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A B S T R A C T   

Sedimentary pyrite has long been used as an archive of marine environments in Earth history. To capture reliable 
paleoenvironmental signals, however, we need to first evaluate pyrite in sedimentary strata as it can be altered 
and masked by later diagenetic and/or hydrothermal processes. Here, we trained two supervised machine 
learning algorithms on a large LA-ICP-MS pyrite trace element database to distinguish pyrite of different origins. 
The analysis validates that two models built on the co-behavior of 12 trace elements (Co, Ni, Cu, Zn, As, Mo, Ag, 
Sb, Te, Au, Tl, and Pb) can be used to accurately predict pyrite origins. Further statistical analysis suggests four 
trace element clusters behaving differently among sedimentary (syngenetic and early diagenetic), synsedi
mentary hydrothermal (syngenetic hydrothermal), and post-sedimentary hydrothermal (epigenetic hydrother
mal) pyrite, which is probably driven by chemical and physical properties of source fluids, interactions between 
elements, competition among coprecipitating minerals, and pyrite growth rate. Armed with this initial success 
and aided by new LA-ICP-MS trace element data from 9 samples, we then demonstrated the efficacy of this 
approach in identifying the origins of pyrite from two Neoproterozoic sedimentary successions in South China. 
The first set of samples contain isotopically superheavy pyrite (i.e., whose bulk-sample δ34S values greater than 
those of contemporaneous seawater sulfate and whose origins remain controversial) from the Cryogenian Tie
si’ao and Datangpo formations. The second set of samples contain pyritic rims (associated with fossiliferous chert 
nodules and thought to be critical in exceptional fossil preservation) from the Ediacaran Doushantuo Formation. 
For the superheavy pyrite, the models consistently show high confidence levels (mostly > 80 % probability) in 
identifying its genesis type, and three out of four samples were given sedimentary origins. For the pyritic nodule 
rims, the models suggest that early diagenetic pyrite was subsequently altered by hydrothermal fluids and 
therefore shows mixed signals. The study highlights the importance of pyrite trace elements in deciphering and 
distinguishing the origins of pyrite in sedimentary strata.   

1. Introduction 

Pyrite is a ubiquitous sulfide mineral in organic-rich marine sedi
ments and sedimentary rocks. Its morphology, abundance, trace element 
content, and sulfur isotope composition have been widely used to 
reconstruct oceanic redox conditions and the sulfur cycle (Fike et al., 
2015; Gregory, 2020; Lyons et al., 2003; Wilkin et al., 1996), which have 

played important roles in the evolution of life (Anbar and Knoll, 2002). 
However, the origins of pyrite can be diverse and controversial. Spe
cifically, the presence of hydrothermal pyrite and hydrothermally 
overprinted sedimentary pyrite can compromise the reliability of the 
pyrite as a paleoenvironmental proxy, because the chemical and isotopic 
compositions of such pyrite may reflect in part or in whole the hydro
thermal fluids rather than ocean waters. 
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One prominent case is the origin of isotopically superheavy pyrite — 
pyrite with bulk-sample δ34S values greater than those of contempora
neous seawater sulfate — that is widely present in Neoproterozoic and 
particularly Cryogenian sedimentary rocks (Cui et al., 2018; Fike et al., 
2015; Lang et al., 2021; Ries et al., 2009). Sedimentary pyrite formation 
is driven by microbial sulfate reduction where microorganisms use 
dissolved sulfate as a terminal electron acceptor to oxidize organic 
matter, producing sulfide (Berner, 1970). This sulfide then goes on to 
react with iron to eventually form pyrite. Sedimentary pyrite typically 
has bulk-sample δ34S values lower than seawater sulfate because mi
crobial sulfate reduction prefers the lighter sulfur isotope (Habicht and 
Canfield, 1997). Thus, although rare occurrences of superheavy pyrite 
have been reported from Phanerozoic rocks and modern environments 
(Cadeau et al., 2022; Ferrini et al., 2010; Hu et al., 2022b), its common 
occurrence in the Neoproterozoic has been puzzling and several hy
potheses have been proposed to explain its origins (Cai et al., 2022; Liu 
et al., 2006; Peng et al., 2014; Ries et al., 2009; Shen et al., 2008; Tos
tevin et al., 2017). For example, superheavy pyrite in the cap dolostone 
atop late Cryogenian (Marinoan) glacial diamictite was interpreted as a 
result of oceanic stratification where the bottom-water sulfate inherited 
high δ34S values derived from syn-glacial isotopic distillation, but the 
surface-water sulfate had lower δ34S values derived from post-glacial 
continental weathering (Shen et al., 2008). In this scenario, carbonate- 
associated sulfate and pyrite in the cap dolostone were derived from 
the surface- and bottom-water, respectively, and are thus isotopically 
decoupled (Shen et al., 2008). Other researchers attributed superheavy 
pyrite in Ediacaran carbonate rocks to low seawater sulfate concentra
tions and intense aerobic reoxidation of sulfide (Ries et al., 2009). Still 
others proposed that superheavy pyrite in the Cryogenian Datangpo 
Formation overlying Sturtian (early Cryogenian) glacial diamictite was 
related to the oxidative loss of early 34S-depleted pyrite and the for
mation of diagenetic pyrite from 34S-enriched sulfate diffusing down
ward from the deglaciation-facilitated euxinic waters (Cai et al., 2022). 
On the other hand, the sedimentary origin of Neoproterozoic super
heavy pyrite has been questioned by some researchers. New in-situ 
sulfur isotope measurements suggest that some Cryogenian super
heavy pyrite was derived from thermogenic sulfate reduction, hence it is 
likely late diagenetic or hydrothermal in origin and irrelevant to the 
oceanic environment (Cui et al., 2018). Therefore, it is important to 
independently test the origin of Neoproterozoic superheavy pyrite; if it is 
of hydrothermal origin, then it does not reflect the Neoproterozoic sulfur 
cycle and marine environments. 

