
RefreshChannels: Exploiting Dynamic Refresh Rate Switching for
Mobile Device Attacks

Gaofeng Dong

University of California, Los Angeles

Los Angeles, California, USA

gfdong@g.ucla.edu

Jason Wu

University of California, Los Angeles

Los Angeles, California, USA

jaysunwu@g.ucla.edu

Julian de Gortari Briseno

University of California, Los Angeles

Los Angeles, California, USA

julian700@g.ucla.edu

Akash Deep Singh

University of California, Los Angeles

Los Angeles, California, USA

akashdeepsingh@g.ucla.edu

Justin Feng

University of California, Los Angeles

Los Angeles, California, USA

jfeng10@ucla.edu

Ankur Sarker

University of California, Los Angeles

Los Angeles, California, USA

as4mz@virginia.edu

Nader Sehatbakhsh

University of California, Los Angeles

Los Angeles, California, USA

nsehat@ee.ucla.edu

Mani Srivastava
∗

University of California, Los Angeles

and Amazon

Los Angeles, California, USA

mbs@ucla.edu

ABSTRACT
Mobile devices with dynamic refresh rate (DRR) switching displays

have recently become increasingly common. For power optimiza-

tion, these devices switch to lower refresh rates when idling, and

switch to higher refresh rates when the content displayed requires

smoother transitions. However, the security and privacy vulnerabil-

ities of DRR switching have not been investigated properly. In this

paper, we propose a novel attack vector called RefreshChannels that
exploits DRR switching capabilities formobile device attacks. Specif-

ically, we first create a covert channel between two colluding apps

that are able to stealthily share users’ private information by modu-

lating the data with the refresh rates, bypassing the OS sandboxing

and isolation measures. Second, we further extend its applicability

by creating a covert channel between a malicious app and either

a phishing webpage or a malicious advertisement on a benign

webpage. Our extensive evaluations on five popular mobile de-

vices from four different vendors demonstrate the effectiveness and

widespread impacts of these attacks. Finally, we investigate several
countermeasures, such as restricting access to refresh rates, and

find they are inadequate for thwarting RefreshChannels due to

DDR’s unique characteristics.

∗
Mani Srivastava holds concurrent appointments as a Professor of ECE and CS (joint)

at the University of California, Los Angeles and as an Amazon Scholar. This paper

describes work performed at the University of California, Los Angeles and is not

associated with Amazon.

ACM ISBN 979-8-4007-0581-6/24/06

https://doi.org/10.1145/3643832.3661864

CCS CONCEPTS
• Security and privacy → Mobile platform security; Side-
channel analysis and countermeasures; Operating systems
security; Browser security.

KEYWORDS
Mobile Devices, Security and Privacy, Covert Channel, Dynamic

Refresh Rate

ACM Reference Format:
Gaofeng Dong, Jason Wu, Julian de Gortari Briseno, Akash Deep Singh,

Justin Feng, Ankur Sarker, Nader Sehatbakhsh, and Mani Srivastava. 2024.

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile

Device Attacks. In The 22nd Annual International Conference on Mobile
Systems, Applications and Services (MOBISYS ’24), June 3–7, 2024, Minato-ku,
Tokyo, Japan. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3643832.3661864

1 INTRODUCTION
Mobile devices have revolutionized the way we work, travel, shop,

and stay connected. The prevalence of mobile devices in all as-

pects of our lives means that they have access to vast amounts of

sensitive information about us – from precise location to credit

card information, making them a ripe target for malicious apps to

steal and share such data [1–3]. Mobile OSs mitigate this issue by

employing app sandboxing [4], which isolates different apps and

their resources. Apps can still communicate with each other with

technologies such as inter-process communications (IPC), but these

methods are closely monitored by the OS and require the user’s

explicit approval or consent.

Unfortunately, malicious apps can utilize covert channels to dis-

creetly transmit information without the system or user’s knowl-

edge [5–8]. These apps may be maliciously implanted by the ad-

versary, or may also be benign but contain third-party malicious

libraries. For example, Reardon et al. [9] discovered such vulnera-

bilities in third-party libraries provided by well-known companies.

359

MOBISYS '24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright is held by the owner/author(s).

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-8206-3499
https://orcid.org/0000-0002-8174-4751
https://orcid.org/0000-0003-1843-5830
https://orcid.org/0000-0003-1095-2200
https://orcid.org/0009-0003-4723-4808
https://orcid.org/0000-0003-4232-3345
https://orcid.org/0000-0001-7181-2258
https://orcid.org/0000-0002-3782-9192
https://doi.org/10.1145/3643832.3661864
https://doi.org/10.1145/3643832.3661864
https://doi.org/10.1145/3643832.3661864
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643832.3661864&domain=pdf&date_stamp=2024-06-04

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Gaofeng Dong, et al.

With covert channels, a user’s private data such as personal prefer-

ences, GPS coordinates, credit card numbers or persistent identifiers

like IMEI can be shared with other parties while bypassing legal

and security regulations [10–12]. Apart from apps, malicious web-

pages can also utilize covert channels to circumvent anti-tracking

protections in browsers [13, 14]. For instance, Snyder et al. [15] use

web covert channels to transmit a 35-bit string, which is sufficient

for attackers to uniquely identify the 7.9 billion people on Earth.

Over the years, active measures have been taken to suppress

known covert channels. For example, modern mobile OSs such as

Android and iOS require permissions for an app to access sensi-

tive sensors [16–18]. Moreover, theW3C, theWeb’s standardization

body, has also recommended disabling sensor access on cross-origin

iframes to limit attacks on webpages [19]. However, the introduc-

tion of new features often leads to unforeseen exploits and vulner-

abilities that can circumvent existing countermeasures [7, 20–23].

In this work, we investigate a novel vulnerability surrounding the

newly employedDynamic Refresh Rate (DRR) switching technology

in recent mobile devices, and show that the existing countermea-

sures are ineffective at mitigating this vulnerability.

To simultaneously achieve a good user experience and long bat-

tery life, DRR dynamically adjusts the refresh rate depending on

the screen content – higher rates for dynamic content that requires

smoothness and lower rates for static content when the device is

idling. We find that both Android and iOS, the two most popular

mobile OSs, provide permission-less access to refresh rates [24, 25],

which can be exploited by malicious apps or websites. This vul-

nerability exists because running apps need to be able to suggest

a preferred refresh rate, as well as monitor the current rate, for

DRR to be effective. As DRR techniques are adopted by many main-

stream smartphone and tablet vendors such as Apple and Samsung,

it is crucial to thoroughly investigate the underlying security and

privacy risks.

In this work, we demonstrate two novel privacy invasive attacks

using the DRR switching technique, as shown in Fig. 1. Firstly,
we construct an inter-app covert channel in Section 3 that two

apps can use to communicate and bypass the app sandboxing and

isolation measures imposed by the OS. We evaluate its effective-

ness using five popular mobile devices including smartphones and

tablets from four distinct vendors, i.e., Samsung, Google, Lenovo,

and OnePlus. However, the refresh rate changes from normal user

activities will interfere with our channel. Therefore, we identify

the interference sources, propose an anti-interference scheme, and

evaluate it with ten popular apps. Secondly, despite the lack of di-

rect ways for webpages to access refresh rates, we build another

covert channel between a malicious app and a phishing webpage

or a malicious advertisement on a benign webpage, as discussed

in Section 4. We assess this attack on four widely used browsers,

i.e., Chrome, Firefox, Opera, and Samsung Internet. This broadens

the flexibility and applicability of the first attack. Third, we discuss
the challenges of mitigating these attacks and propose potential

countermeasures in Section 5. As an attack vector, DRR can be

exploited to conduct more attacks, as discussed in Section 6.

To the best of our knowledge, this is the first work showcas-

ing DRR switching as a new attack vector, which we refer to as

RefreshChannels. In summary, the contributions of this paper are:

• We investigate DRR switching strategies on mobile devices

and explore numerous ways to modulate and monitor the

refresh rate under differing scenarios.

• We demonstrate two proof-of-concept attacks that exploit

DRR to circumvent the system’s sandboxing and isolation

measures to share data. The first attack builds a covert com-

munication channel between two apps without triggering

the system’s alerts or users’ awareness. Then, we show that

even a webpage or a malicious advertisement on a benign

webpage can covertly communicate with an app in the sec-

ond attack.

• We implement the attacks
1
and evaluate them with exten-

sive experiments using five popular mobile devices and four

popular browsers.

• We discuss the challenges in mitigating these attacks and

propose several countermeasures.

2 BACKGROUND
In this section, we present the background of DRR in Android OS,

introduce the basic methods to affect and monitor the refresh rates,

and provide an overview of the attacks. Android OS is the most

popular open-sourced mobile OS, covering 72.37% of mobile OS

market shares as of January 2023 [26]. Though we focus on Android

mobile devices due to the greater reach, this work extends to iOS

devices with DRR since they have similar DRR switching strategies.

More details and some preliminary results of iOS devices will be

discussed in Section 6.

Terminology. We first introduce the concepts of the refresh rate

and frame rate, two terms frequently used in our work. The refresh
rate refers to the frequency at which the display refreshes, often

given in Hz. On the other hand, the frame rate refers to the actual

frames per second (fps) that the computing hardware provides to be

displayed on the screen. The system attempts to match the frame

rate and refresh rate to optimize user experience.

