RefreshChannels: Exploiting Dynamic Refresh Rate Switching for
Mobile Device Attacks

Gaofeng Dong
University of California, Los Angeles
Los Angeles, California, USA
gfdong@g.ucla.edu

Akash Deep Singh

University of California, Los Angeles
Los Angeles, California, USA
akashdeepsingh@g.ucla.edu

Nader Sehatbakhsh

University of California, Los Angeles
Los Angeles, California, USA
nsehat@ee.ucla.edu

ABSTRACT

Mobile devices with dynamic refresh rate (DRR) switching displays
have recently become increasingly common. For power optimiza-
tion, these devices switch to lower refresh rates when idling, and
switch to higher refresh rates when the content displayed requires
smoother transitions. However, the security and privacy vulnerabil-
ities of DRR switching have not been investigated properly. In this
paper, we propose a novel attack vector called RefreshChannels that
exploits DRR switching capabilities for mobile device attacks. Specif-
ically, we first create a covert channel between two colluding apps
that are able to stealthily share users’ private information by modu-
lating the data with the refresh rates, bypassing the OS sandboxing
and isolation measures. Second, we further extend its applicability
by creating a covert channel between a malicious app and either
a phishing webpage or a malicious advertisement on a benign
webpage. Our extensive evaluations on five popular mobile de-
vices from four different vendors demonstrate the effectiveness and
widespread impacts of these attacks. Finally, we investigate several
countermeasures, such as restricting access to refresh rates, and
find they are inadequate for thwarting RefreshChannels due to
DDR’s unique characteristics.

“Mani Srivastava holds concurrent appointments as a Professor of ECE and CS (joint)
at the University of California, Los Angeles and as an Amazon Scholar. This paper
describes work performed at the University of California, Los Angeles and is not
associated with Amazon.

This work is licensed under a Creative Commons Attribution International 4.0 License.
MOBISYS 24, June 3-7, 2024, Minato-ku, Tokyo, Japan

© 2024 Copyright is held by the owner/author(s).

ACM ISBN 979-8-4007-0581-6/24/06

https://doi.org/10.1145/3643832.3661864

Jason Wu
University of California, Los Angeles
Los Angeles, California, USA
jaysunwu@g.ucla.edu

Justin Feng
University of California, Los Angeles
Los Angeles, California, USA
jfenglo@ucla.edu

Julian de Gortari Briseno
University of California, Los Angeles
Los Angeles, California, USA
julian700@g.ucla.edu

Ankur Sarker
University of California, Los Angeles
Los Angeles, California, USA
asdmz@virginia.edu

Mani Srivastava®
University of California, Los Angeles
and Amazon
Los Angeles, California, USA
mbs@ucla.edu

CCS CONCEPTS

« Security and privacy — Mobile platform security; Side-
channel analysis and countermeasures; Operating systems
security; Browser security.

KEYWORDS

Mobile Devices, Security and Privacy, Covert Channel, Dynamic
Refresh Rate

ACM Reference Format:

Gaofeng Dong, Jason Wu, Julian de Gortari Briseno, Akash Deep Singh,
Justin Feng, Ankur Sarker, Nader Sehatbakhsh, and Mani Srivastava. 2024.
RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile
Device Attacks. In The 22nd Annual International Conference on Mobile
Systems, Applications and Services (MOBISYS °24), June 3-7, 2024, Minato-ku,
Tokyo, Japan. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3643832.3661864

1 INTRODUCTION

Mobile devices have revolutionized the way we work, travel, shop,
and stay connected. The prevalence of mobile devices in all as-
pects of our lives means that they have access to vast amounts of
sensitive information about us — from precise location to credit
card information, making them a ripe target for malicious apps to
steal and share such data [1-3]. Mobile OSs mitigate this issue by
employing app sandboxing [4], which isolates different apps and
their resources. Apps can still communicate with each other with
technologies such as inter-process communications (IPC), but these
methods are closely monitored by the OS and require the user’s
explicit approval or consent.

Unfortunately, malicious apps can utilize covert channels to dis-
creetly transmit information without the system or user’s knowl-
edge [5-8]. These apps may be maliciously implanted by the ad-
versary, or may also be benign but contain third-party malicious
libraries. For example, Reardon et al. [9] discovered such vulnera-
bilities in third-party libraries provided by well-known companies.

https://orcid.org/0000-0002-8206-3499
https://orcid.org/0000-0002-8174-4751
https://orcid.org/0000-0003-1843-5830
https://orcid.org/0000-0003-1095-2200
https://orcid.org/0009-0003-4723-4808
https://orcid.org/0000-0003-4232-3345
https://orcid.org/0000-0001-7181-2258
https://orcid.org/0000-0002-3782-9192
https://doi.org/10.1145/3643832.3661864
https://doi.org/10.1145/3643832.3661864
https://doi.org/10.1145/3643832.3661864
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643832.3661864&domain=pdf&date_stamp=2024-06-04

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

With covert channels, a user’s private data such as personal prefer-
ences, GPS coordinates, credit card numbers or persistent identifiers
like IMEI can be shared with other parties while bypassing legal
and security regulations [10-12]. Apart from apps, malicious web-
pages can also utilize covert channels to circumvent anti-tracking
protections in browsers [13, 14]. For instance, Snyder et al. [15] use
web covert channels to transmit a 35-bit string, which is sufficient
for attackers to uniquely identify the 7.9 billion people on Earth.

Over the years, active measures have been taken to suppress
known covert channels. For example, modern mobile OSs such as
Android and iOS require permissions for an app to access sensi-
tive sensors [16—18]. Moreover, the W3C, the Web’s standardization
body, has also recommended disabling sensor access on cross-origin
iframes to limit attacks on webpages [19]. However, the introduc-
tion of new features often leads to unforeseen exploits and vulner-
abilities that can circumvent existing countermeasures [7, 20-23].
In this work, we investigate a novel vulnerability surrounding the
newly employed Dynamic Refresh Rate (DRR) switching technology
in recent mobile devices, and show that the existing countermea-
sures are ineffective at mitigating this vulnerability.

To simultaneously achieve a good user experience and long bat-
tery life, DRR dynamically adjusts the refresh rate depending on
the screen content — higher rates for dynamic content that requires
smoothness and lower rates for static content when the device is
idling. We find that both Android and iOS, the two most popular
mobile OSs, provide permission-less access to refresh rates [24, 25],
which can be exploited by malicious apps or websites. This vul-
nerability exists because running apps need to be able to suggest
a preferred refresh rate, as well as monitor the current rate, for
DRR to be effective. As DRR techniques are adopted by many main-
stream smartphone and tablet vendors such as Apple and Samsung,
it is crucial to thoroughly investigate the underlying security and
privacy risks.

In this work, we demonstrate two novel privacy invasive attacks
using the DRR switching technique, as shown in Fig. 1. Firstly,
we construct an inter-app covert channel in Section 3 that two
apps can use to communicate and bypass the app sandboxing and
isolation measures imposed by the OS. We evaluate its effective-
ness using five popular mobile devices including smartphones and
tablets from four distinct vendors, i.e., Samsung, Google, Lenovo,
and OnePlus. However, the refresh rate changes from normal user
activities will interfere with our channel. Therefore, we identify
the interference sources, propose an anti-interference scheme, and
evaluate it with ten popular apps. Secondly, despite the lack of di-
rect ways for webpages to access refresh rates, we build another
covert channel between a malicious app and a phishing webpage
or a malicious advertisement on a benign webpage, as discussed
in Section 4. We assess this attack on four widely used browsers,
i.e., Chrome, Firefox, Opera, and Samsung Internet. This broadens
the flexibility and applicability of the first attack. Third, we discuss
the challenges of mitigating these attacks and propose potential
countermeasures in Section 5. As an attack vector, DRR can be
exploited to conduct more attacks, as discussed in Section 6.

To the best of our knowledge, this is the first work showcas-
ing DRR switching as a new attack vector, which we refer to as
RefreshChannels. In summary, the contributions of this paper are:

360

Gaofeng Dong, et al.

e We investigate DRR switching strategies on mobile devices
and explore numerous ways to modulate and monitor the
refresh rate under differing scenarios.

e We demonstrate two proof-of-concept attacks that exploit
DRR to circumvent the system’s sandboxing and isolation
measures to share data. The first attack builds a covert com-
munication channel between two apps without triggering
the system’s alerts or users’ awareness. Then, we show that
even a webpage or a malicious advertisement on a benign
webpage can covertly communicate with an app in the sec-
ond attack.

e We implement the attacks! and evaluate them with exten-
sive experiments using five popular mobile devices and four
popular browsers.

e We discuss the challenges in mitigating these attacks and
propose several countermeasures.

2 BACKGROUND

In this section, we present the background of DRR in Android OS,
introduce the basic methods to affect and monitor the refresh rates,
and provide an overview of the attacks. Android OS is the most
popular open-sourced mobile OS, covering 72.37% of mobile OS
market shares as of January 2023 [26]. Though we focus on Android
mobile devices due to the greater reach, this work extends to iOS
devices with DRR since they have similar DRR switching strategies.
More details and some preliminary results of iOS devices will be
discussed in Section 6.