Trace element concentrations in pyrite can be used to constrain its 
origin since trace element enrichment or depletion reflects the formation 
mechanism and the composition of the source fluid (Gregory, 2020; 
Gregory et al., 2015; Gregory et al., 2019). Furthermore, these trace 
elements are relatively stable in unaltered pyrite and can be preserved 
even in mid-greenschist facies (Large et al., 2009). The challenge, 
however, is that the behavior of trace elements in pyrite is complex and 
no simple criteria can be used to distinguish the different origins of 
pyrite. In other words, different types of pyrite often have overlapping 
trace element concentrations. For example, gold can have high con
centrations in both early diagenetic pyrite and late metamorphic or 
hydrothermal pyrite (Large et al., 2009). To overcome this challenge, 
multiple trace elements should be compared simultaneously, which can 
be implemented using rigorous statistical analysis (Gregory et al., 2019). 

In this study, we used supervised machine learning, in combination 
with detailed petrographic analysis, to decipher the complex relation
ships between trace element patterns and the origin of pyrite. First, as 
pyrite grains from the same rock sample can have different origins, the 
study of pyrite origins should focus on individual pyrite grains. Hence, 
in-situ trace element analysis techniques, such as laser ablation- 
inductively coupled plasma-mass spectrometry (LA-ICP-MS) and sec
ondary ion mass spectrometry (SIMS), were used for geochemical 
analysis of individual pyrite grains. Second, we used 12 trace elements 
(Co, Ni, Cu, Zn, As, Mo, Ag, Sb, Te, Au, Tl, and Pb) as input features to 

develop an optimal classification model to identify the genesis type of 
each pyrite. These 12 elements were selected based on data availability 
and previous machine learning applications (Gregory et al., 2019); 
incorporating a greater number of elements would reduce the database 
size and degrade model performance (Gregory et al., 2019). Two widely 
used supervised classification algorithms, Random Forests (Breiman, 
2001) and XGBoost (Chen and Guestrin, 2016), were trained/optimized 
on a large LA-ICP-MS pyrite trace element database (Gregory et al., 
2019). The present study followed the standard machine learning 
practices, similar to those utilized in other investigations in the field of 
geochemistry (Chen et al., 2022; Hu et al., 2022a; Li et al., 2023; 
Mukherjee et al., 2023). 

The labeled training dataset for supervised machine learning is 
adapted from LA-ICP-MS pyrite trace element data compiled by Gregory 
et al. (2019). This compilation includes sedimentary pyrite through 
geological history and hydrothermal pyrite from different ore deposits. 
For the purpose of this study, all data are grouped and labeled into three 
classes: sedimentary, synsedimentary hydrothermal, and post- 
sedimentary hydrothermal pyrite. First, sedimentary pyrite in this 
database consists of syngenetic and early diagenetic pyrite. Samples 
have been rigorously screened using independent petrographic and 
geochemical criteria to exclude large inclusions, later hydrothermal 
overprint, recrystallization, or metamorphism (Gregory et al., 2019). 
Second, synsedimentary hydrothermal pyrite, also known as syngenetic 
hydrothermal pyrite, is defined as pyrite precipitating on or near the 
seafloor but partially influenced by hydrothermal fluids. Here hydro
thermal fluids refer to either fluids from volcanic-dominated systems 
(volcanogenic massive sulfide, VMS) (Hannington, 2014) or sedimen
tary basinal brines (sedimentary exhalative deposits, SEDEX) (Emsbo 
et al., 2016). Lastly, post-sedimentary hydrothermal pyrite, also known 
as epigenetic hydrothermal pyrite, refers to pyrite found in igneous or 
metamorphosed rocks without contemporaneous seawater inputs. Hy
drothermal pyrite in iron oxide copper gold (IOCG), orogenic Au, por
phyry Cu, and hydrothermal breccia deposits are included in this 
category. We note that this is not an exhaustive labeling of pyrite 
precipitating in different conditions, but it is sufficiently diverse to help 
us understand the differences among these three classes of pyrite. 
Meanwhile, both in-sample-locality and out-of-sample-locality test 
datasets were constructed from the same trace element database. The in- 
sample-locality test dataset includes data from geologic units/deposits 
that were part of the training dataset. The out-of-sample-locality test 
dataset includes pyrite analyses from geologic units/deposits that were 
not part of the training dataset, which can help us better evaluate the 
generalizability of the models on unseen instances, including unen
countered geologic time intervals and ore deposits. 

