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Abstract—One of the significant challenges when a new virus
circulates in a host population is to detect the outbreak as
it arises in a timely fashion and implement the appropriate
preventive policies to halt the spread of the disease effectively.
The conventional computational epidemic models provide a state-
space representation of the dynamic changes of various sub-
clusters of a society based on their exposure to the virus and are
primarily developed for small-size epidemics. In this work, we
reformulate the conventional computational epidemic modeling
approach inspired by the complex temporal dynamics observed
during the COVID-19 pandemic. We utilize the Poisson point
process to delineate transitions between various states, enabling
us to track the exposed population effectively. The proposed
model, based on random event-based Poisson arrivals, offers
a comprehensive framework for understanding disease spread
when the exposed state is intermediate between susceptibility
and infectiousness and delays in implementing mitigation strate-
gies are inevitable. Moreover, our newly proposed framework
allows the construction of the transmission probability (p) as
a probabilistic function of contributing factors such as virus
mutation, immunity waning, and immunity resilience. Our results
unravel the interplay between delays, transmission probability,
vaccination, virus mutation, immunity loss, and their indirect
impacts on the endemic states and waves of the spread. The
proposed model provides a mathematical framework that allows
policy-makers to improve preparedness for curtailing a lingering
infectious disease spreading and unfolds the optimal time frame
for vaccination given the available resources and the probability
of virus mutation for the current and unforeseen outbreaks.

Index Terms—Infectious disease modeling, epidemic networks
modeling, Poisson point process, probabilistic epidemiological
modeling, epidemiological statistical modeling

I. INTRODUCTION

The novel coronavirus disease, also known as COVID-19,
has had a major impact on the healthcare system over the
last two years. Series of new cases and hospitalization spikes
put intense pressure on the health care staff and resources,
resulting in an estimated total loss of $323.1B and over 1
million deaths in the US alone [1].
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Some of Coronavirus’s peculiar epidemiological traits and
unavoidable delays in implementing the mitigation strategies
make the prevention efforts to halt the spread of the disease
more challenging. Particularly, epidemiological studies indi-
cate that a significant number of carriers are asymptomatic
and are unaware that they are carrying the virus [2] [3] [4].

Ongoing disease transmission and many actively infected
individuals result in SARS-CoV-2 virus mutation over time,
and new variants, yet more contagious, are introduced [5]. For
instance, in November 2021, studies showed the B.1.1.529
variant, also known as omicron, which later resulted in un-
precedented waves in many countries, can escape antibody
immunity induced by the existing vaccines [6] [7] [8]. In
addition, imperfect implementation of control strategies and
failure to diagnose the symptoms of the disease or its new
variants, specifically at the early stage, results in multiple
surges in new cases [9], as has been observed in the last
two years. This would call for more holistic modeling that
matches the complex behavior of prolonged pandemic crises
in a connected society, going beyond small-scale epidemic
modeling [10] [11] [12].

The major challenge when a virus circulates in a host
population is to detect the outbreaks as they arise in a timely
fashion and implement the appropriate preventive policies.
A critical question, however, is what type of management
policies can be applied to effectively control the spread of
infectious disease, reduce the financial burden of emerging
infectious diseases on the healthcare system, and subsequently
reduce the mortality rate. Contact tracing and isolation are
two main strategies, the proper implementation of which can
slow down the chain of virus transmission when vaccination is
not immediately accessible to the mass population. However,
implementation of those preventive strategies with no delays
is rarely achievable, and it heavily depends on the socioe-
conomic status of the host population and can be a major
burden for societies with limited healthcare access [9] [13].
During the coronavirus pandemic, public and private health
authorities utilize different mitigation strategies such as contact
tracing, isolation, and mass COVID-19 testing to curtail the
outbreak. In practice, implementation of control measures in
a highly connected society with no delays, detecting the most
optimal strategies, large-scale optimal resource allocation, and
enforcing preventive protocols within an effective timeframe
when patients outnumber the health care staff and the first
responders have not been feasible in most regions worldwide.
Studies of other recent outbreaks, such as Ebola epidemics



in West Africa, also indicate that the spread of disease was
effectively controlled once preventive protocols were improved
and adequate resources were allocated to reduce the time delay
in identifying and tracing newly infected individuals [14] [15].

In this regard, computational and probabilistic models that
formulate the statistics of virus spread propagating among var-
ious clusters of a networked society are playing an invaluable
role in providing insight into the stated problems and helping
decision-makers, governments, and stakeholders to implement
appropriate strategies [16] [17]. A better understanding of the
impact of delays and efficacy of the conducted mitigation at
different stages of disease propagation, in addition to better
prediction of the effects of potential future mutations and
the changes in the status of immunity resilience, are unmet
needs for the control of a pandemic-level spread and can
be crucial to avoid the disabling socioeconomic pressure on
many societies, caused by the virus, for example, in future
unforeseen outbreaks and pandemics.

Motivated by the above-mentioned facts, there has been a
surge of efforts in developing various computational models
in the literature. Such models provide a state-space represen-
tation of the dynamic changes of various sub-clusters of a
society based on their exposure to the virus and are insightful
for early-stage epidemics. For example, the commonly used
method susceptible — in fected — recovered, named SIR,
models the connection and disease transmission between sus-
ceptible, infected, and recovered groups in a host population.
More advanced models, such as susceptible — exposed —
infected — recovered (SEIR), include an intermediate dy-
namical state for the exposed group to better model the
interaction between sub-populations during the course of an
epidemic. Specifically, individuals in the exposed state (F)
incubate the virus for a certain period of time before becoming
infectious. They are considered non-symptomatic and non-
infectious during this period. In some literature, additional
states are incorporated into the classical SEIR and SIR
models to further enhance the modeling of the complex nature
of disease spreading [18] [19] [20] [21] [22].