Terminology. We first introduce the concepts of the refresh rate
and frame rate, two terms frequently used in our work. The refresh
rate refers to the frequency at which the display refreshes, often
given in Hz. On the other hand, the frame rate refers to the actual
frames per second (fps) that the computing hardware provides to be
displayed on the screen. The system attempts to match the frame
rate and refresh rate to optimize user experience.

Android graphics rendering. At a high level, the rendering pipeline
consists of three main components: Image Stream Producers, Image
Stream Consumers, and the Hardware Abstraction Layer (HAL) [27].
Android apps primarily utilize Surfaces as image stream produc-
ers, with SurfaceFlinger as the image stream consumer. The timing
of the pipeline depends on the vertical synchronization (VSYNC)
events, which indicates the time the display starts to refresh the
display pixels [24]. Normally, the rendering must be completed
within one VSYNC period (inverse of frame rate) to produce a new
frame for the display. Many apps like games or video players have
their own custom rendering pipelines, which means they can have
their own preferred refresh rates. Therefore, it is necessary for apps
to suggest their preferred refresh rates to the system.

Affecting and monitoring the refresh rate. To enable DRR, An-
droid provides several APIs for apps to access the refresh rates [24,
28] directly. We utilize surface.setFrameRate() to set the refresh rate
through a Surface. The Surface attempts to modify the VSYNC
period, and if successful, both the refresh rate and the frame rate
will change since the Surface will generate frames based on the
new VSYNC. However, sometimes Surface-based methods don’t
work for some devices. In such cases, we turn to Window, which is

The code will be available at https://github.com/nesl/RefreshChannels

https://github.com/nesl/RefreshChannels

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

:10 1110110101 -~

3 8 B
1= S o

8

Refresh/Frame Rates (Hz2)
@
o

gUSNNCEEEEEN Data: 10 11 10 11 01 11 00
60Hz ¥\ 1201
z & z —;‘~12°| 120 Hz
: > I
TR Bal ol :
S G e
. @ 80 —e—TX_RR
’ o —+— RX_RR .
% 60
X o iz
&
é’ 40 30 Hz
. 4 36 38 4 42 44
N / Time (Seconds)

(a)

125 13.5

Time (s)

14

(b)

Figure 1: Two attack scenarios are demonstrated in this work. (a) Building an inter-app covert channel: the accompanying
graph shows the refresh rates set by the transmitter (in red) and observed by the receiver (in blue). (b) Building a covert channel
between an app and a webpage or an advertisement on the webpage: the accompanying graph shows the refresh rate set by the
transmitter (in red) and the frame rate observed by the receiver (in blue).

a structure internally backed by a Surface. Each Window has a set
of refresh rates, which can be chosen by a preferred mode.

To monitor the refresh rate, apps can use AChoreographer_re

gisterRefreshRateCallback to register a callback to be run when
the display refresh rate changes [29]. This provides the VSYNC
period in nanoseconds, which can be used to infer the refresh
rate. When the refresh rate is inaccessible or unresponsive, we
infer the refresh rate using frame rates that are available through
Choreographer.FrameCallback [30].
Overview: Apart from the user and OS, the primary parties in-
volved in mobile devices are apps and webpages. These entities
can influence the refresh rate and act as a transmitter (Tx) by ei-
ther changing screen content or directly specifying the refresh rate
through the API. Similarly, they can also read the refresh/frame rate
with the same API and act as a receiver (Rx). With several possible
Tx and Rx combinations across the parties, we broadly classify the
potential covert channel attacks into two scenarios: intra-party
covert channels (app to app) and inter-party covert channels (web-
page to app and vice versa). We refer to these as Attack Scenarios
1 and 2, respectively. Furthermore, we also showcase the potential
for DRR to leak private user touch information in Section 6.

3 ATTACK SCENARIO 1: BUILDING
INTER-APP COVERT CHANNELS

The lack of appropriate access controls enables malicious apps to
freely access refresh rates. We exploit this vulnerability to design a
covert channel between two apps. Then, we evaluate it with five
mobile devices from four mainstream vendors. Since channel inter-
ference can occur as the refresh rate changes over normal usage,
we identify the interference sources, propose an anti-interference
scheme, and evaluate it with ten apps.

3.1 Threat Model

Following previous works [8—12], we assume there are two apps
on the victim’s device that try to establish a covert communication
channel bypassing the system’s monitoring to share private user

361

data. These malicious apps could enter the victim’s system by mas-
querading as innocent apps or be downloaded through phishing
links. Moreover, the apps can be benign and created by legitimate
entities, yet may contain third-party libraries with malicious code
from attackers. This security flaw has even been discovered in li-
braries developed by large companies [9]. As shown in Fig. 1 (a),
one app will act as the transmitter, Tx, while the other acts as the
receiver, Rx. Tx has the user’s private data such as geolocation
data or persistent identifiers like IMEL. However, it is barred from
sharing this data with other parties due to legal or security con-
cerns, forcing it to resort to covert channels. This private data can
be encoded into binary bits, and then modulated on refresh rate
changes via RefreshChannels.

Our attack utilizes apps’ unrestricted ability to directly or in-
directly modulate and monitor refresh rates to build the covert
channel. To enable DRR, the Android OS allows apps unrestricted
ability to suggest and read refresh rates. The actual frequency at
which the refresh rate can be modified depends on the system,
the hardware, and the specific method used to induce the change.
Therefore, we design different schemes and evaluate them on differ-
ent mobile devices. While apps do not need permissions to access
refresh rates, mobile OSs restrict background app activities. Since
bypassing background restrictions is not the focus of this work, we
discuss several methods used in previous works in Section 6.

3.2 Channel Design and Implementation

3.2.1 Test devices and refresh rate information. We utilize five pop-
ular mobile devices with DRR, as shown in Table 1. To showcase the
widespread impact of our attack across different hardwares, these
devices encompass both smartphones and tablets and originate
from four distinct vendors. The table showcases all the available
refresh rates that can be set and monitored by apps. The test devices
are operating on Android 12, the most current version of Android at
the time of purchase, and we maintain the same version throughout
the entire work to ensure consistent results.

3.2.2 Channel design. Since different devices have a varying num-
ber of available refresh rates, we design several basic modulation

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Table 1: Devices and their available refresh rates.

Device Refresh Rates (Hz)
10, 24, 30,
Samsung Galaxy S22 Ultra 48, 60, 96, 120
OnePlus 10 Pro 60, 90, 120
Google Pixel 6 Pro 60, 120
Samsung Galaxy Tab S7 60, 120
Lenovo Tab P12 Pro 60, 120

schemes tailored to specific device characteristics. On a high level,
the modulation schemes transmit a basic packet of information con-
sisting of a SYNC signal to begin transmission, a fixed-length DATA
chunk, and an optional END signal to end the transmission. We
encode the ‘0’ and ‘1’ bits as two distinct refresh rates, allowing us
to send information by modulating between the two refresh rates.
For devices with only two refresh rates, in order to differentiate the
SYNC signal from the DATA signal, we utilize a unique pattern to
indicate the SYNC signal. For devices with multiple refresh rates, we
employ a more robust scheme where SYNC and END have distinct
refresh rates from the ‘0’ and ‘1’ data bits.

Algorithm 1 Covert Channel Transmitter

Input: SYNC refresh rate(s) r7sync, (END refresh rate rrenq), data DATA, bit 0’
refresh rate rr, bit ‘1’ refresh rate rry, interval I

1: Send SYNC signal by setting the refresh rate(s) r7'sync-

2: for data bit b in DATA do

3 if b == 0’ then

4. Set refresh rate to rry

5 else if b == ‘1’ then

6: Set refresh rate to rr;

7

8

9

0.

end if
Wait for time I
: end for
: Send END signal by setting the refresh rate rre,g

—_

> device-dependent

Algorithm 1 describes how the transmitter sends one data chunk.
After the SYNC signal is sent in Line 1, the DATA is transmitted by
sending one bit every I milliseconds, as shown in Lines 2-9. Here
the interval I is the pulse width, which is chosen based on the bit
error rate to maximize the channel capacity. Data transmission
concludes with the END signal in Line 10 if the device has the END
signal. For devices with only two refresh rates, 120 Hz (rry) is used
to represent bit ‘1’ while 60 Hz (rro) represents bit ‘0’, and the SYNC
pattern is the signal ‘10101°. This pattern is virtually impossible to
encounter during normal usage since a benign app or the user must
precisely switch the refresh rate at a fixed interval I four times in a
row to mimic the SYNC. For devices with more than two refresh
rates, such as the Samsung S22 Ultra, we modulate the SYNC, END,
and DATA bits using different refresh rates. Since 24, 60, and 120 Hz
are very common refresh rates that occur frequently during normal
use, they are not suitable for the SYNC or END signals as they might
cause mistriggers. In this basic scheme of Samsung S22 Ultra, we
use 30 Hz (rrsync) as the SYNC signal, 10 Hz (rr,,q) as the END
signal, 96 Hz (rro) as bit ‘0’, and 120 Hz (rrq) as bit ‘1’. For OnePlus,
90 Hz acts as the SYNC, 60 and 120 Hz as bit ‘0" and ‘1’ respectively.

To improve the bandwidth, we can map a given refresh rate to
multiple bits if the device has a sufficient number of refresh rates.
The Samsung S22 Ultra contains seven refresh rates, so we propose

362

Gaofeng Dong, et al.

an improved scheme where one refresh rate represents two bits.
Specifically, 30 and 10 Hz are still the SYNC and END signal, but 48,
60, 96, and 120 Hz now represent bits ‘00, ‘01°, ‘10’ and ‘11°. This
scheme can improve the bandwidth with higher channel resource
utilization.