After training, classification models (Random Forests and XGBoost) 
were used to determine the origins of two sets of ambiguous Neo
proterozoic pyrite samples with existing petrographic and SIMS δ34S 
data, and to understand their Neoproterozoic marine environments. The 
first set came from the Cryogenian Tiesi’ao and Datangpo formations in 
South China. The SIMS δ34Spyrite data were previously reported in Cui 
et al. (2018), who proposed a hydrothermal origin of the superheavy 
pyrite in these units. The second sample set came from the Ediacaran 
Doushantuo Formation in South China. Its SIMS δ34Spyrite data were 
previously reported in Xiao et al. (2010). These authors argued that 
rapid microbial sulfate reduction during early diagenesis facilitated the 
precipitation of pyrite and silica, forming the pyritic rims and fossilif
erous chert nodules. The proposed mechanism may improve the un
derstanding of the taphonomic role of silicification in the preservation of 
Ediacaran fossils. In this study, we used LA-ICP-MS to analyze these two 
sample sets for trace element concentrations in pyrite, and then used 
machine learning models to assess the origins of pyrite grains in the two 
sets of Neoproterozoic samples. 
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2. Materials and methods 

2.1. Ambiguous pyrite from Neoproterozoic strata 

A total of nine best-preserved and most-representative samples were 
analyzed in this study for pyrite trace element concentrations using LA- 
ICP-MS (see Appendix A. Supplemental Material for geological settings). 
Four of these samples (Hy1, Hy31, Hy55a, and Hy59) came from a drill 
core (4.5 cm in diameter) of the Cryogenian Tiesi’ao and Datangpo 
formations in South China with SIMS δ34Spyrite data reported in Cui et al. 
(2018). Hy1 is a shale sample from the Datangpo Formation that overlies 
the Sturtian-age Tiesi’ao glacial diamictite. Two types of pyrite are 
present in this sample. The first was named pyrite flowers (Cui et al., 
2018), with a framboidal pyrite core surrounded by zoned pyrite over
growth (Fig. 1 and Fig. S1). The second is characterized by a framboidal 
pyrite core, a thin pyrite rim, and an iron oxide layer in-between (Fig. 1 
and Fig. S1). Pyrite flowers show abnormally high δ34S values (mean: 
+61.6 ‰) and were interpreted to be hydrothermal in origin (Cui et al., 
2018), whereas pyrite cores within iron oxide show much lower δ34S 

values (mean: +22.2 ‰) and were thought to have formed through 
syngenetic or early diagenetic processes (Cui et al., 2018). Hy31 is also a 
shale sample from the Datangpo Formation. There is no framboidal 
pyrite in this sample. Instead, most pyrite grains are subhedral and some 
grains can reach millimeters in size, with micrometer-sized sub-grains 
cemented by later-stage pyrite (Fig. 1 and Fig. S2). High δ34S values of 
pyrite grains (mean: +66.3 ‰) and cement (mean: +62.0 ‰) were 
suggested to reflect hydrothermal processes (Cui et al., 2018). Hy55a is a 
Mn-rich carbonate sample from the basal Datangpo Formation. In this 
sample, nodule- and sausage-shaped pyrite replaced (and thus post
dates) pre-existing rhodochrosite layers and lath-shaped illite crystals, 
and inherited the texture of the hosting rhodochrosite (Fig. S3). The 
pyrite is composed of individual framboids and lacy overgrowth (Fig. 1 
and Fig. S3G). On the basis of petrographic observations (e.g., pyrite 
postdating rhodochrosite and illite) and high δ34S values of both the 
framboids (mean: +56.9 ‰) and the overgrowth (mean: +57.8 ‰), Cui 
et al. (2018) argued for a hydrothermal origin of pyrite in Hy55a. Hy59 
came from the uppermost Tiesi’ao Formation, which consists of glacial 
diamictite deposited during the Sturtian snowball Earth glaciation. 

Fig. 1. SIMS δ34Spyrite data and representative BSE-SEM images of samples analyzed in this study. δ34Spyrite data were summarized as kernel density plots with 
mean δ34Spyrite marked as diamonds. See Section 2.1. for detailed petrographic descriptions. Rim pyrite in JLW15.1, JLW23.5, JLW34.8, and SX88.15 was analyzed. 
Disseminated subhedral pyrite in JLW23.5 and JLW76 was analyzed. Black dots and dark gray shades in SEM images are, respectively, LA-ICP-MS and SIMS 
analytical spots. All scale bars = 20 μm. See Appendix A. Supplementary Material for detailed SEM images and elemental maps (Figs. S1–S9). 
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Pyrite framboids and nodules with low δ34S values (mean, framboids: 
+16.4 ‰; nodules: +26.5 ‰) are common in this specimen (Fig. 1 and 
Fig. S4). Unlike pyrite in Hy31 or Hy55a, these framboids and nodules 
were thought to have formed through syngenetic and early diagenetic 
processes (Cui et al., 2018). 

