ1/4). (16)

Moreover, with probability at least 1 −O(n−3), we have

σmin(X) ≥
√
(1 −√

γ)(ρ̃min −
√
γ) −O(δ1/4). (17)

Remark 2.4. Through standard truncation arguments, described in detail, e.g., in (Borodin, Corwin
and Guionnet, 2019, Pages 41-73) and (Bai and Silverstein, 2010, Chapter 5), our results in Section
2.2 can be applied to random variables with unbounded support. This includes, for example, the dense
Gaussian case and any other cases satisfying certain Lindeberg’s conditions (Bai and Silverstein, 2010).
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3. Spectral relation between X and B

3.1. Generalized Ihara-Bass formula

We will make use of the following generalized Ihara-Bass formula proved in (Benaych-Georges, Borde-
nave and Knowles, 2020, Watanabe and Fukumizu, 2009). When H is the adjacency matrix of a graph,
Lemma 3.1 reduces to the classical Ihara-Bass formula in (Bass, 1992, Kotani and Sunada, 2000).

Lemma 3.1 (Lemma 4.1 in (Benaych-Georges, Bordenave and Knowles, 2020)). Let H ∈ Mn(C)
with associated non-backtracking matrix B. Let λ ∈ C satisfying λ2 � Hi jHji for all i, j ∈ [n]. Define
H(λ) and M(λ) = diag(mi(λ))i∈[n] as

Hi j(λ) :=
λHi j

λ2 − Hi jHji
, mi(λ) := 1 +

∑
k∈[n]

HikHki

λ2 − HikHki

. (18)

Then λ ∈ σ(B) if and only if det(M(λ) − H(λ)) = 0.

By itself, Lemma 3.1 is not sharp enough to yield a tight upper bound for σmax(X), and it cannot
yield any results for the smallest singular values. Therefore, we have developed a customized approach
for the block matrix model, including a sharp analysis of the non-backtracking operator, which will
lead to tight results in both cases. The first step in this approach is the following customized version of
Lemma 3.1.

Lemma 3.2. Let X be an n × m complex matrix and H =
[

0 X
X∗ 0

]
. Let B be the non-backtracking

operator associated with H. Define an n × m matrix X(λ), and two diagonal matrices M1(λ) =
diag(m(1)

i (λ))i∈[n], M2(λ) = diag(m(2)
i (λ))i∈[m] as follows:

Xi j(λ) =
λXi j

λ2 − |Xi j |2
, m(1)

i
(λ) = 1 +

∑
k∈[m]

|Xik |2

λ2 − |Xik |2
, m(2)

j
(λ) = 1 +

∑
k∈[n]

|Xk j |2

λ2 − |Xk j |2
.

Assume M1(λ) is non-singular. Then λ ∈ σ(B) if and only if

det(M2(λ) − X(λ)∗M1(λ)−1X(λ))det(M1(λ)) = 0. (19)

Proof. From Lemma 3.1, λ ∈ σ(B) if and only if det
[
M1(λ) −X(λ)
−X∗(λ) M2(λ)

]
= 0. Since M1(λ) is non-

singular, by the determinant formula for block matrices, (19) holds.

3.2. Deterministic upper bound on the largest singular value

Using Lemma 3.1, we bound σmax(X) in terms of the maximal Euclidean norm of rows and columns
of X and ρ(B) as follows.
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Lemma 3.3. Let H,X, and B be defined as in Lemma 3.2. Suppose

max
i j

|Xi j | ≤ δ, max
j∈[m]

∑
i∈[n]

|Xi j |2 ≤ ρ̃max(1 + δ), (20)

max
i∈[n]

∑
j∈[m]

|Xi j |2 ≤ ρmax(1 + δ), (21)

with ρmax ∨ ρ̃max = 1, ρmax ∧ ρ̃max = γ and δ ∈ [0,γ 1
2 ]. Let λ ≥ max{γ 1

4 (1 +
√
δ), ρ(B)}. Then

σmax(X)2 ≤
(
λ +

1
λ

) (
λ +
γ

λ

)
+ 6γ−1δ

(
2λ +

1 + γ
λ

)
+ 36γ−2δ2.

Proof. From Lemma 3.1, by continuity, M(λ) − H(λ) � 0 for λ ≥ λ0 := max{γ 1
4 (1 +

√
δ), ρ(B)}. For

any λ ≥ λ0, we have

|λHi j(λ) − Hi j | =
|Hi j |3

λ2 − |Hi j |2
≤
δ |Hi j |2

(λ2 − δ2)
≤ γ−

1
2 δ |Hi j |2. (22)

By Gershgorin circle theorem, it implies that

‖λH(λ) − H‖2 ≤ γ−
1
2 δmax

i

∑
j

|Hi j |2 ≤ γ−
1
2 δ(1 + δ) ≤ 2γ−

1
2 δ. (23)

For any i ∈ V1, from (18), for any λ ≥ λ0,

λmi(λ) −
(
λ +
ρmax

λ

)
=
∑
k∈V2

λ |Hik |2

λ2 − |Hik |2
− ρmax

λ
≤ ρmax

λ

(
λ2(1 + δ)
λ2 − δ2 − 1

)
= ρmaxδ

λ(1 + λ−2δ)
λ2 − δ2

≤ ρmaxδ
λ(1 + γ− 1

2 )
λ2 − δ2 ≤ 2ρmaxδ(γ−

1
2 + γ−1) ≤ 4γ−1δ, (24)

where in the last step we consider the cases λ ≥ 2 and λ < 2 and use the inequality λ2 − δ2 ≥ γ 1
2 in the

second case. For any i ∈ V2, similarly,

λmi(λ) −
(
λ +
ρ̃max

λ

)
=
∑
k∈V1

λ |Hik |2

λ2 − |Hik |2
− ρ̃max

λ
≤ ρ̃max

λ

(
1 + δ

1 − λ−2δ2 − 1
)
≤ 4γ−1δ. (25)

Then for λ ≥ λ0, with (23), (24), and (25),

0 � λ(M(λ) − H(λ)) �
⎡⎢⎢⎢⎢⎣
λ +
ρmax

λ
+ 6γ−1δ 0

0 λ +
ρ̃max

λ
+ 6γ−1δ

⎤⎥⎥⎥⎥⎦ − H. (26)

Let d1 := λ + ρmax
λ + 6γ−1δ,d2 := λ + ρ̃max

λ + 6γ−1δ. Then from (26), Δ =
[
d1I −X
−X∗ d2I

]
� 0. Note that

the following matrix factorization holds:[
d1I −X
−X∗ d2I

]
=

[√
d1I 0
0

√
d2I

]
·
[

I −(d1d2)−
1
2 X

−(d1d2)−
1
2 X∗ I

]
·
[√

d1I 0
0

√
d2I

]
.
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Therefore, on the right-hand side of the above equation, the second matrix is positive semidefinite. We
obtain

X∗X � d1d2 =

(
λ +

1
λ
+ 6γ−1δ

) (
λ +
γ

λ
+ 6γ−1δ

)
=

(
λ +

1
λ

) (
λ +
γ

λ

)
+ 6γ−1δ

(
2λ +

1 + γ
λ

)
+ 36γ−2δ2.