Android graphics rendering.At a high level, the rendering pipeline
consists of three main components: Image Stream Producers, Image

StreamConsumers, and theHardware Abstraction Layer (HAL) [27].

Android apps primarily utilize Surfaces as image stream produc-

ers, with SurfaceFlinger as the image stream consumer. The timing

of the pipeline depends on the vertical synchronization (VSYNC)

events, which indicates the time the display starts to refresh the

display pixels [24]. Normally, the rendering must be completed

within one VSYNC period (inverse of frame rate) to produce a new

frame for the display. Many apps like games or video players have

their own custom rendering pipelines, which means they can have

their own preferred refresh rates. Therefore, it is necessary for apps

to suggest their preferred refresh rates to the system.

Affecting and monitoring the refresh rate. To enable DRR, An-

droid provides several APIs for apps to access the refresh rates [24,

28] directly. We utilize surface.setFrameRate() to set the refresh rate

through a Surface. The Surface attempts to modify the VSYNC

period, and if successful, both the refresh rate and the frame rate

will change since the Surface will generate frames based on the

new VSYNC. However, sometimes Surface-based methods don’t

work for some devices. In such cases, we turn to Window, which is

1
The code will be available at https://github.com/nesl/RefreshChannels

360

https://github.com/nesl/RefreshChannels

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

Figure 1: Two attack scenarios are demonstrated in this work. (a) Building an inter-app covert channel: the accompanying
graph shows the refresh rates set by the transmitter (in red) and observed by the receiver (in blue). (b) Building a covert channel
between an app and a webpage or an advertisement on the webpage: the accompanying graph shows the refresh rate set by the
transmitter (in red) and the frame rate observed by the receiver (in blue).

a structure internally backed by a Surface. Each Window has a set

of refresh rates, which can be chosen by a preferred mode.

To monitor the refresh rate, apps can use AChoreographer_re
gisterRefreshRateCallback to register a callback to be run when

the display refresh rate changes [29]. This provides the VSYNC

period in nanoseconds, which can be used to infer the refresh

rate. When the refresh rate is inaccessible or unresponsive, we

infer the refresh rate using frame rates that are available through

Choreographer.FrameCallback [30].

Overview: Apart from the user and OS, the primary parties in-

volved in mobile devices are apps and webpages. These entities

can influence the refresh rate and act as a transmitter (Tx) by ei-

ther changing screen content or directly specifying the refresh rate

through the API. Similarly, they can also read the refresh/frame rate

with the same API and act as a receiver (Rx). With several possible

Tx and Rx combinations across the parties, we broadly classify the

potential covert channel attacks into two scenarios: intra-party

covert channels (app to app) and inter-party covert channels (web-

page to app and vice versa). We refer to these as Attack Scenarios

1 and 2, respectively. Furthermore, we also showcase the potential

for DRR to leak private user touch information in Section 6.

3 ATTACK SCENARIO 1: BUILDING
INTER-APP COVERT CHANNELS

The lack of appropriate access controls enables malicious apps to

freely access refresh rates. We exploit this vulnerability to design a

covert channel between two apps. Then, we evaluate it with five

mobile devices from four mainstream vendors. Since channel inter-

ference can occur as the refresh rate changes over normal usage,

we identify the interference sources, propose an anti-interference

scheme, and evaluate it with ten apps.

3.1 Threat Model
Following previous works [8–12], we assume there are two apps

on the victim’s device that try to establish a covert communication

channel bypassing the system’s monitoring to share private user

data. These malicious apps could enter the victim’s system by mas-

querading as innocent apps or be downloaded through phishing

links. Moreover, the apps can be benign and created by legitimate

entities, yet may contain third-party libraries with malicious code

from attackers. This security flaw has even been discovered in li-

braries developed by large companies [9]. As shown in Fig. 1 (a),

one app will act as the transmitter, Tx, while the other acts as the
receiver, Rx. Tx has the user’s private data such as geolocation

data or persistent identifiers like IMEI. However, it is barred from

sharing this data with other parties due to legal or security con-

cerns, forcing it to resort to covert channels. This private data can

be encoded into binary bits, and then modulated on refresh rate

changes via RefreshChannels.
Our attack utilizes apps’ unrestricted ability to directly or in-

directly modulate and monitor refresh rates to build the covert

channel. To enable DRR, the Android OS allows apps unrestricted

ability to suggest and read refresh rates. The actual frequency at

which the refresh rate can be modified depends on the system,

the hardware, and the specific method used to induce the change.

Therefore, we design different schemes and evaluate them on differ-

ent mobile devices. While apps do not need permissions to access

refresh rates, mobile OSs restrict background app activities. Since

bypassing background restrictions is not the focus of this work, we

discuss several methods used in previous works in Section 6.

3.2 Channel Design and Implementation
3.2.1 Test devices and refresh rate information. We utilize five pop-

ular mobile devices with DRR, as shown in Table 1. To showcase the

widespread impact of our attack across different hardwares, these

devices encompass both smartphones and tablets and originate

from four distinct vendors. The table showcases all the available

refresh rates that can be set and monitored by apps. The test devices

are operating on Android 12, the most current version of Android at

the time of purchase, and we maintain the same version throughout

the entire work to ensure consistent results.

3.2.2 Channel design. Since different devices have a varying num-

ber of available refresh rates, we design several basic modulation

361

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Gaofeng Dong, et al.

Table 1: Devices and their available refresh rates.

Device Refresh Rates (Hz)

Samsung Galaxy S22 Ultra

10, 24, 30,

48, 60, 96, 120

OnePlus 10 Pro 60, 90, 120

Google Pixel 6 Pro 60, 120

Samsung Galaxy Tab S7 60, 120

Lenovo Tab P12 Pro 60, 120

schemes tailored to specific device characteristics. On a high level,

the modulation schemes transmit a basic packet of information con-

sisting of a SYNC signal to begin transmission, a fixed-length DATA
chunk, and an optional END signal to end the transmission. We

encode the ‘0’ and ‘1’ bits as two distinct refresh rates, allowing us

to send information by modulating between the two refresh rates.

For devices with only two refresh rates, in order to differentiate the

SYNC signal from the DATA signal, we utilize a unique pattern to

indicate the SYNC signal. For devices with multiple refresh rates, we

employ a more robust scheme where SYNC and END have distinct

refresh rates from the ‘0’ and ‘1’ data bits.

Algorithm 1 Covert Channel Transmitter

Input: SYNC refresh rate(s) 𝑟𝑟𝑠𝑦𝑛𝑐 , (END refresh rate 𝑟𝑟𝑒𝑛𝑑), data 𝐷𝐴𝑇𝐴, bit ‘0’

refresh rate 𝑟𝑟0 , bit ‘1’ refresh rate 𝑟𝑟1 , interval 𝐼

1: Send SYNC signal by setting the refresh rate(s) 𝑟𝑟𝑠𝑦𝑛𝑐 .

2: for data bit 𝑏 in DATA do
3: if 𝑏 == ‘0’ then
4: Set refresh rate to 𝑟𝑟0
5: else if 𝑏 == ‘1’ then
6: Set refresh rate to 𝑟𝑟1
7: end if
8: Wait for time 𝐼

9: end for
10: Send END signal by setting the refresh rate 𝑟𝑟𝑒𝑛𝑑 ⊲ device-dependent

Algorithm 1 describes how the transmitter sends one data chunk.

After the SYNC signal is sent in Line 1, the DATA is transmitted by

sending one bit every 𝐼 milliseconds, as shown in Lines 2-9. Here

the interval 𝐼 is the pulse width, which is chosen based on the bit

error rate to maximize the channel capacity. Data transmission

concludes with the END signal in Line 10 if the device has the END
signal. For devices with only two refresh rates, 120 Hz (𝑟𝑟1) is used

to represent bit ‘1’ while 60 Hz (𝑟𝑟0) represents bit ‘0’, and the SYNC
pattern is the signal ‘10101’. This pattern is virtually impossible to

encounter during normal usage since a benign app or the user must

precisely switch the refresh rate at a fixed interval I four times in a

row to mimic the SYNC. For devices with more than two refresh

rates, such as the Samsung S22 Ultra, we modulate the SYNC, END,
and DATA bits using different refresh rates. Since 24, 60, and 120 Hz

are very common refresh rates that occur frequently during normal

use, they are not suitable for the SYNC or END signals as they might

cause mistriggers. In this basic scheme of Samsung S22 Ultra, we

use 30 Hz (𝑟𝑟𝑠𝑦𝑛𝑐) as the SYNC signal, 10 Hz (𝑟𝑟𝑒𝑛𝑑) as the END
signal, 96 Hz (𝑟𝑟0) as bit ‘0’, and 120 Hz (𝑟𝑟1) as bit ‘1’. For OnePlus,

90 Hz acts as the SYNC, 60 and 120 Hz as bit ‘0’ and ‘1’ respectively.

To improve the bandwidth, we can map a given refresh rate to

multiple bits if the device has a sufficient number of refresh rates.

The Samsung S22 Ultra contains seven refresh rates, so we propose

an improved scheme where one refresh rate represents two bits.