The remaining five samples, JLW15.1, JLW23.5, JLW34.8, JLW76, 
and SX88.15, are outcrop samples of argillaceous dolostones and 
calcareous mudstones from members II and III of the Ediacaran 
Doushantuo Formation exposed at the Jiulongwan (JLW) and Sixi (SX) 
sections in the Yangtze Gorges area of South China. These samples were 
selected for comparison with the superheavy pyrite described above. 
They had previously been described in Xiao et al. (2010). Pyrite in these 
samples occurs as pyritic rims around chert nodules or as disseminated 
pyrite in the carbonate matrix (Fig. 1 and Fig. S5 − 9). Chert nodules are 
typically nucleated on a microbial mat fragment, which is surrounded by 
a silica cortex and then a pyritic rim. Rim pyrite is immersed in a 
groundmass of silica and occurs as subhedral pyrite grains. A centrifugal 
decrease in pyrite crystal size is observed in the pyritic nodule rim. The 
disseminated pyrite is subhedral to anhedral in shape and randomly 
distributed in the matrix. Compared with the superheavy pyrite in the 
Cryogenian Tiesi’ao and Datangpo Formations7, both rim pyrite (mean, 
JLW15.1: +24.6 ‰; JLW23.5: +18.1 ‰; JLW34.8: +26.6 ‰; SX88.15: 
+25.9 ‰) and disseminated pyrite (mean, JLW23.5: +30.6 ‰; JLW76: 
+29.1 ‰) in the Doushantuo samples have much lower δ34S values. 
Based on petrographic and isotopic evidence, Xiao et al. (2010) sug
gested that both the rim pyrite and chert nodules formed during early 
diagenesis. They argued that bacterial sulfate reduction of an organic- 
rich nucleus not only provided a H2S source for pyrite formation but 
also decreased porewater pH to facilitate silicification (Xiao et al., 
2010). 

2.2. LA-ICP-MS trace element measurement 

LA-ICP-MS pyrite trace element analyses were performed at the LA- 
ICP-MS Laboratory of the Department of Geology and Geological Engi
neering, Colorado School of Mines of the USA, using a RESOlution SE 
193 nm ArF excimer laser ablation system equipped with an S155 
sample chamber, and an Agilent 8900 ICP-MS. Laser spot analysis was 
carried out with an on-sample fluence of 2.7 J/cm2, a repetition rate of 5 
pulses/sec (5 Hz), and a laser spot size of 14 to 30 µm chosen according 
to pyrite grain sizes. The ablated material was carried by He gas, then 
mixed with Ar gas in a funnel sitting right above the sample cell, and 
subsequently introduced to the ICP-MS. The analyzed isotopes included 
57Fe, 59Co, 60Ni, 65Cu, 66Zn, 75As, 95Mo, 107Ag, 121Sb, 125Te, 197Au, 205Tl, 
and 208Pb. A dwell time of 10 ms was used for all the above isotopes. In 
addition, 29Si, 31P, 43Ca, 49Ti were also analyzed with a dwell time of 5 
ms to monitor the potential intersection of mineral inclusions. Each laser 
spot was pre-ablated with one laser shot to eliminate possible surface 
contamination. That was followed by 15 s of washing time for the 
aerosol to pass through the ICP-MS. A gas blank was collected for 20 s, 
followed by 30 s of sample signal collection. The primary external 
standard was STDGL3 glass made at CODES, University of Tasmania 
(Belousov et al., 2023). The internal standard was Fe assuming a stoi
chiometric concentration of 46.55 wt%. Data reduction was performed 
using the software Iolite v. 4.0 (Paton et al., 2011). When selecting an 
interval on the time-resolved signal (counts per second) plot of each 
laser spot for data reduction, mineral inclusions were avoided to mini
mize contaminations. For the same purpose, the data were further 
screened to ensure that no analyses had higher than 1 % Zn, 2 % As, 1 % 
Cu, 1 % Ni, and 2 % Co (Gregory et al., 2019). When an element was 
below the detection limit, half of the detection limit was taken as the 
concentration. The standard error for each analysis was reported in 
Supplementary Data S2. 

2.3. SEM and EDS observation 

SEM and EDS observations were performed at the Virginia Tech 
Institute of Critical Technology and Applied Science, on a JEOL IT- 
500HR SEM via a backscattered electron detector at an accelerating 
voltage of 15 or 20 keV and a working distance of ~ 10.0 mm. Elemental 
maps were acquired using an AZtecLive Automated Microanalysis Sys
tem with an UltimMax100 silicon drift detector at an accelerating 
voltage of 20 keV. 

2.4. Random Forests and XGBoost 

The LA-ICP-MS pyrite trace element database compiled by Gregory 
et al. (2019) was used in this study. To train and evaluate models, the 
labeled trace element dataset was divided into a training dataset, an in- 
sample-locality test dataset, and an out-of-sample-locality test dataset. A 
total of 240 pyrite analyses from each of the three labels (sedimentary, 
synsedimentary hydrothermal, and post-sedimentary hydrothermal) 
were randomly selected to form a balanced training dataset. For sedi
mentary pyrite, 16 different geological units each contributed 15 ana
lyses. For synsedimentary hydrothermal pyrite, 120 analyses were from 
SEDEX deposits and the remaining 120 analyses were from VMS de
posits. For post-sedimentary hydrothermal pyrite, hydrothermal 
breccia, IOCG, orogenic Au, and porphyry Cu deposits each contributed 
60 analyses. The rest of analyses within these geologic units/deposits 
were grouped together to form an in-sample-locality test dataset. 
Meanwhile, an out-of-sample-locality test dataset was constructed using 
pyrite analyses from geologic units/deposits that were not part of the 
training dataset. 

Random Forests and XGBoost, two powerful decision-tree ensemble 
methods (see Appendix A for more details), were performed in Python 
using the sklearn (Pedregosa et al., 2011) and XGBoost (Chen and 
Guestrin, 2016) packages, respectively. All data were standardized by 
subtracting the mean and scaling to unit variance prior to inputting into 
the models. A five-fold cross-validation method (GridSearchCV in 
sklearn), which randomly and evenly splits the training dataset into five 
parts for training and validation, was used to determine optimal 
hyperparameters. For Random Forests, the feature importance is 
decided by the mean decrease in impurity when a feature is used to build 
a split. For XGBoost, the feature importance is decided by the gain, 
which is the improvement in accuracy brought by a feature. Another 
widely-used supervised machine learning method, support vector ma
chine (SVM), was also used to analyze the data, although its perfor
mance was not as good as Random Forests and XGBoost. 