This gives the desired upper bound on σmax(X).

Lemma 3.3 gives an upper bound on σmax(X) when the parameter δ ∈ [0,γ 1
2 ]. By rescaling the

entries in H, we can obtain a general bound depending on the following quantities:

‖H‖1,∞ =max
i j

|Hi j |, ‖H‖2,∞ :=max
i

���
∑
j

|Hi j |2
���

1
2

,

without the restriction on the range of δ. This is more convenient for us to handle sparse random
bipartite graphs in the critical and subcritical regimes. Define

f (x) =
⎧⎪⎪⎨⎪⎪⎩
(x + x−1)

(
x +
γ

x

)
, x ≥ γ

1
4

(γ
1
2 + 1)2, 0 ≤ x ≤ γ

1
4
, g(x) =

⎧⎪⎪⎨⎪⎪⎩
2
(
x +

1
x

)
, x ≥ γ

1
4

4 0 ≤ x ≤ γ
1
4

,

where γ ∈ (0,1] is a constant such that

‖X ‖2,∞ ∧ ‖X∗‖2,∞ ≤ γ
1
2 ‖H‖2,∞. (27)

Lemma 3.4 (Deterministic upper bound on σmax(X)). Let X be an n×m matrix, H =
[

0 X
X∗ 0

]
, and

γ be the constant in (27). The following inequality holds:

σ2
max(X) ≤‖H‖2

2,∞ f
(
ρ(B)

‖H‖2,∞

)
+ 12γ−

5
4 g

(
ρ(B)

‖H‖2,∞

)
‖H‖2,∞‖H‖1,∞ + 36γ−2‖H‖2

1,∞. (28)

Proof. First assume ‖H‖2,∞ = 1. Set δ = ‖H‖1,∞. From (27), δ ≤ γ 1
2 . By Lemma 3.3, for λ0 =

max{γ 1
4 (1 +

√
δ), ρ(B)}, we have

σ2
max(X) ≤ f (λ0) + 6γ−1δ

(
2λ0 +

1 + γ
λ0

)
+ 36γ−2δ2. (29)

When λ0 = ρ(B), it implies

σ2
max(X) ≤ f (ρ(B)) + 6γ−1δg(ρ(B)) + 36γ−2δ2. (30)

When λ0 = γ
1
4 (1 +

√
δ), from (29),

σ2
max(X) ≤ λ2

0 + 1 + γ +
γ

λ2
0

+ 6γ−1δ

(
2λ0 +

1 + γ
λ0

)
+ 36γ−2δ2
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≤ (√γ + 1)2 + 45γ−
5
4 δ + 36γ−2δ2 ≤ f (ρ(B)) + 12γ−

5
4 δg(ρ(B)) + 36γ−2δ2. (31)

Combining (30) and (31), we have

σmax(X)2 ≤ f (ρ(B)) + 12γ−
5
4 g(ρ(B))‖H‖1,∞ + 36γ−2‖H‖2

1,∞.

Then, for general H, by considering H
‖H ‖2,∞

and repeating the proof above, we get the desired bound.

3.3. Deterministic lower bound on the smallest singular value

The following lemma gives us a connection between the spectral radius of B and the smallest singular
value of X . The proof relies on finding a relation between purely imaginary eigenvalues of B and
singular values of X .

Lemma 3.5 (Deterministic lower bound on σmin(X)). Let H,X and B be defined as in Lemma 3.2
and n ≥ m. Let 0 < γ < 1, δ ∈ [0,1), C1 > 0 such that

max
i j

|Xi j | ≤ δ, ‖X ‖2 ≤ C1,

max
i∈[n]

∑
j∈[m]

|Xi j |2 ≤ γ(1 + δ), ρ̃min(1 − δ) ≤
∑
i∈[n]

|Xi j |2 ≤ 1 + δ, ∀ j ∈ [m].

Define β0 =max{γ 1
4 (1 +

√
δ), ρ(B)}. Then for β ≥ β0,

σ2
min(X) ≥

√
γ − γ

√
γ + δ

(
β2

β2 + δ2 ρ̃min − β2 −Cγδ
2 − δ

)
, (32)

where Cγ = 4γ−
1
2 (C1 + γ

−1δ)
√
γ+δ√
γ−γ .

Remark 3.1. This bound is only informative when the right-hand side is positive, which necessitates
γ < 1 and ρ̃min >

√
γ.

Proof. Take λ = iβ, with β ≥ β0 =max{γ 1
4 +

√
δ, ρ(B)}. Then

m(1)
i (λ) = 1 −

∑
k∈[m]

|Xik |2

β2 + |Xik |2
≥ 1 − c

β2 (1 + δ)

≥ 1 − γ(1 + δ)√
γ + δ

=
δ(1 − γ) +√γ − γ

√
γ + δ

≥
√
γ − γ

√
γ + δ

=: C2, (33)

where C2 is lower bounded by
√
γ−γ

1+
√
γ

. This implies M1(λ) is invertible.