Going beyond the above-mentioned classical models, re-
searchers tried to incorporate the mitigation strategies, im-
munity loss, and demographic effects into the mathemati-
cal infectious disease modeling and assess the effects on
the disease transmission rate. In this regard, Radulescu et
al. have enhanced the SEIR model by assembling an age-
compartmental design and incorporating social mobility dy-
namics to numerically study the disease progression in a small
college community scenario when social mobility restrictions
are enforced [23]. In another effort, Bjgrnstad et al. incorporate
demographics and immunity loss into the classical SEIR
model to assess endemic states in the presence of continuous
recruitment into susceptible populations [24]. However, the
physics of transmission rate and average contact rate with
respect to the model dynamics are disregarded in the pro-
posed models. In a homogeneous population, we define the
transmission rate (5) as § = pw [25]. p is the probability of
disease transmission, and an individual makes contact with the
infected population (I) with the rate of w. In reality, social
mobility restrictions, mortality, and demographics directly

impact the w, p, and subsequently /5 and, thus, the number
of new cases. The models designed in the literature often
oversimplify the interdependent effects among w, p, and model
states [24] and [23]. Thus, such models often fail to take into
account adequate factors that contribute to the magnitude of
the epidemics, and as a result, they cannot provide the needed
accuracy in the estimation of disease spread, especially at a
large scale such as a pandemic.

In addition to the above, there are limited works to realisti-
cally incorporate the delays corresponding to the implementa-
tion of mitigation strategies and lack of identifiability as part
of the state-space infectious disease modeling [26] [27] [9]
[28]. In an effort to assess the consequences of delays and
incomplete identification of infectious individuals, Young et
al. proposed a mathematical framework that considers the
average transition time from one state to another as a form
of a constant delay [9]. However, the proposed model fails to
capture the probabilistic nature of transition when an exposed
individual incubates the virus for o unit-time. For example,
the work presented in [9] assumes that all of the susceptible
individuals that come into contact with infectious individuals
at time ¢ — o acquire the disease at time ¢, and therefore, the
probabilistic effect of intermediate dynamical state £ (which
directly impacts the spread of disease) is not observed in the
model.

In this paper, to bridge the gap between the observed
reality of large-scale and long-term disease progression in
a host population and currently utilized infectious disease
frameworks, we (1) redefine the computational representation
of state transitions when the exposed individuals incubate
the disease for a period of time before becoming infectious
using the Poisson point process, which is characterized by
its random events-based properties. Traditional state-space
models neglect the possibility of exposed individuals not
contracting the disease and returning to the susceptible
pool. We formulate dynamic interaction behavior among
various states as an arrival Poisson point process, that is, an
individual in the host population arrives/departs into/from a
state (given the health status) randomly within a predefined
period. Specifically, this allows for tracking the exposed
population and identifying those who do not contract the
disease as opposed to those who become infectious and
transition to the infected state. (2) Over the past three
years, it has become evident that delays in implementing
preventive protocols and vaccination strategies are inevitable
when new diseases emerge and play a significant role in
determining the behavior of a disease in its endemic state [9].
However, the existing models proposed to incorporate the
delays corresponding to mitigation strategies oversimplify
the probabilistic nature of the transition. In this study, we
address this limitation by utilizing the Poisson framework.
Here, delays are considered as another predefined period
within the scope of the Poisson arrival process, allowing us
to calculate the average number of arrivals to the state within
these periods. By integrating this element, the model mirrors
real-world scenarios where delays in response measures
significantly influence disease spread. (3) Lastly, we address
the often-overlooked factors of virus mutation and the



development of immunity through vaccination. Traditionally,
state-space models focus on the transmission probability (p)
without adequately considering how virus mutations and the
evolving immunity of the population significantly alter this
probability. By incorporating these dynamic factors into the
model, the proposed model in this paper provides a realistic
representation of disease spread for large-scale outbreaks.
To this end, we introduced a novel state-space model called
Susceptible—exposed—infected—quarantine—recovered-dead
(SEIQRD), which considers both temporal event-based
and probabilistic features of transitions across various states.
Using this framework, we shed light on the critical questions
pertaining to the evolution of transmission rate when control
measures, such as mass vaccination, are implemented with
delays.

Our simulations unravel the interplay between transmission
rate, vaccination, virus mutation, and their indirect impacts on
the endemic states and waves of the spread and allow for more
accurate predictions and effective planning, as they mirror
the actual evolving nature of the virus and the population’s
immune response. Additionally, to assess the performance
of the proposed model with respect to COVID-19 data and
infer crucial epidemiological parameters, we utilized COVID-
19 data in Germany from December 11, 2020, to March
15, 2021. Our unique mathematical framework allows us to
objectively evaluate and identify the optimal management poli-
cies required to effectively curtail infectious disease spread.
Furthermore, our novel model provides a robust mathematical
framework that allows policy-makers to improve preparedness
for curtailing an infectious disease and unfolds the optimal
time frame for vaccination given the available resources and
the probability of virus mutation for the current and unforeseen
outbreaks.

II. OVERVIEW OF MATHEMATICAL MODELING

Over the years, various methods have been developed to
address fundamental questions pertaining to the evolution of
infectious disease in a host population and the associated
risks related to reactive and proactive management policies.
Computational infectious disease models allow the detection
of the surge of new cases and the emergence of outbreaks at an
early stage. To this end, several mathematical approaches have
been introduced in the literature. Regression-based models are
one of the most commonly used to predict the emergence of
outbreaks. For example, one of the known models developed
to estimate the average influenza mortality using the regression
method is proposed by Serfling [29]. The model incorporates
seasonal behavior, historical data on influenza, and reported
cases in order to predict the emergence of new outbreaks.
Over the years, major efforts have been placed to enhance
Serfling’s model by incorporating the noise into the predictions
and accounting for uncertainties [30] [31]. In another line of
research related to statistical methods, researchers implement
the hidden Markov model (HMM) [32] and Markov Chain
Monte Carlo (MCMC) [33] to incorporate the hidden states
of the disease spread and forecast the outbreak. Moreover,
in recent years, the models focusing on pedestrian behavior

have developed to investigate how individual actions con-
tribute to virus transmission in broader, more complex scenar-
ios [34] [35] [36]. Another prevalent approach for forecasting
the progression of infectious disease spread utilizes state-
space models. These models are instrumental in projecting the
trajectory of outbreaks over time and evaluating the impact of
various containment measures. Another widely used approach
is the state-space model. The conventional computational
epidemic models provide a state-space representation of the
dynamic changes of various sub-clusters of a society based
on their exposure to the virus and are primarily developed for
small-size epidemics. In the next section, we reviewed this
particular model.