2.5. Hierarchical cluster analysis (HCA) and principal component 
analysis (PCA) 

Two unsupervised machine learning algorithms, HCA and PCA, were 
used to investigate trace element patterns of sedimentary and hydro
thermal pyrite in the database, similar to analyses of Emmings et al. 
(2022) for origins of sedimentary pyrite through geologic time and Hu 
et al. (2022a) for origins of high titanium magnetite. HCA is a method of 
cluster analysis that aims to group similar observations together into 
several clusters. In order to identify elements sharing similar behaviors, 
data of each trace element were treated as one observation. To be spe
cific, HCA in this study focused on partitioning 12 observations (ele
ments) into different clusters. PCA is a dimensionality reduction method 
that aims to increase data interpretability while preserving the 
maximum amount of information. In PCA, each pyrite analysis was 
treated as one observation with 12 features (trace elements). The high- 
dimensional data were projected onto several principal components 
capturing most of the variance of trace element concentrations and 
likely recording trace element patterns, which can be used to validate 
the HCA results. Since LA-ICP-MS trace element data vary over several 
orders of magnitude and show high skewness, all data were power 
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transformed using the Yeo-Johnson method (Yeo and Johnson, 2000) 
before HCA and PCA. Analyses were performed in Python using the 
sklearn (Pedregosa et al., 2011) package. 

3. Results 

3.1. New LA-ICP-MS data for Hy, JLW, and SX samples 

A total of 177 in-situ pyrite trace element analyses of 9 samples (Hy, 
JLW, and SX specimens) passed the screening (see Section 2.2.). For each 
analyzed element, concentrations vary up to 4–5 orders of magnitude. 
For samples Hy31, JLW15.1, JLW23.5, JLW76, and SX88.15, most an
alyses of Zn and Te were below detection limits. For JLW34.8, only Te 
analyses were below detection limits. For Hy31, in addition to Zn and 
Te, the majority of Mo, Ag, Sb, Au, and Tl analyses were also close to or 
below detection limits. Analyses below detection limits were replaced by 
half the detection limit as machine learning inputs (Gregory et al., 
2019). 

3.2. The LA-ICP-MS database for machine learning analysis 

A total of 3632 analyses from 71 different deposits and sedimentary 
units were used for supervised machine learning model training and 
testing (Table S1) (Gregory et al., 2019). Of these, 1123 analyses of 
sedimentary pyrite are from 28 sedimentary units covering the geolog
ical interval of 2572–125 Ma and therefore recording the variability of 
trace element concentrations over geologic time, 1345 analyses of syn
sedimentary hydrothermal pyrite are from 18 ore deposits, and 1164 
analyses of post-sedimentary hydrothermal pyrite are from 25 ore de
posits. A total of 720 analyses (240 analyses from each label), from 16 
sedimentary units ranging from 2572 to 125 Ma and 33 ore deposits 
covering 6 different ore types, were randomly selected as the training 
dataset. The remaining 2487 analyses from these deposits/units were 
used for initial in-sample-locality testing. Furthermore, 425 analyses 
from 12 sedimentary units ranging from 2170 to 180 Ma in age and 10 
ore deposits covering 3 different ore types, which were not seen in the 
training and initial testing datasets, were used for out-of-sample-locality 
testing. By creating such diverse training and testing datasets, we 
believe that a representative variation in pyrite forming environments 
has been taken into account. Again, for each analyzed element, con
centrations vary up to 5–6 orders of magnitude. When analyses were 
below detection limits, either half the detection limit or values from the 
literature were used as an estimation. Considering a significant number 
of Te and Au analyses are affected by this estimation, we also examined 
machine learning models on a refined dataset that excluded the Te and 
Au data. 

3.3. Machine learning model performance and predictions on Hy, JLW, 
and SX samples 

Random Forests and XGBoost models both yielded robust perfor
mance on in-sample-locality and out-of-sample-locality test datasets 
(Table 1, Fig. 2A − D), which is significantly better compared with the 
SVM model (Fig. S10). Average precision, recall, and F1-score are all >
90 %. For sedimentary pyrite, the precision even reaches 96 % (Random 
Forests) and 98 % (XGBoost) for the out-of-sample-locality test dataset. 
Mo is the most important feature in both models (Fig. 2E − F). Mean
while, Ni, Cu, Zn, Ag, Sb, Te, Au, Tl, and Pb all have significant con
tributions. Additionally, models trained by the dataset without Au and 
Te, whose concentrations are below the detection limit in many of the 
samples in the dataset, show lower but still promising precision, recall, 
and F1-score (Table S2, Fig. S11). 

