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Abstract—One of the significant challenges when a new virus
circulates in a host population is to detect the outbreak as
it arises in a timely fashion and implement the appropriate
preventive policies to halt the spread of the disease effectively.
The conventional computational epidemic models provide a state-
space representation of the dynamic changes of various sub-
clusters of a society based on their exposure to the virus and are
primarily developed for small-size epidemics. In this work, we
reformulate the conventional computational epidemic modeling
approach inspired by the complex temporal dynamics observed
during the COVID-19 pandemic. We utilize the Poisson point
process to delineate transitions between various states, enabling
us to track the exposed population effectively. The proposed
model, based on random event-based Poisson arrivals, offers
a comprehensive framework for understanding disease spread
when the exposed state is intermediate between susceptibility
and infectiousness and delays in implementing mitigation strate-
gies are inevitable. Moreover, our newly proposed framework
allows the construction of the transmission probability (p) as
a probabilistic function of contributing factors such as virus
mutation, immunity waning, and immunity resilience. Our results
unravel the interplay between delays, transmission probability,
vaccination, virus mutation, immunity loss, and their indirect
impacts on the endemic states and waves of the spread. The
proposed model provides a mathematical framework that allows
policy-makers to improve preparedness for curtailing a lingering
infectious disease spreading and unfolds the optimal time frame
for vaccination given the available resources and the probability
of virus mutation for the current and unforeseen outbreaks.

Index Terms—Infectious disease modeling, epidemic networks
modeling, Poisson point process, probabilistic epidemiological
modeling, epidemiological statistical modeling

I. INTRODUCTION

The novel coronavirus disease, also known as COVID-19,

has had a major impact on the healthcare system over the

last two years. Series of new cases and hospitalization spikes

put intense pressure on the health care staff and resources,

resulting in an estimated total loss of $323.1B and over 1
million deaths in the US alone [1].
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Some of Coronavirus’s peculiar epidemiological traits and

unavoidable delays in implementing the mitigation strategies

make the prevention efforts to halt the spread of the disease

more challenging. Particularly, epidemiological studies indi-

cate that a significant number of carriers are asymptomatic

and are unaware that they are carrying the virus [2] [3] [4].

Ongoing disease transmission and many actively infected

individuals result in SARS-CoV-2 virus mutation over time,

and new variants, yet more contagious, are introduced [5]. For

instance, in November 2021, studies showed the B.1.1.529
variant, also known as omicron, which later resulted in un-

precedented waves in many countries, can escape antibody

immunity induced by the existing vaccines [6] [7] [8]. In

addition, imperfect implementation of control strategies and

failure to diagnose the symptoms of the disease or its new

variants, specifically at the early stage, results in multiple

surges in new cases [9], as has been observed in the last

two years. This would call for more holistic modeling that

matches the complex behavior of prolonged pandemic crises

in a connected society, going beyond small-scale epidemic

modeling [10] [11] [12].

The major challenge when a virus circulates in a host

population is to detect the outbreaks as they arise in a timely

fashion and implement the appropriate preventive policies.

A critical question, however, is what type of management

policies can be applied to effectively control the spread of

infectious disease, reduce the financial burden of emerging

infectious diseases on the healthcare system, and subsequently

reduce the mortality rate. Contact tracing and isolation are

two main strategies, the proper implementation of which can

slow down the chain of virus transmission when vaccination is

not immediately accessible to the mass population. However,

implementation of those preventive strategies with no delays

is rarely achievable, and it heavily depends on the socioe-

conomic status of the host population and can be a major

burden for societies with limited healthcare access [9] [13].

During the coronavirus pandemic, public and private health

authorities utilize different mitigation strategies such as contact

tracing, isolation, and mass COVID-19 testing to curtail the

outbreak. In practice, implementation of control measures in

a highly connected society with no delays, detecting the most

optimal strategies, large-scale optimal resource allocation, and

enforcing preventive protocols within an effective timeframe

when patients outnumber the health care staff and the first

responders have not been feasible in most regions worldwide.

Studies of other recent outbreaks, such as Ebola epidemics
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in West Africa, also indicate that the spread of disease was

effectively controlled once preventive protocols were improved

and adequate resources were allocated to reduce the time delay

in identifying and tracing newly infected individuals [14] [15].

In this regard, computational and probabilistic models that

formulate the statistics of virus spread propagating among var-

ious clusters of a networked society are playing an invaluable

role in providing insight into the stated problems and helping

decision-makers, governments, and stakeholders to implement

appropriate strategies [16] [17]. A better understanding of the

impact of delays and efficacy of the conducted mitigation at

different stages of disease propagation, in addition to better

prediction of the effects of potential future mutations and

the changes in the status of immunity resilience, are unmet

needs for the control of a pandemic-level spread and can

be crucial to avoid the disabling socioeconomic pressure on

many societies, caused by the virus, for example, in future

unforeseen outbreaks and pandemics.

Motivated by the above-mentioned facts, there has been a

surge of efforts in developing various computational models

in the literature. Such models provide a state-space represen-

tation of the dynamic changes of various sub-clusters of a

society based on their exposure to the virus and are insightful

for early-stage epidemics. For example, the commonly used

method susceptible − infected − recovered, named SIR,

models the connection and disease transmission between sus-

ceptible, infected, and recovered groups in a host population.

More advanced models, such as susceptible − exposed −
infected − recovered (SEIR), include an intermediate dy-

namical state for the exposed group to better model the

interaction between sub-populations during the course of an

epidemic. Specifically, individuals in the exposed state (E)

incubate the virus for a certain period of time before becoming

infectious. They are considered non-symptomatic and non-

infectious during this period. In some literature, additional

states are incorporated into the classical SEIR and SIR
models to further enhance the modeling of the complex nature

of disease spreading [18] [19] [20] [21] [22].

