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Alate-Ediacaran crown-group sponge animal
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Sponges are the most basal metazoan phylum'and may have played important roles
in modulating the redox architecture of Neoproterozoic oceans?. Although molecular
clocks predict that sponges diverged in the Neoproterozoic era**, their fossils have
not been unequivocally demonstrated before the Cambrian period>, possibly
because Precambrian sponges were aspiculate and non-biomineralized®. Here we
describe alate-Ediacaran fossil, Helicolocellus cantori gen. et sp. nov., from the
Dengying Formation (around 551-539 million years ago) of South China. This fossil is
reconstructed as alarge, stemmed benthic organism with a goblet-shaped body more
than 0.4 min height, with abody wall consisting of at least three orders of nested grids

defined by quadrate fields, resembling a Cantor dust fractal pattern. The resulting
latticeisinterpreted as an organic skeleton comprising orthogonally arranged
cruciform elements, architecturally similar to some hexactinellid sponges, although
thelatter are built with biomineralized spicules. A Bayesian phylogenetic analysis
resolves H. cantori as acrown-group sponge related to the Hexactinellida. H. cantori
confirmsthat sponges diverged and existed in the Precambrian as non-biomineralizing
animals with an organic skeleton. Considering that siliceous biomineralization may
have evolved independently among sponge classes!® 3, we question the validity of
biomineralized spicules as a necessary criterion for the identification of Precambrian

sponge fossils.

Morphologically diverse animal fossils have been recognized in fossil
assemblages of the late-Ediacaran period (around 575-539 million
years ago (Ma)) and include examples of total-group eumetazoans™,
cnidarians™* and bilaterians”. These fossils, along with molecular clock
estimates®* and contentious biomarker data’®**°, demand an Ediacaran
existence of sponges, which are probably the most basal animal phy-
lum'. However, few sponge fossils have been found from the Ediacaran
period or earlier>”?. The absence of Precambrian sponge fossils has
been attributed to the low preservation potential of siliceous sponge
spicules due to low AP* concentrations in Precambrian porewaters?
or to the possibility that early sponges were aspiculate and entirely
non-biomineralizing animals’. Here we report a crown-group sponge
fossil, Helicolocellus cantori gen. et sp. nov., from the late-Ediacaran
Shibantan limestone in South China (Extended Data Fig. 1). This new
fossil is characterized by an organic latticework skeleton that is com-
positionally different from, but architecturally similar to and probably
related to, spiculate hexactinellid sponges. It thus fills the late Neo-
proterozoic gap in sponge evolution and indicates that Precambrian
sponges may have been aspiculate and non-biomineralizing animals,
particularly if biomineralized skeletons evolved independently among
sponge classes® ™,

Systematic palaeontology

Phylum Porifera Grant, 1836
Helicolocellus cantorigen. et sp. nov.

Etymology. Genus name from Greek/Latin helix, helix; and Latin
locellus, small box. Species epithet in honour of the mathematician
Georg Cantor (1845-1918), with reference to the Cantor set, which
describes the regular, self-similar pattern of subdivided rectangular
lattices as observed in this fossil.

Holotype. NIGP-176531 (Figs.1and 2) part and counterpart, deposited
inthe Nanjing Institute of Geology and Palaeontology (NIGP).
Referred material. Paratype: NIGP-176532. Other specimens: NIGP-
176533-176538 (Fig. 3 and Extended Data Fig. 2).

Locality and horizon. From the upper-Ediacaran Shibantan Member
of the Dengying Formation at Wuhe, Yangtze Gorges area, Hubei
Province, South China.