Random Forests and XGboost models, trained with and without Au 
and Te, show consistent predictions on pyrite analyses of Hy, JLW, and 
SX samples (Fig. 3 and Fig. S12). The predictions are provided in the 
ternary plots as the probability of being identified as one of the three 

types of pyrite (Fig. 3). Pyrite grains in Hy1 (9 grains analyzed), Hy55 (3 
nodules analyzed), and Hy59 (2 nodules and 5 aggregates of framboids 
analyzed) were identified as showing sedimentary signals (mostly > 80 
% probability for both models) whereas pyrite grains in Hy31 were 
classified as post-sedimentary hydrothermal pyrite (mostly > 80 % 
probability for both models). For JLW and SX samples, the majority of 
the pyritic rims in JLW15.1, JLW23.5, and SX88.15 and disseminated 
pyrite in JLW23.5 (4 grains analyzed) and JLW76 (20 grains analyzed) 
were identified as post-sedimentary hydrothermal pyrite with a few 
exceptions (pyrites identified as sedimentary or synsedimentary hy
drothermal pyrite). A significant portion of these analyses (53 % for the 
Random Forest model, 13 % for the XGBoost model) falls into the gray 
triangle in ternary plots because they were given a < 50 % probability of 
being identified as a leading label. Conversely, all analyses on JLW34.8 
show synsedimentary hydrothermal origins (>50 % probability for the 
Random Forest model, >80 % probability for the XGBoost model). 

4. Discussion 

4.1. Trace element patterns of sedimentary and hydrothermal pyrite 

Despite the considerable variability in trace element signals within 
each pyrite type (e.g., variation in trace element compositions in sedi
mentary pyrite due to changes in ocean chemistry; Emmings et al., 
2022), both models exhibited robust predictive capabilities for deter
mining the provenance of pyrite. The consistent precision, recall, and 
F1-score values obtained from both the in-sample-locality and out-of- 
sample-locality tests indicate a high level of generalizability in the 
models. Based on feature importance, ten out of twelve elements show 
significant contributions to both models, suggesting a complex rela
tionship between trace element concentrations and the origin of pyrite. 
In other words, there is no single element that can be used to differen
tiate sedimentary and hydrothermal pyrite, which further supports the 
necessity of using machine learning modeling of a suite of elements to 
identify the origins of pyrite. 

Decision Tree ensembles (i.e., Random Forest and XGBoost), how
ever, cannot offer further insights into trace element behavior. To 
investigate any existing trace element patterns of sedimentary and hy
drothermal pyrite, we applied hierarchical cluster analysis (HCA) on the 
power transformed (Yeo and Johnson, 2000) trace element database. 
HCA reveals four major clusters of elements (Fig. 4A and Fig. S13). 
Firstly, Te and Au are enriched in post-sedimentary and VMS-type 
synsedimentary hydrothermal pyrite. The enrichment is possibly 
related to changes in the chemical and physical properties of fluids, zone 
refinement (i.e., enrichment through dissolution and reprecipitation), 
and direct input from magmatic and metamorphic hydrothermal fluids 
(Fuchs et al., 2019; Large et al., 2009). A coupled Au-Te transfer in fluids 

Table 1 
Supervised machine learning model evaluation. Simple arithmetic averages 
of precision, recall, and F1 score across labels (sedimentary, synsedimentary 
hydrothermal, post-sedimentary hydrothermal) on in-sample-locality test and 
out-of-sample-locality test datasets. For each label, the precision is calculated by 
dividing the true positives by the sum of true positives and false positives, recall 
by dividing the true positives by the sum of true positives and false negatives, 
and F1 score is the harmonic mean of precision and recall.  

Model Testing Dataset Average 
Precision 

Average 
Recall 

Average F1 
score 

Random 
Forests 

In-sample- 
locality test  

0.91  0.91  0.91 

Out-of-sample- 
locality test  

0.92  0.92  0.92 

XGBoost In-sample- 
locality test  

0.93  0.93  0.93 

Out-of-sample- 
locality test  

0.92  0.93  0.92  

J. Kang et al.                                                                                                                                                                                                                                    



Geochimica et Cosmochimica Acta 364 (2024) 1–9

6

Fig. 2. Supervised machine learning model confusion matrix and feature importance. A and B are confusion matrixes of the Random Forests model on in- 
sample-locality test and out-of-sample-locality test datasets, respectively. C and D are confusion matrixes of the XGBoost model on in-sample-locality test and 
out-of-sample-locality test datasets, respectively. Confusion matrixes visualize model performance on identifying sedimentary (S), synsedimentary hydrothermal 
(SH), and post-sedimentary hydrothermal (PH) pyrite. E and F show the feature importance of the Random Forests and XGBoost models, respectively. For Random 
Forests, the feature importance is decided by the mean decrease in impurity when a feature is used to build a split. For XGBoost, the feature importance is decided by 
the gain, which is the improvement in accuracy brought by a feature. 