Going beyond the above-mentioned classical models, re-

searchers tried to incorporate the mitigation strategies, im-

munity loss, and demographic effects into the mathemati-

cal infectious disease modeling and assess the effects on

the disease transmission rate. In this regard, Radulescu et
al. have enhanced the SEIR model by assembling an age-

compartmental design and incorporating social mobility dy-

namics to numerically study the disease progression in a small

college community scenario when social mobility restrictions

are enforced [23]. In another effort, Bjørnstad et al. incorporate

demographics and immunity loss into the classical SEIR
model to assess endemic states in the presence of continuous

recruitment into susceptible populations [24]. However, the

physics of transmission rate and average contact rate with

respect to the model dynamics are disregarded in the pro-

posed models. In a homogeneous population, we define the

transmission rate (β) as β = pω [25]. p is the probability of

disease transmission, and an individual makes contact with the

infected population (I) with the rate of ω. In reality, social

mobility restrictions, mortality, and demographics directly

impact the ω, p, and subsequently β and, thus, the number

of new cases. The models designed in the literature often

oversimplify the interdependent effects among ω, p, and model

states [24] and [23]. Thus, such models often fail to take into

account adequate factors that contribute to the magnitude of

the epidemics, and as a result, they cannot provide the needed

accuracy in the estimation of disease spread, especially at a

large scale such as a pandemic.

In addition to the above, there are limited works to realisti-

cally incorporate the delays corresponding to the implementa-

tion of mitigation strategies and lack of identifiability as part

of the state-space infectious disease modeling [26] [27] [9]

[28]. In an effort to assess the consequences of delays and

incomplete identification of infectious individuals, Young et
al. proposed a mathematical framework that considers the

average transition time from one state to another as a form

of a constant delay [9]. However, the proposed model fails to

capture the probabilistic nature of transition when an exposed

individual incubates the virus for σ unit-time. For example,

the work presented in [9] assumes that all of the susceptible

individuals that come into contact with infectious individuals

at time t− σ acquire the disease at time t, and therefore, the

probabilistic effect of intermediate dynamical state E (which

directly impacts the spread of disease) is not observed in the

model.

In this paper, to bridge the gap between the observed

reality of large-scale and long-term disease progression in

a host population and currently utilized infectious disease

frameworks, we (1) redefine the computational representation

of state transitions when the exposed individuals incubate

the disease for a period of time before becoming infectious

using the Poisson point process, which is characterized by

its random events-based properties. Traditional state-space

models neglect the possibility of exposed individuals not

contracting the disease and returning to the susceptible

pool. We formulate dynamic interaction behavior among

various states as an arrival Poisson point process, that is, an

individual in the host population arrives/departs into/from a

state (given the health status) randomly within a predefined

period. Specifically, this allows for tracking the exposed

population and identifying those who do not contract the

disease as opposed to those who become infectious and

transition to the infected state. (2) Over the past three

years, it has become evident that delays in implementing

preventive protocols and vaccination strategies are inevitable

when new diseases emerge and play a significant role in

determining the behavior of a disease in its endemic state [9].

However, the existing models proposed to incorporate the

delays corresponding to mitigation strategies oversimplify

the probabilistic nature of the transition. In this study, we

address this limitation by utilizing the Poisson framework.

Here, delays are considered as another predefined period

within the scope of the Poisson arrival process, allowing us

to calculate the average number of arrivals to the state within

these periods. By integrating this element, the model mirrors

real-world scenarios where delays in response measures

significantly influence disease spread. (3) Lastly, we address

the often-overlooked factors of virus mutation and the
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development of immunity through vaccination. Traditionally,

state-space models focus on the transmission probability (p)

without adequately considering how virus mutations and the

evolving immunity of the population significantly alter this

probability. By incorporating these dynamic factors into the

model, the proposed model in this paper provides a realistic

representation of disease spread for large-scale outbreaks.

To this end, we introduced a novel state-space model called

Susceptible–exposed–infected–quarantine–recovered-dead
(SEIQRD), which considers both temporal event-based

and probabilistic features of transitions across various states.

Using this framework, we shed light on the critical questions

pertaining to the evolution of transmission rate when control

measures, such as mass vaccination, are implemented with

delays.

Our simulations unravel the interplay between transmission

rate, vaccination, virus mutation, and their indirect impacts on

the endemic states and waves of the spread and allow for more

accurate predictions and effective planning, as they mirror

the actual evolving nature of the virus and the population’s

immune response. Additionally, to assess the performance

of the proposed model with respect to COVID-19 data and

infer crucial epidemiological parameters, we utilized COVID-

19 data in Germany from December 11, 2020, to March

15, 2021. Our unique mathematical framework allows us to

objectively evaluate and identify the optimal management poli-

cies required to effectively curtail infectious disease spread.

Furthermore, our novel model provides a robust mathematical

framework that allows policy-makers to improve preparedness

for curtailing an infectious disease and unfolds the optimal

time frame for vaccination given the available resources and

the probability of virus mutation for the current and unforeseen

outbreaks.

II. OVERVIEW OF MATHEMATICAL MODELING

Over the years, various methods have been developed to

address fundamental questions pertaining to the evolution of

infectious disease in a host population and the associated

risks related to reactive and proactive management policies.

Computational infectious disease models allow the detection

of the surge of new cases and the emergence of outbreaks at an

early stage. To this end, several mathematical approaches have

been introduced in the literature. Regression-based models are

one of the most commonly used to predict the emergence of

outbreaks. For example, one of the known models developed

to estimate the average influenza mortality using the regression

method is proposed by Serfling [29]. The model incorporates

seasonal behavior, historical data on influenza, and reported

cases in order to predict the emergence of new outbreaks.

Over the years, major efforts have been placed to enhance

Serfling’s model by incorporating the noise into the predictions

and accounting for uncertainties [30] [31]. In another line of

research related to statistical methods, researchers implement

the hidden Markov model (HMM) [32] and Markov Chain

Monte Carlo (MCMC) [33] to incorporate the hidden states

of the disease spread and forecast the outbreak. Moreover,

in recent years, the models focusing on pedestrian behavior

have developed to investigate how individual actions con-

tribute to virus transmission in broader, more complex scenar-

ios [34] [35] [36]. Another prevalent approach for forecasting

the progression of infectious disease spread utilizes state-

space models. These models are instrumental in projecting the

trajectory of outbreaks over time and evaluating the impact of

various containment measures. Another widely used approach

is the state-space model. The conventional computational

epidemic models provide a state-space representation of the

dynamic changes of various sub-clusters of a society based

on their exposure to the virus and are primarily developed for

small-size epidemics. In the next section, we reviewed this

particular model.