Define H2(λ) = X(λ)∗M1(λ)−1X(λ). From (19), λ ∈ σ(B) if and only if det(M2(λ) − H2(λ)) = 0.
Recall that when λ = iβ, M2(λ) is a real diagonal matrix, then H2(λ) is Hermitian. As β→∞, M2(λ) −
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H2(λ) = I +O(β−2). By continuity, det(M2(λ) − H2(λ)) > 0 for β > β0 and M2(λ) − H2(λ) is positive
semidefinite for any β ≥ β0. Since

β2X∗(λ)M1(λ)−1X(λ) + X∗M1(λ)−1X

= β2X∗(λ)M1(λ)−1X(λ) + λX∗(λ)M1(λ)−1X − λX∗(λ)M1(λ)−1X + X∗M1(λ)−1X,

by triangle inequality,

‖β2X∗(λ)M1(λ)−1X(λ) + X∗M1(λ)−1X ‖ ≤‖β2X∗(λ)M1(λ)−1X(λ) + λX∗(λ)M1(λ)−1X ‖ (34)

+ ‖λX∗(λ)M1(λ)−1X − X∗M1(λ)−1X ‖. (35)

For the term in (34),

‖β2X∗(λ)M1(λ)−1X(λ) + λX∗(λ)M1(λ)−1X ‖ = ‖λ2X∗(λ)M1(λ)−1X(λ) − λX∗(λ)M1(λ)−1X ‖

≤‖λX(λ) − X ‖‖λX(λ)‖‖M1(λ)−1‖ ≤ ‖λX(λ) − X ‖‖M1(λ)−1‖(‖X ‖ + ‖λX(λ) − X ‖). (36)

Rewriting (22) with λ = iβ, we obtain

|λHi j(λ) − Hi j | =
|Hi j |3

β2 + |Hi j |2
≤
δ |Hi j |2

β2 . (37)

Then, applying the Gershgorin circle theorem to the row of H yields,

‖λX(λ) − X ‖ = ‖λH(λ) − H‖ ≤ δ(1 + δ)
β2 ≤ 1

√
γ
δ(1 + δ) ≤ 2γ−

1
2 δ. (38)

Then with (36) and (38), the term in (34) satisfies

‖β2X∗(λ)M1(λ)−1X(λ) + λX∗(λ)M1(λ)−1X ‖ ≤ (2γ−
1
2 δ)(C1 + 2γ−1δ)C−1

2 . (39)

Similarly, the second term in (35) satisfies

‖λX∗(λ)M1(λ)−1X − X∗M1(λ)−1X ‖ ≤‖λX∗(λ) − X∗‖‖X ‖‖M1(λ)−1‖ ≤ (2γ−
1
2 δ)C1C−1

2 . (40)

Therefore from (36), (39), and (40),

‖β2X∗(λ)M1(λ)−1X(λ) + X∗M1(λ)−1X ‖ ≤ 4δγ−
1
2 (C1 + γ

−1δ)C−1
2 =Cγδ.

which implies

X∗M1(λ)−1X � −β2X∗(λ)M1(λ)−1X(λ) −Cγδ = −β2H2(λ) −Cγδ � −β2M2(λ) −Cγδ, (41)

where we used the condition M2(λ) − H2(λ) � 0 for β ≥ β0. On the other hand, for any j ∈ [m],

β2m(2)
j (λ) = β2 +

∑
k∈[n]

β2X2
k j

−β2 − X2
k j

≤ β2 − β2

β2 + δ2

∑
k∈[n]

X2
k j ≤ β

2 − β2

β2 + δ2 ρ̃min(1 − δ).



Inhomogeneous sparse random rectangular matrices 2917

Then

−β2M2(λ) � −
(
β2 − β2

β2 + δ2 (1 − δ)ρ̃min

)
. (42)

Hence, with (42) and (41), X∗M1(λ)−1X � β2

β2+δ2 ρ̃min − β2 − Cγδ − δ. From (33), we obtain X∗X �

C2

(
β2

β2+δ2 ρ̃min − β2 −Cγδ − ρ̃minδ
)

. Thus, the lower bound on σmin(X) in (32) holds.

4. Probabilistic upper bound on ρ(B)
In this section, we provide a probabilistic bound on the spectral radius ρ(B) for a random matrix H.
This involves sharp estimates of the trace of high powers of B. We give our main result below.

Theorem 4.1. Let H =
[

0 X
X∗ 0

]
be an (n + m) × (n + m) random Hermitian matrix with associated

non-backtracking matrix B, where X is an n × m random matrix with centered independent entries.
Under Assumption 3, for ε > 0, there exist universal constants C,c1 > 0 such that

P(ρ(B) ≥ γ
1
4 (1 + ε)) ≤ Cγ−

5
6 N3−c1q log(1+ε).

Remark 4.1. The bound on ρ(B) in Theorem 4.1 is an inhomogenous analog to (Brito, Dumitriu and
Harris, 2022, Theorem 3) for the non-backtracking operator of random biregular bipartite graphs, and
for a broader range of the (sparsity) parameter q. Compared to (Benaych-Georges, Bordenave and
Knowles, 2020, Theorem 2.5), we improve a factor γ1/4 in the bound of ρ(B) when H has a bipartite
block structure.

The key estimate to prove Theorem 4.1 is the following trace bound on a high power of B.

Lemma 4.2. Suppose X satisfies Assumption 3. There exist universal constants c0,C such that for any
δ ∈ (0, 13 ), and any odd positive integer l satisfying

l ≤ c0 min

{
δq logN,

N
1
3−δ

κ
1
3 γ

1
6 q2

}
, (43)

we have

ETr[Bl(Bl)∗] ≤ Cl4q2mnγ(l−1)/2. (44)

Assuming Lemma 4.2, we can now prove Theorem 4.1.

Proof of Theorem 4.1. Choose 0 < δ < 1
30 in (43), we can take l = � 1

2c1q logN� for some sufficiently
small constant c1 > 0 then (43) is satisfied. By Markov’s inequality,

P(ρ(B) ≥ γ
1
4 (1 + ε)) ≤ ETr[Bl(Bl)∗]

γl/2(1 + ε)2l
≤ Cl4q2mnγ−

1
2

(
1

1 + ε

) 2l

≤ CN2q6(logN)4γ−
1
2 (1 + ε)−c1q log(1+ε) ≤ Cγ−

5
6 N3−c1q log(1+ε)
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for some absolute constant C. In the last inequality, we used the upper bound on q in the assumption of
Theorem 4.1. This finishes the proof.

5. Proof of Lemma 4.2
We now provide the proof Lemma 4.2. The proof is adapted from (Benaych-Georges, Bordenave and
Knowles, 2020, Proposition 5.1) to the non-backtracking operator B of a Hermitian random matrix
H with a bipartite block structure. The improvement compared to (Benaych-Georges, Bordenave and
Knowles, 2020) is the factor γ(l−1)/2 in (44), by doing path counting on a complete bipartite graph
instead of a complete graph.