Diagnosis. A conical to subcylindrical body connected by means of
astemto abasal discoidal structure. The outer surface of the conical
body is characterized by regularly arranged rectangles each subdi-
videdinto atleast three orders of smaller rectangles, forming a hierar-
chical quadratereticulation. Rectangles are orthogonally arranged in
the upper portion of specimens and become helically twisted around
the longitudinal axis towards the base. Rectangles are outlined by
grooves which represent an organic cruciform skeletal structure.
Description. The holotype s preserved in positive reliefon abed top
(Fig. 1), with a fragmentary impression of the corresponding nega-
tive relief preserved on a bed sole (Fig. 2b-d). H. cantori gen. et sp.
nov. has a goblet-like morphology with a holdfast, a stem and a coni-
cal body, indicating a probable erect benthic lifestyle. The conical
bodyis 291 mminlength (or heightinreconstructed life orientation),
with a maximum width of 108 mm, tapering basally to a connection
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Fig.1|Holotype of H.cantorigen. etsp.nov., NIGP-176531. a,b, Positive relief
onbed top: photographed under reflected light directed from the upper right
(a) and topographicelevation map from laser scanning microscopy (b). White
arrows mark transition frombottom of conical body to the stem. The specimen
isbrokeninto two pieces along the yellow dashed lineina. c, Fracture surface
alongthebreakageinaexposesa cross-section through the holotype specimen,
showing athree-dimensional outline (dashed ellipse) infilled with coarser
sparry calcite cement, in contrast to fine-grained micritic matrix. f, fringe; ff,
firstfringe; sf,second fringe. Scale bars, 50 mm.

with the stem. The stem is partially preserved as a flat and smooth
impression, with a width of 23 mm, but the basal disc of the holotype
is not preserved. The positive-relief specimen is broken into two
parts (along the yellow dashed line in Fig. 1a and perpendicular to
the bedding plane), allowing the observation of an elliptical cross-
section through the partially flattened body, which is infilled with
sparry calcite cement (Fig. 1c), implying an originally conical body
with a central cavity.

Thebody wall exhibits a hierarchical latticework of rectangles, each
of which bulges outwardly with a convex surface on the top bedding
surface (Fig.1b). The largest (first-order) rectangles (Fig. 2a,b) are sub-
divided into smaller rectangles, here termed second- and third-order
rectangles (Fig. 2b-e). There are eight first-order rectangles per
half-circumference along the distal end of the body. First-order rec-
tanglesare12 + 1.8 (1o0) mmlongand 8.9 + 1.2 (10) mm wide on average
(n=41rectangles). They are separated from each other by grooves
whichare1l.1 mmwide and approximately 0.4 mmdeep. Finer grooves
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(0.61 mm wide and about 0.2 mm deep) subdivide the first-order rec-
tanglesinto four equal second-order rectangles, which have an average
length and width of 5.3 + 0.9 (16) mmand 3.8 + 0.7 (16) mm, respectively
(n=164rectangles). The second-order rectangles are further subdi-
videdinto third-order rectangles, whichare2.55 mmlongand 1.8 mm
wide (n =146 rectangles), by successively finer grooves (0.3 mm wide
andabout 0.1 mmdeep). Fourth-order rectangles are faintly preserved
(Fig.2d,e).

Inthe distal region, rectangles are oriented in transverse rows paral-
lel to the arched top edge of the body. Rectangles become diagonally
aligned in the middle part of the body. The basal part of the conical
body is often poorly preserved, consisting of vaguely defined but
poorly aligned rectangles without fine structure, possibly resulting
from postmortem distortion, as evidenced by a separate specimen
showing regularly and diagonally arranged rectangles at the basal part
(Extended DataFig. 2d). The holotype exhibits two fringes on one side
ofthe body (the right-hand margin in Fig. 1a,b). The fringes each con-
sist of asingle row of rectangles, although one of them (labelled “ff” in
Fig.1a,b; hereafter, first fringe) has more sharply defined rectangles
than the other (labelled ‘sf” in Fig. 1a,b: hereafter, second fringe). It is
possible that the first fringe represents alongitudinal furrow or suture
in the body wall. Alternatively, the two fringes may be attributed to
the conicalbody splitting along asingle seam due to compaction. The
alignment of neighbouring rectangles in the main body seems to be
congruent with those that comprise the fringes (Figs. 1a,b and 2a).