A. State-Space Model

The conventional state-space model that allows for the

incorporation of the relevant contributing factors of infec-

tious disease spread was proposed by Kermack and McK-
endrick [37]. The state-space SIR (susceptible− infected−
recovered) model proposed by Kermack and McKendrick has

been widely used to predict new outbreaks and model infec-

tious disease spread [38]. In this context, the host population is

divided into different groups based on the state of their health

and their interactional status with the infected sub-population.

(1) represents, SIR state-space model proposed by Kermack
and McKendrick [37].

dS

dt
= −pωS(t)I(t),

dI

dt
= pωS(t)I(t)− γI(t),

dR

dt
= γI(t)

(1)

In the SIR model, given above, at time t, the infected sub-

population, I(t), makes contact with the susceptible sub-

population, S(t), with rate ω and a susceptible individual

contract the disease with probability p. Thus, an infected

person transmits the disease to pωS susceptible individuals at a

unit of time. −pωSI term indicates the number of susceptible

individuals who enter the infectious group I . Then, infected

individuals move to the recovered/dead sub-population, R,

within γ−1 unit time [39]. In this framework, the R com-

partment is considered the sub-population that cannot get

re-infected. In addition, the size of the host population, N ,

is assumed to remain constant throughout the outbreak, and

the host population is considered to be homogeneous, i.e.,

individuals in the host populations have an equal probability of

making contact with others, and every susceptible individual

has the same probability of becoming infected. Over the last

few decades, the SIR model has been enhanced by adding

another state named exposed, E. The model is also known

as susceptible − exposed − infected − recovered or, in

short, SEIR. This model is widely used in the literature

when exposed individuals incubate the virus for σ−1 unit time.

(2) represents the state-space model of SEIR and formulates



4

transitions across various states mathematically.

dS

dt
= −pωS(t)I(t),

dE

dt
= pωS(t)I(t)− σE(t),

dI

dt
= σE(t)− γI(t),

dR

dt
= γI(t)

(2)

In the SEIR model presented above, it is assumed that

susceptible individuals leave the S group when they become

in contact with infectious individuals (I) and contract the

disease with a transmission probability of p. The exposed

individuals (E) are considered non-symptomatic and non-

infectious during the incubation period. Exposed individuals

incubate the disease for σ−1 unit time before moving to the

infectious state at rate σ. Then, infected individuals enter

the recovered/dead state (R) after γ−1 unit time. The classic

SEIR model is suitable to simulate and predict early-stage

of outbreaks. However, there are three major issues with the

conventional SEIR models concerning outlining a realistic

realization of large-scale epidemics or pandemics.

• Problem (1) In the classic SEIR model, it is assumed

that individuals who contact an infectious person contract the

disease with the probability of p and leave the S state with

the rate of pω. However, this assumption does not take into

account that a portion of the exposed population would not

contract the disease and return to the S population. In reality,

the interactional status between the E and the S states is di-

rectly controlled by the health authorities and policymakers for

curtailing the disease spread by tracing the detected exposed

individuals (also known as ”contact tracing”). Recruitment

of exposed individuals who do not contract the disease to

susceptible sub-populations after the incubation period is an

important dynamic pattern that plays an integral part in the

spread of the disease and has been disregarded in the literature.

• Problem (2) Over the last three years and previous

outbreaks, it has been shown that delays in terms of implemen-

tation of preventive protocols and vaccination are inevitable

[9] [15]. The delays pertaining to mitigation strategies are

another important dynamic that directly impacts the behavior

of the system in the endemic state. There has been limited

work to incorporate the delays corresponding to the imple-

mentation of mitigation strategies as part of the state-space

infectious disease modeling, e.g., [26] [27] [9] [40] [41].

However, the proposed models oversimplify the probabilistic

nature of transition and the temporal inter-dependency between

p, ω, S, and I when an exposed individual incubates the virus

for σ unit-time.

• Problem (3) Virus mutation and vaccination directly

impact the probability of transmission, p, and subsequently,

the number of new cases in the host populations. However,

mutation and development of immunity resilience against the

virus are overlooked as contributing factors in the literature

when modeling the disease’s spread.

In section II-B, we reviewed the Poisson point process basis,

which is the foundation of our proposed model in III-A.

B. Homogeneous Poisson Point Processes

A homogeneous Poisson point process is a stochastic pro-

cess that is utilized in queuing theory to model random events

such as arrivals or departures in a system [42]. The Poisson

point process is defined as a Poisson random variable where

the Poisson parameter depends on the duration of the interval

in which departure or arrival occurs. In the Poisson point pro-

cess, non-overlapping intervals are considered as independent

events [43] [44]. Considering these two key observations, a

Poisson point process is defined as given below.

Definition II.1. Assume X(t) = Z(t1, t2) represents a Pois-

son point process. The number of arrivals, k, during (t1, t2)
interval with length of t = t2˘t1 is a Poisson random variable

with parameter λt. Given that,

P{Z(t1, t2) = k} = eλt
(λt)k

k!
. (3)

where P{Z(t1, t2) = k} represents probability of having

k arrival within t unit time. Considering (3), it can be

mentioned that if the intervals (t1, t2) and (t3, t4) are non-

overlapping, then the random variables Z(t1, t2) and Z(t3, t4)
are independent.•

The properties of a Poisson process imply that in any

interval δ(t), one event can occur with the probability that

is proportional to δ(t). Furthermore, the probability that two

or more events occur in the same interval is proportional to

O(δ(t)) [45]. The inter-arrival duration of a Poisson point

process (inter-arrival duration between the (i − 1)th and

(i)th moments) is defined as an exponential process. The

aforementioned statement is proven below.