Let V1,V2 be the left and right vertex sets on the complete graph Kn,m, and

�E = {(u,v) : u ∈ V1,v ∈ V2} ∪ {(u,v) : u ∈ V2,v ∈ V1}

be the set of all oriented edges in Kn,m. For any e ∈ �E, f ∈ �E , from the definition of B,

(Bl)e f =
∑

a1 ,...,al−1∈ �E

Bea1Ba1a2 · · · Bal f =
∑
ξ

Hξ0ξ1Hξ1ξ2 · · ·Hξl−1ξl ,

where the sum on the right hand side runs over ξ = (ξ−1, ξ0, . . . , ξl) as a path of length l + 1 in Kn,m

with (ξ−1, ξ0) = e,(ξl−1, ξl) = f , and ξi−1 � ξi+1 for 0 ≤ i ≤ l − 1. Therefore, we have

Tr[Bl(Bl)∗] =
∑

e, f ∈ �E

|(Bl)e f |2 (45)

=
∑
ξ1 ,ξ2

Hξ1
0 ξ

1
1
Hξ1

1 ξ
1
2
· · ·Hξ1

l−1ξ
1
l
Hξ2

l
ξ2
l−1

· · ·Hξ2
1 ξ

2
0
, (46)

where the sum runs over paths ξ1 = (ξ1
−1, . . . , ξ

1
l
), ξ2 = (ξ2

−1, . . . , ξ
2
l
) of length l + 1 such that (ξ1

−1, ξ
1
0 ) =

(ξ2
−1, ξ

2
0 ), (ξ

1
l−1, ξ

1
l
) = (ξ2

l−1, ξ
2
l
) and ξ j

i−1 � ξ
j
i+1 for j = 1,2 and 0 ≤ i ≤ l −1. From (45), for fixed ξ1

−1, ξ
2
−1,

the sum in (46) is nonnegative and does not depend on ξ1
−1, ξ

2
−1. Therefore, we can bound it by

Tr[Bl(Bl)∗] ≤m
∑

ξ1 ,ξ2:
ξ1

0 ,ξ
2
0 ∈V1

Hξ1
0 ξ

1
1
Hξ1

1 ξ
1
2
· · ·Hξ1

l−1ξ
1
l
Hξ2

l
ξ2
l−1

· · ·Hξ2
1 ξ

2
0

(47)

+ n
∑

ξ1 ,ξ2:
ξ1

0 ,ξ
2
0 ∈V2

Hξ1
0 ξ

1
1
Hξ1

1 ξ
1
2
· · ·Hξ1

l−1ξ
1
l
Hξ2

l
ξ2
l−1

· · ·Hξ2
1 ξ

2
0
,

where the sum is over ξ1 = (ξ1
0 , . . . , ξ

1
l
), ξ2 = (ξ2

0 , . . . , ξ
2
l
) such that (ξ1

0 , ξ
1
l−1, ξ

1
l
) = (ξ2

0 , ξ
2
l−1, ξ

2
l
) and ξ j

i−1 �

ξ
j
i+1 for j = 1,2 and 1 ≤ i ≤ l − 1. For j = 1,2, define

C̃j = {ξ = (ξ0, . . . , ξ2l) : ξ0 = ξ2l ∈ Vj, ξl−1 = ξl+1, ξi−1 � ξi+1,∀1 ≤ i ≤ 2l − 1,i � l}.

We can combine each pair of ξ1, ξ2 in (47) into a path of length 2l and simplify the bound as

Tr[Bl(Bl)∗] ≤m
∑
ξ ∈C̃1

Hξ0ξ1Hξ1ξ2 · · ·Hξ2l−1ξ2l + n
∑
ξ ∈C̃2

Hξ0ξ1Hξ1ξ2 · · ·Hξ2l−1ξ2l .
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Since the entries of H are independent up to symmetry with mean zero, taking the expectation yields

ETr[Bl(Bl)∗] ≤m
∑
ξ ∈C1

EHξ0ξ1Hξ1ξ2 · · ·Hξ2l−1ξ2l + n
∑
ξ ∈C2

EHξ0ξ1Hξ1ξ2 · · ·Hξ2l−1ξ2l , (48)

where Ci is a subset of C̃i for i = 1,2 such that each edge in the graph spanned by ξ is visited at least
twice by the path defined by ξ.

We will combine paths according to their equivalence classes defined as follows.

Definition 5.1 (Equivalence class). For each ξ ∈ C1 ∪ C2, we define a graph

Gξ = (V1(ξ),V2(ξ),E(ξ))

spanned by ξ. Let g(ξ) = |E(ξ)| − |V(ξ)| + 1 be the genus of Gξ and e(ξ) = |E(ξ)|. We say two paths
ξ1, ξ2 are equivalent if they are the same up to a relabelling of vertices (with the restriction that after
relabelling, vertices in Vi stay in Vi for i = 1,2). Define [ξ] the equivalence class of a path ξ.

Lemma 5.2. For any ξ ∈ C1 with |V1(ξ)| = s1(ξ), |V2(ξ)| = s2(ξ), we have

E

∑
ξ ∈[ξ]

Hξ0ξ1Hξ1ξ2 · · ·Hξ2l−1ξ2l ≤ n(κ/N)g(ξ)q2e(ξ)−2lρ
s1(ξ)
max ρ̃

s2(ξ)−1
max . (49)

And for any ξ ∈ C2,

E

∑
ξ ∈[ξ]

Hξ0ξ1Hξ1ξ2 · · ·Hξ2l−1ξ2l ≤ m(κ/N)g(ξ)q2e(ξ)−2lρ
s1(ξ)−1
max ρ̃

s2(ξ)
max . (50)

Proof. We consider a breadth-first search ordering of vertices in ξ. Let a = |E(ξ)| and s = s1 + s2,
where the drop the dependence on ξ in s1(ξ) and s2(ξ) for convenience. We order the edges in G(ξ)
such that the edges e1, . . . ,es−1 form a spanning tree of G(ξ), and let mt be the number of times that et
appear in ξ for 1 ≤ t ≤ s − 1. Let Is1,s2 be the set of injection maps from [s1] × [s2] to [n] × [m]. Then
for any ξ ∈ C1,

E

∑
ξ ∈[ξ]

Hξ0ξ1Hξ1ξ2 · · ·Hξ2l−1ξ2l =
∑

τ∈Is1 ,s2

EHτ(ξ0)τ(ξ1)
· · ·Hτ(ξ2l−1)τ(ξ2l )

≤
∑

τ∈Is1 ,s2

a∏
t=1

E|Hmt

τ(et ) |.