Algorithm 2 Covert Channel Receiver
Input: SYNC refresh rate(s) r7sync, END refresh rate rrepg (or data length L), bit 0’
refresh rate rry, bit ‘1’ refresh rate rry, interval I
Output: data DATA
1: DATA « "', synced « False, tLast « currentTime, rrLast « 0

2: procedure RRCALLBACK(VSYNC period vsyncPeriod, Timestamp t)
: Refresh rate rr < 1/vsyncPeriod

4 if rrLast == rry then

5: bLast « ‘0’

6: else if rrLast == rr; then
7 bLast « ‘1’

8 end if

9: numPrevBits «— round((t — tLast)/I)

10: Append numPreuBits bit bLast to DATA

11: if not synced then

12: dLast < last length(rrsync) characters of DATA

13: if dLast == SYNC (or rr == rrsync) then > device-specific
14: synced = True

15: DATA « "

16: end if

17: else if len(DATA) ==L (or rr == rrepgq) then > device-specific
18: Save DATA

19: synced = False

20: DATA « "

21: end if

22: tLast <« t

23 rrLast < rr

24: end procedure
25: register(RRCallback)

Algorithm 2 describes the overall structure of the receiver. The
RRCallback () function is registered as a callback that triggers every
time the refresh rate changes. It receives the VSYNC period and
timestamp as parameters, which can be used to get the current
refresh rate rr. Since it is only triggered at a refresh rate change,
sending the same bit multiple times will not trigger the callback
since rr will remain constant. As a result, at every refresh rate
change, we decode the previous refresh rate rrLast to data bit bLast,
as shown in Lines 4-8. Then, Lines 9-10 calculate the number of
previous bits by estimating how many intervals rrLast was held
over, and append it to DATA. Next, if Rx hasn’t synchronized with
Tx, it will keep checking in Lines 11-16. Note that if a device like
Samsung S22 Ultra has a separate refresh rate r7sync for the SYNC
signal, it can directly compare to the refresh rate instead, as shown
in Line 13. After synchronization, Rx will save the data when the
length equals the predefined data length L, or when the refresh rate
is the predefined END signal (Lines 17-21). Only the data received
after the synchronization and before the end are saved as final
DATA in Line 18. Otherwise, it will be cleared in Line 15 or 20.

3.2.3 Implementation. We build a pair of simultaneously operat-
ing Tx and Rx apps for each device with a previously determined
time interval. As described in Section 2, the Tx app will use sur-
face.setFrameRate() to set the refresh rate. This API works in all
test devices except for the Oneplus 10 Pro, where it has no effect. A
possible explanation could be the Oneplus phone not having sup-
port for these relatively new APIs. Instead, we utilize the Window

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks

based method. The Rx app can register a callback using AChore-
ographer_registerRefreshRateCallback that triggers whenever the
refresh rate changes. All the tested devices support this method of
monitoring the refresh rate.

3.3 Evaluations

To show the effectiveness of the covert channel, we evaluate it
using the five mobile devices in Table 1. For each device, we adjust
the interval of the Tx and Rx apps to get the best capacity based on
their raw bandwidth and bit error rate.

3.3.1 Capacity evaluation. In order to choose the best interval
(I), we use channel capacity (C) as the metric, which indicates the
upper bound on the information that can be reliably transmitted
in a noisy channel. To simplify the calculation while retaining a
good estimation of the capacity, we assume the channel is a binary
symmetric channel (BSC) [31-33]. C can be calculated using the
following equations:

C= ; x (1- H(P,)), (1)
H(P,) = =P, x logz(P.) — (1= P,) X loga(1—Pe), (2)

where n is the number of bits represented by one refresh rate, I is
the interval, H() is the binary entropy function, and P, is the bit
probability of error obtained by dividing the number of erroneous
bits by the total number of transmitted bits (10,000). F is the raw
bandwidth BW.

The bit error probability or bit error rate (BER) is used to quantify
errors induced by noise, e.g., inaccurate timings. As the raw band-
width increases, BER also increases because the refresh rate has less
time to be properly set and read. Fig. 2 shows the capacity across
the five test devices. In Table 2, we list the maximum and zero-BER
capacities for each device. The ‘1Rate2Bits’ scheme, where 1 refresh
rate represents 2 bits, of the Samsung phone achieves the highest
capacity of 30.8 bps, while the Lenovo tablet has the worst capacity
of 5.6 bps. This is still enough to send short private user data like
IMEIL GPS coordinates, or credit-card numbers [7-9, 11, 12, 34].
Shepherd et. al built covert channels using sensor multiplexing [8],
and obtained a maximum bandwidth at zero-BER of 9.62 bps across
all tested devices and sensors. Our best zero-BER capacity is 22.2
bps, more than twice that of their channels.

The ‘1Rate2Bits’ scheme has an improvement of 25% in best ca-
pacity over the ‘1Rate1Bit’ scheme, where 1 refresh rate represents
1 bit. Since the two-bit scheme involves switching between four
different refresh rates instead of two, there is additional complexity
in setting the bit interval. The interval required to transition be-
tween refresh rates varies significantly. For example, it may require
50 ms to switch from 48 Hz to 60 Hz but 130 ms from 48 Hz to
120 Hz. Therefore, the BSC model may not be well-suited for the
‘1Rate2Bits’ scheme, and setting different intervals for different
refresh rate transitions could optimize channel utilization. We leave
this as future work to explore.

3.3.2 Interference. Apart from noise-related errors, measured by
BER, we also identify some interference sources that may directly
affect refresh rates. We first analyze their effects on our channel
and then perform a study with ten popular apps to evaluate the
proportion of time with active interference.

363

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Table 2: The maximum and zero-BER capacities of the covert
channel on different devices.

. Capacity (bps)
Device Maximum | Zero-BER

Samsung S22 Ultra

(1Rate2Bits) 308 22.2
Samsung S22 Ultra

(1Rate1Bit) 24.7 143

Google Pixel 6 Pro 20.5 11.1

Samsung Tab S7 13.6 11.1

Oneplus 10 Pro 10.5 5.6

Lenovo Tab P12 Pro 5.6 5.6

Brightness. Smartphones fix their idle refresh rate at 120 Hz in
low-brightness environments. Despite this, our channel can still
modulate the refresh rates as usual, indicating that the APIs have
priority over brightness-related settings.

Touches. There are two types of touches a user can perform:
touches that cause the screen content to change and touches that
do not affect any content, such as a simple screen tap. We will
henceforth refer to the former as “dynamic touches” and the latter
as “static touches”. For both types of touches, the refresh rate will
increase to 120 Hz. However, we observed that static touches have
no effect on our channel. In Fig. 3, the four grey blocks indicate
four static touches while the Tx and Rx apps are communicating.
The refresh rates received by Rx (blue lines) are identical to the
ones set by Tx (red lines), which indicates that data was transmitted
correctly in the presence of static touch interference.

Dynamic content across different apps. However, dynamic
touches like pressing a button or scrolling will interrupt the chan-
nel, causing the refresh rate to jump to 120 Hz for a brief period.
Other dynamic content such as pop-up notifications and animated
advertisements will also briefly set the refresh rate to 120 Hz and
60 Hz respectively.

Interference from dynamic content varies across different apps
due to their unique usage patterns and animations. For example,
a user may touch the screen less frequently when using e-book
apps compared to browsing various options on food delivery apps.
Similarly, the prevalence of dynamic content interference also varies
in different apps, e.g., more animated content in social media apps
while less in e-book apps. Therefore, we choose ten from the most
popular apps (Table 3) based on AndroidRank [35] to evaluate how
interference from different app usage would affect the channel
concurrently running in the background.

We test these apps using the Samsung phone, but the results
should apply to other devices since the interference is predomi-
nantly caused by dynamic touches and content, which is influenced
by app and user behavior rather than the device itself. The only
exception is Lenovo tablet, which maintains the refresh rate set by
Tx regardless of interference. Thus, although Lenovo tablet has the
worst capacity among the tested devices, its robustness to interfer-
ence compensates with more available transmission time.

We record ten minutes of refresh rate data during normal app
usage, while the Tx app alternates the refresh rate between 48 and
96 Hz. When interference exists, the refresh rate will be forced to 60

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Gaofeng Dong, et al.

Pixel Pl Tabl L. Tabl
35 (a) Samsung 0.14 99 (b) Pixel 012 11 (c) OnePlus H) Samsung Tabl 8?‘14 5.ée) enovo Tabl e6.08
~-C —~C Jo.15 ’
~-c 10.12 10 012 54
30|-o- P, ; 13-
— |-=-P, 101 2 _ 2 0 2 01 Z_52 0.06 2
@ i 59 o @ 59 59 el
325 0088 3 _g é_ 0.1 8 312' 00885_ 5 8
> T S SIS SIS RIS [<
£ s £ . £ 8 S £ S £ 0.04 o
£ 50 006 5 § 5 8 - 006 5 48 5
o] o S & 8 o S &S @
O - O - O 7 0.05 = © - O -
0.04 7 @ @ 0.047F 46 0.02 @
15 6 10+
'./ I‘ - Pe
10 0 0 0 9 0 42w0ed—— 0
20 30 40 20 30 40 10 15 20 25 10 15 20 5 6 7

Raw bandwidth (bps)

Raw bandwidth (bps)

Raw bandwidth (bps)

Raw bandwidth (bps) Raw bandwidth (bps)

Figure 2: The capacities C and bit error probabilities P, of the five test devices. In (a), C and P, are for the ‘1Rate1Bit’ scheme

while C” and P}, are for the ‘1Rate2Bits’ scheme.