Proof. Assume t0 is any fixed point and t0 + τ represents the

first arrival time after t0. Therefore, the probability of having

at least one arrival within τ unit time, Fτ (t), is:

Fτ (t) = P{τ < t}
= P{Z(t0, t0 + t) > 0}
= 1− P{Z(t0, t0 + t) = 0} = 1− e−λt

(4)

We can observe that 1 − e−λt is in fact, the cumulative

distribution function of the exponential distribution. Hence, we

can derive the probability density function (PDF ) as follows:

fτ =
dFτ (t)

dt
= λe−λt.

(5)

Thus, considering (5), we can derive the average number

of arrivals in a Poisson point process given a known interval

time τ as follows [44] [46]:

E(fτ ) =
1

λ
. (6)

We use the Poisson point process concept presented in this

section to reformulate the conventional definition of the SEIR
model. In section III-A, we propose a novel SEIR framework

by integrating the arrival Poisson point process concept into

the SEIR state-space model. Thus introducing a coherent
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Fig. 1: A simplified summary of the proposed model (SEIQRD) and the corresponding spread chain: Infectious individuals

become in contact with healthy individuals (S) with a rate ω. A fraction of exposed ones acquire the disease after incubating

the disease for σ unit time and move to an infectious state (I) with rate pλEI . Other exposed individuals that do not contract

the disease return to the susceptible population with a rate λES . Once an exposed individual becomes infectious, they would

have three possibilities: 1. they are identified and placed into isolation, state Q, 2. they recover and enter state R, or 3. they

pass away (state D) and get removed from the spreading cycle. Similarly, infected individuals who are identified either recover

or pass away. Finally, recovered individuals are recruited to the susceptible state due to waning immunity after α unit time

with rate λRS .

Description Parameter
Average contact rate per unit time ω
Disease transmission rate p
Lucky rate λES

Loss of immunity rate λRS

Exposure rate λEI

Identification rate λIQ

The mortality rate of the unidentified infectious λID

The recovery rate of the unidentified infectious λIR

The mortality rate of the identified infectious λQD

The recovery rate of the identified infectious λQR

Incubation period σ
Time elapsed between recovery and loss of immunity α
Time elapsed between infection and identification τ
Time elapsed between identification and recovery k
Time elapsed between identification and death z
Time elapsed between infection and death without being identified μ
Time elapsed between infection and recovery without being identified γ

TABLE I: Parameters of SEIQRD model

framework that takes into account the interdependency be-

tween ω, p, and I states that are neglected in the conventional

SEIR model.

III. METHOD

In this paper, we propose a new computational model,

going beyond classic SEIR modeling, using a homogeneous

Poisson point process for the first time that addresses the pre-

viously mentioned issues in section II-A. The proposed model

in this paper, depicted in Fig. 1 and parameters delineated

in Table. (I), takes into account (a) the interactional status

between the E and the S states when exposed individuals

do not contract the disease, (b) the inter-dependency between

p, ω, S, and I states, and (c) the effects of mutation and

development of immunity resilience in the society. Such a

model can be imperative when controlling a long pandemic in

a mega population that echoes waves of mutation and spread.

A. Reformulating SEIR model

To address critical issues with the conventional SEIR
model, such as oversimplification of the interplay between

exposed, susceptible, and infectious states, and the inter-

dependency between p, ω, S, and I , we propose a novel

framework for the SEIR model which utilizes the Poisson

point process to define transition across various states.
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In a homogeneous Poisson point process, events are dis-

tributed randomly in space or time with a constant intensity,

and the key assumption of independence between points

implies that the occurrence of one point does not influence

the probability of another point occurring within the process.

In the context of our proposed model, we assume events

(individual transition from one state to another) and not time

are independent.

We consider the transitions between E → I and I → R
as an arrival Poisson point process, meaning an individual in

the host population arrives at a new state (given the health

status) within a predefined period. We can model this behavior

using the Poisson point process concept because the average

transition period is known, but the exact arrival time to a new

state is random. Specifically, Therefore, we can formulate the

transition rate as the average number of arrivals (events) given

the transition period using (6).

We assume a susceptible individual who becomes in contact

with an infectious person leaves the susceptible group (S) with

a rate ω. The newly exposed individuals, ωS(t)I(t), at time t,
are considered non-symptomatic and non-infectious. Notably,

only a fraction of exposed individuals become infectious. The

exposed individuals who contract the disease with probability

p move to the infectious state I with rate λEI after incubating

the disease for σ unit time. λEI represents the average number

of arrivals to state I given the transition period of σ. The

exposed individuals who do not contract the disease after σ
unit time, return to the susceptible population with rate λES .

Specifically, λES represents the average number of individuals

who return to state S given the transition period of σ. Then,

infected individuals enter the recovered/dead state (R) with

rate λIR after γ unit time. Similar to the previously intro-

duced rates, λIR represents the average number of individuals

moving to the R state given γ unit time. (7) represents the

computational framework for the proposed model.

dS

dt
= −ωS(t)I(t) + λESE(t− σ),

dE

dt
= ωS(t)I(t)− pλEIE(t− σ)− λESE(t− σ),

dI

dt
= pλEIE(t− σ)− λIRI(t− γ),

dR

dt
= λIRI(t− γ)

(7)

This framework formulates the dynamic changes of various

sub-clusters of the host population based on their exposure

to the virus when the exposed group is an intermediate step

between the susceptible and the infectious states. The proposed

model reconstructs the S → E → I transition by considering

the fact that changes in the susceptible population occur only

when individuals get exposed to the virus and not when they

contract the disease. Furthermore, the proposed model allows

for the construction of p as a function of contributing factors.

We propose a unique model for p by taking into account

the relevant factors such as virus mutation, vaccination, and

immunity loss in section III-B. Such a model can be utilized

to simulate the future waves of pandemics depending on an

assumed temporal expectation of the mutation. Also, the new

formulation allows for the evaluation of the disease spread

in various societies and sub-societies with different immunity

responses and vaccination profiles.