Inaddition to the holotype, seven other specimens are known (Fig.3
and Extended Data Fig. 2), two of which are complete (Fig. 3a,c). The
paratype NIGP-176532 (Fig. 3a) is447 mmlong and up to 93 mmwide. It
possesses abasal disc (Fig. 3a; 57 mmin diameter), whichis connected
to the conical body (284 mm long) by means of a stem (163 mm long,
30 mmwide). The stemis smooth, with two broader regions where its
width expands from 32 mmto 48 mm (arrows in Fig.3a). The basal disc
andstemareboth preservedin positive relief on the bed top, whereas
the conical bodyis anegative reliefimpression. The first-order rectan-
gles have an average length of 12.2 mm (0 =1.7) and a width of 9 mm
(0=1.8) (n=15measurements). They are subdivided into second-order
rectangles, which are approximately 5.2 mmlongand 4 mmwide. The
second complete specimen, NIGP-176536 (Fig. 3¢), isonly 113 mm long.
It comprises a conical body thatis 65 mmlong and 38 mm wide, and a
stem that is 48 mm long and 11 mm wide. It has a truncated distal end
possibly representing an artefact of breakage. A basal disc is not pre-
sent. The poorly defined andirregularly arranged first-order rectangles
are about 7.3 mm long and 6.6 mm wide. The irregular arrangement
of rectanglesis also observed in specimens NIGP-176536 (Fig. 3b) and
NIGP-176534 (Extended Data Fig. 2a). By contrast, specimen NIGP-
176538 exhibits well-preserved, diagonally arranged rectangles in
the lower part of the conical body (Extended Data Fig. 2d). One of the
incomplete specimens, NIGP-176535, shows a single marginal fringe
(Extended Data Fig. 2¢) rather than double fringes as observed in
the holotype.

The preservation style of Helicolocellus is identical to that of other
non-biomineralized macrofossils in the Shibantan Member, includ-
ing Arborea®, Flabellophyton* and Wutubus®. Specifically, the dis-
tinction between the fossils and the sedimentary matrix is defined by
lithological contrast, with proportionally more carbonate cement in
the sediment filling the central cavity of the conical body (compare
Fig. 1c with Fig. 7.2 of ref. 23, Fig. 9E of ref. 24 and Fig. 6g,h of ref. 25).
The fossils are preserved as casts and moulds, but the body walls and
their constituent elements are not preserved. This taphonomic style
differs markedly from that of biomineralized tubular fossils such as
Cloudina® and Sinotubulites” from the Shibantan Member, which pre-
serve well-defined although secondarily replaced tests. This difference
isprobably because organic walls are more easily degraded and partially
compacted (Fig.1c), whereas abiomineralized test would be expected
toretain its original three-dimensional morphology.



Fig.2|Hierarchicalrectangles onthe surface of H. cantorigen. et sp. nov.,
holotype, NIGP-176531. a, Upper part of the body preserved in positive epirelief,
viewed under reflected light directed from the upper right. Arrow marks fringe-
like structure.b-d, Negative hyporelief counterpartimpression with adifferent
lighting angle. b, First-order rectangleinb corresponds toboxina. c, Second-
orderrectangleinccorrespondstoboxinb.d, Third-orderrectangleind
corresponds toboxinc, with dashed box marking afaintly preserved fourth-
orderrectangle. e, Schematic diagram of hierarchical rectangles. Black box
marks first-order rectangle. Yellow, blue and red lines represent grooves
thatdivide first-, second- and third-order rectangles, respectively. Scale bars,
10 mm (a), 5 mm (b), 2mm (c), 1 mm (d).

Discussion

The presence of a stem and a discoidal holdfast suggests an erect
benthic lifestyle (Fig. 4a), but these features are not phylogenetically
informative because they are also present in several distantly related
benthic Ediacaran taxa, such as the putative cnidarian Haootia®, the
macroalga Discusphyton®, arboreomorphs® and some rangeomorphs

(for example, Charnia** and Primocandelabrum®), as well as many
extant sponges®, cnidarians®, fungi and various algae. Instead, the
stem and holdfast probably represent a convergent adaptation to a
benthic lifestyle on microbially bound, firm substrates, which were
prevalent during the Ediacaran period and are inferred to be present
in the Shibantan assemblages on the basis of dark, organic-rich crin-
kly laminations observed in thin sections from this unit*>. Common
anchored benthic Ediacaran taxa such as Charnia®* and Arborea™ are
leaf-like and constructed by branching modules, whereas H. cantori
has a conical body consisting of a regular hierarchical latticework,
evidencing a very different body plan and functional morphology.