A. State-Space Model

The conventional state-space model that allows for the
incorporation of the relevant contributing factors of infec-
tious disease spread was proposed by Kermack and McK-
endrick [37]. The state-space STR (susceptible —in fected —
recovered) model proposed by Kermack and McKendrick has
been widely used to predict new outbreaks and model infec-
tious disease spread [38]. In this context, the host population is
divided into different groups based on the state of their health
and their interactional status with the infected sub-population.
(1) represents, SIR state-space model proposed by Kermack
and McKendrick [37].
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In the STR model, given above, at time ¢, the infected sub-
population, I(¢), makes contact with the susceptible sub-
population, S(t), with rate w and a susceptible individual
contract the disease with probability p. Thus, an infected
person transmits the disease to pwS susceptible individuals at a
unit of time. —pwST term indicates the number of susceptible
individuals who enter the infectious group I. Then, infected
individuals move to the recovered/dead sub-population, R,
within 4~! unit time [39]. In this framework, the R com-
partment is considered the sub-population that cannot get
re-infected. In addition, the size of the host population, N,
is assumed to remain constant throughout the outbreak, and
the host population is considered to be homogeneous, i.e.,
individuals in the host populations have an equal probability of
making contact with others, and every susceptible individual
has the same probability of becoming infected. Over the last
few decades, the STR model has been enhanced by adding
another state named exposed, F. The model is also known
as susceptible — exposed — infected — recovered or, in
short, SEITR. This model is widely used in the literature
when exposed individuals incubate the virus for o~ unit time.
(2) represents the state-space model of SEIR and formulates



transitions across various states mathematically.
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In the SEIR model presented above, it is assumed that
susceptible individuals leave the S group when they become
in contact with infectious individuals (I) and contract the
disease with a transmission probability of p. The exposed
individuals (E) are considered non-symptomatic and non-
infectious during the incubation period. Exposed individuals
incubate the disease for o' unit time before moving to the
infectious state at rate o. Then, infected individuals enter
the recovered/dead state (R) after vy~ ! unit time. The classic
SEIR model is suitable to simulate and predict early-stage
of outbreaks. However, there are three major issues with the
conventional SEIR models concerning outlining a realistic
realization of large-scale epidemics or pandemics.

e Problem (1) In the classic SETR model, it is assumed
that individuals who contact an infectious person contract the
disease with the probability of p and leave the S state with
the rate of pw. However, this assumption does not take into
account that a portion of the exposed population would not
contract the disease and return to the .S population. In reality,
the interactional status between the E and the S states is di-
rectly controlled by the health authorities and policymakers for
curtailing the disease spread by tracing the detected exposed
individuals (also known as “contact tracing”). Recruitment
of exposed individuals who do not contract the disease to
susceptible sub-populations after the incubation period is an
important dynamic pattern that plays an integral part in the
spread of the disease and has been disregarded in the literature.

e Problem (2) Over the last three years and previous
outbreaks, it has been shown that delays in terms of implemen-
tation of preventive protocols and vaccination are inevitable
[9] [15]. The delays pertaining to mitigation strategies are
another important dynamic that directly impacts the behavior
of the system in the endemic state. There has been limited
work to incorporate the delays corresponding to the imple-
mentation of mitigation strategies as part of the state-space
infectious disease modeling, e.g., [26] [27] [9] [40] [41].
However, the proposed models oversimplify the probabilistic
nature of transition and the temporal inter-dependency between
p, w, S, and I when an exposed individual incubates the virus
for o unit-time.

e Problem (3) Virus mutation and vaccination directly
impact the probability of transmission, p, and subsequently,
the number of new cases in the host populations. However,
mutation and development of immunity resilience against the
virus are overlooked as contributing factors in the literature
when modeling the disease’s spread.

In section II-B, we reviewed the Poisson point process basis,
which is the foundation of our proposed model in III-A.

B. Homogeneous Poisson Point Processes

A homogeneous Poisson point process is a stochastic pro-
cess that is utilized in queuing theory to model random events
such as arrivals or departures in a system [42]. The Poisson
point process is defined as a Poisson random variable where
the Poisson parameter depends on the duration of the interval
in which departure or arrival occurs. In the Poisson point pro-
cess, non-overlapping intervals are considered as independent
events [43] [44]. Considering these two key observations, a
Poisson point process is defined as given below.

Definition IL.1. Assume X (t) = Z(¢1,t2) represents a Pois-
son point process. The number of arrivals, k, during (¢, o)
interval with length of ¢ = ¢57¢; is a Poisson random variable
with parameter \¢. Given that,

(M)
5 (3)

where P{Z(ti,t3) = k} represents probability of having
k arrival within ¢ unit time. Considering (3), it can be
mentioned that if the intervals (¢1,¢2) and (¢3,t4) are non-
overlapping, then the random variables Z(t1,t2) and Z(ts,t4)
are independent.e

P{Z(t17t2) = k} = 6)\t

The properties of a Poisson process imply that in any
interval 6(t), one event can occur with the probability that
is proportional to §(¢). Furthermore, the probability that two
or more events occur in the same interval is proportional to
O(d(t)) [45]. The inter-arrival duration of a Poisson point
process (inter-arrival duration between the (i — 1)** and
(i)*" moments) is defined as an exponential process. The
aforementioned statement is proven below.