B. Probabilistic temporal event-based disease progression
model

To address the critical questions mentioned in section II-A

and assess the impact of vaccination objectively, we proposed

a novel mathematical framework that (a) takes into account

the interdependent relations between transmission rate (p),

contact rate (ω) and immunity loss (λRSR(t − α)), and (b)

formulates the dynamical temporal event-base interactional

status across various states. The proposed model, Susceptible-
exposed-infected–quarantine–recovered-dead (SEIRQD) di-

vides the host population into six groups, depending on the

state of an individual’s health and whether or not they are

exposed to the virus through an infected person.

Infectious individuals (I) become in contact with healthy

individuals (S) at rate ω. A fraction of exposed ones (E)

acquires the disease after incubating the disease for σ unit of

time and moves to an infectious state (I) with the rate pλEI .

In this paradigm, the term ωS(t)I(t) represents the number of

individuals who become in contact with infected individuals

at time t. A fraction of those who are exposed to the virus at

time t−σ (i.e., E(t−σ)) contract the disease after incubating

the virus for a period of σ unit time. During this period, they

are considered non-symptomatic and non-infectious. Once an

exposed individual becomes infectious, they would have 3

possibilities: (1) they are identified and placed into isolation,

state Q, (2) they recover and enter state R, or (3) they pass

away (state D) and get removed from the spreading cycle.

The exposed individuals who do not contract the disease after

σ unit time return to the susceptible population with rate

λES . Infected individuals who are identified either recover or

pass away. Finally, recovered individuals are recruited to the

susceptible state after α unit time with rate λRS .

dS

dt
= −ωS(t)I(t) + λRSR(t− α) + λESE(t− σ),

dE

dt
= ωS(t)I(t)− pλEIE(t− σ)− λESE(t− σ),

dI

dt
= pλEIE(t− σ)− λIRI(t− γ)

− λIQI(t− τ)− λIDI(t− μ),

dQ

dt
= λIQI(t− τ)− λQRQ(t− k)− λQDQ(t− z)

dR

dt
= λIRI(t− γ) + λQRQ(t− k)− λRSR(t− α)

dD

dt
= λQDQ(t− z) + λIDI(t− μ)

(8)

(8) represents the proposed SEIQRD mathematical model.

Individuals move to a new group (e.g. arrive in a new group)

after staying in the current group for y unit time. We formulate

this behavior using the homogeneous Poisson process because

the average transition time is known, but the exact arrival time

to the new state is random. Per (5) and (6), the average inter-

arrival duration between i−1th and ith moments in a Poisson

point process with rate λ forms an exponential distribution,
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with the expected value of λ−1. Therefore, we define the E →
I , E → S, I → D, I → Q, I → R, Q → R, Q → D
transitions as follows:

• E → I: During σ unit time, on average λ−1
EI exposed

individuals who contracted the virus with probability p
undergo a transition to state E. This implies that exposed

individuals who become infectious enter state I with σ
unit time delay with the average rate of λEI which is

reflected as pλEIE(t− σ) in (8).

• E → S: During σ unit time, on average λ−1
ES exposed

individuals that do not contract the virus undergo a

transition to state S. This implies that exposed individuals

who are not infectious return to state S with σ unit time

delay with the average rate of λES which is reflected as

λESE(t− σ) in (8).

• I → D: The infected individuals at time t−μ pass away

with the average rate of λID after remaining contagious

for μ unit time. Particularly, the arrival at state D between

the (i−1)th and (i)th moments is an exponential random

variable with rate λ−1
ID. This transition is indicated in (8)

as λIDI(t− μ).
• I → Q: The average number of infectious who are

identified during τ unit time is λ−1
IQ. Therefore, the

infectious individuals at time t − τ undergo a transition

to state Q with the average rate of λIQ at time t. This

behavior is modeled as λIQI(t− τ) in (8).

• I → R: During γ unit time, the average number of

unidentified infected individuals who are recovered is

λ−1
IR. As a result, infectious individuals at time t−γ move

to state R with the average rate of λIR at time t. This

behavior is modeled as λIRI(t− γ) in (8).

• Q → R: Term λQRQ(t− k) in (8) indicates the number

of identified infected individuals at time t − k who are

recovered with the average rate of λQR at time t.
• Q → D: Term λQDQ(t − z) defines the changes in

quarantine population at time t. These individuals enter

group Q at time t− z and pass away at the average rate

of λQD.

• R → S: Individuals who are recovered at time t − α
maintain immunity against the disease for α unit time

and immunity wanes with the average rate of λRS .

The proposed model in this section maps out the interplay

between various states by taking into account the complex

temporal interaction and inherent dynamics. However, to as-

sess the impact of vaccination on the transmission rate and,

ultimately, the disease propagation, we need to define p as

a function of relevant factors, i.e., virus mutation, vaccina-

tion, and immunity loss. In the next section, we propose a

framework that can be integrated with the proposed model to

represent the response of the system to mutation, vaccination,

and immunity loss. Such a model can be utilized to simulate

the future waves of pandemics depending on an assumed

temporal expectation of the mutation. Also, this allows for the

evaluation of the disease spread in various societies and sub-

societies with different immunity responses and vaccination

profiles.

(a) (b)

Fig. 2: (a ) The simulated realization for vaccination function,

v(t) represents the host population’s immunity against the

virus. (b) Simulated realization of mutation function, m(t).
(10) is utilized with parameters η1 = 9e−1 and η2 = 1e−4 to

generate v(t) function. (11) is utilized to generate a realization

of virus mutation, m(t), due to ongoing disease transmission

results.

C. Disease transmission rate

We formulate p(t) by incorporating virus mutation, waning

immunity, and the population’s immunity resilience against the

virus as given below:

dp

dt
= −[δ + ζ0v(t)]ζ1p(t) + ζ2m(t) (9)

(9) represents the mathematical expression of p(t). In this

model, v(t) reflects the host population’s immunity resilience

against the virus boosted by vaccination efforts, and m(t)
indicates the communication of virus variants from one person

to another. ζ1 represents the overall rate at which immunity

is produced against the virus in the host population through

vaccination and natural immunity. ζ0 represents how well the

vaccination efforts are implemented. ζ2 is the rate at which the

virus spreads given the circulating variant at time t. Infected

individuals who recovered develop natural immunity against

the virus, which results in a reduction of p(t) over time.