The mainbody of Helicolocellus shares a conical to cylindrical mor-
phology with late-Ediacarantaxa, which have previously been likened to
sponges, but possesses sufficient morphological differences to justify
the establishment of a new taxon based on the Shibantan material.
The putative sponge Thectardis®®** from Newfoundland isinferred to
have possessed a conical body which is similar to Helicolocellus, but
Thectardis typically shows a featureless external surface and lacks
astem or basal disc. Another cylindrical fossil, the putative sponge
Ausia from the Nama Group of Namibia®®, has millimetre-scale pore-like
structures on its surface, albeit notably smaller than the first-order
rectangles observed in H. cantori and lacking second-order divisions.
Palaeophragmodictya, a discoidal fossil found in South Australia and
the White Sea region of Russia, was initially interpreted as a sponge®
and sharesreticulate surface patterns which are smaller than those of
H. cantori. However, it differs markedly in shape, being discoidal rather
than conical, and morerecentresearchindicates that it may represent
an attachment disc of frondose organisms or a microbially produced
texture®. The Ediacaran fossil Gibbavasis*** from Iran and Moldova
sharesalattice-like appearance with Helicolocellusbut possesses only a
single order of orthogonally arranged ‘boxes’. Furthermore, Gibbavasis
is much smaller (4-14 mm long, 2-7 mm wide) than Helicolocellus.
Perpendicular cross-hatched structures have also been described in
anunnamed fossil from Nevada (Fig. 3a,binref. 42). However, its sur-
face ornamentation can bereadily distinguished from the reticulation
observed in H. cantoriby the absence of secondary latticework.

The box-like latticework pattern of Helicolocellus is superficially
similar to the transverse and longitudinal furrows on the body walls of
some living hexacorallians (Cnidaria: Anthozoa), such as stony corals
(Scleractinia) and sea anemones (Actiniaria). In these hexacorallians, the
furrows correspondtoalatticework of internal muscle fibres known as
amuscle field*’. However, the box-like structures in the Hexacoralliaare
not subdivided into finer units, nor are they arranged diagonally as in
Helicolocellus and sponges. Furthermore, theirregular arrangement of
boxes observed insome Helicolocellus specimens (for example, Figs.1a
and3b) cannot be easily explained by disturbance of the contractile mus-
clefield seeninthe Hexacorallia. Contractile muscle fields are typically
highly variableinlength-to-widthratio, inconsistent with the relatively
stableratio of Helicolocellus specimens (around 3.0, measured on three
specimens) in Helicolocellus. More importantly, tentacles are considered
asynapomorphy (shared derived characteristic) of the Anthozoa* but
are not present in Helicolocellus, thus excluding Helicolocellus from
the total-group Hexacorallia. Similarities with the longitudinal and
transverse muscle bundles of extant tunicates can also be refuted by
the ability of Helicolocellus rectangles to behave as discrete individual
blocks, which can result inirregular arrangement, particularly in the
lower part of the conicalbody (Figs.1aand 3b). The enigmatic Cambrian
fossil Paramackenzia, which has previously been compared to modular
Ediacaran organisms and exhibits potential three-dimensional box-like
compartmental structures®, has passing similarity, but its compart-
mental structures neither subdivide nor show a helical arrangement.

Thebody plan of Helicolocellus, with its goblet-like shape and espe-
cially thehierarchical rectangular ornament, is highly similar to the over-
allmorphology and skeletal grid of Palaeozoic hexactinellid sponges,
in which the pattern results from the presence of regularly arranged
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Fig.3|Morespecimens of H.cantorigen.etsp.nov.a, Paratype, NIGP-176532,
withthebody preservedin negative epireliefand the associated stemand disc
in positive epirelief.b, NIGP-176533, body preserved in positive relief, with
irregulararrangement of rectangular boxes towards the base of the specimen.
Stratigraphic orientation uncertain. Arrows indicate two regions where the
stem width expands from 32 mmto 48 mm.c, Presumed juvenile specimen,
NIGP-176536, showing a truncated distalend. The body is preserved in positive
relief, whereas the stemis anegative reliefimpression. Stratigraphic orientation
uncertain. Scalebars, 50 mm (a,b), 20 mm (c).