Touch Effect
120 Hz 1y RR
—~—RX_RR

z Touch

)
=]

o
=]
©

©
o

60 Hz
[] 48 Hz

@
=]

Refresh Rates (Hz)

23.4 23.6 23.8 24 242

Time (Seconds)

24.4 24.6 24.8 25

Figure 3: Robustness of Tx refresh rate to static touch

or 120 Hz. Otherwise, we read the 48 or 96 Hz set by Tx. Therefore,
the percentage of 48 and 96 Hz shows the available time for the
covert channel to send data.

Table 3: Percentages of available time for the covert channel.

App Name Percentage
Google Play Books 96%
Google News 82%
Reddit 70%
Amazon Shopping 65%
Gmail 61%
Play Store 60%
Twitter 58%
Telegram 54%
Messenger 49%
Uber Eats 48%

Table 3 showcases that the percentage of available time for the
ten apps ranges from 48% for Uber Eats to 96% for Google Play
Books, with an overall average of 64%. This indicates that Tx can
find ample available time to send data, even when the victim is
actively using other apps that may interfere with the channel.

3.3.3 Anti-interference scheme and evaluation. Apart from showing
there is enough available time for the covert channel despite inter-
ference, we also provide an anti-interference design. We evaluate
its throughput based on simulation.

The basic idea is that Tx can monitor the same refresh rates using
the same methods as Rx. Therefore, whenever Tx reads a different

364

refresh rate than it attempted to set, indicating the presence of
interference, it will try to send the packet again until the data is
correctly transmitted. The state machine of the anti-interference
‘1RatelBit’ transmitter is shown in Fig. 4. It’s possible to further
improve the scheme using methods like error correction, which
can be explored in the future. The symbols used here are the same
as those in Algorithms 1 and 2. The three main states are S-SYNC,
S-DATA and S-END, where Tx tries to send SYNC, DATA and END
signals respectively. The scheme of Rx is the same as Algorithm 2.
Each time the SYNC signal is received, DATA is cleared. DATA is
only saved upon receiving the END signal

S-SYNC
i=0; w# rrs ne
START 1=0; Y
Set(rrsync); = IT ==1IT,
wait(I); \\a &&i<L
(sTop) &
>
_ T
T Men “2_ | b=DATA[i];
S-END set(rr,);
set(rr_); e it
wait(I); &&i== wait(I);

Figure 4: State machine of the anti-interference scheme

To evaluate the throughput T under interference, we also need
to consider the interval I and packet length L’. As shown in Sec-
tion 3.3.1, the optimal I of Samsung phone is 30 ms with a bit error
probability P, of 4.36% and capacity of 24.7 bps. The optimal L’
is affected by the frequency of the interference, i.e., it’s better to
choose a shorter L’ when interference happens frequently. But if
it’s too short, the control bits will occupy a significant portion of
the bandwidth. Therefore, it becomes an optimization problem to
find the optimal packet length L’ to maximize the throughput T
given the interference.

To evaluate the effect of changing L’, the interference should be
kept the same when testing different L’. However, it’s impossible

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks

for the user to interact with the apps in exactly the same manner to
generate the same interference for different L’. Here, we choose to
use the refresh rate data from the same experiment as described in
Table 3 and their timestamps to simulate the interference pattern
of a user interacting with the ten different apps, and then calculate
the throughput based on this simulation. Specifically, with the
timestamp of each refresh rate, we can calculate each duration D
of the continuous available time that is not interrupted by 60 or
120 Hz. We denote all available durations as Set D. With a data
length L and two control bits (SYNC and END) per packet, the total
packet length L’ would be L + 2. Therefore, the number of data
bits that can be transmitted in D is L = Lﬁj. We use the floor
function to get how many complete packets can be transmitted
successfully within D because the last packet will be interrupted in
the middle of transmission and should be disregarded. Therefore,
by traversing L (or L’), we can find the optimal L that can maximize
the total data bits Nbits which is },pep L * L(L%)*IJ that can be
transmitted in ten minutes. Then the raw throughput T will be
% bps. Factoring in the transmission bit error, the theoretical
effective throughput T’ can be estimated as T X (1 — H(P,)).

The simulated results are shown in Table 4. The theoretical ef-
fective throughput T’ under the interference of the ten apps ranges
from 10.1 bps for Uber Eats to 22.8 bps for Google Play Books. These
results are also consistent with Table 3 - more available time results
in greater effective bandwidth. When there is less interference, L’
will be longer and T” will be higher. Therefore, Tx may dynamically
adjust L based on current interference instead of using a fixed L’.
The ‘Overall’ category is evaluated on the combination of all the
refresh rate data from the ten apps, rather than simply averaging all
the individual L’ and T’ values. The overall T’ is 14.24 bps. These re-
sults show that even in the presence of interference, an attacker can
find sufficient time and achieve a practical throughput to transmit
short sensitive data.

Table 4: Optimal packet length and theoretical throughput
of the anti-interference scheme

Interfering App | Optimal L’ | T’ (bps)
Google Play Books 94 22.8
Google News 98 19.1
Reddit 43 15.9
Amazon Shopping 36 14.5
Play Store 44 134
Gmail 32 13.3
Twitter 37 12.9
Telegram 30 11.7
Messenger 30 10.5
Uber Eats 24 10.1
Overall 38 14.2

4 ATTACK SCENARIO 2: BUILDING COVERT
CHANNELS BETWEEN APPS AND
WEBPAGES

In Section 3, we built a covert channel between two apps by exploit-
ing DRR to bypass system monitoring. In this section, we expand

365

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

the scope of RefreshChannels to webpages. Launching attacks
from webpages is generally more challenging than from apps, as
attackers have fewer resources at their disposal and face additional
restrictions imposed by browsers [14, 15, 19, 36]. Despite the chal-
lenge that webpages cannot access refresh rate directly, we build
covert channels between an app and a webpage that may be directly
(e.g., a phishing link) or indirectly (e.g., as an advertisement that
runs in benign webpages or apps) accessed by a user, as shown in
Fig. 1 (b). We describe two specific attacks and their threat models
where our malicious webpage can act as either side of the covert
communication channel, and evaluate them on five mobile devices
and four browsers.

4.1 Webpage as Rx

4.1.1 Threat Model. In this scenario, an app running on the vic-
tim’s mobile device works as the Tx. It can access sensitive data and
attempts to transmit the data covertly to avoid legal complications
arising from direct transmission. The app is either malicious or
has unintentionally incorporated malicious third-party libraries, as
discussed in Section 3.1. To receive the data covertly, the attacker
may use a phishing link to trick the victim into accessing the ma-
licious webpage, which functions as the Rx. Aside from phishing
links, attackers can also embed malicious code in advertisements
or analytics services that can run in benign webpages or apps, as
has been done in sensor-related attacks [19, 36, 37]. For brevity, we
will henceforth use ‘webpage’ to represent all these possibilities.
This allows our code to be present on thousands of websites or
apps, extending the range and impact of our attack far beyond the
original covert channel.

4.1.2 Channel Design and Implementation. The webpages were im-
plemented using HTML and JavaScript and run in an iframe widely
used in related work [19, 36]. Since there are no APIs for webpages
to read the refresh rate, we use frame rates to infer refresh rates. To
get the frame rates, we utilize the function requestAnimationFrame
that is present in all tested browsers’ JavaScript APIs, as per the
W3C recommendation [38]. The webpage calculates the elapsed
time between the callbacks to derive the frame rate. The design and
implementation of the Tx app is the same as Section 3.2.3.

4.1.3 Evaluation. We use the same metric, i.e., channel capacity,
as in Section 3.3.1 to evaluate the channel by sending 1,000 bits
of data. The received frame rates are very noisy to demodulate
directly, as shown in Fig. 6. Based on the observation that most of
the noise appears at the rising and falling edges with very large
or small values, we choose the median filter to remove the noise.
The processed traces are much cleaner and easier to demodulate,
as shown in the figure.

Evaluations on different devices. We test our attack across all
five devices, each installed with Google Chrome version 107.0.5304.
105, which was the latest version when our experiments began. Fig.
5 shows the capacities of different devices when the webpage acts
as Rx. Both Samsung phone and tablet can reach around 14.4 bps.
In [39], memory access times are utilized to transmit information
from a background process to a JavaScript program executing in a
web browser, where the bit rate they achieve is around 11 bps on

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Gaofeng Dong, et al.