Specifically, 30 and 10 Hz are still the SYNC and END signal, but 48,

60, 96, and 120 Hz now represent bits ‘00’, ‘01’, ‘10’ and ‘11’. This

scheme can improve the bandwidth with higher channel resource

utilization.

Algorithm 2 Covert Channel Receiver

Input: SYNC refresh rate(s) 𝑟𝑟𝑠𝑦𝑛𝑐 , END refresh rate 𝑟𝑟𝑒𝑛𝑑 (or data length 𝐿), bit ‘0’

refresh rate 𝑟𝑟0 , bit ‘1’ refresh rate 𝑟𝑟1 , interval 𝐼

Output: data 𝐷𝐴𝑇𝐴

1: 𝐷𝐴𝑇𝐴← "", 𝑠𝑦𝑛𝑐𝑒𝑑 ← False, 𝑡𝐿𝑎𝑠𝑡 ← currentTime, 𝑟𝑟𝐿𝑎𝑠𝑡 ← 0

2: procedure RRCallback(VSYNC period 𝑣𝑠𝑦𝑛𝑐𝑃𝑒𝑟𝑖𝑜𝑑 , Timestamp 𝑡)

3: Refresh rate 𝑟𝑟 ← 1/𝑣𝑠𝑦𝑛𝑐𝑃𝑒𝑟𝑖𝑜𝑑
4: if 𝑟𝑟𝐿𝑎𝑠𝑡 == 𝑟𝑟0 then
5: 𝑏𝐿𝑎𝑠𝑡 ← ‘0’

6: else if 𝑟𝑟𝐿𝑎𝑠𝑡 == 𝑟𝑟1 then
7: 𝑏𝐿𝑎𝑠𝑡 ← ‘1’

8: end if
9: 𝑛𝑢𝑚𝑃𝑟𝑒𝑣𝐵𝑖𝑡𝑠 ← 𝑟𝑜𝑢𝑛𝑑 ((𝑡 − 𝑡𝐿𝑎𝑠𝑡)/𝐼)
10: Append 𝑛𝑢𝑚𝑃𝑟𝑒𝑣𝐵𝑖𝑡𝑠 bit 𝑏𝐿𝑎𝑠𝑡 to 𝐷𝐴𝑇𝐴

11: if not 𝑠𝑦𝑛𝑐𝑒𝑑 then
12: 𝑑𝐿𝑎𝑠𝑡 ← last 𝑙𝑒𝑛𝑔𝑡ℎ (𝑟𝑟𝑠𝑦𝑛𝑐) characters of 𝐷𝐴𝑇𝐴

13: if 𝑑𝐿𝑎𝑠𝑡 == 𝑆𝑌𝑁𝐶 (or 𝑟𝑟 == 𝑟𝑟𝑠𝑦𝑛𝑐) then ⊲ device-specific

14: 𝑠𝑦𝑛𝑐𝑒𝑑 = True

15: 𝐷𝐴𝑇𝐴← ""

16: end if
17: else if 𝑙𝑒𝑛 (𝐷𝐴𝑇𝐴) == 𝐿 (or 𝑟𝑟 == 𝑟𝑟𝑒𝑛𝑑) then ⊲ device-specific

18: Save 𝐷𝐴𝑇𝐴

19: 𝑠𝑦𝑛𝑐𝑒𝑑 = False

20: 𝐷𝐴𝑇𝐴← ""

21: end if
22: 𝑡𝐿𝑎𝑠𝑡 ← 𝑡

23: 𝑟𝑟𝐿𝑎𝑠𝑡 ← 𝑟𝑟

24: end procedure
25: register(RRCallback)

Algorithm 2 describes the overall structure of the receiver. The

𝑅𝑅𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘 () function is registered as a callback that triggers every
time the refresh rate changes. It receives the VSYNC period and

timestamp as parameters, which can be used to get the current

refresh rate 𝑟𝑟 . Since it is only triggered at a refresh rate change,
sending the same bit multiple times will not trigger the callback

since 𝑟𝑟 will remain constant. As a result, at every refresh rate

change, we decode the previous refresh rate 𝑟𝑟𝐿𝑎𝑠𝑡 to data bit 𝑏𝐿𝑎𝑠𝑡 ,

as shown in Lines 4-8. Then, Lines 9-10 calculate the number of

previous bits by estimating how many intervals 𝑟𝑟𝐿𝑎𝑠𝑡 was held

over, and append it to DATA. Next, if Rx hasn’t synchronized with

Tx, it will keep checking in Lines 11-16. Note that if a device like

Samsung S22 Ultra has a separate refresh rate 𝑟𝑟𝑠𝑦𝑛𝑐 for the SYNC
signal, it can directly compare to the refresh rate instead, as shown

in Line 13. After synchronization, Rx will save the data when the

length equals the predefined data length 𝐿, or when the refresh rate

is the predefined END signal (Lines 17-21). Only the data received

after the synchronization and before the end are saved as final

DATA in Line 18. Otherwise, it will be cleared in Line 15 or 20.

3.2.3 Implementation. We build a pair of simultaneously operat-

ing Tx and Rx apps for each device with a previously determined

time interval. As described in Section 2, the Tx app will use sur-
face.setFrameRate() to set the refresh rate. This API works in all

test devices except for the Oneplus 10 Pro, where it has no effect. A

possible explanation could be the Oneplus phone not having sup-

port for these relatively new APIs. Instead, we utilize theWindow

362

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

based method. The Rx app can register a callback using AChore-
ographer_registerRefreshRateCallback that triggers whenever the

refresh rate changes. All the tested devices support this method of

monitoring the refresh rate.

3.3 Evaluations
To show the effectiveness of the covert channel, we evaluate it

using the five mobile devices in Table 1. For each device, we adjust

the interval of the Tx and Rx apps to get the best capacity based on

their raw bandwidth and bit error rate.

3.3.1 Capacity evaluation. In order to choose the best interval

(𝐼), we use channel capacity (𝐶) as the metric, which indicates the

upper bound on the information that can be reliably transmitted

in a noisy channel. To simplify the calculation while retaining a

good estimation of the capacity, we assume the channel is a binary

symmetric channel (BSC) [31–33]. 𝐶 can be calculated using the

following equations:

𝐶 =
𝑛

𝐼
× (1 − 𝐻 (𝑃𝑒)), (1)

𝐻 (𝑃𝑒) = −𝑃𝑒 × 𝑙𝑜𝑔2 (𝑃𝑒) − (1 − 𝑃𝑒) × 𝑙𝑜𝑔2 (1 − 𝑃𝑒), (2)

where 𝑛 is the number of bits represented by one refresh rate, 𝐼 is

the interval, 𝐻 () is the binary entropy function, and 𝑃𝑒 is the bit

probability of error obtained by dividing the number of erroneous

bits by the total number of transmitted bits (10,000).
𝑛
𝐼
is the raw

bandwidth 𝐵𝑊 .

The bit error probability or bit error rate (BER) is used to quantify

errors induced by noise, e.g., inaccurate timings. As the raw band-

width increases, BER also increases because the refresh rate has less

time to be properly set and read. Fig. 2 shows the capacity across

the five test devices. In Table 2, we list the maximum and zero-BER

capacities for each device. The ‘1Rate2Bits’ scheme, where 1 refresh

rate represents 2 bits, of the Samsung phone achieves the highest

capacity of 30.8 bps, while the Lenovo tablet has the worst capacity

of 5.6 bps. This is still enough to send short private user data like

IMEI, GPS coordinates, or credit-card numbers [7–9, 11, 12, 34].

Shepherd et. al built covert channels using sensor multiplexing [8],

and obtained a maximum bandwidth at zero-BER of 9.62 bps across

all tested devices and sensors. Our best zero-BER capacity is 22.2

bps, more than twice that of their channels.

The ‘1Rate2Bits’ scheme has an improvement of 25% in best ca-

pacity over the ‘1Rate1Bit’ scheme, where 1 refresh rate represents

1 bit. Since the two-bit scheme involves switching between four

different refresh rates instead of two, there is additional complexity

in setting the bit interval. The interval required to transition be-

tween refresh rates varies significantly. For example, it may require

50 ms to switch from 48 Hz to 60 Hz but 130 ms from 48 Hz to

120 Hz. Therefore, the BSC model may not be well-suited for the

‘1Rate2Bits’ scheme, and setting different intervals for different

refresh rate transitions could optimize channel utilization. We leave

this as future work to explore.

3.3.2 Interference. Apart from noise-related errors, measured by

BER, we also identify some interference sources that may directly

affect refresh rates. We first analyze their effects on our channel

and then perform a study with ten popular apps to evaluate the

proportion of time with active interference.

Table 2: The maximum and zero-BER capacities of the covert
channel on different devices.

Device Capacity (bps)
Maximum Zero-BER

Samsung S22 Ultra

(1Rate2Bits)

30.8 22.2

Samsung S22 Ultra

(1Rate1Bit)

24.7 14.3

Google Pixel 6 Pro 20.5 11.1

Samsung Tab S7 13.6 11.1

Oneplus 10 Pro 10.5 5.6

Lenovo Tab P12 Pro 5.6 5.6

Brightness. Smartphones fix their idle refresh rate at 120 Hz in

low-brightness environments. Despite this, our channel can still

modulate the refresh rates as usual, indicating that the APIs have

priority over brightness-related settings.