biomineralized spicules. For example, stem-group hexactinellids such
asthe Protospongiidae (Extended DataFig.3a,b) and the Dictyospongii-
dae (Extended DataFig.3c,d) are characterized by similar regular and
uniformly divided meshes of spicules*. Dictyospongiids, which are
funnel-shaped or cylindrical sponges, can reach considerable sizes,
with generasuch as Hydnoceras growing larger than 250 mm (ref. 46).
Clathrospongia and Minitaspongia exhibit first-order meshes that
are1.5-15 mmwide and 2-15 mmlong**8, which are comparableinsize
tothose of Helicolocellus.In some cases, the orthogonal rays of spicules
that form the skeletal grids and outline the ‘boxes’ in Clathrospongia
may appear as deep impressions as aresult of the dissolution of spicules
during diagenesis*, resulting in a preservational style virtually identi-
cal to Helicolocellus. The protrusion of sediment through the spaces
between the orthogonal rays may also resultin arectangular pattern*
similar to that of Helicolocellus. Some other Cambrian sponges, for
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example, the demosponge Vauxia and the ascosponge Leptomitus,
also exhibitagrid pattern*. However, these patterns differ significantly
fromthe regular and hierarchical grid pattern found in Helicolocellus
and other Palaeozoic hexactinellid sponges in having less hierarchy
in their organization and less regularity in the spicule arrangements.

The hierarchical skeletal grid in these Palaeozoic hexactinellid
sponges consists of multiscale bundles of spicules, typically either
fused together or loosely assembled to form a latticework. Although
Helicolocellus lacks direct evidence for a biomineralized skeleton, it
probably had a somewhat rigid skeleton consisting of discrete cru-
ciform elements, considering the presence of both regularly and
irregularly arranged reticulate patterns in observed specimens. It
is thus taphonomically similar to the Devonian fossil Pontagrossia®
(Extended Data Fig. 3f), which has been compared to a sponge and is
inferred to have possessed a largely organic skeleton characterized
by a reticulate pattern. The skeleton of Helicolocellus could simi-
larly have been originally organic, considering its taphonomic style
similar to other non-biomineralized macrofossils such as Arborea®,
Flabellophyton* and Wutubus® but different from the biomineralized
tubular fossil Cloudina® in the Shibantan Member. Additionally, the
outwardly bulging upper surface of the rectangles in Helicolocellus
(as evidenced by convex-up positive epirelief preservation, seen in
the holotype) is consistent with a flexible wall or membrane which
was pushed outward during sediment infilling and compaction and
impressed against a more rigid external framework.

Some clusters of rectangles in Helicolocellus areirregularly arranged,
particularlyinthe lower part of the conical body (Figs.1aand 3b). These
irregularly arranged rectangles may result from the dislocation of
some rectangular elements during either degradation or compac-
tion. Similar irregular arrangement is also observed in protospongiid
sponges (Extended Data Fig. 3b), which are constructed of loosely
articulated cruciform units known as stauractine spicules which are
proneto postmortemdislocation®. This observationindicates that the
skeleton of Helicolocellus was constructed of unfused skeletal elements.
Considering the possibility that early Palaeozoic sponge spicules were
weakly biomineralized and contained large proportions of organic mat-
ter, with full biomineralisation only seen in later sponges’, we might
expect early sponges such as Helicolocellus to have organic, unfused
skeletal elements prone to dislocation.

The attachment strategy of Helicolocellus can also find analogues
among younger sponges. The Jurassic protospongiid-like sponge
Ammonella, for example, shows aregular and hierarchical meshwork
of stauractines*, resembling the pattern observed in Helicolocellus, and
was also anchored to a potentially microbially stabilized substrate by
adiscoid root plate®?. This attachment strategy bears similarity to the
way Helicolocellus adheres to the (presumably microbially stabilized>)
Ediacaran substrate.