Proof. Assume t is any fixed point and £y + 7 represents the
first arrival time after ¢y. Therefore, the probability of having
at least one arrival within 7 unit time, F;(¢), is:
F.(t) = P{r <t}

= P{Z(to,to +t) > 0} “4)

=1—P{Z(to,to +t) =0} =1 — e M
We can observe that 1 — e~ is in fact, the cumulative
distribution function of the exponential distribution. Hence, we
can derive the probability density function (PDF') as follows:

_dF.(1)

dt )
= e M.

fr

O

Thus, considering (5), we can derive the average number
of arrivals in a Poisson point process given a known interval
time 7 as follows [44] [46]:

E(f‘r) = %

We use the Poisson point process concept presented in this
section to reformulate the conventional definition of the SETR
model. In section III-A, we propose a novel SEIR framework
by integrating the arrival Poisson point process concept into
the SEIR state-space model. Thus introducing a coherent

(6)
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Fig. 1: A simplified summary of the proposed model (SEIQRD) and the corresponding spread chain: Infectious individuals
become in contact with healthy individuals (S) with a rate w. A fraction of exposed ones acquire the disease after incubating
the disease for o unit time and move to an infectious state (/) with rate pAg;. Other exposed individuals that do not contract
the disease return to the susceptible population with a rate Agg. Once an exposed individual becomes infectious, they would
have three possibilities: 1. they are identified and placed into isolation, state (), 2. they recover and enter state R, or 3. they
pass away (state D) and get removed from the spreading cycle. Similarly, infected individuals who are identified either recover
or pass away. Finally, recovered individuals are recruited to the susceptible state due to waning immunity after o unit time

with rate Agg.

Description Parameter
Average contact rate per unit time w
Disease transmission rate 14
Lucky rate AES
Loss of immunity rate ARS
Exposure rate AET
Identification rate A1Q
The mortality rate of the unidentified infectious AID
The recovery rate of the unidentified infectious AIR
The mortality rate of the identified infectious AQD
The recovery rate of the identified infectious AQR
Incubation period o
Time elapsed between recovery and loss of immunity «
Time elapsed between infection and identification T
Time elapsed between identification and recovery k
Time elapsed between identification and death z
Time elapsed between infection and death without being identified o
Time elapsed between infection and recovery without being identified 0

TABLE I: Parameters of SEIQRD model

framework that takes into account the interdependency be-
tween w, p, and I states that are neglected in the conventional
SEITR model.

III. METHOD

In this paper, we propose a new computational model,
going beyond classic SEIR modeling, using a homogeneous
Poisson point process for the first time that addresses the pre-
viously mentioned issues in section II-A. The proposed model
in this paper, depicted in Fig. 1 and parameters delineated
in Table. (I), takes into account (a) the interactional status
between the F and the S states when exposed individuals
do not contract the disease, (b) the inter-dependency between

p, w, S, and I states, and (c) the effects of mutation and
development of immunity resilience in the society. Such a
model can be imperative when controlling a long pandemic in
a mega population that echoes waves of mutation and spread.

A. Reformulating SEIR model

To address critical issues with the conventional SEIR
model, such as oversimplification of the interplay between
exposed, susceptible, and infectious states, and the inter-
dependency between p, w, S, and I, we propose a novel
framework for the SEIR model which utilizes the Poisson
point process to define transition across various states.



In a homogeneous Poisson point process, events are dis-
tributed randomly in space or time with a constant intensity,
and the key assumption of independence between points
implies that the occurrence of one point does not influence
the probability of another point occurring within the process.
In the context of our proposed model, we assume events
(individual transition from one state to another) and not time
are independent.

We consider the transitions between &2 — I and I — R
as an arrival Poisson point process, meaning an individual in
the host population arrives at a new state (given the health
status) within a predefined period. We can model this behavior
using the Poisson point process concept because the average
transition period is known, but the exact arrival time to a new
state is random. Specifically, Therefore, we can formulate the
transition rate as the average number of arrivals (events) given
the transition period using (6).

We assume a susceptible individual who becomes in contact
with an infectious person leaves the susceptible group (S) with
a rate w. The newly exposed individuals, wS(¢)I(t), at time ¢,
are considered non-symptomatic and non-infectious. Notably,
only a fraction of exposed individuals become infectious. The
exposed individuals who contract the disease with probability
p move to the infectious state I with rate Ag; after incubating
the disease for o unit time. A\g; represents the average number
of arrivals to state I given the transition period of o. The
exposed individuals who do not contract the disease after o
unit time, return to the susceptible population with rate A\gg.
Specifically, A\gg represents the average number of individuals
who return to state S given the transition period of o. Then,
infected individuals enter the recovered/dead state (R) with
rate A\;r after v unit time. Similar to the previously intro-
duced rates, Ajr represents the average number of individuals
moving to the R state given ~ unit time. (7) represents the
computational framework for the proposed model.

ds

dt

dE
e wS)I(t) — pArrE(t — o) — ApsE(t — 0),

dI (N
5 = PAerE(t = 0) = ArrI(t =),
dR
dt

This framework formulates the dynamic changes of various

sub-clusters of the host population based on their exposure

to the virus when the exposed group is an intermediate step
between the susceptible and the infectious states. The proposed
model reconstructs the S — E — [ transition by considering
the fact that changes in the susceptible population occur only
when individuals get exposed to the virus and not when they
contract the disease. Furthermore, the proposed model allows
for the construction of p as a function of contributing factors.
We propose a unique model for p by taking into account
the relevant factors such as virus mutation, vaccination, and
immunity loss in section III-B. Such a model can be utilized
to simulate the future waves of pandemics depending on an
assumed temporal expectation of the mutation. Also, the new

= —wSH)I(t) + ApsE(t — o),

= ArI(t—7)

formulation allows for the evaluation of the disease spread
in various societies and sub-societies with different immunity
responses and vaccination profiles.