From Assumption 3, we can use the estimates

max
j∈V2

∑
i∈V1

E|Hi j |k ≤
ρ̃max

qk−2
, max

i∈V1

∑
j∈V2

E|Hi j |k ≤
ρmax

qk−2

for contribution from edges e1, . . . ,es−1, and the estimate maxi j E|Hi j |k ≤ κ
Nqk−2 for es, . . . ,ea to obtain

E

∑
ξ ∈[ξ]

Hξ0ξ1Hξ1ξ2 · · ·Hξ2l−1ξ2l ≤
a∏
t=s

κ

Nqmt−2

∑
τ∈Is1 ,s2

s−1∏
t=1

E|Hmt

τ(et ) |

≤
(

a∏
t=s

κ

Nqmt−2

)
nρs1

max ρ̃
s2−1
max

1
qm1−2 · · · 1

qms−1−2 (51)
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= nq2a−
∑a

t=1 mt

( κ
N

) a−s+1
ρ
s1
max ρ̃

s2−1
max = n(κ/N)gq2a−2lρ

s1
max ρ̃

s2−1
max ,

where g = a − v + 1 is the genus of G(ξ). The factor n in (51) comes from the processing of pruning
trees, and the root of the spanning tree has at most n choices of labeling since ξ ∈ C1. Then (49) holds.
(50) follows similarly.

We can further simplify the upper bound on ETr[Bl(Bl)∗] by counting the contributions from normal
graphs defined below.

Definition 5.3 (Normal graph). Denote a path as w = w0w01w1w12 · · ·wl−1,lwl in a multigraph G,
where w0, . . . ,wl are the vertices and wi,i+1,0 ≤ i ≤ l − 1 are the edges visited by the path w. We say w

in G is normal if

• V(G) = [s] where s = |V(G)|;
• the vertices in V(G) are visited in increasing order by w.

Each equivalent class of Ci has a unique representative ξ such that ξ is normal in Gξ . For i = 1,2,
denote C0,i := {ξ ∈ Ci : ξ is normal in Gξ }. From (48) and Lemma 5.2, we obtain

ETr[Bl(Bl)∗] ≤ mn
∑

ξ ∈C0,1

(κ/N)g(ξ)q2e(ξ)−2lρ
s1(ξ)
max ρ̃

s2(ξ)−1
max

+mn
∑

ξ ∈C0,2

(κ/N)g(ξ)q2e(ξ)−2lρ
s1(ξ)−1
max ρ̃

s2(ξ)
max = S1 + S2. (52)

From now on, we only treat S1, and S2 can be estimated similarly. We now introduce a parametriza-
tion of C0,1 following (Benaych-Georges, Bordenave and Knowles, 2020).

Definition 5.4 (Equivalence class). Let G be a graph and V ⊂ V(G). Define

IV(G) = {v ∈ V(G) \ V : deg(v) = 2}.

Let ΣV(G) be the set of paths w = w0 · · ·wl in G such that w1, . . . ,wl−1 are pairwise distinct and
belong to IV(G) and w0,wl � IV(G). We define an equivalence relation on ΣV(G) such that the path
w0 . . .wl and the reverse ordered path wl · · ·w1 are equivalent. Denote Σ′V(G) = {[w] : w ∈ ΣV(G)} the
set of equivalence classes.

We can construct a multigraph Ĝξ from Gξ by replacing every [w] ∈ Σ′ξ0 ,ξl
(G) with an edge in

E(Ĝξ ) as follows.

Definition 5.5 (Multigraph Ĝξ from Gξ ). Let ξ ∈ C0,1. Define V(Ĝξ ) = V(Gξ ) \ Iξ0 ,ξ� (Gξ ) and
E(Ĝξ ) = Σ′ξ0 ,ξl

(G). The endpoints of [w] in E(Ĝξ ) are labeled w0,wl . Assign each edge [w] ∈ E(Ĝξ )
the weight k̂w , which is the length of the path w.

From (Benaych-Georges, Bordenave and Knowles, 2020), any ξ ∈ C0,1 as a closed path ξ0ξ1 · · · ξ2l in
Gξ gives rise to a closed path ξ̂ = ξ̂0ξ̂01ξ̂1ξ̂12 · · · ξ̂r−1ξ̂r on the multigraph Ĝξ . Now for any ξ ∈ C0,1, we
have constructed a triple (Ĝξ , ξ̂, k̂), where Ĝξ is a multigraph, ξ̂ is a closed path in Ĝξ . Set τ to be the
unique increasing bijection from V(Ĝξ ) to {1, . . . , |V(Ĝξ )|}. Denote by (U, ζ, k) := (U(ξ), ζ(ξ), k(ξ)) the
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triple obtained from the triple (Ĝξ , ξ̂, k̂) by relabelling the vertices using τ. By Definition, ζ0 = τ(ξ0) =
1. We set ν = ν(ξ) = τ(ξl). Altogether, the construction above gives a map ξ �→ (U, ζ, k). The following
lemma collects some properties of this map.

Lemma 5.6 (Lemma 5.3 in (Benaych-Georges, Bordenave and Knowles, 2020)). The map ξ �→
(U, ζ, k) satisfies the following properties:

1. The map ξ �→ (U, ζ, k) is an injection on C0,1.
2. g(U) = g(Gξ ).
3. ζ is a closed path in the multigraph U and it is normal in U.
4. Every vertex of V(U) \ {1, ν} has degree at least three. The vertices 1 and ν have degrees at least

one.
5. |E(Gξ )| =

∑
e∈E(U) ke.

6. me(ζ) ≥ 2 for all e ∈ E(U) and 2l =
∑

e∈E(U)me(ζ)ke.