We formulate this behavior by adding −ζ1δp(t) term in (9).

We use (10) to generate a sigmoid shape curve for v(t).
Particularly, this function generates an S-shape growth curve

in which immunity resilience boosted by vaccination increases

slowly initially and approaches an exponential growth rate

when mass vaccination becomes available.

v(t) = η1(1− e−η2t
l

) (10)

The virus variant’s contagion rate is modeled using (11). We

utilize multi-step functions as indicated in (11) to take into ac-

count virus mutation occurrence and model the corresponding

contagion rate.

m(t) =

n∑
i=1

ΔiΦi(t)

Φi(t) = ci, t ∈ [ti−1, ti],

(11)

IV. SIMULATION RESULTS

In this subsection, we systematically examine the potential

outcomes of the proposed model given by (8). Specifically, we

explore scenarios when resources permit vaccinating 80% of

the host population across different average contact situations.
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(a) (b)

Fig. 3: (a) Simulated realization for transmission rate, p(t) when average contact rate, ω = 0.5 and (b) when ω = 0.7. It

represents the evolution of p(t) over time with respect to virus mutation, the performance of vaccination implementation, and

natural immunity built-up. ζ1 plays an input control role, which defines how effective mass vaccination efforts are implemented

in the host population.

We explore a comprehensive simulation study to understand

the dynamics of the proposed model as defined by (8) and (9).

Our objective is to generate realistic projections of infectious

disease spread and assess the influence of large-scale vacci-

nation in mitigating the spread. For our simulations, we set

the population size as N = 8 × 106, starting with I0 = 1
infected individuals. At the onset, t = 0, the transmission rate

is designated as p(0) = 0.32. The study envelops average

contact rates, ω, within the range [0.5, 0.7]. Given the virulent

nature of the ailment, we have assigned an elevated exposure

rate of λEI = 0.036, coinciding with an incubation span of

σ = 5 time units. This configuration implies that an average

of 27 individuals, upon exposure at rate p, progress to the

infectious phase within σ time units. Post incubation, exposed

individuals not contracting the disease transition back to the

susceptible bracket at a rate of λES = 0.034. Infected cohorts

subsequently:

• Recover, governed by a rate of λIR = 0.014, within a

time frame of γ = 14 units.

• Or, pass away at a rate of λID = 0.0008, within μ = 15
time units.

• A subset undergoes identification at a rate of λIQ =
0.0152, in a span of τ = 5 time units. These diagnosed

individuals are quarantined, curtailing any further expo-

sure. Their isolation persists for k = 21 time units, post

which they either integrate into the R state at a rate of

λQR = 0.0008, or pass away after z = 25 time units at

a rate of λQD = 0.00056.

After an immunity period of α = 200 time units, recovered

individuals are reinstated to the susceptible pool at a rate of

λRS = 0.0032. We employed (9) to model the time-dependent

transmission rate, incorporating three virus mutations within

the initial 750 time units. These variants emerged at t =
[50, 250, 750], with their contagion rates depicted in Fig. 2b.

The contagion rate, formulated using (11), is given by:

m(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.629, t < 50,

0.709, 50 ≤ t < 250,

0.739, 250 ≤ t < 750,

0.787, t ≥ 750,

(12)

To quantitatively gauge vaccination’s role in p(t) and disease

control, we focused on ζ1 as a controlling parameter. Per (9),

p(t)’s determinants are ζ0, ζ1, and ζ2. While ζ2 is inherent,

defined by the virus variant, ζ0 and ζ1 offer external control

avenues. Fig. 2a displays vaccination coverage over 2000
time units. Parameters were set to l = 2, η1 = 0.9, and

η2 = 0.0001 to simulate a feasible 80% population vaccination

within the timeframe. We assigned post-recovery impact as

ζ0 = 1 and inherent viral virus contagion rate as ζ2 = 0.2.

Natural immunity, δ, post-recovery, is postulated at δ = 0.3.

To evaluate vaccination efficiency, we executed ten scenarios

varying ζ3 within the specified range delineated in 13

ζ3 = 0.45 + 0.05n, n ∈ {0, 1, 2, . . . , 9} (13)

Fig. 3a and Fig. 3b illustrate the evolution of p when ζ1 ∈
{0.45 + x ≤ 0.9, x = .05} and ω ∈ [0.5, 0.7]. During

the first 250 unit time, p reaches its maximum value ∼ 0.9
due to multiple virus mutations (Fig. 2b) and insufficient

immunity resilience against virus represented in (9). However,

p reduces when the host population’s immunity resilience

increases and eventually converges. As shown in Fig. 4a and

Fig. 4b, the most significant jump in the number of new

cases occurs when p(t) reaches its maximum value ∼ 0.9
for both ω = 0.5 and ω = 0.7, which indicates the direct

relationship between the number of cases (It) and pt. When

p(t) > 0, the disease persists within the host community,

as exemplified in Fig. 3a and Fig. 3b. The magnitudes of

p(t) and ω emerge as decisive factors influencing the size

of the infectious cohort. In Fig. 4, the complex interplay

among the model’s six states and pt is delineated. Notably, the

recovered demographic displays non-linear growth patterns.

These oscillations become more pronounced for diminished

ζ1 values, highlighting the challenges of limited immunity

resilience, especially against various virus iterations. Two

key elements accentuate the transition to the infectious state:

(1) transient immunity duration and (2) ensuing immunity

attrition. A robust immunity resilience can channel the host

populace towards two potential trajectories:

1) A decline in the epidemic due to a contraction in

infectious instances.

2) A moderated transference of exposed individuals to

infectious states, courtesy of the shield offered by sturdy

immunity.