Fig. 3. Ternary plots of model predictions on Hy, JLW, and SX samples. Model predictions on pyrite analyses of Hy, JLW, and SX samples are expressed as the 
probability of being identified as sedimentary (S), synsedimentary hydrothermal (SH), or post-sedimentary hydrothermal (PH) pyrite. Each data point represents one 
single LA-ICP-MS analysis. A and B are model outputs of Hy samples based on the Random Forests (A) and XGBoost (B) models. C and D are model outputs of JLW and 
SX samples based on the Random Forests (C) and XGBoost (D) models. Blue data points represent isotopically normal pyrite and brown data points represent 
isotopically superheavy pyrite. Superheavy pyrite is defined by δ34S > 50 ‰, which is substantially higher than that of contemporaneous seawater (Fike et al., 2015). 
Gray triangular shades in ternary plots represent the ambiguous zone. Pyrite analyses in the ambiguous zone have a less than 50 % probability of being identified to 
any single label. 
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and enhancement of Au partitioning with increasing Tellurium con
centrations (Belousov et al., 2016) may also play a role in the enrich
ment. We note, however, that average Au and Te concentrations from 
the literature (Gregory et al., 2019) were used for most SEDEX pyrite. 
These data were assumed to be reasonable, as Au and Te are usually 
below the detection limit in SEDEX deposits (Gregory et al., 2019). 
Secondly, Co and Ni are relatively depleted in the majority of VMS-type 
synsedimentary hydrothermal pyrite. This is probably due to copreci
pitating minerals outcompeting pyrite for metal incorporation in their 
respective structure (Genna and Gaboury, 2015). For example, Co and 
Ni, with similar ionic radii and charges to Zn, can substitute into 
sphalerite forming from the hydrothermal fluid (Genna and Gaboury, 
2015). Other researchers have also proposed that the depletion in Co 
and Ni can be attributed to the temperature of pyrite formation. Pyrite 
formed at high temperatures tends to concentrate Co and Ni. As these 
local fluids undergo cooling and reach the low-temperature seafloor, 
both the fluids themselves and the precipitated pyrite are depleted in 
these elements (Keith et al., 2016). Meanwhile, the solubility of Co and 
Ni can be affected by the formation of Cl– complexes in hydrothermal 
fluids (Keith et al., 2016). Thirdly, As distribution is relatively ubiqui
tous. No significant difference in As concentration is observed among 
the three types of pyrite. Lastly, Mo, Tl, Ag, Sb, Pb, Cu, and Zn are 
depleted in post-sedimentary hydrothermal pyrite. High concentrations 
of these elements in pyrite forming near the seafloor may be related to 
the decomposition of particulate and dissolved organic matter and the 
reduction of Mn-Fe (oxyhydr)oxide (Emmings et al., 2022). On the other 
hand, for post-sedimentary hydrothermal pyrite, higher temperature 
and slower pyrite growth rate enable trace elements to be partitioned 
into other distinct sulfide phases (e.g., sphalerite and galena) rather than 
existing as solid solutions or micro-inclusions in pyrite (Large et al., 
2009). Among the 12 elements investigated, Mo is the only element 
showing a unidirectional change from sedimentary to post-sedimentary 
hydrothermal pyrite — Mo concentration decreases from left to right in 
Fig. 4A. This pattern can be attributed to the higher concentrations of 
Mo in seawater compared to most hydrothermal fluids (Metz and Trefry, 
2000; Trefry et al., 1994). As we transition from sedimentary to post- 
sedimentary hydrothermal pyrite, the contribution of seawater to py
rite formation progressively diminishes, accompanied with an escalating 

prominence of hydrothermal fluids in the mineralization process. This 
unidirectional change likely accounts for the selection of Mo as the most 
important feature by both machine learning models. 

HCA results are further supported by principal component analysis 
(PCA) (Fig. 4B). The first two principal components (PC1 and PC2) 
capture 59 % of the total variance (Fig. S14) and accurately record the 
concentration changes of the four clusters of elements. PC1 records 
changes in the third and fourth clusters of elements (As, Mo, Tl, Ag, Sb, 
Pb, Cu, Zn), whereas PC2 records changes in the first and second clusters 
(Au, Te, Co, Ni) plus Mo and Tl from the fourth cluster. Along the PC1 
direction, post-sedimentary hydrothermal pyrite is separated from the 
sedimentary and synsedimentary hydrothermal pyrite, which is consis
tent with the insight from HCA that the fourth cluster of elements is 
enriched in pyrite forming near the seafloor. Additionally, the separa
tion of post-sedimentary hydrothermal and VMS-type synsedimentary 
hydrothermal pyrite from sedimentary and SEDEX-type synsedimentary 
hydrothermal pyrite along the PC2 direction confirms the observation 
that the first cluster of elements is enriched in post-sedimentary hy
drothermal and VMS-type synsedimentary hydrothermal pyrite. The 
differentiation between SEDEX-type pyrite and VMS-type pyrite along 
the PC2 is further enhanced due to the fact that SEDEX-type pyrite is 
enriched in Co and Ni while VMS-type pyrite is depleted in these two 
elements. Meanwhile, due to the observed overlap of pyrite analyses 
from different origins within the PC1 and PC2 biplot, the viability of 
employing the first two principal components for discriminating 
different pyrite is compromised, which further reinforces the complex 
nature of this target. 

4.2. Origins of Neoproterozoic pyrite 

Our machine-learning models partially confirmed the findings of Cui 
et al. (2018). Specifically, pyrite grains in Hy31 were identified as post- 
sedimentary hydrothermal pyrite, and grains in Hy59 were identified as 
sedimentary pyrite. A post-sedimentary hydrothermal origin of pyrite in 
Hy31 is consistent with low trace element concentrations of Mo, Ag, Tl, 
Sb, and Zn. However, both models posit a sedimentary origin for pyrite 
grains in Hy1 and Hy55a, whereas Cui et al. (2018) argued for a hy
drothermal origin. One of their major arguments was based on the 