For a given ξ ∈ C0,1 with given s1(ξ), s2(ξ), we know

s1 + s2 = |V(Gξ )| = e(ξ) − g(U) + 1 and |s1 − s2 | ≤ g(U), (53)

where we use g(ξ) = g(U) from Lemma 5.6. The second claim is due to the fact that since � is odd, any
imbalance between s1, s2 is from creating a new cycle in ξ. Moreover,

e(ξ) =
∑

e∈E(U)
ke, 2l =

∑
e∈E(U)

me(ζ)ke . (54)

Since ke ≥ 1,me(ζ) ≥ 2, we obtain

2e(ξ) − 2l ≤ 2|E(U)| − |ζ |, (55)

where |ζ | is the length of the closed path ζ . Equipped with the construction of the triple (U, ζ, k), we
continue to estimate S1 in (52). With (53),

S1 =mn
∑

ξ ∈C0,1

(κ/N)g(ξ)q2e(ξ)−2lρ
s1
max ρ̃

s2−1
max

≤mn
∑

ξ ∈C0,1

(κ/N)g(ξ)q2e(ξ)−2l(ρmax ρ̃max)(s1+s2−1)/2 max{ρmax/ρ̃max, ρ̃max/ρmax} |s1−s2+1 |/2

≤mn
∑

ξ ∈C0,1

(κ/N)g(ξ)q2e(ξ)−2lγ(e(ξ)−g(ξ))/2
(

1
c

) (g(ξ)+1)/2

=mnγ(l−1)/2
∑

ξ ∈C0,1

(κ/N)g(ξ)q2e(ξ)−2lγ(e(ξ)−l)/2−g(ξ). (56)

From (1) in Lemma 5.6, we can upper bound (56) by summing over (U, ζ, k) instead of ξ. Then with
(55), and the assumption q ≥ γ− 1

4 , we find

S1 ≤ mnγ(l−1)/2
∑

(U ,ζ ,k)

( κ
Nc

) g(U) (
qγ

1
4

) 2 |E(U) |− |ζ |
,
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where (U, ζ, k) is obtained from all ζ ∈ C0,1. Since
∑

e∈E(U) keme(ζ) = 2l and me(ζ) ≥ 2, for a given
(U, ζ), the number of choices for k = (ke)e∈E(U) can be bounded by the number of k such that∑

e∈E(U) ke = 2l. For fixed (U, ζ), the number of choices for such k is bounded by(
2l − 1

|E(U)| − 1

)
≤
(

6l
|E(U)|

) |E(U) |
.

Therefore

S1 ≤ mnγ(l−1)/2
∑
(U ,ζ )

(
6l

|E(U)|

) |E(U) | ( κ
Nc

) g(U) (
qγ

1
4

) 2 |E(U) |− |ζ |
. (57)

From (Benaych-Georges, Bordenave and Knowles, 2020, Lemma 5.8), we have

|E(U)| ≤ 3g(U) + 1, |V(U)| ≤ 2g(U) + 2. (58)

Also, |E(U)| ≥ g(U) ∨ 1 and g(U) ≤ l by definition. Therefore, (57) can be further bounded by

S1 ≤ 6lq2mnγl/2
∑
(U ,ζ )

(
12l

g(U) + 1

) 3g(U) ( κ
Nc

) g(U) (
qγ

1
4

) 6g(U)−|ζ |
. (59)

(58) implies the number of pairs (U, ζ) such that U has genus g and ζ has length t is bounded by

(3g + 1)t (2g + 2)3g+1. (60)

With (60) and (59), we find for some absolute constant C > 0,

S1 ≤ 6lq2mnγ(l−1)/2
l∑

g=0

2l∑
t=1

(3g + 1)t (2g + 2)3g+1
(

24l
2g + 2

) 3g ( κ
Nc

) g (
qγ

1
4

) 6g−t

≤ Clq2mnγ(l−1)/2
2l∑
t=1

(qγ
1
4 )−t +Cl2q2mnγ(l−1)/2

l∑
g=1

(
Cl3κγ

1
2 q6

N

) g 2l∑
t=1

(
4g

qγ
1
4

) t
. (61)

Since q ≥ γ− 1
4 , the first term is bounded by Cl2q2mnγ(l−1)/2. For the second term, using

2l∑
m=1

xm ≤ 2l(1 + x2l),

it is bounded by

Cl3q2mnγ(l−1)/2
l∑

g=1

(
Cl3κγ

1
2 q6

N

) g
+Cl3q2mnγ(l−1)/2

l∑
g=1

(
Cl3κγ

1
2 q6

N

) g (
4g

qγ
1
4

) 2l

. (62)

From the assumption (43), we obtain

N ≥
(
κγ

1
2 q6l3

c3
0

) 1/(1−3δ)

, N3δ ≤
c3

0N

κγ
1
2 q6l3

,
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l ≤ c0δq logN =
c0q
3

log(N3δ) ≤ c0q
3

log

(
c3

0N

κγ
1
2 q6l3

)
.

By choosing c0 small enough, we have the following inequalities:

N ≥ 2Cl3κγ
1
2 q6, l ≤ 1

8
qγ

1
4 log

(
N

Cl3κγ
1
2 q6

)
. (63)

The first term in (62) is bounded by Cl3q2mnγ(l−1)/2. The second term can be written as

Cl3q2mnγ(l−1)/2
l∑

g=1

exp

(
−g log

(
N

Cl3κγ
1
2 q6

)
+ 2l log

4g

qγ
1
4

)
.

The argument in the exponential function is maximized at

g =
2l

log
(

N

Cl3κγ
1
2 q6

) .
From (63), this maximizer is reached for g ≤ 1

4qγ
1
4 , and the second term in (62) can be bounded by

Cl4q2mnγ(l−1)/2.
Therefore, with the bound on (61) and (62), we obtain S1 ≤ Cl4q2mnγ(l−1)/2. Repeating the same

argument for S2 yields the same upper bound. This completes the proof of Lemma 4.2.

6. Probabilistic bounds on the largest singular value

In this section, we first prove Theorem 2.4 for general rectangular random matrices, then specify the
model parameters to prove Theorem 2.2 for sparse rectangular random matrices. The proof is based on
the deterministic spectral relations between B and H in Section 3, and the bound on ρ(B) in Section 4.

Proof of Theorem 2.4. From the assumption of Theorem 2.4, we have

|Xi j |2 ≤
1
q2 , max

i

∑
j

E|Xi j |2 ≤ ρmax, and max
i

∑
j

E|Xi j |4 ≤
ρmax

q2 .