@) Samsun, b) Pixel c) OnePlus Samsung Tablet e) Lenovo Tablet
15, @ 9 0.4 g ® 15, @ 0.15 @ 9t 1045 g) 0.3
—-C 2 2z |TCI Al = rT R e z
7 =P P33 B’ =y =y 57 5
s —9 \/ £ & gs gs 01 £ Se 02 g
210 025 28 2 S 210 S 2 g
§ A%%s & - - 5 5 >
o3 / S g5 - °a 005 S 94 01 £
3 \ors 8 s 8 °3 ~c| 2§ 5
» m 4 m m o P m m
51 e e
0 0 5 0 2 0
0 20 40 0 10 20 0 10 20 0 20 40 5 10 15

Raw bandwidth (bps) Raw bandwidth (bps)

Raw bandwidth (bps)

Raw bandwidth (bps) Raw bandwidth (bps)

Figure 5: The capacities of different devices when the webpage is Rx.

500
——Tx: GT frame rates
400 —Rx: Raw frame rates
= ——RXx: Filtered frame rates
L
o 300
®
2 200
o
[T
100
0
0 1 2 3
Time (sec)

Figure 6: Ground-truth (GT) refresh rates of Tx app, raw and
filtered frame rates of Rx webpage on Samsung S22 Ultra

an Intel Core i5 computer. RefreshChannels achieves comparable
performance to it, but on a mobile device.

Evaluations on different browsers. We also extend our evalu-
ations to different browsers as well. We chose four of the most popu-
lar browsers on mobile devices [40]: Google Chrome (107.0.5304.105),
Firefox (107.1.0), Samsung Internet (19.0.1.2), and Opera (72.3.3767.
68685). To illustrate the effects of different browsers, we conduct
tests exclusively on the Samsung phone, and only the zero-BER
bandwidths are reported in Table 5, though the maximum capacity
will be higher. The result demonstrates that the choice of browsers
affects zero-BER bandwidth. It is possible that different browsers
add varying amounts of noise to counteract timer-based attacks
by reducing timestamp resolution and adding jitter to increase
uncertainty [41].

Table 5: Zero-BER bandwidths of different browsers on Sam-
sung when the webpage runs as Rx.

Pulse width Bandwidth
Browser
(ms) (bps)
Chrome 350 2.86
Samsung Internet 400 2.50
Firefox 200 5.00
Opera 450 2.22

366

4.2 Webpage as Tx

4.2.1 Threat Model. In this scenario, a webpage has data that it
needs to send to a background app without raising alerts. For exam-
ple, although browser vendors have introduced private browsing
modes to prevent user tracking, it is still possible for the webpage to
circumvent such protections by exfiltrating user tracking identifiers
to an app using covert channels [13-15]. We propose a method that
enables a webpage to affect the refresh to transmit data to an app
monitoring these rate changes.

4.2.2 Channel Design and Implementation. Based on the observa-
tion that dynamic content on the screen affects the refresh rates,
the webpage changes graphical elements or text on the page to
achieve this effect. We found that even a single-pixel difference can
affect the refresh rate, which is undetectable to the victim. When
there is a bit ‘1’ to transmit, the webpage will change the content
for a period to induce a higher refresh rate. Similarly, when there
is a bit ‘0’, it will remain static to allow the refresh rate to fall to
the idle rate.

When the webpage acts as a transmitter, the app needs to run
as a receiver by monitoring the refresh rates. However, the refresh
rate callback functions previously used in Section 3.2.3 are often
unresponsive to refresh rate changes induced by changing content.
To solve this challenge, we use the frame rate to infer the refresh
rate. We leverage the Android SDK Choreographer.FrameCallback
interface to extract the timestamp of each frame and calculate the
frame rate using the time elapsed between frames.

4.2.3 Evaluation. The frame rates are shown in Fig. 8 when the
webpage is Tx. For Samsung and Pixel, the frame rates increase to
120 fps while the Samsung Tablet and Lenovo Tablet have small
sharp fluctuations in frame rates. In both cases, the attacker is capa-
ble of encoding information in the frame rate. Additionally, we also
demonstrate this attack across the four browsers from Section 4.1.3
on Samsung phone. To evaluate the capacity, the webpage trans-
mitted 1,000 random bits to the receiver app. As shown in Figure 7,
the maximum capacity is 2.2 bps when using Google Chrome. It is
lower than the capacity of the "app-to-app" scenario in Section 3.3.1
because not only must webpages indirectly affect the refresh rate by
changing pixels on the page, the Rx app also uses noisy frame rates
to infer the refresh rate. Matyunin et al. use the CPU load to build
the covert channel [14], achieving a bandwidth of 5-8 bps with a
BER around 10% which translates to a capacity of 2.7-4.2 bps. Our

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks

Samsung Internet

2 2
m T@
o g a
=<3 o4

[]
o 52
© ‘©
s 1.5 5 ®
o a
© 5 ©
[$) 20

s}

Raw bandwidth (bps) Raw bandwidth (bps)

Bit error probability
Capacity (bps)

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Firefox 0.06 Opera 015
> /’ >
19 -7 2 / =
N /
0048 & / 01 §
1.8 gg. —-C ,’ g_
5 815| Po/s 5
1.7 002 £ & 0.05 £
20 / 2
1.6 o / m
L 0 1'4l/—; 0
2 2.2 2 2.5 3

Raw bandwidth (bps) Raw bandwidth (bps)

Figure 7: The capacities of different browsers on Samsung when the webpage is Tx.

(a) Samsung (b) Pixel 6 8c83$amsungTablet (d) LenovoTablet
1 L1 a L 1
7140 ——Fps| H140[—Fps| 5 [—Fps] & [——Fps]
£120 2 260.02 2125
» 100 o 120 » o l
2 2 2 2120
S 80 S 100 & 60.01 y:
2 o 2 2 21s
§ 40 s % 5 o §
* 20 * 60 . * 110
59.99
0 2 4 0 5 0 5 1 2
Time (s) Time (s) Time (s) Time (s)

Figure 8: Frame rates of the devices when webpage is Tx.

attack achieves a similar performance. Therefore, the channel can
be used to transmit short private data like a 35-bit user identifier
under the average page dwell time of around a minute [15, 42].

5 COUNTERMEASURES

In this section, we discuss some potential countermeasures. While
certain strategies effective against sensor-based attacks may also be
applied to RefreshChannels, there are unique challenges that com-
plicate full prevention. Consequently, mobile device vendors need
to pay particular attention to these issues. We focus on analyzing
the potential countermeasures qualitatively, and leave quantitative
evaluation as future work.

Elevated usage privileges. A straightforward defense involves
requiring elevated permissions to access refresh/frame rate APIs,
similar to the approach taken for sensitive sensors [16—18]. How-
ever, many legitimate apps need to monitor and change the re-
fresh/frame rate, which inconveniences users with additional per-
mission requests. Not only is it inconvenient, but access control is
also not fully effective, as attackers can still indirectly modulate
the refresh/frame rate by changing content on the screen without
accessing the APIs, as shown in Section 4.2.2. Another choice is to
disallow background apps from accessing refresh or frame rates,
which is effective at the expense of legitimate apps’ flexibility and
functionality.

Attack scope reductions. Instead of directly introducing access
control and hurting user experience, it’s possible to limit the effec-
tiveness of RefreshChannels in several ways.

First, the frequency at which an app can access refresh or frame
rate could be restricted. For instance, Android 12 has introduced
the HIGH_SAMPLING_RATE_SENSORS permission [18], which
elevated the difficulty of launching sensor-based attacks as most

367

legitimate apps do not require high sensor sampling rates. Simi-
larly, normal apps are unlikely to frequently change the refresh rate
within a short period. However, directly applying the frequency
limitation to refresh or frame rate APIs to choke the covert channel
bandwidth encounters the aforementioned exploit of modulating
the refresh rate by modifying screen content. Hence, it would be
more effective to limit the refresh rate change frequency at the
system or hardware level, though this introduces additional com-
plexity. Choosing the best threshold is a tradeoff problem between
DRR usability, available refresh rate numbers, available idle time,
and private data length, which future work can explore.

Next, to address the exploit of changing screen content, a mini-
mum content size threshold for influencing the refresh rate could
be established to reduce the stealthiness of the attack. In both attack
scenarios, a single-pixel surface or screen content change suffices
to modulate the refresh or frame rate, and is impossible to detect
by the user. The advantage of this approach is the minimal im-
pact on user experience, as minor content changes involving a few
pixels occur infrequently and are rarely significant enough to be
perceived, though this can induce extra overhead.

Finally, one can introduce delays and randomization to reduce

the capacity of the attack. Unfortunately, these delays will also
harm user experience, app flexibility, and battery life.
Suspicious app behavior detection. The two covert channel
attacks rely on setting the refresh/frame rates in an unnatural
pattern to send SYNC/END/DATA signals. One possible approach
involves detecting this abnormal behavior and triggering defenses
to interfere with the covert communication, akin to the approaches
taken for sensitive sensors [2, 43-46]. Power consumption-based
detection methods can also be applied here, but it is challenging to
achieve low false positive and negative rates, as malicious apps can
compress private data into a few bits, encode wisely to minimize the
time the refresh rate is modulated, adapt to produce benign-looking
patterns that can be hidden among normal activities, or exfiltrate
at a lower rate if all fails.

6 DISCUSSION AND FUTURE WORK

This work provides novel insights into using DRR switching to
launch covert channel attacks on mobile devices. Despite some lim-
itations, we believe these attacks open up some promising research
directions.