To more rigorously test the possible hexactinellid affinity of
Helicolocellus, aBayesian phylogenetic analysis was conducted using
a dataset consisting of 79 taxa (including 8 fossil taxa) and 235 char-
acters, with 67 of these characters scored for Helicolocellus (see Sup-
plementary Information for methods and details of the character
matrix). Notably, Helicolocellus was assigned to have a highly regular
hierarchical reticulate skeleton (character 176). The analysis recovers
Helicolocellus as acrown-group sponge and a stem-group hexactinel-
lid (Fig. 4b and Extended Data Fig. 4). This resultis unsurprising given
thatall crown-group hexactinellids have biomineralized spicules* and
Helicolocellus does not. Moreover, the Bayes factor (15.82) indicates
astrong statistical support for a crown-group sponge placement of
Helicolocellus over astem-group Porifera alternative (Supplementary
Information). The results remainstable in several sensitivity tests: when
ctenophores are constrained as the sister-group to all other animals®
(Extended Data Fig. 5a) and when the relationships of the classes in
Poriferaand theinternal relationshipsin Hexactinellida are constrained
to follow recent molecular phylogenies'®** (Extended Data Fig. 5b).
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The latticework of Helicolocellus may have facilitated feeding or
mechanical stability. As in modern sponges and diploblastic animals,
early sponges probably lacked specialized internal organs and may
have depended on diffusion for gas exchange and osmotrophic or filter
feeding®*®. Asimple and effective strategy to achieve these functions
is to increase the ratio of surface area to volume, as occurs in several
extant shallow-water sponges, in which organic particles and dissolved
organic matter serve as a chief food source®. Modern hexactinellid
sponges possess a syncytial pinacoderm and a water canal system
lined with choanocytes® (branched choanoderm). The various forms
(for example, folding, branching and anastomosis) of hexactinellid
skeletons have been interpreted as an adaptation to maximize the
choanodermsurfaceareain the limited space occupied by the sponge®.
The repeatedly divided box pattern in Helicolocellus may represent
asimilar strategy to increase surface area. This pattern resembles a
self-similar fractal known as the Cantor dust set, which is generated
through arecursive process of repeatedly inserting a central cross
inrectangles, resulting in successively smaller rectangles which are
geometrically similar toone another (Fig. 2). Fractals are ubiquitousin
biology but appear almost exclusively in the form of branching tubes®,
suchasinthelungs, leaf veins and plantroots. Non-branching fractals
are exceedingly rare in organisms. The Cantor dust set is unique to
Helicolocellus and some Palaeozoic sponges. This multiscale hierarchi-
cal structure may also provide mechanical benefits; broadly similar
skeletal systemsin modern hexactinellid sponges, such as Fuplectella,
have been shown to contribute to mechanical stability®".

The overall morphology and regular grid-like pattern on the body
wall of Helicolocellus are consistent with an affinity with sponges,
particularly hexactinellids. However, there are two key features of
modern hexactinellids that are not observed in Helicolocellus. First,
the reticulation of modern hexactinellid sponges is typically con-
structed by cruciform stauract spicules bounded by soft tissue or by
fused spicules, whereas no mineralized spicules have been found in
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Ambulacraria
Chordata
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Protospongia, Cyathophycus and Minitaspongia. The total-group hexactinellid
clade shows abasal polytomy of three branches: 1, Helicolocellus and
reticulosans; 2, Eiffelia; 3, crown-group or extant hexactinellids. Numbers

are posterior probabilities for nodes. See Supplementary Information for
morphological data matrix.

Helicolocellus. This apparent absence is probably original, with any
cruciformskeletal elementsin Helicolocellusbeing non-biomineralized.
Thelast common ancestor of sponges may have been aspiculate™ ™, and
the siliceous spicules of the modern sponge classes—Hexactinellida,
Demospongiae and Homoscleromorpha—have been shown not to be
homologous®. Those sponge classes may have independently acquired
mineralized skeletons along with other metazoanlineagesin the early
Cambrian'®, Palaeontological and molecular phylogenetic analyses
have notarrived ata conclusive resolution with regard to the origin(s) of
biomineralization in sponges®, with some studies advocating the origin
of biomineralized spiculesin the last common ancestor of the Silicea®
oreven Porifera®and others entertaining the possibility of independent
origins of siliceous spiculesin the Hexactinellida, Demospongiae and
Homoscleromorpha®?%, Our phylogenetic placement of Helicolocellus
as a stem-group hexactinellid that possesses some (for example, a
reticulate skeleton) but not all (for example, biomineralized spicules)
features of the crown-group Hexactinellida is consistent with either
independent origins or secondary loss of siliceous spicules. Second,
the surface of Helicolocelluslacks evidence for ostia (inhalant pores).
Itis possible that the minute size of ostia, such as those observed in
extant hexactinellid sponges (for example, 4-30 pm; ref. 64) may not
have been preserved in this deposit. The smallest resolvable features
preservedin the Shibantanlimestone are tertiary branches of Charnia,
which have a submillimeter minimum dimension (ref. 65), an order
of magnitude larger than would be predicted for ostia. Our ability to
determine the presence of an osculum-like structure in Helicolocellusis
hampered by the lateral compression of all specimens at hand, but the
three-dimensional cement-filled cross-section through the holotype
(Fig.1c) suggests the likely presence of a central cavity in Helicolocellus,
which could be homologous to the spongocoel in modern sponges.
Itis also worth commenting on the phylogenetic placement of the
hexactine-bearing Reticulosa, which has traditionally been assigned to
the hexactinellids®® but has since been proposed to be paraphyletic to
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the Hexactinellida, Demospongiae, Calcareaand Homoscleromorpha
and even the entire Porifera®. Our phylogenetic analysis indicates that
atleast some extinct reticulosantaxa, thatis, Diagoniella, Protospongia,
Eiffelia, Cyathophycus and Minitaspongia, along with the heteractinid
Eiffelia, are grouped with extant hexactinellids (Fig. 4b). Therefore,
reticulosan and heteractinid sponges may represent stem-group
hexactinellids.