Since
∑

j |Xi j |2 is a sum of independent bounded random variables, applying Bennett’s inequality
(Boucheron, Lugosi and Massart, 2013, Theorem 2.9), we obtain, for δ > 0,

P
���
∑
j

|Xi j |2 ≥ ρmax(1 + δ)
��� ≤ exp

(
−q2ρmaxh (δ)

)
, (64)

where h(δ) = (1 + δ) log(1 + δ) − δ. Similarly,

P

(∑
i

|Xi j |2 ≥ ρ̃max(1 + δ)
)
≤ exp

(
−q2 ρ̃maxh (δ)

)
. (65)
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Then, by taking a union bound,

P
(
‖X ‖2,∞ ≥ √

ρmax(1 + δ)
)
≤ P

(
‖X ‖2,∞ ≥ √

ρmax ·
√

1 + δ ∨ δ2
)

= P
(
‖X ‖2

2,∞ ≥ ρmax(1 + δ ∨ δ2)
)
≤ n exp(−q2ρmaxh(δ ∨ δ2)),

and P
(
‖X∗‖2,∞ ≥

√
ρ̃max(1 + δ)

)
≤ m exp(−q2 ρ̃maxh(δ ∨ δ2)). From Theorem 4.1,

P(ρ(B) ≥ γ
1
4 (1 + δ)) ≤ Cγ−

5
6 N3−c1q log(1+δ).

Therefore, conditioned on a high probability event, we have

‖H‖1,∞ ≤ q−1, ‖H‖2,∞ ≤ 1 + δ, and ρ(B) ≤ γ
1
4 (1 + δ). (66)

Now we apply the deterministic upper bound on σmax(X) given in (28) conditioned on (66). If ρ(B) ≤
γ

1
4 ‖H‖2,∞, then

σ2
max(X) ≤ (1 + δ)2(√γ + 1)2 + 48γ−

5
4 (1 + δ)q−1 + 36γ−2q−2 ≤

(
(√γ + 1) +C1(δ + γ−

5
4 q−1)

) 2

for some universal constant C1 > 0. If instead γ
1
4 ‖H‖2,∞ < ρ(B) ≤ γ

1
4 (1 + δ), we find

σ2
max(X) ≤ ‖H‖2

2,∞ f

(
γ

1
4 (1 + δ)
‖H‖2,∞

)
+ 12γ−

5
4 g

(
γ

1
4 (1 + δ)
‖H‖2,∞

)
‖H‖2,∞q−1 + 36γ−2q−2

≤
(
(√γ + 1) +C1(δ + γ−

3
2 q−1)

) 2
.

Combining both cases, for any δ > 0, with probability at least

1 −Cγ−
5
6 N3−c1q log(1+δ) − 2Ne−γq

2h(δ∨δ2), (67)

σmax(X) ≤
√
γ + 1 +C1(δ + γ−

3
2 q−1). (68)

Next, we simplify the probability tail bound (67) by picking a specific δ. Let K ≥ 1 and

δ =
Kη√

1 ∨ logη
where η =

√
logN
q
. (69)

From the condition that q ≥ γ−1/4 ≥ 1, by considering η ≥ e,η < e separately, we have for N ≥ 2, there
exists a constant c2 =

2
e such that

qδ =
K
√

logN√
1 ∨ logη

=
Kηq√

1 ∨ logη
≥ c2K . (70)

Therefore

q−1 ≤ δ

c2K
. (71)
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Moreover, from (70), using the fact that log(1+x)
x is decreasing on (0,∞) and q ≥ γ−1/4 ≥ 1, we obtain

q log(1 + δ) ≥ c2K · log(1 + c2K/q)
c2K/q

≥ log(1 + c2K). (72)

Now we give a lower bound on a1 := γq2h(δ ∨ δ2). If η ≤ e, using the fact that h(x) ≥ c(x2 ∧ x) for all
x ≥ 0 and some universal constant c > 0, we find

a1 ≥ cγq2δ2 = cγK2 logN . (73)

When η ≥ e, using the inequality h(x) ≥ c(x2 ∧ x)(1 ∨ log x) for all x ≥ 0, we obtain for δ ≥ e,

h(δ ∨ δ2) ≥ 2cδ2 log(δ).

Since from (69), log(δ) ≥ c′ log(η) for some absolute constant c′ > 0, we obtain

a1 ≥ 2cγq2δ2 log(δ) ≥ 2cc′γq2δ2 log(η) ≥ 2cc′γK2 logN . (74)

From (73) and (74), we conclude

a1 ≥ cγK2 logN (75)

for an absolute constant c > 0. With (71), (72), and (75), we can simplify (67) and (68) to conclude that
with probability at least

1 −C
(
γ−5/6N3−c1 log(1+c2K) + N1−c′γK2

)
, (76)

σmax(X) satisfies

σmax(X) ≤
√
γ + 1 +C1(δ + γ−

3
2 q−1) ≤ √

γ + 1 +C ′
1(1 + K

−1γ−3/2)δ

=
√
γ + 1 + (K + γ−3/2)

C ′
1η√

1 ∨ logη
.

This finishes the proof of (15). Now we turn to the expectation bound (14). Since entries in X are
bounded by q−1, from the concentration of operator norm in (Boucheron, Lugosi and Massart, 2013,
Example 8.7),

P (|σmax(X) − E[σmax(X)]| ≥ δ) ≤ 2 exp(−q2δ2/4) ≤ 2 exp(−c2
2K

2/4), (77)

where the last inequality is due to (70). From (76) and (77), we can take K = γ−1/2K0 for an large
enough absolute constant K0 > 0 such that

P (|σmax(X) − E[σmax(X)]| ≤ δ) + P
(
σmax(X) ≤

√
γ + 1 +C ′

1(1 + K
−1
0 γ

−1)δ
)
> 1. (78)

This implies the intersection of the two events

{|σmax(X) − E[σmax(X)]| ≤ δ} and
{
σmax(X) ≤

√
γ + 1 +C ′

1(1 + K
−1
0 γ

−1)δ
}



2926 I. Dumitriu and Y. Zhu

are non-empty. Hence for some absolute constants C ′
2,C2 > 0,

E[σmax(X)] ≤
√
γ + 1 +C ′

2γ
−1δ =

√
γ + 1 +

C2γ
−3/2η√

1 ∨ logη
. (79)

This finishes the proof of Theorem 2.4 by using the assumption γ =Ω(1).

Based on Theorem 2.4, we prove Theorem 2.2.