Touches. There are two types of touches a user can perform:

touches that cause the screen content to change and touches that

do not affect any content, such as a simple screen tap. We will

henceforth refer to the former as “dynamic touches” and the latter

as “static touches”. For both types of touches, the refresh rate will

increase to 120 Hz. However, we observed that static touches have

no effect on our channel. In Fig. 3, the four grey blocks indicate

four static touches while the Tx and Rx apps are communicating.

The refresh rates received by Rx (blue lines) are identical to the

ones set by Tx (red lines), which indicates that data was transmitted

correctly in the presence of static touch interference.

Dynamic content across different apps. However, dynamic

touches like pressing a button or scrolling will interrupt the chan-

nel, causing the refresh rate to jump to 120 Hz for a brief period.

Other dynamic content such as pop-up notifications and animated

advertisements will also briefly set the refresh rate to 120 Hz and

60 Hz respectively.

Interference from dynamic content varies across different apps

due to their unique usage patterns and animations. For example,

a user may touch the screen less frequently when using e-book

apps compared to browsing various options on food delivery apps.

Similarly, the prevalence of dynamic content interference also varies

in different apps, e.g., more animated content in social media apps

while less in e-book apps. Therefore, we choose ten from the most

popular apps (Table 3) based on AndroidRank [35] to evaluate how

interference from different app usage would affect the channel

concurrently running in the background.

We test these apps using the Samsung phone, but the results

should apply to other devices since the interference is predomi-

nantly caused by dynamic touches and content, which is influenced

by app and user behavior rather than the device itself. The only

exception is Lenovo tablet, which maintains the refresh rate set by

Tx regardless of interference. Thus, although Lenovo tablet has the

worst capacity among the tested devices, its robustness to interfer-

ence compensates with more available transmission time.

We record ten minutes of refresh rate data during normal app

usage, while the Tx app alternates the refresh rate between 48 and

96 Hz. When interference exists, the refresh rate will be forced to 60

363

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Gaofeng Dong, et al.

Figure 2: The capacities 𝐶 and bit error probabilities 𝑃𝑒 of the five test devices. In (a), 𝐶 and 𝑃𝑒 are for the ‘1Rate1Bit’ scheme
while 𝐶′ and 𝑃 ′𝑒 are for the ‘1Rate2Bits’ scheme.

Figure 3: Robustness of Tx refresh rate to static touch

or 120 Hz. Otherwise, we read the 48 or 96 Hz set by Tx. Therefore,
the percentage of 48 and 96 Hz shows the available time for the

covert channel to send data.

Table 3: Percentages of available time for the covert channel.

App Name Percentage
Google Play Books 96%

Google News 82%

Reddit 70%

Amazon Shopping 65%

Gmail 61%

Play Store 60%

Twitter 58%

Telegram 54%

Messenger 49%

Uber Eats 48%

Table 3 showcases that the percentage of available time for the

ten apps ranges from 48% for Uber Eats to 96% for Google Play

Books, with an overall average of 64%. This indicates that Tx can

find ample available time to send data, even when the victim is

actively using other apps that may interfere with the channel.

3.3.3 Anti-interference scheme and evaluation. Apart from showing

there is enough available time for the covert channel despite inter-

ference, we also provide an anti-interference design. We evaluate

its throughput based on simulation.

The basic idea is that Tx can monitor the same refresh rates using

the same methods as Rx. Therefore, whenever Tx reads a different

refresh rate than it attempted to set, indicating the presence of

interference, it will try to send the packet again until the data is

correctly transmitted. The state machine of the anti-interference

‘1Rate1Bit’ transmitter is shown in Fig. 4. It’s possible to further

improve the scheme using methods like error correction, which

can be explored in the future. The symbols used here are the same

as those in Algorithms 1 and 2. The three main states are S-SYNC,
S-DATA and S-END, where Tx tries to send SYNC, DATA and END
signals respectively. The scheme of Rx is the same as Algorithm 2.

Each time the SYNC signal is received, DATA is cleared. DATA is

only saved upon receiving the END signal

Figure 4: State machine of the anti-interference scheme

To evaluate the throughput 𝑇 under interference, we also need

to consider the interval 𝐼 and packet length 𝐿′. As shown in Sec-

tion 3.3.1, the optimal 𝐼 of Samsung phone is 30 ms with a bit error

probability 𝑃𝑒 of 4.36% and capacity of 24.7 bps. The optimal 𝐿′

is affected by the frequency of the interference, i.e., it’s better to

choose a shorter 𝐿′ when interference happens frequently. But if

it’s too short, the control bits will occupy a significant portion of

the bandwidth. Therefore, it becomes an optimization problem to

find the optimal packet length 𝐿′ to maximize the throughput 𝑇

given the interference.

To evaluate the effect of changing 𝐿′, the interference should be

kept the same when testing different 𝐿′. However, it’s impossible

364

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

for the user to interact with the apps in exactly the same manner to

generate the same interference for different 𝐿′. Here, we choose to
use the refresh rate data from the same experiment as described in

Table 3 and their timestamps to simulate the interference pattern

of a user interacting with the ten different apps, and then calculate

the throughput based on this simulation. Specifically, with the

timestamp of each refresh rate, we can calculate each duration 𝐷

of the continuous available time that is not interrupted by 60 or

120 Hz. We denote all available durations as Set D. With a data

length 𝐿 and two control bits (SYNC and END) per packet, the total
packet length 𝐿′ would be 𝐿 + 2. Therefore, the number of data

bits that can be transmitted in 𝐷 is 𝐿 ∗ ⌊ 𝐷
(𝐿+2)∗𝐼 ⌋. We use the floor

function to get how many complete packets can be transmitted

successfully within 𝐷 because the last packet will be interrupted in

the middle of transmission and should be disregarded. Therefore,

by traversing 𝐿 (or 𝐿′), we can find the optimal 𝐿 that can maximize

the total data bits 𝑁𝑏𝑖𝑡𝑠 which is

∑
𝐷∈D 𝐿 ∗ ⌊ 𝐷

(𝐿+2)∗𝐼 ⌋ that can be

transmitted in ten minutes. Then the raw throughput 𝑇 will be

𝑁𝑏𝑖𝑡𝑠
600

bps. Factoring in the transmission bit error, the theoretical

effective throughput 𝑇 ′ can be estimated as 𝑇 × (1 − 𝐻 (𝑃𝑒)).
The simulated results are shown in Table 4. The theoretical ef-

fective throughput𝑇 ′ under the interference of the ten apps ranges

from 10.1 bps for Uber Eats to 22.8 bps for Google Play Books. These

results are also consistent with Table 3 - more available time results

in greater effective bandwidth. When there is less interference, 𝐿′

will be longer and𝑇 ′ will be higher. Therefore, Tx may dynamically

adjust 𝐿 based on current interference instead of using a fixed 𝐿′.
The ‘Overall’ category is evaluated on the combination of all the

refresh rate data from the ten apps, rather than simply averaging all

the individual 𝐿′ and𝑇 ′ values. The overall𝑇 ′ is 14.24 bps. These re-
sults show that even in the presence of interference, an attacker can

find sufficient time and achieve a practical throughput to transmit

short sensitive data.

Table 4: Optimal packet length and theoretical throughput
of the anti-interference scheme

Interfering App Optimal 𝐿′ 𝑇 ′ (bps)
Google Play Books 94 22.8

Google News 98 19.1

Reddit 43 15.9

Amazon Shopping 36 14.5

Play Store 44 13.4

Gmail 32 13.3

Twitter 37 12.9

Telegram 30 11.7

Messenger 30 10.5

Uber Eats 24 10.1

Overall 38 14.2

4 ATTACK SCENARIO 2: BUILDING COVERT
CHANNELS BETWEEN APPS AND
WEBPAGES

In Section 3, we built a covert channel between two apps by exploit-

ing DRR to bypass system monitoring. In this section, we expand

the scope of RefreshChannels to webpages. Launching attacks

from webpages is generally more challenging than from apps, as

attackers have fewer resources at their disposal and face additional

restrictions imposed by browsers [14, 15, 19, 36]. Despite the chal-

lenge that webpages cannot access refresh rate directly, we build

covert channels between an app and a webpage that may be directly

(e.g., a phishing link) or indirectly (e.g., as an advertisement that

runs in benign webpages or apps) accessed by a user, as shown in

Fig. 1 (b). We describe two specific attacks and their threat models

where our malicious webpage can act as either side of the covert

communication channel, and evaluate them on five mobile devices

and four browsers.

4.1 Webpage as Rx
4.1.1 Threat Model. In this scenario, an app running on the vic-

tim’s mobile device works as the Tx. It can access sensitive data and

attempts to transmit the data covertly to avoid legal complications

arising from direct transmission. The app is either malicious or

has unintentionally incorporated malicious third-party libraries, as

discussed in Section 3.1. To receive the data covertly, the attacker

may use a phishing link to trick the victim into accessing the ma-

licious webpage, which functions as the Rx. Aside from phishing

links, attackers can also embed malicious code in advertisements

or analytics services that can run in benign webpages or apps, as

has been done in sensor-related attacks [19, 36, 37]. For brevity, we

will henceforth use ‘webpage’ to represent all these possibilities.