B. Probabilistic temporal event-based disease progression
model

To address the critical questions mentioned in section II-A
and assess the impact of vaccination objectively, we proposed
a novel mathematical framework that (a) takes into account
the interdependent relations between transmission rate (p),
contact rate (w) and immunity loss (AgsR(t — «)), and (b)
formulates the dynamical temporal event-base interactional
status across various states. The proposed model, Susceptible-
exposed-infected—quarantine—recovered-dead (SEIRQD) di-
vides the host population into six groups, depending on the
state of an individual’s health and whether or not they are
exposed to the virus through an infected person.

Infectious individuals (/) become in contact with healthy
individuals (S) at rate w. A fraction of exposed ones (F)
acquires the disease after incubating the disease for o unit of
time and moves to an infectious state (I) with the rate pAg;.
In this paradigm, the term wS (¢)1(t) represents the number of
individuals who become in contact with infected individuals
at time ¢. A fraction of those who are exposed to the virus at
time ¢t — o (i.e., E(t — o)) contract the disease after incubating
the virus for a period of ¢ unit time. During this period, they
are considered non-symptomatic and non-infectious. Once an
exposed individual becomes infectious, they would have 3
possibilities: (1) they are identified and placed into isolation,
state (), (2) they recover and enter state R, or (3) they pass
away (state D) and get removed from the spreading cycle.
The exposed individuals who do not contract the disease after
o unit time return to the susceptible population with rate
Ags. Infected individuals who are identified either recover or
pass away. Finally, recovered individuals are recruited to the
susceptible state after o unit time with rate Apg.

% = —wS)I(t) + ArsR(t — a) + ApsE(t — o),
% — WSO)I(t) — prerE(t — 0) — AusE(t — o),
% — pAprE(t — o) = Arrl(t —7)
— Aol (t —7) = ArpI(t — p), ®)
CfTCf = Argl(t — 1) = AgrQ(t — k) — AopQ(t — 2)
U MBI =)+ QU — k) ~ AnsR(t — )
%) = AopQ(t — 2) + ArpI(t — )

(8) represents the proposed SEIQRD mathematical model.
Individuals move to a new group (e.g. arrive in a new group)
after staying in the current group for y unit time. We formulate
this behavior using the homogeneous Poisson process because
the average transition time is known, but the exact arrival time
to the new state is random. Per (5) and (6), the average inter-
arrival duration between i — 1*"* and ' moments in a Poisson
point process with rate A forms an exponential distribution,



with the expected value of AL, Therefore, we define the £ —
I,E - S 1—-D,I—QI—R Q@ — R Q— D
transitions as follows:

e E — I: During o unit time, on average )\E} exposed
individuals who contracted the virus with probability p
undergo a transition to state £. This implies that exposed
individuals who become infectious enter state I with o
unit time delay with the average rate of Ag; which is
reflected as pAgE(t — o) in (8).

e /' — S: During o unit time, on average )\Eg exposed
individuals that do not contract the virus undergo a
transition to state .S. This implies that exposed individuals
who are not infectious return to state S with ¢ unit time
delay with the average rate of A\gg which is reflected as
AesE(t — o) in (8).

e I — D: The infected individuals at time ¢ — p pass away
with the average rate of A\;p after remaining contagious
for 4 unit time. Particularly, the arrival at state D between
the (i— 1) and (i)' moments is an exponential random
variable with rate )\;5. This transition is indicated in (8)
as )\[Df(t — ,u)

e I — (: The average number of infectious who are
identified during 7 unit time is /\;5. Therefore, the
infectious individuals at time ¢ — 7 undergo a transition
to state ) with the average rate of A\;g at time ¢. This
behavior is modeled as A;gI(t — 7) in (8).

e I — R: During ~ unit time, the average number of
unidentified infected individuals who are recovered is
/\I_é. As a result, infectious individuals at time £ —~ move
to state R with the average rate of A\;p at time ¢. This
behavior is modeled as A\;pI(t — ) in (8).

e @ — R: Term A\orQ(t — k) in (8) indicates the number
of identified infected individuals at time ¢ — k who are
recovered with the average rate of Agp at time ¢.

e Q@ — D: Term AgpQ(t — z) defines the changes in
quarantine population at time ¢. These individuals enter
group () at time ¢ — z and pass away at the average rate
of )\Q D-

e R — S: Individuals who are recovered at time ¢ — «
maintain immunity against the disease for a unit time
and immunity wanes with the average rate of Apgs.

The proposed model in this section maps out the interplay
between various states by taking into account the complex
temporal interaction and inherent dynamics. However, to as-
sess the impact of vaccination on the transmission rate and,
ultimately, the disease propagation, we need to define p as
a function of relevant factors, i.e., virus mutation, vaccina-
tion, and immunity loss. In the next section, we propose a
framework that can be integrated with the proposed model to
represent the response of the system to mutation, vaccination,
and immunity loss. Such a model can be utilized to simulate
the future waves of pandemics depending on an assumed
temporal expectation of the mutation. Also, this allows for the
evaluation of the disease spread in various societies and sub-
societies with different immunity responses and vaccination
profiles.

0.8

0.8

0.0

0.6
0 1000 2000 0 1000 2000

Time (t) Time (t)
(a) (b)

Fig. 2: (a ) The simulated realization for vaccination function,
v(t) represents the host population’s immunity against the
virus. (b) Simulated realization of mutation function, m(t).
(10) is utilized with parameters 17; = 9e—1 and 12 = le—4 to
generate v(t) function. (11) is utilized to generate a realization
of virus mutation, m(t), due to ongoing disease transmission
results.