We analyzed the temporal progression of I in relation to S
as depicted in Fig. 5b and Fig. 5a. Observably, for p(t) > 0,
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(a)

(b)

Fig. 4: (a) Simulated realization of SEIQRD (8) model’s

states when ω = 0.5 and ζ1 ∈ {x + 0.45 ≤ 0.9} (b)

when ω = 0.7 and ζ1 ∈ {x + 0.45 ≤ 0.9}. 4a and 4b

represents the evolution for infectious (I), susceptible (S),

exposed (E), recovered (R), quarantined (Q) and dead states

(D) in 2000 unit time span. Our simulation shows that the

disease spreading continues when the transmission rate p > 0
(3b and 3a).

trajectories diverge, signifying an active epidemic phase. This

suggests that the disease remains prevalent within specific sub-

groups of the host population, which aligns with our results

in Fig. 3a and Fig. 3b. Due to diminishing immunity and a

replenishing susceptible pool, recurrent surges in cases are

inherent. Our findings highlight the interplay of transmission

rate, contact frequency, and immunity duration in determining

disease spread and underscore the nuanced balance between

transmission rate, contact propensity, and immunity resilience

in steering the course of infectious dynamics.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, to validate the efficacy of our model concern-

ing real-world COVID-19 data and extract key epidemiological

parameters, we use COVID-19 data from Germany, spanning

December 11, 2020, to March 15, 2021. We utilized the exten-

sive dataset provided by Johns Hopkins University’s COVID-

19 repository [47] as a cornerstone for our analysis. The rich

and real-time nature of this dataset allowed us to calibrate and

validate our computational model accurately. We specifically

target the timeframe spanning from December 11, 2020, to

March 15, 2021, a pivotal juncture within the COVID-19

pandemic timeline in Germany, which contains 96 distinctive

data points. We have selected this timeframe to rigorously

evaluate the effectiveness of the proposed SEIRQD model,

(a) (b)

Fig. 5: (a) Trajectory of dynamical states infectious (I) and

susceptible (S) states over time when average contact rate

is ω = 0.5. (b) when ω = 0.7. In this view, when the

transmission rate, p(t) > 0, the trajectories move outwards and

diverge away, which indicates an open epidemic state, meaning

at any given time t, the communicable disease circulates in a

sub-cluster of the host population. In addition, a series of new

cases and spikes are unavoidable due to waning immunity and

recruitment to the susceptible population.

as it uniquely aligns with the convergence of two pivotal

factors, underscoring the model’s novelty and its relevance

within this study. December 25, 2020, marked the commence-

ment of the COVID-19 vaccination campaign in Germany.

Additionally, this timeframe encapsulates the emergence of

two notable virus mutations with significant implications for

disease transmission. The first mutation, the B.1.617.2 variant

(commonly known as the delta variant), was initially identified

in India and began circulating around December 15, 2020, in

Germany. Subsequently, on February 25, 2021, the BA.2.86
variant, initially originating in Britain, emerged as another

prominent strain [48].

We conduct an analysis using the proposed model (8)

against the COVID-19 data in Germany during the afore-

mentioned timeframe. We integrated mutation and vaccination

dynamics into epidemiological differential equations using (9).

We examine three distinct scenarios: 1) including vaccination

and mutations, 2) including mutations and excluding vacci-

nation, and 3) excluding both vaccination and mutations. The

primary objective of these scenarios is to evaluate the influence

of vaccination while simultaneously comparing the model’s

performance when either mutation or vaccination dynamics

are excluded. To assess the overall impact of vaccination

interventions on the spread of COVID-19 in Germany during

this timeframe, we examined the initial phase of vaccine

implementation, which collided with existing mitigation mea-

sures, such as lockdowns. We maintain a constant average

contact rate as ω = 0.3 during this phase. Our population

size, represented as N , is considered to be 83 million [49],

and the influence of natural births and deaths is considered

negligible compared to the size of the host population. For

our temporal calculations, we use the unit-time measurement

of one day.

We assume the incubation period is σ = 8 days [50]

with transition rate of λEI = 1.19e−2 and λES = 5e−2.
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(a)

(b)

Fig. 6: (a) SEIRQD model projection for daily infected

cases (Ît) vs reported cases in Germany (It) (b) SEIRQD
model projection for cumulative infected cases (Îct ) vs reported

cumulative cases in Germany (Ict ).

Infected individuals get identified after τ = 10 with rate

λIQ = 1.04e−2, pass away without identification after μ = 25
days with rate λID = 7.9e−4 or recover without identification

with transition rate of λIR = 2.6e−2 after γ = 14 days [51].

Infected individuals that are identified pass away after z = 25
with rate λQD = 5.6e−4 or recover with rate λQR = 1.8e−3
within average period of k = 20 days. Lastly, we assume

recovered individuals get recruited to state S after α = 120
with a transition rate of λRSS = 7.2e−3.To estimate the initial

conditions, we utilized data from the Johns Hopkins dataset

starting from the previous date, e.g., December 10, 2020 and

assumed Einit
t = 60000, Iinitt = 30000, Qinit

t = 15000,

Rinit
t = 19000, Dinit

t = 24000, ptinit = 0.42 and Sinit
t =

N − Einit
t − Iinitt − Qinit

t − Rinit
t − Dinit

t . We set l = 5,

η1 = 9e−1 and η2 = 1e−10 in (10) to generate a realization of

the number of vaccinated individuals by April 2021 according

to the available data.

By April 2021, available resources allowed the policymakers

to provide the first dose of vaccination for roughly 40% [47] of

the German population (vt). To generate a realization of trans-

mission rate with respect to vaccination efforts and mutation,

we use (9). We set ζ0 = 4, ζ1 = 6e−1 and ζ2 = 2e−1 in (9).

We also assume that the natural immunity factor is δ = 3e−1.

We formulated the contagion rate using (11) as follows:

m(t) =

⎧⎪⎨
⎪⎩

0.56, t < 2020/01/15,

0.64, 2020/01/15 ≤ t < 2021/02/25,

0.69, t ≥ 2021/02/25,

(14)

Fig. 6 illustrates model projection for daily cases (6a) and

cumulative case (6b) in three scenarios in comparison to the re-

ported cases. Fig. 6 illustrates when both vaccination and mu-

tation dynamics are incorporated into the model. It yields pro-

jections that closely track the reported cases, both on a daily

and cumulative basis. This alignment between the model’s

predictions and actual data underscores the model’s ability

to capture the complex interplay of factors that influenced

the pandemic’s trajectory during the specified timeframe.