This allows our code to be present on thousands of websites or

apps, extending the range and impact of our attack far beyond the

original covert channel.

4.1.2 Channel Design and Implementation. The webpages were im-

plemented using HTML and JavaScript and run in an iframe widely
used in related work [19, 36]. Since there are no APIs for webpages

to read the refresh rate, we use frame rates to infer refresh rates. To

get the frame rates, we utilize the function requestAnimationFrame
that is present in all tested browsers’ JavaScript APIs, as per the

W3C recommendation [38]. The webpage calculates the elapsed

time between the callbacks to derive the frame rate. The design and

implementation of the Tx app is the same as Section 3.2.3.

4.1.3 Evaluation. We use the same metric, i.e., channel capacity,

as in Section 3.3.1 to evaluate the channel by sending 1,000 bits

of data. The received frame rates are very noisy to demodulate

directly, as shown in Fig. 6. Based on the observation that most of

the noise appears at the rising and falling edges with very large

or small values, we choose the median filter to remove the noise.

The processed traces are much cleaner and easier to demodulate,

as shown in the figure.

Evaluations on different devices.We test our attack across all

five devices, each installed with Google Chrome version 107.0.5304.

105, which was the latest version when our experiments began. Fig.

5 shows the capacities of different devices when the webpage acts

as Rx. Both Samsung phone and tablet can reach around 14.4 bps.

In [39], memory access times are utilized to transmit information

from a background process to a JavaScript program executing in a

web browser, where the bit rate they achieve is around 11 bps on

365

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Gaofeng Dong, et al.

Figure 5: The capacities of different devices when the webpage is Rx.

Figure 6: Ground-truth (GT) refresh rates of Tx app, raw and
filtered frame rates of Rx webpage on Samsung S22 Ultra

an Intel Core i5 computer. RefreshChannels achieves comparable

performance to it, but on a mobile device.

Evaluations on different browsers. We also extend our evalu-

ations to different browsers as well. We chose four of the most popu-

lar browsers onmobile devices [40]: Google Chrome (107.0.5304.105),

Firefox (107.1.0), Samsung Internet (19.0.1.2), and Opera (72.3.3767.

68685). To illustrate the effects of different browsers, we conduct

tests exclusively on the Samsung phone, and only the zero-BER

bandwidths are reported in Table 5, though the maximum capacity

will be higher. The result demonstrates that the choice of browsers

affects zero-BER bandwidth. It is possible that different browsers

add varying amounts of noise to counteract timer-based attacks

by reducing timestamp resolution and adding jitter to increase

uncertainty [41].

Table 5: Zero-BER bandwidths of different browsers on Sam-
sung when the webpage runs as Rx.

Browser Pulse width
(ms)

Bandwidth
(bps)

Chrome 350 2.86

Samsung Internet 400 2.50

Firefox 200 5.00

Opera 450 2.22

4.2 Webpage as Tx
4.2.1 Threat Model. In this scenario, a webpage has data that it

needs to send to a background app without raising alerts. For exam-

ple, although browser vendors have introduced private browsing

modes to prevent user tracking, it is still possible for the webpage to

circumvent such protections by exfiltrating user tracking identifiers

to an app using covert channels [13–15]. We propose a method that

enables a webpage to affect the refresh to transmit data to an app

monitoring these rate changes.

4.2.2 Channel Design and Implementation. Based on the observa-

tion that dynamic content on the screen affects the refresh rates,

the webpage changes graphical elements or text on the page to

achieve this effect. We found that even a single-pixel difference can

affect the refresh rate, which is undetectable to the victim. When

there is a bit ‘1’ to transmit, the webpage will change the content

for a period to induce a higher refresh rate. Similarly, when there

is a bit ‘0’, it will remain static to allow the refresh rate to fall to

the idle rate.

When the webpage acts as a transmitter, the app needs to run

as a receiver by monitoring the refresh rates. However, the refresh

rate callback functions previously used in Section 3.2.3 are often

unresponsive to refresh rate changes induced by changing content.

To solve this challenge, we use the frame rate to infer the refresh

rate. We leverage the Android SDK Choreographer.FrameCallback
interface to extract the timestamp of each frame and calculate the

frame rate using the time elapsed between frames.

4.2.3 Evaluation. The frame rates are shown in Fig. 8 when the

webpage is Tx. For Samsung and Pixel, the frame rates increase to

120 fps while the Samsung Tablet and Lenovo Tablet have small

sharp fluctuations in frame rates. In both cases, the attacker is capa-

ble of encoding information in the frame rate. Additionally, we also

demonstrate this attack across the four browsers from Section 4.1.3

on Samsung phone. To evaluate the capacity, the webpage trans-

mitted 1,000 random bits to the receiver app. As shown in Figure 7,

the maximum capacity is 2.2 bps when using Google Chrome. It is

lower than the capacity of the "app-to-app" scenario in Section 3.3.1

because not only must webpages indirectly affect the refresh rate by

changing pixels on the page, the Rx app also uses noisy frame rates

to infer the refresh rate. Matyunin et al. use the CPU load to build

the covert channel [14], achieving a bandwidth of 5-8 bps with a

BER around 10% which translates to a capacity of 2.7-4.2 bps. Our

366

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

Figure 7: The capacities of different browsers on Samsung when the webpage is Tx.

Figure 8: Frame rates of the devices when webpage is Tx.

attack achieves a similar performance. Therefore, the channel can

be used to transmit short private data like a 35-bit user identifier

under the average page dwell time of around a minute [15, 42].

5 COUNTERMEASURES
In this section, we discuss some potential countermeasures. While

certain strategies effective against sensor-based attacks may also be

applied to RefreshChannels, there are unique challenges that com-

plicate full prevention. Consequently, mobile device vendors need

to pay particular attention to these issues. We focus on analyzing

the potential countermeasures qualitatively, and leave quantitative

evaluation as future work.

Elevated usage privileges. A straightforward defense involves

requiring elevated permissions to access refresh/frame rate APIs,

similar to the approach taken for sensitive sensors [16–18]. How-

ever, many legitimate apps need to monitor and change the re-

fresh/frame rate, which inconveniences users with additional per-

mission requests. Not only is it inconvenient, but access control is

also not fully effective, as attackers can still indirectly modulate

the refresh/frame rate by changing content on the screen without

accessing the APIs, as shown in Section 4.2.2. Another choice is to

disallow background apps from accessing refresh or frame rates,

which is effective at the expense of legitimate apps’ flexibility and

functionality.

Attack scope reductions. Instead of directly introducing access

control and hurting user experience, it’s possible to limit the effec-

tiveness of RefreshChannels in several ways.

First, the frequency at which an app can access refresh or frame

rate could be restricted. For instance, Android 12 has introduced

the HIGH_SAMPLING_RATE_SENSORS permission [18], which

elevated the difficulty of launching sensor-based attacks as most

legitimate apps do not require high sensor sampling rates. Simi-

larly, normal apps are unlikely to frequently change the refresh rate

within a short period. However, directly applying the frequency

limitation to refresh or frame rate APIs to choke the covert channel

bandwidth encounters the aforementioned exploit of modulating

the refresh rate by modifying screen content. Hence, it would be

more effective to limit the refresh rate change frequency at the

system or hardware level, though this introduces additional com-

plexity. Choosing the best threshold is a tradeoff problem between

DRR usability, available refresh rate numbers, available idle time,

and private data length, which future work can explore.

Next, to address the exploit of changing screen content, a mini-

mum content size threshold for influencing the refresh rate could

be established to reduce the stealthiness of the attack. In both attack

scenarios, a single-pixel surface or screen content change suffices

to modulate the refresh or frame rate, and is impossible to detect

by the user. The advantage of this approach is the minimal im-

pact on user experience, as minor content changes involving a few

pixels occur infrequently and are rarely significant enough to be

perceived, though this can induce extra overhead.

Finally, one can introduce delays and randomization to reduce

the capacity of the attack. Unfortunately, these delays will also

harm user experience, app flexibility, and battery life.

Suspicious app behavior detection. The two covert channel

attacks rely on setting the refresh/frame rates in an unnatural

pattern to send SYNC/END/DATA signals. One possible approach

involves detecting this abnormal behavior and triggering defenses

to interfere with the covert communication, akin to the approaches

taken for sensitive sensors [2, 43–46]. Power consumption-based

detection methods can also be applied here, but it is challenging to

achieve low false positive and negative rates, as malicious apps can

compress private data into a few bits, encode wisely to minimize the

time the refresh rate is modulated, adapt to produce benign-looking

patterns that can be hidden among normal activities, or exfiltrate

at a lower rate if all fails.

6 DISCUSSION AND FUTUREWORK
This work provides novel insights into using DRR switching to

launch covert channel attacks on mobile devices. Despite some lim-

itations, we believe these attacks open up some promising research

directions.

Affected devices.Anymobile devices with DRRmay be potentially

affected by RefreshChannels because underlying DDR switching

367

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Gaofeng Dong, et al.

principles are similar across devices. Mainstream mobile device

vendors, including Apple, Samsung, Google, Oneplus, and Lenovo,

have adopted DDR and list it as one of their devices’ key features.