C. Disease transmission rate

We formulate p(t) by incorporating virus mutation, waning
immunity, and the population’s immunity resilience against the
virus as given below:

dp

dt
(9) represents the mathematical expression of p(¢). In this
model, v(t) reflects the host population’s immunity resilience
against the virus boosted by vaccination efforts, and m(t)
indicates the communication of virus variants from one person
to another. (; represents the overall rate at which immunity
is produced against the virus in the host population through
vaccination and natural immunity. (, represents how well the
vaccination efforts are implemented. (5 is the rate at which the
virus spreads given the circulating variant at time ¢. Infected
individuals who recovered develop natural immunity against
the virus, which results in a reduction of p(t¢) over time.
We formulate this behavior by adding —(;6p(t) term in (9).
We use (10) to generate a sigmoid shape curve for v(t).
Particularly, this function generates an S-shape growth curve
in which immunity resilience boosted by vaccination increases
slowly initially and approaches an exponential growth rate
when mass vaccination becomes available.

[0 + Cov(B)]Cup(t) + Cam(t) ©)

o(t) = m (1 —e ™) (10)

The virus variant’s contagion rate is modeled using (11). We
utilize multi-step functions as indicated in (11) to take into ac-
count virus mutation occurrence and model the corresponding
contagion rate.

(11
(I)Z(t) = Cj, t S [ti—17ti];
IV. SIMULATION RESULTS

In this subsection, we systematically examine the potential
outcomes of the proposed model given by (8). Specifically, we
explore scenarios when resources permit vaccinating 80% of
the host population across different average contact situations.
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Fig. 3: (a) Simulated realization for transmission rate, p(t) when average contact rate, w = 0.5 and (b) when w = 0.7. It
represents the evolution of p(¢) over time with respect to virus mutation, the performance of vaccination implementation, and
natural immunity built-up. ¢; plays an input control role, which defines how effective mass vaccination efforts are implemented

in the host population.

We explore a comprehensive simulation study to understand
the dynamics of the proposed model as defined by (8) and (9).
Our objective is to generate realistic projections of infectious
disease spread and assess the influence of large-scale vacci-
nation in mitigating the spread. For our simulations, we set
the population size as N = 8 x 105, starting with [y = 1
infected individuals. At the onset, ¢ = 0, the transmission rate
is designated as p(0) = 0.32. The study envelops average
contact rates, w, within the range [0.5,0.7]. Given the virulent
nature of the ailment, we have assigned an elevated exposure
rate of Ag; = 0.036, coinciding with an incubation span of
o = 5 time units. This configuration implies that an average
of 27 individuals, upon exposure at rate p, progress to the
infectious phase within o time units. Post incubation, exposed
individuals not contracting the disease transition back to the
susceptible bracket at a rate of Agg = 0.034. Infected cohorts
subsequently:

o Recover, governed by a rate of \;g = 0.014, within a
time frame of v = 14 units.

o Or, pass away at a rate of A\;p = 0.0008, within p = 15
time units.

e A subset undergoes identification at a rate of A\;p =
0.0152, in a span of 7 = 5 time units. These diagnosed
individuals are quarantined, curtailing any further expo-
sure. Their isolation persists for £ = 21 time units, post
which they either integrate into the R state at a rate of
Aor = 0.0008, or pass away after z = 25 time units at
a rate of AgD = 0.00056.

After an immunity period of o = 200 time units, recovered
individuals are reinstated to the susceptible pool at a rate of
Ars = 0.0032. We employed (9) to model the time-dependent
transmission rate, incorporating three virus mutations within
the initial 750 time units. These variants emerged at t =
[50, 250, 750], with their contagion rates depicted in Fig. 2b.
The contagion rate, formulated using (11), is given by:

0.629, t < 50,
709, 50 <t <25

m(t) = 0.709, 50 <t < 250, 12
0.739, 250 <t < 750,
0.787, > 750,

To quantitatively gauge vaccination’s role in p(¢) and disease
control, we focused on (; as a controlling parameter. Per (9),

p(t)’s determinants are (o, (1, and (2. While (o is inherent,
defined by the virus variant, (y and (; offer external control
avenues. Fig. 2a displays vaccination coverage over 2000
time units. Parameters were set to [ = 2, n; = 0.9, and
12 = 0.0001 to simulate a feasible 80% population vaccination
within the timeframe. We assigned post-recovery impact as
Co = 1 and inherent viral virus contagion rate as (» = 0.2.
Natural immunity, J, post-recovery, is postulated at § = 0.3.
To evaluate vaccination efficiency, we executed ten scenarios
varying (3 within the specified range delineated in 13

(3=0.45+0.05n, ne{0,1,2,...,9} (13)

Fig. 3a and Fig. 3b illustrate the evolution of p when (; €
{045 + z < 0.9,z = .05} and w € [0.5,0.7]. During
the first 250 unit time, p reaches its maximum value ~ 0.9
due to multiple virus mutations (Fig. 2b) and insufficient
immunity resilience against virus represented in (9). However,
p reduces when the host population’s immunity resilience
increases and eventually converges. As shown in Fig. 4a and
Fig. 4b, the most significant jump in the number of new
cases occurs when p(t) reaches its maximum value ~ 0.9
for both w = 0.5 and w = 0.7, which indicates the direct
relationship between the number of cases (I;) and p;. When
p(t) > 0, the disease persists within the host community,
as exemplified in Fig. 3a and Fig. 3b. The magnitudes of
p(t) and w emerge as decisive factors influencing the size
of the infectious cohort. In Fig. 4, the complex interplay
among the model’s six states and p; is delineated. Notably, the
recovered demographic displays non-linear growth patterns.
These oscillations become more pronounced for diminished
¢1 values, highlighting the challenges of limited immunity
resilience, especially against various virus iterations. Two
key elements accentuate the transition to the infectious state:
(1) transient immunity duration and (2) ensuing immunity
attrition. A robust immunity resilience can channel the host
populace towards two potential trajectories:

1) A decline in the epidemic due to a contraction in
infectious instances.