Fig. 4. HCA and PCA for power-transformed pyrite trace element database. A. HCA by elements (n = 12). Four elemental clusters were identified and marked in 
different colors on the dendrogram. Columns (n = 3632) represent individual pyrite analyses, which were grouped by their origins. Each grid represents the power- 
transformed concentration of a specific trace element from an individual pyrite analysis. B. PCA biplot of the first two principal components (PC1 and PC2). Loadings 
for each element in PC1 and PC2 are shown as arrows in the biplot and histograms along the × and y axes. The length and direction of the arrows were decided by the 
loadings in PC1 and PC2. The arrows were also grouped by elemental clusters from HCA. Analyses of synsedimentary hydrothermal pyrite are divided into two 
clusters in the biplot: the upper cluster is VMS-type pyrite and the lower cluster is SEDEX-type pyrite. 
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paragenesis of Hy55a, where pyrite replaced and thus postdate rhodo
chrosite and illite. Key to this argument is the time when rhodochrosite 
and illite formed. Rhodochrosite can form during early diagenesis as 
porewaters become anoxic and manganese (oxyhydr)oxides are reduced 
(Johnson et al., 2016). For example, calcian rhodochrosite has been 
reported from organic-rich marine muds in the Baltic Sea (Neumann 
et al., 2002). Recent studies even suggested that manganese-rich car
bonate can form in the water column of redox-stratified lakes (Herndon 
et al., 2018). Furthermore, the preservation of rhodochrosite laminae 
that warp around pyrite nodules in Hy55a (Fig. S3A − F) suggests a 
sedimentary or early diagenetic origin. As for the formation of illite, 
laboratory experiments have demonstrated microbially-induced illiti
zation at room temperature and atmospheric pressure within two weeks 
(Dong et al., 2022). Field observation also recorded microbially induced 
smectite-to-illite transformation during diagenesis (Aubineau et al., 
2019; Kim et al., 2019). Thus, our model predictions are not necessarily 
inconsistent with petrographic observations, and the formation of su
perheavy pyrite could be linked to the contemporaneous oceanic envi
ronment. If so, regional and global models of the oceanic sulfur cycle 
should be considered to seek an explanation for unusual sulfur isotope 
signals from the Neoproterozoic superheavy pyrite. 

For the JLW and SX samples from the Ediacaran Doushantuo For
mation, our models reveal a more complex diagenetic history than 
originally thought (Xiao et al., 2010). Instead of a sedimentary origin, 
rim pyrite and disseminated pyrite in JLW15.1, JLW23.5, JLW76, and 
SX88.15 were classified as post-sedimentary hydrothermal pyrite. We 
note, however, that a large portion of analyses shows ambiguous pre
diction results (i.e., they are in the gray triangles in ternary diagrams in 
Fig. 3C–D). They were given a < 50 % probability of being identified to 
the leading label (Fig. 3 and Fig. S12), which in this case is the post- 
sedimentary hydrothermal pyrite. We propose two explanations for 
the low probability. First, since our hydrothermal training data come 
from a limited number of ore deposits, it is impossible for us to cover 
every pyrite-forming hydrothermal environment. Accordingly, these 
subhedral pyrite grains may have formed in a hydrothermal environ
ment not represented in the training dataset. Second, as some Doush
antuo pyrite analyses have been identified to sedimentary or 
synsedimentary hydrothermal origins with some confidence, it is 
possible that some of these ambiguous pyrite grains were originally 
sedimentary pyrite but later altered by hydrothermal fluids and there
fore show mixed signals. In this scenario, JLW34.8 may have been 
altered by synsedimentary hydrothermal fluids and the four other 
Doushantuo samples may have been further altered by post-sedimentary 
processes. The possibility of hydrothermal alteration is also consistent 
with petrographic observations: no pyrite framboids have been observed 
in any of the five Doushantuo samples analyzed in this study. Consid
ering that not all analyses identified as post-sedimentary hydrothermal 
pyrite (i.e., the label with the highest possibility predicted by the model) 
fall into the ambiguous zone (probability < 50 %) and more than half 
(89 % for XGBoost, 53 % for Random Forests) of them were given a high 
probability (>50 %), we argue the hydrothermal alteration hypothesis 
may be more plausible. Given the petrographic evidence for an early 
diagenetic origin of the pyritic rim around Doushantuo chert nodules, 
the silicification model proposed by Xiao et al. (2010) may still be valid, 
although the trace element data do show that the pyrite may have been 
hydrothermally altered at a later time. 

5. Conclusions 

To sum up, this is the first study applying supervised machine 
learning to understand the origins of Neoproterozoic pyrite. The two 
models tested here, Random Forests and XGBoost, show strong perfor
mance in distinguishing sedimentary and hydrothermal pyrite using in- 
situ trace element data. Our analysis shows that superheavy pyrite in the 
Cryogenian Datangpo Formation can be sedimentary or hydrothermal in 
origin. Future studies are needed to investigate what the 34S-enriched 

pyrite can tell us about the sulfur biogeochemical cycle. Our analysis of 
pyritic rims surrounding fossiliferous chert nodules from the Ediacaran 
Doushantuo Formation revealed a more complex history than previously 
thought. Early diagenetic pyrite precipitated around fossiliferous chert 
nodules and may have played a key role in chert nodule formation and 
fossil preservation (Xiao et al., 2010), but was subsequently altered and 
overprinted by hydrothermal fluids. This study highlights machine 
learning models as a powerful tool to study the origins of pyrite and to 
effectively screen pyrite samples for paleoenvironmental research. 
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repository: https://github.com/junyaok/ML_Pyrite. 
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JLW, SX samples; Fig. S10, SVM model performance with Au and Te 
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relation matrix of 12 trace elements from the LA-ICP-MS database; 
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