Though we focus on attacks on five Android devices from four

vendors, we also demonstrate the potential to similarly attack iOS

(Apple) devices, which recently introduced ProMotion displays

with dynamic refresh rates. Our preliminary tests on an iPhone

13 Pro show that the CADisplayLink [25] object can suggest the

refresh rates, indicating the feasibility of building covert channels

on iOS devices as its DRR switching strategy is similar to Android.

Touch-induced frame rate changes can also be recorded through

browsers like Safari and Chrome, as shown in Fig. 9. This suggests

the potential for keystroke inference attacks on iOS devices, which

can be explored in future work.

Figure 9: The frame rates recorded using Safari and Chrome
on iPhone 13 Pro for three normal touches and five quick
touches.

Stealthiness. Given that a change in a single pixel is sufficient

to alter the refresh rates, it is challenging for the victim to no-

tice such a pixel-level difference. Furthermore, the attack would

typically be deployed when the screen content is idle/static, so it

will not cause screen tearing, touch response slowdown, or other

noticeable fluctuations in user experience. To evaluate its stealth-

iness, we conducted a user study
2
with ten volunteers using the

Samsung smartphone. In this study, we designed two scenarios:

the "static" scenario, where the user can only observe the screen

without touching it, and the "interactive" scenario, where the user

can use the phone normally. For each scenario, two sessions are

shown to the participant: one in which RefreshChannels is active,
while it remains idle in the other. We randomized the order of these

two sessions and then asked the users if they noticed any user

experience differences between the two sessions. If the answer was

"yes," we asked the users to explain the differences they noticed

and identify the session with the active attack. The procedure was

repeated three times for each scenario. The results showed that no

differences were identified in the thirty runs of the "static" scenario.

In the "interactive" scenario, users believed that they perceived

differences in only three out of the thirty runs: slowdowns when

opening an app, changes in smoothness when playing videos, or

reduced responsiveness when scrolling webpages quickly. However,

two of these three answers were incorrect, i.e., the attack was not

active in the session where they perceived the worse experience.

We believe these differences were either imagined or caused by

occasional system performance fluctuations, as similar differences

2
The study was approved by our institution’s internal review board (IRB).

were not observed in previous or subsequent runs. This user study

demonstrates that RefreshChannels cannot be detected by users

in both static and interactive scenarios, even when the user is aware

that the attack was launched in one of the two sessions, showing

its stealthiness.

More advanced modulation schemes. Based on the number of

available refresh rates on different devices, we designed several

basic modulation schemes in Sections 3.2 for the proof-of-concept

purpose. Future work can explore more advanced schemes that

can fully exploit the channel resources, coupled with proper error

correction codes like forward error corrections to correct errors.

Potential affected private data.As general covert communication

channels, our proposed attacks can be used to send any short private

user data, such as IMEI, GPS coordinates, or credit card numbers, as

shown in previous works [7–9, 11, 12, 34]. A 35-bit string, sufficient

to uniquely identify the approximately 7.9 billion people on the

planet [15], can be transmitted within seconds using our channel.

This transmission time is less than the average page dwell time,

which is slightly under a minute [42].

Keystroke inference attacks. Timing side-channel attacks ultilize

the time difference of different operations to infer cryptographic

keys or private data [46–51]. Recent attacks show that the inter-

key-interval (IKI) between two touches can leak the keystrokes, as a

longer interval implies that two keystrokes are further apart on the

keypad [52–55]. The adversary’s goal is to infer the victim’s secret

PIN by eavesdropping on the timings of the keystrokes. Here, we

develop an app with soft numeric keyboards with a classic layout as

considered in prior works [52–54]. Fig. 10 shows the frame rates of

three PIN touches on the five mobile devices we tested. When the

user taps a PIN button, the frame rate will increase from idle rates

to around 120 fps or generate peaks around 120 fps, which indicates

the keystroke timings. After obtaining the timings, the possible PIN

pairs can be inferred by modeling the entire PIN entering process

with a Hidden Markov Model (HMM) [51, 54]. For the lock screen’s

PIN input, though the refresh rate remains fixed, we noticed some

fluctuations in the frame rate around 120 fps on the Pixel 6 Pro,

similar to Fig. 10 (b). These fluctuations, although challenging to

detect, suggest that hardware behavior varies slightly in response

to PIN input animations. Future works can further explore this

vulnerability.

Figure 10: Frame rates when pressing PIN buttons of an app
on different devices.

Fingerprinting/Tracking attacks. Different apps and websites

may exhibit unique refresh/frame rate patterns depending on user

368

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

interaction and dynamic content, exposing them to fingerprint-

ing attacks by recording refresh/frame rates. Apart from identify-

ing apps or websites, users can also be identified by the unique

properties of their browser, system environment, or hardware [14,

15]. Therefore, refresh/frame rates may also be used to track web

browser users.

Background app execution. Though there exists no access con-

trol around refresh/frame rate, Android limits apps’ background

running time to minutes, which can shorten the attack time window.

Note that this is a general challenge for mobile device attacks. First,

short private data like IMEI is still possible to be shared within sec-

onds or minutes. Besides, private user data, such as IMEI and credit

card numbers, is usually fixed and will not change over months or

years. Therefore, launching the attack successfully once is enough.

Also, the malicious app can masquerade as a legitimate app to have

a longer lifespan, since the Foreground Service permission is auto-

matically granted and the notification can be obfuscated, as shown

in recent attacks [8, 56]. To keep Surfaces alive when running in the

background, the app can switch to overlay mode by disguising itself

as a normal app, as more than 35% of the most popular apps use it

to implement key features and it is even automatically granted in

certain cases [21, 57, 58]. Besides, even without overlay mode, it can

subtly alter the color or a single pixel of a silent notification icon to

induce frame rate changes, which cannot be noticed by human eyes

to keep its stealthiness. More methods can be explored in future

work.

7 RELATED WORK
In this work, we demonstrate two attack scenarios on mobile de-

vices, namely inter-app and app-web covert channels. Therefore,

we first summarize previous works related to these attacks. Addi-

tionally, considering RefreshChannels as a potential attack vector
that may enable more attacks, we draw comparisons with simi-

lar attack vectors, such as sensor-based and micro-architectural

attacks, to show its distinctive features and potential implications

within a wider spectrum of mobile security and privacy research.

Again, given the extensive scope of research in this field, a compre-

hensive discussion within this paper is unfeasible. Therefore, we

focus on examining studies that are especially significant, novel,

and relevant.

Inter-app covert channels on mobile devices. Inter-app covert

channels in mobile devices have been studied extensively over the

last decade and have been shown to pose a tangible security and

privacy threat to mobile users [8–12]. Some attacks use physical

transmission media. For example, Novak et al. [34] built covert

channels using light, while Block et al. [12] used ultrasonic frequen-

cies, and Masti et al. [11] modulated processor core temperatures

on multi-core platforms. Other attacks exploit side effects of the

software interface. For instance, Soundcomber [7] utilized vibra-

tion/volume settings, and Shepherd et al. [8] modified the sampling

rate of on-device sensors. Our first attack is based on affecting and

accessing the refresh rate, so it belongs to the latter category.

App-Web covert channels on mobile devices.Webpages have

been used as transmitters in covert channels. Matyunin et al. [14]

used CPU load to secretly communicate data from a web browser

to a background app. The website uses CPU-intensive operations to

encode data, and the receiver app measures the execution time of a

code fragment to gauge the CPU load and decode data. Webpages

can also act as the receiver side of a covert channel. In [39], memory

access times are utilized to transmit information from a background

process in a computer to a JavaScript program executing in a web

browser. They rely on the difference in access time between cache

hits and misses to transmit information. ARM-based mobile de-

vices have been found to be vulnerable to this type of cache-based

covert channel [59], and are likely vulnerable to an attack similar

to [39]. With RefreshChannels, a webpage can act as either side

of the covert communication channel by affecting or monitoring

the refresh/frame rate.

Sensor-based attacks on mobile devices. Sensors can be used

to launch a series of attacks, such as covert channel attacks [7, 60],

side channel attacks [23, 61], and fingerprinting attacks [62, 63].

Due to such threats, access to sensors has been strictly restricted on

mobile devices. For example, the OS will require the user’s explicit

permission to access sensitive sensors like microphones. Besides,

the W3C has also recommended disabling sensor access on cross-

origin iframes, which limits sensor-based attacks on webpages [19].

However, as a new attack vector based on DRR, RefreshChannels
may bypass these restrictions. Therefore, the insights provided by

this work can help design more secure web standards and mobile

devices that are resistant to RefreshChannels.
Microarchitectural attacks on mobile devices.Microarchitec-

tural attacks are very powerful by exploiting vulnerabilities in the

microarchitecture of modern computer processors [64–66]. How-

ever, they are also difficult to implement due to the complex design

of modern microarchitectures, lack of public documentation, noise

introduced by other system activities, etc [67–69]. What’s more,

such attacks are even harder on mobile devices [70, 71]. On the con-

trary, our attack only requires basic knowledge of app development

and uses public APIs, making it easy to implement. Such attacks

are often referred to as OS-level attacks [71]. Besides, future work

can explore combining RefreshChannels with microarchitectural

attacks to create new attacks or improve existing ones.