2) A moderated transference of exposed individuals to
infectious states, courtesy of the shield offered by sturdy
immunity.

We analyzed the temporal progression of I in relation to S
as depicted in Fig. 5b and Fig. 5a. Observably, for p(t) > 0,



— £=045 — =055 — =065 =015 fi=085
=050 — G=060 — =070 — =080 — =090

0125
0100
0075
0050

0.025.

0.000
1000 1500 2000 [ 500 1000 1500 2000
Time (t) Time (t)

[ 530 1000 1500 2000
Time (t)

030
025
020

&ois
010
005

0.00 E
) 530 1000 1500 2000 [ 560 1000 1500 2000 [ 560 1000 1500 2000
Time (t) Time (t) Time (t)

(a)
— Q=055 — G=065 &=075
— G=060 — =070 — G=080

G=08s
£=090

0150

0125
0100
= 0,075
0.050
0.025

o /

2000 [ 500 1000 1500
Time (t)

[ 500 1000 1500 2000 [ 500
Time (t)

0 1500

100 2000
Time (t)

03

02

01

00

] s 1000 1500 2000 o 560
Time (t)

1000 1500
Time (t)

(b)

Fig. 4: (a) Simulated realization of SEIQRD (8) model’s
states when w = 0.5 and (3 € {z + 0.45 < 0.9} (b)
when w = 0.7 and (; € {z + 0.45 < 0.9}. 4a and 4b
represents the evolution for infectious (1), susceptible (.5),
exposed (F), recovered (R), quarantined (()) and dead states
(D) in 2000 unit time span. Our simulation shows that the
disease spreading continues when the transmission rate p > 0
(3b and 3a).
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trajectories diverge, signifying an active epidemic phase. This
suggests that the disease remains prevalent within specific sub-
groups of the host population, which aligns with our results
in Fig. 3a and Fig. 3b. Due to diminishing immunity and a
replenishing susceptible pool, recurrent surges in cases are
inherent. Our findings highlight the interplay of transmission
rate, contact frequency, and immunity duration in determining
disease spread and underscore the nuanced balance between
transmission rate, contact propensity, and immunity resilience
in steering the course of infectious dynamics.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, to validate the efficacy of our model concern-
ing real-world COVID-19 data and extract key epidemiological
parameters, we use COVID-19 data from Germany, spanning
December 11, 2020, to March 15, 2021. We utilized the exten-
sive dataset provided by Johns Hopkins University’s COVID-
19 repository [47] as a cornerstone for our analysis. The rich
and real-time nature of this dataset allowed us to calibrate and
validate our computational model accurately. We specifically
target the timeframe spanning from December 11, 2020, to
March 15, 2021, a pivotal juncture within the COVID-19
pandemic timeline in Germany, which contains 96 distinctive
data points. We have selected this timeframe to rigorously
evaluate the effectiveness of the proposed SEIRQD model,

(a)

Fig. 5: (a) Trajectory of dynamical states infectious (/) and
susceptible (S) states over time when average contact rate
is w = 0.5. (b) when w = 0.7. In this view, when the
transmission rate, p(t) > 0, the trajectories move outwards and
diverge away, which indicates an open epidemic state, meaning
at any given time ¢, the communicable disease circulates in a
sub-cluster of the host population. In addition, a series of new
cases and spikes are unavoidable due to waning immunity and
recruitment to the susceptible population.

(b)

as it uniquely aligns with the convergence of two pivotal
factors, underscoring the model’s novelty and its relevance
within this study. December 25, 2020, marked the commence-
ment of the COVID-19 vaccination campaign in Germany.
Additionally, this timeframe encapsulates the emergence of
two notable virus mutations with significant implications for
disease transmission. The first mutation, the B.1.617.2 variant
(commonly known as the delta variant), was initially identified
in India and began circulating around December 15, 2020, in
Germany. Subsequently, on February 25, 2021, the BA.2.86
variant, initially originating in Britain, emerged as another
prominent strain [48].

We conduct an analysis using the proposed model (8)
against the COVID-19 data in Germany during the afore-
mentioned timeframe. We integrated mutation and vaccination
dynamics into epidemiological differential equations using (9).
We examine three distinct scenarios: 1) including vaccination
and mutations, 2) including mutations and excluding vacci-
nation, and 3) excluding both vaccination and mutations. The
primary objective of these scenarios is to evaluate the influence
of vaccination while simultaneously comparing the model’s
performance when either mutation or vaccination dynamics
are excluded. To assess the overall impact of vaccination
interventions on the spread of COVID-19 in Germany during
this timeframe, we examined the initial phase of vaccine
implementation, which collided with existing mitigation mea-
sures, such as lockdowns. We maintain a constant average
contact rate as w = 0.3 during this phase. Our population
size, represented as [V, is considered to be 83 million [49],
and the influence of natural births and deaths is considered
negligible compared to the size of the host population. For
our temporal calculations, we use the unit-time measurement
of one day.

We assume the incubation period is ¢ = 8 days [50]
with transition rate of \g; = 1.19e—2 and A\gg = He—2.
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Fig. 6: (a) SEIRQD model projection for daily infected
cases (ft) vs reported cases in Germany (I;) (b) SEIRQD
model projection for cumulative infected cases (ff) vs reported
cumulative cases in Germany (Iy).