To conclude, H. cantori represents an Ediacaran crown-group
sponge with an organic skeleton that is architecturally similar to the
Hexactinellida. If siliceous biomineralization evolved independently
in the Hexactinellida, Demospongiae and Homoscleromorpha®, then
a pre-existing organic scaffold with aregular hierarchical reticulate
skeleton (as present in H. cantori) may have served as a template for
subsequent acquisition of biomineralized spicules. An important
ramification is that we should broaden our search image of Precam-
brian sponge fossils, not only because they may have been aspiculate
ifsponge biomineralization evolved several times (for example, Tonian
candidate keratose sponge material from Canada’) but also because
stem-group representatives necessarily lacked some features diagnos-
tic of their crown-group counterparts®. This emphasizes the phyloge-
neticimportance of the fossil record in the search of the evolutionary
root of sponges and indeed all animals.
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Methods

Fossil specimens were collected from a single stratigraphic horizon
about 2-2.5 m above the base of the Shibantan Member (around
551-543 Ma) at Wuhe village in the Yangtze Gorges area, South China
(Extended Data Fig.1). Allspecimens are preserved on limestone bed-
ding surfaces and are deposited at the NIGP, Nanjing, China. Photo-
graphs were taken using a Nikon D850 DSLR camera and a Zeiss Axio
Zoom V16 microscope. Measurements were carried out on fossilimages
usingImageJ 1.52a and analysed using Microsoft Excel 2013. Laser scan-
ning data (Fig. 1b) were obtained using the Faro Design ScanArm and
processed using the software Geomagic Warp 2017 and CloudCompare
2.13to capture surface details and to generate elevation maps.

Phylogenetic analysis was conducted on the basis of a previously
published character matrix for metazoans™***® with modifications.
No statistical methods were used to predetermine sample size. A total
of 235 morphological characters were coded for 79 taxa. Only charac-
ters that are parsimony-informative were included in the analysis, to
accentuate shared derived characters (synapomorphies). We scored
H.cantorifor 67 of these morphological characters (see Supplementary
Information for details). Bayesian phylogenetic analysis was run using
MrBayes 3.2.7 (ref. 69) on the CIPRES Science Gateway’®. Analyses were
run for 6,000,000 generations, sampled with a frequency of every
1,000 generations, discarding the first 25% samples as burn-in. The
average standard deviation of split frequencies was about 0.01in all
runs. The effective sample size, calculated using Tracer 1.7 (ref. 71), indi-
cated that all parameters had effective sample size scores above 200.

We compared the Mk model with gamma and lognormal distribu-
tions, considering both symmetric and asymmetric transition frequen-
cies. Additionally, we evaluated the topological hypotheses, specifically
whether Helicolocellus is a stem-group sponge or a stem-group hex-
actinellid. To assess the strength of support for different models and
hypotheses, we calculated marginal likelihoods, which were computed
using stepping-stone sampling with 50 steps and 20,000,000 genera-
tions. The marginal likelihoods for each model were used to calculate
Bayes factors and to determine the best-fit model”. Hard constraints
were applied to allnodes during the stepping-stone sampling analysis
for the two hypotheses. The results revealed that the model with a
lognormal distribution and asymmetrical transition frequencies and
the topology of the stem-group hexactinellid hypothesis were better
supported (Supplementary Information and Supplementary Table1).
Therefore, the model with alognormal distribution and asymmetrical
transition frequencies was used indownstream analyses, as presented
inFig.4b and Extended Data Fig. 4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Extended DataFig.2|Additional specimens of Helicolocellus cantori rectangles (arrowed). ¢, Positive relief on bed sole, NIGP-176535, showing fine
gen. etsp.nov. a, Positiverelief of NIGP-176534. Stratigraphic orientation grooves alongthe fringe of specimen. d, Positive reliefonbed sole, NIGP-176538.
uncertain. Noteirregular arrangement of boxes. b, Thin section perpendicular f,fringe.Scalebars,30 mm (a, d), 10 mm (b), 50 mm (c).