Proof of Theorem 2.2. Take q =
√
d and X = 1√

d
(A− EA) in Theorem 2.4. We have

|Xi j | ≤
1
√
d
, E|Xi j |2 ≤

κ

N
, with κ =

maxi j pi j
d/N .

Also

max
i∈[n]

∑
j∈[m]

E|Xi j |2 ≤
1
d

max
i∈[m]

∑
j∈[n]

pi j = ρmax,

max
j∈[m]

∑
i∈[n]
E|Xi j |2 ≤

1
d

max
i∈[n]

∑
j∈[m]

pi j = ρ̃max.

Equation (6) follows from (15) by taking K = C3γ
−3/2 for a sufficiently large constant C3, and the

probability estimate can be lower bounded by 1 −Cγ−5/6N−3 for some absolute constants C > 0. The
expectation bound in (5) follows directly from (14).

Remark 6.1. The probability bound in the statement of Theorem 2.2 can be improved to 1 −
O(γ−5/6N−a) for any constant a > 0 by taking a larger constant C3 in the proof.

7. Probabilistic bounds on the smallest singular value
We now turn to the probabilistic lower bound on the smallest singular values for a general random
matrix model.

Proof of Theorem 2.5. Using Bennett’s inequality (Vershynin, 2018, Theorem 2.9.2), we obtain for
any j ∈ [m] and t ≥ 0,

P

(∑
i

(
|Xi j |2 − E|Xi j |2

)
≤ −t

)
= P

(∑
i

(
−|Xi j |2 + E|Xi j |2

)
≥ t

)
≤ exp

(
−1

2
q2h(2t)

)
.

Taking t = δρ̃min implies for any j ∈ [m],

P

(∑
i

|Xi j |2 ≤ ρ̃min(1 − δ)
)
≤ exp

(
−1

4
q2h (2δρ̃min)

)
. (80)

Combined with (64) and (65), after a union bound, with probability at least

1 −m exp
(
−1

4
q2h (2δρ̃min)

)
− 2n exp

(
−γq2h(δ)

)
, (81)
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we have for all j ∈ [m],

ρ̃min(1 − δ) ≤
∑
i∈[n]

|Xi j |2 ≤ 1 + δ, and max
i∈[n]

∑
j∈[m]

|Xi j |2 ≤ γ(1 + δ).

Moreover, from the concentration of spectral norm of H given in (Benaych-Georges, Borde-
nave and Knowles, 2020, Equations (2.4) and (2.6)), for q ≥

√
logn, with probability at least

1 − 2 exp(−q2), ‖X ‖ ≤ C4 for some absolute constant C4 > 0. From Theorem 4.1, with probability
1 −Cγ−

5
6 n3−c1q log(1+

√
δ), ρ(B) ≤ γ 1

4 (1 +
√
δ). Note that for x ∈ (0,2],

h(x) = (1 + x) log(1 + x) − x ≥ x2

2(1 + x/3) ≥
3
10

x2

and log(1 +
√
δ) ≥

√
δ

1+
√
δ
≥ 1

2

√
δ.

With the assumption that ρ̃min ≥ √
γ, conditioned on all events above, from Lemma 3.5, we have

with probability at least

1 − 3n exp
(
− 3

10
γq2δ2

)
− 2 exp(−q2) −Cγ−

5
6 n3− 1

2q
√
δ, (82)

σ2
min(X) ≥

√
γ − γ

√
γ + δ

(
β2

β2 + δ2 ρ̃min − β2 −C3δ
2 − δ

)
+

, (83)

where β = γ1/4(1 +
√
δ) and C3 = 4γ−

1
2 (C4 + γ

−1δ)
√
γ+δ√
γ−γ .

Since δ ∈ (0,1] and ρ̃min ≤ 1, (83) implies

σ2
min(X) ≥

√
γ − γ

√
γ + δ

(
ρ̃min −

√
γ
(
1 + 3

√
δ
)
− δ − C5

γ2(1 −√
γ)
δ2
)
+

, (84)

where C5 is an absolute constant. Using the Assumption 4, (84) implies (17).
Next, we consider the expectation bound. Repeating the proof of (Boucheron, Lugosi and Massart,

2013, Example 8.7), we have the following concentration inequality for σmin(X):

P(|σmin(X) − E[σmin(X)]| ≥ δ1/4) ≤ 2 exp(−q2δ1/2/4). (85)

We can take q ≥ C0 max
{
δ−1/2, δ−1γ−1/2

√
logn

}
for a sufficiently large C0 such that

P

(
|σmin(X) − E[σmin(X)]| ≤ δ1/4

)
+ P

(
σ2

min(X) ≥
√
γ − γ

√
γ + δ

(
ρ̃min −

√
γ
(
1 + 3

√
δ
)
− δ − C5

γ2(1 −√
γ)
δ2
) )
> 1.

This implies the intersection of the event
{
|σmin(X) − E[σmin(X)]| ≤ δ1/4} and (84) is nonempty.

Therefore, under Assumption 4, we obtain

E[σmin(X)] ≥
√
(1 −√

γ)(ρ̃min −
√
γ) −O(δ1/4).

This finished the proof of (16).
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Proof of Theorem 2.3. We take q =
√
d in Theorem 2.5. Then, under Assumption 2, with probability

at least 1 −O(n−3), (8) holds. (7) follows directly from Theorem 2.5.

With Theorems 2.2 and 2.3, we prove Corollary 2.1.

Proof of Corollary 2.1. From the assumption (10), Theorem 2.2 implies with probability 1 −O(n−3),

1
√
d
σmax(A− EA) ≤ 1 +

√
y + o(1). (86)

From (10), ρ̃min = 1 + o(1). Taking δ2 =
logn
d in Theorem 2.3, we obtain with probability 1 −O(n−3),

1
√
d
σmin(A− EA) ≥ 1 −√

y − o(1). (87)

We can apply the proof of (Zhu, 2020, Corollary 4.3 and Theorem 8.2) to inhomogeneous Erdős-
Rényi bipartite graphs. One can show in the same way that, almost surely, the empirical spectral dis-
tribution of 1

d (A − EA)
(A − EA) converges to the Marčenko-Pastur law supported on the interval
[(1 −√

y)2,(1 +√y)2]. Therefore almost surely,

1
√
d
σmax(A− EA) ≥ 1 +

√
y − o(1), 1

√
d
σmin(A− EA) ≤ 1 −√

y + o(1). (88)

From (86), (87), and (88), the convergence results in (11) hold.
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