8 CONCLUSION
Modern mobile devices require strong security as they host an

increasing amount of private data and services. This paper investi-

gates a novel vulnerability, RefreshChannels, that facilitates dif-
ferent attack scenarios on mobile devices utilizing dynamic refresh

rate switching. In the first attack, we showed that two apps are

able to communicate using refresh rates, bypassing the OS sand-

boxing and isolation measures. Then, we demonstrated that even

a malicious advertisement displayed on a webpage can covertly

communicate with another app without any user awareness, which

allows the proposed attacks to be more widespread. We imple-

mented these attacks on five popular smartphones and tablets from

four different vendors and also evaluated the second attack on four

popular browsers, underlining the universality of our approach,

which could potentially affect millions of users. Our findings indi-

cate that the proposed attack vector is a threat to mobile devices,

and we discussed several countermeasures to mitigate the proposed

attacks. In the future, we will explore the possibilities of keystroke

369

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Gaofeng Dong, et al.

inference and fingerprinting attacks, and design more secure mobile

devices with the insights provided by this work.

ACKNOWLEDGMENTS
The authors would like to thank the shepherd and the reviewers

for their comments that helped tremendously in improving this

work. The research reported in this paper was sponsored in part

by: the DEVCOM Army Research Laboratory under Cooperative

Agreement #W911NF-17-2-0196; the National Science Foundation

under Awards #1705135, #2211301, and #2312089; and, the NIH

mDOT Center under Award #1P41EB028242. The views and con-

clusions contained in this document are those of the authors, and

they should not be interpreted as representing the official policies,

either expressed or implied, of the funding agencies.

REFERENCES
[1] Nikolina Cveticanin. Hacking statistics to give you nightmares, 2023. https:

//dataprot.net/statistics/hacking-statistics/.

[2] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my

market: detecting malicious apps in official and alternative android markets. In

NDSS, volume 25, pages 50–52, 2012.

[3] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven

Arzt, Siegfried Rasthofer, and Eric Bodden. Mining apps for abnormal usage of

sensitive data. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 426–436. IEEE, 2015.

[4] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von

Styp-Rekowsky. Boxify: Full-fledged app sandboxing for stock android. In 24th
USENIX Security Symposium (USENIX Security 15), pages 691–706, 2015.

[5] Swarup Chandra, Zhiqiang Lin, Ashish Kundu, and Latifur Khan. Towards a

systematic study of the covert channel attacks in smartphones. In International
Conference on Security and Privacy in Communication Networks, pages 427–435.
Springer, 2014.

[6] Nikolay Matyunin, Jakub Szefer, Sebastian Biedermann, and Stefan Katzenbeisser.

Covert channels using mobile device’s magnetic field sensors. In 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC), pages 525–532. IEEE,
2016.

[7] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu Kapadia,

and XiaoFeng Wang. Soundcomber: A stealthy and context-aware sound trojan

for smartphones. In NDSS, volume 11, pages 17–33, 2011.

[8] Carlton Shepherd, Jan Kalbantner, Benjamin Semal, and Konstantinos Markan-

tonakis. A side-channel analysis of sensor multiplexing for covert channels and

application fingerprinting on mobile devices. arXiv preprint arXiv:2110.06363,
2021.

[9] Joel Reardon, Álvaro Feal, PrimalWijesekera, Amit Elazari Bar On, Narseo Vallina-

Rodriguez, and Serge Egelman. 50 ways to leak your data: An exploration of

apps’ circumvention of the android permissions system. In 28th USENIX security
symposium (USENIX security 19), pages 603–620, 2019.

[10] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun.

Analysis of the communication between colluding applications on modern smart-

phones. In Proceedings of the 28th Annual Computer Security Applications Confer-
ence, pages 51–60, 2012.

[11] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller,

Lothar Thiele, and Srdjan Capkun. Thermal covert channels on multi-core

platforms. In 24th {USENIX} Security Symposium ({USENIX} Security 15), pages
865–880, 2015.

[12] Kenneth Block, Sashank Narain, and Guevara Noubir. An autonomic and per-

missionless android covert channel. In Proceedings of the 10th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, pages 184–194, 2017.

[13] Nikolay Matyunin, Yujue Wang, Tolga Arul, Kristian Kullmann, Jakub Szefer,

and Stefan Katzenbeisser. Magneticspy: Exploiting magnetometer in mobile

devices for website and application fingerprinting. In Proceedings of the 18th
ACM Workshop on Privacy in the Electronic Society, pages 135–149, 2019.

[14] Nikolay Matyunin, Nikolaos A Anagnostopoulos, Spyros Boukoros, Markus Hein-

rich, André Schaller, Maksim Kolinichenko, and Stefan Katzenbeisser. Tracking

private browsing sessions using cpu-based covert channels. In Proceedings of
the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks,
pages 63–74, 2018.

[15] Peter Snyder, Soroush Karami, Arthur Edelstein, Benjamin Livshits, and Hamed

Haddadi. {Pool-Party}: Exploiting browser resource pools for web tracking. In
32nd USENIX Security Symposium (USENIX Security 23), pages 7091–7105, 2023.

[16] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno, Helen J

Wang, and Crispin Cowan. User-driven access control: Rethinking permission

granting in modern operating systems. In 2012 IEEE Symposium on Security and
Privacy, pages 224–238. IEEE, 2012.

[17] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,

and David Wagner. Android permissions: User attention, comprehension, and

behavior. In Proceedings of the eighth symposium on usable privacy and security,
pages 1–14, 2012.

[18] Android. Sensor rate limiting, 2022. https://developer.android.com/guide/topics

/sensors/sensors_overview#sensors-rate-limiting.

[19] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. The web’s

sixth sense: A study of scripts accessing smartphone sensors. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, page 1515–1532, New York, NY, USA, 2018. Association for Computing

Machinery. ISBN 9781450356930. doi: 10.1145/3243734.3243860. URL https:

//doi.org/10.1145/3243734.3243860.

[20] Yicheng Zhang, Carter Slocum, Jiasi Chen, and Nael Abu-Ghazaleh. It’s all in

your head (set): Side-channel attacks on ar/vr systems. In USENIX Security, 2023.
[21] Michalis Diamantaris, Serafeim Moustakas, Lichao Sun, Sotiris Ioannidis, and

Jason Polakis. This sneaky piggy went to the android ad market: Misusing mobile

sensors for stealthy data exfiltration. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 1065–1081, 2021.

[22] Fenghao Xu, Wenrui Diao, Zhou Li, Jiongyi Chen, and Kehuan Zhang. Badblue-

tooth: Breaking android security mechanisms via malicious bluetooth peripherals.

In NDSS, 2019.
[23] Matthias Gazzari, Annemarie Mattmann, Max Maass, and Matthias Hollick. My

(o) armband leaks passwords: An emg and imu based keylogging side-channel

attack. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(4):1–24, 2021.

[24] Ady Abraham. High refresh rate rendering on android, Apr 2020. https://an

droid-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-

android.html.

[25] Apple. Optimizing promotion refresh rates for iphone 13 pro and ipad pro, 2021.

https://developer.apple.com/documentation/quartzcore/optimizing_promotio

n_refresh_rates_for_iphone_13_pro_and_ipad_pro.

[26] StatCounter. Mobile operating system market share worldwide, 2023. https:

//gs.statcounter.com/os-market-share/mobile/worldwide.

[27] Android Open Source Project. Graphics, 2023. https://source.android.com/docs/

core/graphics.

[28] Android. Frame rate, 2023. https://developer.android.com/guide/topics/media/f

rame-rate.

[29] Android. Refresh rate callback, 2023. https://developer.android.com/ndk/refere

nce/group/choreographer#achoreographer_registerrefreshratecallback.

[30] Android. Frame rate callback, 2023. https://developer.android.com/reference/an

droid/view/Choreographer.FrameCallback.

[31] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. {DRAMA}: Exploiting {DRAM} addressing for {Cross-CPU} attacks.
In 25th USENIX security symposium (USENIX security 16), pages 565–581, 2016.

[32] Hamed Okhravi, Stanley Bak, and Samuel T King. Design, implementation and

evaluation of covert channel attacks. In 2010 IEEE International Conference on
Technologies for Homeland Security (HST), pages 481–487. IEEE, 2010.

[33] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. Lord of the ring

(s): Side channel attacks on the {CPU}{On-Chip} ring interconnect are practical.
In 30th USENIX Security Symposium (USENIX Security 21), pages 645–662, 2021.

[34] Ed Novak, Yutao Tang, Zijiang Hao, Qun Li, and Yifan Zhang. Physical media

covert channels on smart mobile devices. In Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing, pages 367–378,
2015.

[35] AndroidRank. Open android market data, 2023. https://www.androidrank.org/.

[36] Maryam Mehrnezhad, Ehsan Toreini, Siamak F. Shahandashti, and Feng Hao.

Touchsignatures: Identification of user touch actions and pins based on mobile

sensor data via javascript. Journal of Information Security and Applications, 26:
23–38, 2016. ISSN 2214-2126. doi: https://doi.org/10.1016/j.jisa.2015.11.007. URL

https://www.sciencedirect.com/science/article/pii/S2214212615000678.