Affected devices. Any mobile devices with DRR may be potentially
affected by RefreshChannels because underlying DDR switching

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

principles are similar across devices. Mainstream mobile device
vendors, including Apple, Samsung, Google, Oneplus, and Lenovo,
have adopted DDR and list it as one of their devices’ key features.
Though we focus on attacks on five Android devices from four
vendors, we also demonstrate the potential to similarly attack iOS
(Apple) devices, which recently introduced ProMotion displays
with dynamic refresh rates. Our preliminary tests on an iPhone
13 Pro show that the CADisplayLink [25] object can suggest the
refresh rates, indicating the feasibility of building covert channels
on i0S devices as its DRR switching strategy is similar to Android.
Touch-induced frame rate changes can also be recorded through
browsers like Safari and Chrome, as shown in Fig. 9. This suggests
the potential for keystroke inference attacks on iOS devices, which
can be explored in future work.

fari hi
(a) Safari 120 (a) Chrome
80
L1 100
2 | 2
o ‘ S 80
o 60 1l o ‘Wl] ° ‘ ‘ J
i 50 s p ‘\ | ‘w ‘\ ﬂ ‘\ y
|
40 : : 40 |
0 5 10 0 5 10
Time (sec) Time (sec)

Figure 9: The frame rates recorded using Safari and Chrome
on iPhone 13 Pro for three normal touches and five quick
touches.

Stealthiness. Given that a change in a single pixel is sufficient
to alter the refresh rates, it is challenging for the victim to no-
tice such a pixel-level difference. Furthermore, the attack would
typically be deployed when the screen content is idle/static, so it
will not cause screen tearing, touch response slowdown, or other
noticeable fluctuations in user experience. To evaluate its stealth-
iness, we conducted a user study? with ten volunteers using the
Samsung smartphone. In this study, we designed two scenarios:
the "static" scenario, where the user can only observe the screen
without touching it, and the "interactive" scenario, where the user
can use the phone normally. For each scenario, two sessions are
shown to the participant: one in which RefreshChannels is active,
while it remains idle in the other. We randomized the order of these
two sessions and then asked the users if they noticed any user
experience differences between the two sessions. If the answer was
"yes," we asked the users to explain the differences they noticed
and identify the session with the active attack. The procedure was
repeated three times for each scenario. The results showed that no
differences were identified in the thirty runs of the "static" scenario.
In the "interactive" scenario, users believed that they perceived
differences in only three out of the thirty runs: slowdowns when
opening an app, changes in smoothness when playing videos, or
reduced responsiveness when scrolling webpages quickly. However,
two of these three answers were incorrect, i.e., the attack was not
active in the session where they perceived the worse experience.
We believe these differences were either imagined or caused by
occasional system performance fluctuations, as similar differences

2The study was approved by our institution’s internal review board (IRB).

368

Gaofeng Dong, et al.

were not observed in previous or subsequent runs. This user study
demonstrates that RefreshChannels cannot be detected by users
in both static and interactive scenarios, even when the user is aware
that the attack was launched in one of the two sessions, showing
its stealthiness.

More advanced modulation schemes. Based on the number of
available refresh rates on different devices, we designed several
basic modulation schemes in Sections 3.2 for the proof-of-concept
purpose. Future work can explore more advanced schemes that
can fully exploit the channel resources, coupled with proper error
correction codes like forward error corrections to correct errors.
Potential affected private data. As general covert communication
channels, our proposed attacks can be used to send any short private
user data, such as IMEI, GPS coordinates, or credit card numbers, as
shown in previous works [7-9, 11, 12, 34]. A 35-bit string, sufficient
to uniquely identify the approximately 7.9 billion people on the
planet [15], can be transmitted within seconds using our channel.
This transmission time is less than the average page dwell time,
which is slightly under a minute [42].

Keystroke inference attacks. Timing side-channel attacks ultilize
the time difference of different operations to infer cryptographic
keys or private data [46-51]. Recent attacks show that the inter-
key-interval (IKI) between two touches can leak the keystrokes, as a
longer interval implies that two keystrokes are further apart on the
keypad [52-55]. The adversary’s goal is to infer the victim’s secret
PIN by eavesdropping on the timings of the keystrokes. Here, we
develop an app with soft numeric keyboards with a classic layout as
considered in prior works [52-54]. Fig. 10 shows the frame rates of
three PIN touches on the five mobile devices we tested. When the
user taps a PIN button, the frame rate will increase from idle rates
to around 120 fps or generate peaks around 120 fps, which indicates
the keystroke timings. After obtaining the timings, the possible PIN
pairs can be inferred by modeling the entire PIN entering process
with a Hidden Markov Model (HMM) 51, 54]. For the lock screen’s
PIN input, though the refresh rate remains fixed, we noticed some
fluctuations in the frame rate around 120 fps on the Pixel 6 Pro,
similar to Fig. 10 (b). These fluctuations, although challenging to
detect, suggest that hardware behavior varies slightly in response
to PIN input animations. Future works can further explore this
vulnerability.

(a) Samsung (b) Pixel (c) OnePlus (d) S: T) LenovoTablet
150 || ——FPS| 49| [——FPS —FPS| 440} |——FPS| 124+ |——FPS
& &35 g &1 &
= = = = S !
g100 8130 8100 $ 100 8
& & & & &
2 2% 2 g ® g1
§ 50 § 120 s % S 6 S
w w w w w
115 | 60 40 118
0123 0 2 4 2 4 0123 0o 2 4
Time (s) Time (s) Time (s) Time (s) Time (s)

Figure 10: Frame rates when pressing PIN buttons of an app
on different devices.

Fingerprinting/Tracking attacks. Different apps and websites
may exhibit unique refresh/frame rate patterns depending on user

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks

interaction and dynamic content, exposing them to fingerprint-
ing attacks by recording refresh/frame rates. Apart from identify-
ing apps or websites, users can also be identified by the unique
properties of their browser, system environment, or hardware [14,
15]. Therefore, refresh/frame rates may also be used to track web
browser users.

Background app execution. Though there exists no access con-
trol around refresh/frame rate, Android limits apps’ background
running time to minutes, which can shorten the attack time window.
Note that this is a general challenge for mobile device attacks. First,
short private data like IMEI is still possible to be shared within sec-
onds or minutes. Besides, private user data, such as IMEI and credit
card numbers, is usually fixed and will not change over months or
years. Therefore, launching the attack successfully once is enough.
Also, the malicious app can masquerade as a legitimate app to have
a longer lifespan, since the Foreground Service permission is auto-
matically granted and the notification can be obfuscated, as shown
in recent attacks [8, 56]. To keep Surfaces alive when running in the
background, the app can switch to overlay mode by disguising itself
as a normal app, as more than 35% of the most popular apps use it
to implement key features and it is even automatically granted in
certain cases [21, 57, 58]. Besides, even without overlay mode, it can
subtly alter the color or a single pixel of a silent notification icon to
induce frame rate changes, which cannot be noticed by human eyes
to keep its stealthiness. More methods can be explored in future
work.

7 RELATED WORK

In this work, we demonstrate two attack scenarios on mobile de-
vices, namely inter-app and app-web covert channels. Therefore,
we first summarize previous works related to these attacks. Addi-
tionally, considering RefreshChannels as a potential attack vector
that may enable more attacks, we draw comparisons with simi-
lar attack vectors, such as sensor-based and micro-architectural
attacks, to show its distinctive features and potential implications
within a wider spectrum of mobile security and privacy research.
Again, given the extensive scope of research in this field, a compre-
hensive discussion within this paper is unfeasible. Therefore, we
focus on examining studies that are especially significant, novel,
and relevant.

Inter-app covert channels on mobile devices. Inter-app covert
channels in mobile devices have been studied extensively over the
last decade and have been shown to pose a tangible security and
privacy threat to mobile users [8-12]. Some attacks use physical
transmission media. For example, Novak et al. [34] built covert
channels using light, while Block et al. [12] used ultrasonic frequen-
cies, and Masti et al. [11] modulated processor core temperatures
on multi-core platforms. Other attacks exploit side effects of the
software interface. For instance, Soundcomber [7] utilized vibra-
tion/volume settings, and Shepherd et al. [8] modified the sampling
rate of on-device sensors. Our first attack is based on affecting and
accessing the refresh rate, so it belongs to the latter category.
App-Web covert channels on mobile devices. Webpages have
been used as transmitters in covert channels. Matyunin et al. [14]
used CPU load to secretly communicate data from a web browser
to a background app. The website uses CPU-intensive operations to

369

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

encode data, and the receiver app measures the execution time of a
code fragment to gauge the CPU load and decode data. Webpages
can also act as the receiver side of a covert channel. In [39], memory
access times are utilized to transmit information from a background
process in a computer to a JavaScript program executing in a web
browser. They rely on the difference in access time between cache
hits and misses to transmit information. ARM-based mobile de-
vices have been found to be vulnerable to this type of cache-based
covert channel [59], and are likely vulnerable to an attack similar
to [39]. With RefreshChannels, a webpage can act as either side
of the covert communication channel by affecting or monitoring
the refresh/frame rate.