tobedding plane and along dashed linein a, showing boundaries of first order



Extended DataFig. 3 | Palaeozoicsponges and candidate sponges with
skeletons organizedinhierarchical latticework. a, Pyritized protospongiid
Diagoniella, NIGP-155870, from the Mantou Formation of Henan Province,
Wauliuan Stage (Cambrian)®°. b, Magnification of box ina.Boxin b marks
dislocated spicules. c. Devonian Hydnoceras, PR176741 (Digital Atlas of Ancient
Life of the Paleontological Research Institution, Ithaca, New York®; license

CC01.0),showinghelically arranged skeletal tracts. d, Hydnoceras, NIGP-201942,
from the Upper Devonian Chemung Formation of New York. e, Magnification of
theboxind, showingimpressions of spicules. f, Devonian sponge-like fossil
Pontagrossia®®, fromthe Ponta Grossa Formation of Parana State (image provided
by Artur Chahud and Thomas Fairchild). Scale bars,1 mm (a, b), 40 mm

(c),20 mm (d), 10 mm (e), 5 mm (f).
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Study description Palaeontological study of early animal fossils collected from the late Ediacaran Shibantan Member of the Dengying Foramtion at
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Research sample Fossil specimens were collected from the Shibantan Member of the Dengying Formation at Wuhe village (GPS coordinates
30.790920° 111.050583°), Hubei Province, China. All specimens described in this paper are reposited in
Nanjing Institute of Geology and Palaeontology. Accession numbers of illustrated specimens are provided in the manuscript.

Sampling strategy All specimens encountered in the excavation were collected and studied. A total of 7 specimens of Helicolocellus were collected. This
sample size is deemed sufficient in paleontological investigations. No sample size calculation was performed.

Data collection Fossil specimens were photoed using Nikon D850 camera and Zeiss Zoom. V16. Measurements were made on photographs of
specimens using ImageJ. Laser scanning data were obtained using the Faro Design ScanArm, and processed using the software
Geomagic Warp and CloudCompare.

Timing and spatial scale  Fossils were collected in 2019-2023 from stratigraphic horizons about 2 m above the base of the Shibantan Member at the
Wuhe section (GPS coordinates 30.790920° 111.050583°) in the Yangtze Gorges area of South China.

Data exclusions No data were excluded from analysis.

Reproducibility To ensure reproducibility, details about fossil locality and stratigraphic horizon have been noted.
Randomization N/A

Blinding N/A

Did the study involve field work? Yes [ Ino

Field work, collection and transport

Field conditions The field site is located in the subtropical zone. Climate is humid in the field season (summer time). The outcrop is well exposed.
Excavation was required to remove slabs of fossil specimens.

Location Located at Wuhe, Yichang, Hubei Province in South China (GPS coordinates 30.790920° 111.050583°).

Access and import/export Collection of fossil specimens was carried out in a responsible manner and in compliance with the local, national and
international laws. Specimens are publicly accessible in the Nanjing Institute of Geology and Palaeontology, China, with accession
numbers provided in the manuscript.

Disturbance Disturbance was minimised by carefully controlled excavation. Reclamation of excavation quarries will be carried out after the
research project is completed.
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Palaeontology

Specimen provenance The Shibantan Member of the Dengying Formation at Wuhe village (GPS coordinates 30.790920° 111.050583°), Hubei Province,
China.
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Specimen deposition All specimens illustrated in this paper are reposited in the Nanjing Institute of Geology and Palaeontology, China. Accession

numbers of illustrated specimens are provided in the manuscript.
Dating methods Published U-Pb dates (Extended Data Fig. 1b).

|X| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.
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