Furthermore, the model exhibited noticeable shortcomings

when excluding vaccination or mutation dynamics. Specifi-

cally, in scenarios where vaccination is excluded, the model

consistently overestimated the reported cases, highlighting the

critical role of vaccination in curbing the spread of the virus.

Conversely, when mutations and vaccination are excluded,

the model demonstrates an underperformance, emphasizing

the significance of accounting for the evolving viral variants

and implementation of vaccination. In Fig. 7, we visually

represent the model’s evolutionary stages, specifically focusing

on the roles of mutations and vaccination. When we exclude

both vaccination and mutation from the model, an increase in

the transition of individuals from the recovered (R) state to

the susceptible (S) state is observed. However, the parameter

p does not experience a significant increase in this scenario

when compared to others. In scenarios (1) and (2), we observe

a gradual increase in the parameter pt, starting from 3×10−4

and reaching 3.2 × 10−4. When vaccination is included as a

contributing factor in the scenario (1), we notice a gradual rise

in the recruitment of individuals into the S population from the

exposed population (E) upon the introduction of vaccination.

Interestingly, despite this increase in susceptibility, the number

of infected individuals does not see a significant rise when

compared to the scenario where vaccination is excluded, but

the mutation is included (scenario (2)), while the parameter

p remains within the same range for both scenarios. This

suggests that vaccination has a significant impact on the dy-

namics of the model, transiting from state E to S, influencing

the recruitment of susceptible individuals without causing a

substantial surge in infections when mutations are taken into

account. This trend is consistent with our earlier findings

in Section III-B, where we discussed how the resilience of

immunity plays a crucial role in determining the rate at which

exposed individuals transition to infectious states. To accu-

rately measure the discrepancy between predicted and actual

data in real-world scenarios across three distinct settings, we

used the Mean Squared Error (MSE) and Normalized Mean

Squared Error (NMSE) as our primary metrics, with a specific

focus on the daily new case predictions. In scenario (1), the

MSE was 6.830 × 10−9, representing the average squared

difference between the model’s predictions and the observed

data. The NMSE, which was 0.029, normalizes the MSE by

the squared range of the true values (the difference between
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Fig. 7: States (St, ET , Rt, Qt and Rt) and pt projections with

respect to the fitted model, virus mutations, and implemented

vaccination efforts.

the maximum and minimum reported new cases), enabling

comparison across different scenarios. In scenario (2), both the

MSE and NMSE increased, reaching 2.171×10−8 and 0.094,

respectively. This elevation suggests a decrease in prediction

accuracy compared to scenario (1). In scenario (3), while the

MSE was 7.394× 10−9, the NMSE stood at 0.032, indicating

lower accuracy relative to scenario (1). In summary, our

framework is crafted to explore scenarios involving large-

scale endemics, taking into direct account crucial contributing

factors such as vaccination and mutations as input controls.

The simulation and experimental results examined the po-

tential influence of vaccination. In the simulation section,

we evaluated the system behavior when resources permit the

inoculation of 80% of the host population. Additionally, in

the experimental section, we evaluated the effectiveness of our

proposed Poisson point process model across different states

as described in equation (8) and probability transmission rate

formulations proposed in (9) with reference to COVID-19 data

from Germany during a pivotal timeframe.

This paper introduces a new computational model utilizing a

homogeneous Poisson point process, addressing critical limita-

tions in conventional state-space infectious disease modeling.

The recruitment of exposed individuals who do not contract

the disease back into susceptible sub-populations after the

incubation period is often overlooked in the literature but

crucial dynamic pattern. Our proposed model tackles this

issue by redefining probabilistic transitions among different

states, including the S → E → I progression, through

the use of an event-based Poisson arrival process. In the

Poisson point process, individuals within the host population

enter or exit states randomly within predefined time intervals.

While the average transition period is known in disease spread

modeling, the exact timing of state transitions is random.

Therefore, the transition rate between various states is for-

mulated as the average number of arrivals (events) within the

transition period. Moreover, the Poisson framework facilitates

the incorporation of delays linked with mitigation strategies,

significantly influencing the system’s behavior in an endemic

state. There has been limited work to incorporate the delays

corresponding to the implementation of mitigation strategies

as part of the state-space infectious disease modeling [52] [9].

However, the proposed models oversimplify the probabilistic

nature of transition. Specifically, our model treats delays as

additional predefined periods in the scope of the Poisson

arrival process and calculates the average number of arrivals

to the state within these periods. Lastly, virus mutation and

vaccination directly impact the p and, subsequently, the num-

ber of new cases in the host populations. However, mutation

and development of immunity resilience against the virus

are overlooked as contributing factors in the literature when

modeling the disease’s spread. our proposed model considers

mutation, development of immunity resilience, and immunity

loss as part of the state-space model. This framework enables

the assessment of disease spread across diverse societies and

sub-societies, considering mitigation implementation delays,

immunity responses, and vaccination profiles. Our model

offers a robust framework crucial for managing prolonged

pandemics in large populations affected by waves of mutation

and implementation delays. Additionally, it simulates future

pandemic waves based on anticipated timelines for mitigation

strategies and mutation occurrences. Our model provides

a mathematical foundation empowering policymakers to en-

hance preparedness and determine optimal vaccination timing

given available resources for current and potential outbreaks.

By utilizing our framework, health authorities gain a powerful

and adaptable tool to objectively conceptualize and forecast

the endemic state, considering mitigation interventions and

vaccination deployment.

VI. FUTURE RESEARCH

Future direction of research includes expanding the model to

incorporate additional complexities such as spatial heterogene-

ity in a large multi-clustered society, demographic factors, and

behavioral dynamics, including mobility in a networked model

designed based on the proposed framework. This can further

enhance the translational impact for complex future pandemic

modeling at a large scale. Furthermore, exploring optimization

techniques based on the proposed model for resource alloca-

tion in terms of mitigation strategies and vaccination would

offer practical suggestions for public health decision-makers.
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