Sensor-based attacks on mobile devices. Sensors can be used
to launch a series of attacks, such as covert channel attacks [7, 60],
side channel attacks [23, 61], and fingerprinting attacks [62, 63].
Due to such threats, access to sensors has been strictly restricted on
mobile devices. For example, the OS will require the user’s explicit
permission to access sensitive sensors like microphones. Besides,
the W3C has also recommended disabling sensor access on cross-
origin iframes, which limits sensor-based attacks on webpages [19].
However, as a new attack vector based on DRR, RefreshChannels
may bypass these restrictions. Therefore, the insights provided by
this work can help design more secure web standards and mobile
devices that are resistant to RefreshChannels.
Microarchitectural attacks on mobile devices. Microarchitec-
tural attacks are very powerful by exploiting vulnerabilities in the
microarchitecture of modern computer processors [64-66]. How-
ever, they are also difficult to implement due to the complex design
of modern microarchitectures, lack of public documentation, noise
introduced by other system activities, etc [67-69]. What’s more,
such attacks are even harder on mobile devices [70, 71]. On the con-
trary, our attack only requires basic knowledge of app development
and uses public APIs, making it easy to implement. Such attacks
are often referred to as OS-level attacks [71]. Besides, future work
can explore combining RefreshChannels with microarchitectural
attacks to create new attacks or improve existing ones.

8 CONCLUSION

Modern mobile devices require strong security as they host an
increasing amount of private data and services. This paper investi-
gates a novel vulnerability, RefreshChannels, that facilitates dif-
ferent attack scenarios on mobile devices utilizing dynamic refresh
rate switching. In the first attack, we showed that two apps are
able to communicate using refresh rates, bypassing the OS sand-
boxing and isolation measures. Then, we demonstrated that even
a malicious advertisement displayed on a webpage can covertly
communicate with another app without any user awareness, which
allows the proposed attacks to be more widespread. We imple-
mented these attacks on five popular smartphones and tablets from
four different vendors and also evaluated the second attack on four
popular browsers, underlining the universality of our approach,
which could potentially affect millions of users. Our findings indi-
cate that the proposed attack vector is a threat to mobile devices,
and we discussed several countermeasures to mitigate the proposed
attacks. In the future, we will explore the possibilities of keystroke

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

inference and fingerprinting attacks, and design more secure mobile
devices with the insights provided by this work.

ACKNOWLEDGMENTS

The authors would like to thank the shepherd and the reviewers
for their comments that helped tremendously in improving this
work. The research reported in this paper was sponsored in part
by: the DEVCOM Army Research Laboratory under Cooperative
Agreement #W911NF-17-2-0196; the National Science Foundation
under Awards #1705135, #2211301, and #2312089; and, the NIH
mDOT Center under Award #1P41EB028242. The views and con-
clusions contained in this document are those of the authors, and
they should not be interpreted as representing the official policies,
either expressed or implied, of the funding agencies.

REFERENCES

[1] Nikolina Cveticanin. Hacking statistics to give you nightmares, 2023. https:

//dataprot.net/statistics/hacking-statistics/.

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my

market: detecting malicious apps in official and alternative android markets. In

NDSS, volume 25, pages 50-52, 2012.

[3] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. Mining apps for abnormal usage of
sensitive data. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 426-436. IEEE, 2015.

[4] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von
Styp-Rekowsky. Boxify: Full-fledged app sandboxing for stock android. In 24th
USENIX Security Symposium (USENIX Security 15), pages 691-706, 2015.

[5] Swarup Chandra, Zhiqiang Lin, Ashish Kundu, and Latifur Khan. Towards a
systematic study of the covert channel attacks in smartphones. In International
Conference on Security and Privacy in Communication Networks, pages 427-435.
Springer, 2014.

[6] Nikolay Matyunin, Jakub Szefer, Sebastian Biedermann, and Stefan Katzenbeisser.
Covert channels using mobile device’s magnetic field sensors. In 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC), pages 525-532. IEEE,
2016.

[7] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu Kapadia,
and XiaoFeng Wang. Soundcomber: A stealthy and context-aware sound trojan
for smartphones. In NDSS, volume 11, pages 17-33, 2011.

[8] Carlton Shepherd, Jan Kalbantner, Benjamin Semal, and Konstantinos Markan-
tonakis. A side-channel analysis of sensor multiplexing for covert channels and
application fingerprinting on mobile devices. arXiv preprint arXiv:2110.06363,
2021.

[9] Joel Reardon, Alvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-

Rodriguez, and Serge Egelman. 50 ways to leak your data: An exploration of

apps’ circumvention of the android permissions system. In 28th USENIX security

symposium (USENIX security 19), pages 603-620, 2019.

Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun.

Analysis of the communication between colluding applications on modern smart-

phones. In Proceedings of the 28th Annual Computer Security Applications Confer-

ence, pages 51-60, 2012.

[11] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Miiller,
Lothar Thiele, and Srdjan Capkun. Thermal covert channels on multi-core
platforms. In 24th { USENIX} Security Symposium ({ USENIX} Security 15), pages
865-880, 2015.

[12] Kenneth Block, Sashank Narain, and Guevara Noubir. An autonomic and per-

missionless android covert channel. In Proceedings of the 10th ACM Conference

on Security and Privacy in Wireless and Mobile Networks, pages 184194, 2017.

Nikolay Matyunin, Yujue Wang, Tolga Arul, Kristian Kullmann, Jakub Szefer,

and Stefan Katzenbeisser. Magneticspy: Exploiting magnetometer in mobile

devices for website and application fingerprinting. In Proceedings of the 18th

ACM Workshop on Privacy in the Electronic Society, pages 135-149, 2019.

Nikolay Matyunin, Nikolaos A Anagnostopoulos, Spyros Boukoros, Markus Hein-

rich, André Schaller, Maksim Kolinichenko, and Stefan Katzenbeisser. Tracking

private browsing sessions using cpu-based covert channels. In Proceedings of
the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks,

pages 63-74, 2018.

Peter Snyder, Soroush Karami, Arthur Edelstein, Benjamin Livshits, and Hamed

Haddadi. {Pool-Party}: Exploiting browser resource pools for web tracking. In

32nd USENIX Security Symposium (USENIX Security 23), pages 7091-7105, 2023.

[2

=

[10

[13

=
it

[15

Gaofeng Dong, et al.

[16] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno, Helen J

Wang, and Crispin Cowan. User-driven access control: Rethinking permission
granting in modern operating systems. In 2012 IEEE Symposium on Security and
Privacy, pages 224-238. IEEE, 2012.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. Android permissions: User attention, comprehension, and
behavior. In Proceedings of the eighth symposium on usable privacy and security,
pages 1-14, 2012.

Android. Sensor rate limiting, 2022. https://developer.android.com/guide/topics
/sensors/sensors_overview#sensors-rate-limiting.

Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. The web’s
sixth sense: A study of scripts accessing smartphone sensors. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 18, page 1515-1532, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356930. doi: 10.1145/3243734.3243860. URL https:
//doi.org/10.1145/3243734.3243860.

Yicheng Zhang, Carter Slocum, Jiasi Chen, and Nael Abu-Ghazaleh. It’s all in
your head (set): Side-channel attacks on ar/vr systems. In USENIX Security, 2023.
Michalis Diamantaris, Serafeim Moustakas, Lichao Sun, Sotiris Ioannidis, and
Jason Polakis. This sneaky piggy went to the android ad market: Misusing mobile
sensors for stealthy data exfiltration. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 1065-1081, 2021.
Fenghao Xu, Wenrui Diao, Zhou Li, Jiongyi Chen, and Kehuan Zhang. Badblue-
tooth: Breaking android security mechanisms via malicious bluetooth peripherals.
In NDSS, 2019.

Matthias Gazzari, Annemarie Mattmann, Max Maass, and Matthias Hollick. My
(o) armband leaks passwords: An emg and imu based keylogging side-channel
attack. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(4):1-24, 2021.

Ady Abraham. High refresh rate rendering on android, Apr 2020. https://an
droid-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-
android.html.

Apple. Optimizing promotion refresh rates for iphone 13 pro and ipad pro, 2021.
https://developer.apple.com/documentation/quartzcore/optimizing_promotio
n_refresh_rates_for_iphone_13_pro_and_ipad_pro.

StatCounter. Mobile operating system market share worldwide, 2023. https:
//gs.statcounter.com/os-market-share/mobile/worldwide.

Android Open Source Project. Graphics, 2023. https://source.android.com/docs/
core/graphics.

Android. Frame rate, 2023. https://developer.android.com/guide/topics/media/f
rame-rate.

Android. Refresh rate callback, 2023. https://developer.android.com/ndk/refere
nce/group/choreographer#achoreographer_registerrefreshratecallback.
Android. Frame rate callback, 2023. https://developer.android.com/reference/an
droid/view/Choreographer.FrameCallback.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. {DRAMA }: Exploiting {DRAM} addressing for {Cross-CPU} attacks.
In 25th USENIX security symposium (USENLX security 16), pages 565-581, 2016.
Hamed Okhravi, Stanley Bak, and Samuel T King. Design, implementation and
evaluation of covert channel attacks. In 2010 IEEE International Conference on
Technologies for Homeland Security (HST), pages 481-487. IEEE, 2010.

Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. Lord of the ring
(s): Side channel attacks on the {CPU} {On-Chip} ring interconnect are practical.
In 30th USENIX Security Symposium (USENIX Security 21), pages 645-662, 2021.
Ed Novak, Yutao Tang, Zijiang Hao, Qun Li, and Yifan Zhang. Physical media
covert channels on smart mobile devices. In Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing, pages 367-378,
2015.