[37] Jiexin Zhang, Alastair R Beresford, and Ian Sheret. Sensorid: Sensor calibration

fingerprinting for smartphones. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 638–655. IEEE, 2019.

[38] James Robinson and Cameron McCormack. Timing control for script-based

animations, 2022. https://www.w3.org/TR/animation-timing/.

[39] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fan-

tastic timers and where to find them: High-resolution microarchitectural attacks

in javascript. In Aggelos Kiayias, editor, Financial Cryptography and Data Se-
curity, pages 247–267, Cham, 2017. Springer International Publishing. ISBN

978-3-319-70972-7.

[40] StatCounter. Browser market share worldwide, 2023. https://gs.statcounter.com

/browser-market-share.

[41] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In search of

lost time: A review of javascript timers in browsers. In 2021 IEEE European

370

https://dataprot.net/statistics/hacking-statistics/
https://dataprot.net/statistics/hacking-statistics/
https://developer.android.com/guide/topics/sensors/sensors_overview#sensors-rate-limiting
https://developer.android.com/guide/topics/sensors/sensors_overview#sensors-rate-limiting
https://doi.org/10.1145/3243734.3243860
https://doi.org/10.1145/3243734.3243860
https://android-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-android.html
https://android-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-android.html
https://android-developers.googleblog.com/2020/04/high-refresh-rate-rendering-on-android.html
https://developer.apple.com/documentation/quartzcore/optimizing_promotion_refresh_rates_for_iphone_13_pro_and_ipad_pro
https://developer.apple.com/documentation/quartzcore/optimizing_promotion_refresh_rates_for_iphone_13_pro_and_ipad_pro
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://source.android.com/docs/core/graphics
https://source.android.com/docs/core/graphics
https://developer.android.com/guide/topics/media/frame-rate
https://developer.android.com/guide/topics/media/frame-rate
https://developer.android.com/ndk/reference/group/choreographer#achoreographer_registerrefreshratecallback
https://developer.android.com/ndk/reference/group/choreographer#achoreographer_registerrefreshratecallback
https://developer.android.com/reference/android/view/Choreographer.FrameCallback
https://developer.android.com/reference/android/view/Choreographer.FrameCallback
https://www.androidrank.org/
https://www.sciencedirect.com/science/article/pii/S2214212615000678
https://www.w3.org/TR/animation-timing/
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share

RefreshChannels: Exploiting Dynamic Refresh Rate Switching for Mobile Device Attacks MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

Symposium on Security and Privacy (EuroS&P), pages 472–486, 2021. doi: 10.1109/
EuroSP51992.2021.00039.

[42] Chao Liu, Ryen W White, and Susan Dumais. Understanding web browsing

behaviors through weibull analysis of dwell time. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval, pages 379–386, 2010.

[43] Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Uluagac. 6thsense: A context-

aware sensor-based attack detector for smart devices. In USENIX Security Sym-
posium, pages 397–414, 2017.

[44] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. “andro-

maly”: a behavioral malware detection framework for android devices. Journal
of Intelligent Information Systems, 38(1):161–190, 2012.

[45] Prakash Shrestha, Manar Mohamed, and Nitesh Saxena. Slogger: Smashing

motion-based touchstroke logging with transparent system noise. In Proceedings
of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks,
pages 67–77, 2016.

[46] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice,

Raphael Spreitzer, and Stefan Mangard. Keydrown: Eliminating software-based

keystroke timing side-channel attacks. InNetwork and Distributed System Security
Symposium. Internet Society, 2018.

[47] Denis Foo Kune and Yongdae Kim. Timing attacks on pin input devices. In

Proceedings of the 17th ACM conference on Computer and communications security,
pages 678–680, 2010.

[48] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,

Christopher W Fletcher, and David Kohlbrenner. Hertzbleed: Turning power

{Side-Channel} attacks into remote timing attacks on x86. In 31st USENIX
Security Symposium (USENIX Security 22), pages 679–697, 2022.

[49] Gaofeng Dong, Ping Wang, Ping Chen, Ruizhe Gu, and Honggang Hu. Floating-

point multiplication timing attack on deep neural network. In 2019 IEEE Inter-
national Conference on Smart Internet of Things (SmartIoT), pages 155–161. IEEE,
2019.

[50] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,

and other systems. In Advances in Cryptology—CRYPTO’96: 16th Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA August 18–22, 1996
Proceedings 16, pages 104–113. Springer, 1996.

[51] Dawn Xiaodong Song, David A Wagner, Xuqing Tian, et al. Timing analysis of

keystrokes and timing attacks on ssh. In USENIX Security Symposium, volume

2001, 2001.

[52] Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xiaohui Liang, Yao Liu, and

Na Ruan. When csi meets public wifi: inferring your mobile phone password via

wifi signals. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 1068–1079, 2016.

[53] Jingchao Sun, Xiaocong Jin, Yimin Chen, Jinxue Zhang, Yanchao Zhang, and Rui

Zhang. Visible: Video-assisted keystroke inference from tablet backside motion.

In NDSS, 2016.
[54] Wenqiang Jin, Srinivasan Murali, Huadi Zhu, and Ming Li. Periscope: A key-

stroke inference attack using human coupled electromagnetic emanations. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 700–714, 2021.

[55] Ximing Liu, Yingjiu Li, Robert H Deng, Bing Chang, and Shujun Li. When human

cognitive modeling meets pins: User-independent inter-keystroke timing attacks.

Computers & Security, 80:90–107, 2019.
[56] Ke Sun, Chunyu Xia, Songlin Xu, and Xinyu Zhang. StealthyIMU: Extracting

permission-protected private information from smartphone voice assistant using

zero-permission sensors. In NDSS, 2023.
[57] Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wilson, Tianyin Xu, Ennan

Zhai, Yong Li, and Yunhao Liu. Understanding and detecting overlay-based

android malware at market scales. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, pages 168–179, 2019.

[58] Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke Lee. Cloak

and dagger: from two permissions to complete control of the ui feedback loop. In

2017 IEEE Symposium on Security and Privacy (SP), pages 1041–1057. IEEE, 2017.
[59] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan

Mangard. ARMageddon: Cache attacks on mobile devices. In 25th USENIX
Security Symposium (USENIX Security 16), pages 549–564, Austin, TX, August
2016. USENIX Association. ISBN 978-1-931971-32-4. URL https://www.usenix.o

rg/conference/usenixsecurity16/technical-sessions/presentation/lipp.

[60] Wen Qi, Wanfu Ding, Xinyu Wang, Yonghang Jiang, Yichen Xu, Jianping Wang,

and Kejie Lu. Construction andmitigation of user-behavior-based covert channels

on smartphones. IEEE Transactions on Mobile Computing, 17(1):44–57, 2017.
[61] Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen

from smartphone motion. In 6th USENIX Workshop on Hot Topics in Security
(HotSec 11), 2011.

[62] Anupam Das, Nikita Borisov, and Matthew Caesar. Tracking mobile web users

through motion sensors: Attacks and defenses. In NDSS, 2016.
[63] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Srihari

Nelakuditi. Accelprint: Imperfections of accelerometers make smartphones

trackable. In NDSS, volume 14, pages 23–26. Citeseer, 2014.

[64] Yuval Yarom and Katrina Falkner. {FLUSH+ RELOAD}: A high resolution, low

noise, l3 cache {Side-Channel} attack. In 23rd USENIX security symposium
(USENIX security 14), pages 719–732, 2014.

[65] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user space.

In 27th USENIX Security Symposium (USENIX Security 18), 2018.
[66] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In

40th IEEE Symposium on Security and Privacy (S&P’19), 2019.
[67] Catherine Easdon, Michael Schwarz, Martin Schwarzl, and Daniel Gruss. Rapid

prototyping for microarchitectural attacks. In USENIX Security Symposium, 2022.

[68] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.

Absynthe: Automatic blackbox side-channel synthesis on commodity microar-

chitectures. In NDSS, 2020.
[69] Yuval Yarom. Mastik: A micro-architectural side-channel toolkit. https://cs.adela

ide.edu.au/~yval/Mastik/, 2016.

[70] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Johann

Heyszl, and Thomas Eisenbarth. {AutoLock}: Why cache attacks on {ARM}
are harder than you think. In 26th USENIX Security Symposium (USENIX Security
17), pages 1075–1091, 2017.

[71] Xiaokuan Zhang, Xueqiang Wang, Xiaolong Bai, Yinqian Zhang, and XiaoFeng

Wang. Os-level side channels without procfs: Exploring cross-app information

leakage on ios. In Proceedings of the Symposium on Network and Distributed
System Security, 2018.

371

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://cs.adelaide.edu.au/~yval/Mastik/
https://cs.adelaide.edu.au/~yval/Mastik/

	Abstract
	1 Introduction
	2 Background
	3 Attack Scenario 1: Building Inter-App Covert Channels
	3.1 Threat Model
	3.2 Channel Design and Implementation
	3.3 Evaluations

	4 Attack Scenario 2: Building Covert Channels between Apps and Webpages
	4.1 Webpage as Rx
	4.2 Webpage as Tx

	5 Countermeasures
	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