AndroidRank. Open android market data, 2023. https://www.androidrank.org/.
Maryam Mehrnezhad, Ehsan Toreini, Siamak F. Shahandashti, and Feng Hao.
Touchsignatures: Identification of user touch actions and pins based on mobile
sensor data via javascript. Journal of Information Security and Applications, 26:
23-38, 2016. ISSN 2214-2126. doi: https://doi.org/10.1016/j.jisa.2015.11.007. URL
https://www.sciencedirect.com/science/article/pii/S2214212615000678.

Jiexin Zhang, Alastair R Beresford, and Ian Sheret. Sensorid: Sensor calibration
fingerprinting for smartphones. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 638-655. IEEE, 2019.

James Robinson and Cameron McCormack. Timing control for script-based
animations, 2022. https://www.w?3.org/TR/animation-timing/.

Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fan-
tastic timers and where to find them: High-resolution microarchitectural attacks
in javascript. In Aggelos Kiayias, editor, Financial Cryptography and Data Se-
curity, pages 247-267, Cham, 2017. Springer International Publishing. ISBN
978-3-319-70972-7.

StatCounter. Browser market share worldwide, 2023. https://gs.statcounter.com
/browser-market-share.

Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In search of
lost time: A review of javascript timers in browsers. In 2021 IEEE European

https://dataprot.net/statistics/hacking-statistics/
https://dataprot.net/statistics/hacking-statistics/
https://developer.android.com/guide/topics/sensors/sensors_overview#sensors-rate-limiting
https://developer.android.com/guide/topics/sensors/sensors_overview#sensors-rate-limiting
https://doi.org/10.1145/3243734.3243860
https://doi.org/10.1145/3243734.3243860
https://android-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-android.html
https://android-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-android.html
https://android-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-android.html
https://developer.apple.com/documentation/quartzcore/optimizing_promotion_refresh_rates_for_iphone_13_pro_and_ipad_pro
https://developer.apple.com/documentation/quartzcore/optimizing_promotion_refresh_rates_for_iphone_13_pro_and_ipad_pro
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://source.android.com/docs/core/graphics
https://source.android.com/docs/core/graphics
https://developer.android.com/guide/topics/media/frame-rate
https://developer.android.com/guide/topics/media/frame-rate
https://developer.android.com/ndk/reference/group/choreographer#achoreographer_registerrefreshratecallback
https://developer.android.com/ndk/reference/group/choreographer#achoreographer_registerrefreshratecallback
https://developer.android.com/reference/android/view/Choreographer.FrameCallback
https://developer.android.com/reference/android/view/Choreographer.FrameCallback
https://www.androidrank.org/
https://www.sciencedirect.com/science/article/pii/S2214212615000678
https://www.w3.org/TR/animation-timing/
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks

[42]

[43]

[44

N
A}

[46]

[47]

[48

[49

[50

[53

[54]

[55]

[56

[57

[58]

(59

[62]

[63

Symposium on Security and Privacy (EuroS&P), pages 472-486, 2021. doi: 10.1109/
EuroSP51992.2021.00039.

Chao Liu, Ryen W White, and Susan Dumais. Understanding web browsing
behaviors through weibull analysis of dwell time. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval, pages 379-386, 2010.

Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Uluagac. 6thsense: A context-
aware sensor-based attack detector for smart devices. In USENIX Security Sym-
posium, pages 397-414, 2017.

Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. “andro-
maly”: a behavioral malware detection framework for android devices. Journal
of Intelligent Information Systems, 38(1):161-190, 2012.

Prakash Shrestha, Manar Mohamed, and Nitesh Saxena. Slogger: Smashing
motion-based touchstroke logging with transparent system noise. In Proceedings
of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks,
pages 67-77, 2016.

Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice,
Raphael Spreitzer, and Stefan Mangard. Keydrown: Eliminating software-based
keystroke timing side-channel attacks. In Network and Distributed System Security
Symposium. Internet Society, 2018.

Denis Foo Kune and Yongdae Kim. Timing attacks on pin input devices. In
Proceedings of the 17th ACM conference on Computer and communications security,
pages 678-680, 2010.

Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W Fletcher, and David Kohlbrenner. Hertzbleed: Turning power
{Side-Channel} attacks into remote timing attacks on x86. In 31st USENIX
Security Symposium (USENIX Security 22), pages 679-697, 2022.

Gaofeng Dong, Ping Wang, Ping Chen, Ruizhe Gu, and Honggang Hu. Floating-
point multiplication timing attack on deep neural network. In 2019 IEEE Inter-
national Conference on Smart Internet of Things (SmartloT), pages 155-161. IEEE,
2019.

Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Advances in Cryptology—CRYPTO’96: 16th Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA August 18-22, 1996
Proceedings 16, pages 104-113. Springer, 1996.

Dawn Xiaodong Song, David A Wagner, Xuging Tian, et al. Timing analysis of
keystrokes and timing attacks on ssh. In USENIX Security Symposium, volume
2001, 2001.

Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xiaohui Liang, Yao Liu, and
Na Ruan. When csi meets public wifi: inferring your mobile phone password via
wifi signals. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 1068-1079, 2016.

Jingchao Sun, Xiaocong Jin, Yimin Chen, Jinxue Zhang, Yanchao Zhang, and Rui
Zhang. Visible: Video-assisted keystroke inference from tablet backside motion.
In NDSS, 2016.

Wengiang Jin, Srinivasan Murali, Huadi Zhu, and Ming Li. Periscope: A key-
stroke inference attack using human coupled electromagnetic emanations. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 700-714, 2021.

Ximing Liu, Yingjiu Li, Robert H Deng, Bing Chang, and Shujun Li. When human
cognitive modeling meets pins: User-independent inter-keystroke timing attacks.
Computers & Security, 80:90-107, 2019.

Ke Sun, Chunyu Xia, Songlin Xu, and Xinyu Zhang. StealthyIMU: Extracting
permission-protected private information from smartphone voice assistant using
zero-permission sensors. In NDSS, 2023.

Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wilson, Tianyin Xu, Ennan
Zhai, Yong Li, and Yunhao Liu. Understanding and detecting overlay-based
android malware at market scales. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, pages 168-179, 2019.
Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke Lee. Cloak
and dagger: from two permissions to complete control of the ui feedback loop. In
2017 IEEE Symposium on Security and Privacy (SP), pages 1041-1057. IEEE, 2017.
Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. ARMageddon: Cache attacks on mobile devices. In 25th USENIX
Security Symposium (USENIX Security 16), pages 549-564, Austin, TX, August
2016. USENIX Association. ISBN 978-1-931971-32-4. URL https://www.usenix.o
rg/conference/usenixsecurity16/technical-sessions/presentation/lipp.

Wen Qi, Wanfu Ding, Xinyu Wang, Yonghang Jiang, Yichen Xu, Jianping Wang,
and Kejie Lu. Construction and mitigation of user-behavior-based covert channels
on smartphones. IEEE Transactions on Mobile Computing, 17(1):44-57, 2017.
Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen
from smartphone motion. In 6th USENIX Workshop on Hot Topics in Security
(HotSec 11), 2011.

Anupam Das, Nikita Borisov, and Matthew Caesar. Tracking mobile web users
through motion sensors: Attacks and defenses. In NDSS, 2016.

Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Srihari
Nelakuditi. Accelprint: Imperfections of accelerometers make smartphones
trackable. In NDSS, volume 14, pages 23-26. Citeseer, 2014.

371

(64

[65

[66

(68

[69

[70

[71

]
]

MOBISYS ’24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Yuval Yarom and Katrina Falkner. {FLUSH+ RELOAD}: A high resolution, low
noise, 13 cache {Side-Channel} attack. In 23rd USENIX security symposium
(USENIX security 14), pages 719-732, 2014.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user space.
In 27th USENIX Security Symposium (USENIX Security 18), 2018.

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

Catherine Easdon, Michael Schwarz, Martin Schwarzl, and Daniel Gruss. Rapid
prototyping for microarchitectural attacks. In USENIX Security Symposium, 2022.
Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
Absynthe: Automatic blackbox side-channel synthesis on commodity microar-
chitectures. In NDSS, 2020.

Yuval Yarom. Mastik: A micro-architectural side-channel toolkit. https://cs.adela
ide.edu.au/~yval/Mastik/, 2016.

Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Johann
Heyszl, and Thomas Eisenbarth. {AutoLock}: Why cache attacks on {ARM}
are harder than you think. In 26th USENIX Security Symposium (USENIX Security
17), pages 1075-1091, 2017.

Xiaokuan Zhang, Xuegiang Wang, Xiaolong Bai, Yinqian Zhang, and XiaoFeng
Wang. Os-level side channels without procfs: Exploring cross-app information
leakage on ios. In Proceedings of the Symposium on Network and Distributed
System Security, 2018.

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://cs.adelaide.edu.au/~yval/Mastik/
https://cs.adelaide.edu.au/~yval/Mastik/

	Abstract
	1 Introduction
	2 Background
	3 Attack Scenario 1: Building Inter-App Covert Channels
	3.1 Threat Model
	3.2 Channel Design and Implementation
	3.3 Evaluations

	4 Attack Scenario 2: Building Covert Channels between Apps and Webpages
	4.1 Webpage as Rx
	4.2 Webpage as Tx

	5 Countermeasures
	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