-

Infected individuals get identified after 7 = 10 with rate
Arg = 1.04e—2, pass away without identification after ;1 = 25
days with rate A\;p = 7.9e—4 or recover without identification
with transition rate of A\;p = 2.6e—2 after v = 14 days [51].
Infected individuals that are identified pass away after z = 25
with rate A\gp = 5.6e—4 or recover with rate A\gr = 1.8e—3
within average period of & = 20 days. Lastly, we assume
recovered individuals get recruited to state S after « = 120
with a transition rate of AggS = 7.2e—3.To estimate the initial
conditions, we utilized data from the Johns Hopkins dataset
starting from the previous date, e.g., December 10, 2020 and
assumed Ei™! = 60000, I;"* = 30000, Qi"* = 15000,
RiMt = 19000, D" = 24000, pyinit = 0.42 and Si"" =
N — EtZTLLt _ Itinit _ Q%nzt _ Rim’t _ Dtmzt We set | = 5,
N1 = 9e—1 and 3 = 1le—101in (10) to generate a realization of
the number of vaccinated individuals by April 2021 according
to the available data.

By April 2021, available resources allowed the policymakers
to provide the first dose of vaccination for roughly 40% [47] of
the German population (v;). To generate a realization of trans-
mission rate with respect to vaccination efforts and mutation,
we use (9). We set (g =4, (1 = 6e—1 and (; = 2e—1 in (9).
We also assume that the natural immunity factor is 6 = 3e—1.

We formulated the contagion rate using (11) as follows:

0.56, t < 2020/01/15,
m(t) = < 0.64, 2020/01/15 < ¢ < 2021/02/25,  (14)
0.69, t > 2021/02/25,

Fig. 6 illustrates model projection for daily cases (6a) and
cumulative case (6b) in three scenarios in comparison to the re-
ported cases. Fig. 6 illustrates when both vaccination and mu-
tation dynamics are incorporated into the model. It yields pro-
jections that closely track the reported cases, both on a daily
and cumulative basis. This alignment between the model’s
predictions and actual data underscores the model’s ability
to capture the complex interplay of factors that influenced
the pandemic’s trajectory during the specified timeframe.
Furthermore, the model exhibited noticeable shortcomings
when excluding vaccination or mutation dynamics. Specifi-
cally, in scenarios where vaccination is excluded, the model
consistently overestimated the reported cases, highlighting the
critical role of vaccination in curbing the spread of the virus.
Conversely, when mutations and vaccination are excluded,
the model demonstrates an underperformance, emphasizing
the significance of accounting for the evolving viral variants
and implementation of vaccination. In Fig. 7, we visually
represent the model’s evolutionary stages, specifically focusing
on the roles of mutations and vaccination. When we exclude
both vaccination and mutation from the model, an increase in
the transition of individuals from the recovered (R) state to
the susceptible (5) state is observed. However, the parameter
p does not experience a significant increase in this scenario
when compared to others. In scenarios (1) and (2), we observe
a gradual increase in the parameter p;, starting from 3 x 10~*
and reaching 3.2 x 10~*. When vaccination is included as a
contributing factor in the scenario (1), we notice a gradual rise
in the recruitment of individuals into the S population from the
exposed population (£) upon the introduction of vaccination.
Interestingly, despite this increase in susceptibility, the number
of infected individuals does not see a significant rise when
compared to the scenario where vaccination is excluded, but
the mutation is included (scenario (2)), while the parameter
p remains within the same range for both scenarios. This
suggests that vaccination has a significant impact on the dy-
namics of the model, transiting from state F to .S, influencing
the recruitment of susceptible individuals without causing a
substantial surge in infections when mutations are taken into
account. This trend is consistent with our earlier findings
in Section III-B, where we discussed how the resilience of
immunity plays a crucial role in determining the rate at which
exposed individuals transition to infectious states. To accu-
rately measure the discrepancy between predicted and actual
data in real-world scenarios across three distinct settings, we
used the Mean Squared Error (MSE) and Normalized Mean
Squared Error (NMSE) as our primary metrics, with a specific
focus on the daily new case predictions. In scenario (1), the
MSE was 6.830 x 1079, representing the average squared
difference between the model’s predictions and the observed
data. The NMSE, which was 0.029, normalizes the MSE by
the squared range of the true values (the difference between
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the maximum and minimum reported new cases), enabling
comparison across different scenarios. In scenario (2), both the
MSE and NMSE increased, reaching 2.171 x 10~8 and 0.094,
respectively. This elevation suggests a decrease in prediction
accuracy compared to scenario (1). In scenario (3), while the
MSE was 7.394 x 10~7, the NMSE stood at 0.032, indicating
lower accuracy relative to scenario (1). In summary, our
framework is crafted to explore scenarios involving large-
scale endemics, taking into direct account crucial contributing
factors such as vaccination and mutations as input controls.
The simulation and experimental results examined the po-
tential influence of vaccination. In the simulation section,
we evaluated the system behavior when resources permit the
inoculation of 80% of the host population. Additionally, in
the experimental section, we evaluated the effectiveness of our
proposed Poisson point process model across different states
as described in equation (8) and probability transmission rate
formulations proposed in (9) with reference to COVID-19 data
from Germany during a pivotal timeframe.

This paper introduces a new computational model utilizing a
homogeneous Poisson point process, addressing critical limita-
tions in conventional state-space infectious disease modeling.
The recruitment of exposed individuals who do not contract
the disease back into susceptible sub-populations after the
incubation period is often overlooked in the literature but
crucial dynamic pattern. Our proposed model tackles this
issue by redefining probabilistic transitions among different
states, including the S — FE — [ progression, through
the use of an event-based Poisson arrival process. In the
Poisson point process, individuals within the host population
enter or exit states randomly within predefined time intervals.
While the average transition period is known in disease spread
modeling, the exact timing of state transitions is random.
Therefore, the transition rate between various states is for-
mulated as the average number of arrivals (events) within the
transition period. Moreover, the Poisson framework facilitates
the incorporation of delays linked with mitigation strategies,
significantly influencing the system’s behavior in an endemic
state. There has been limited work to incorporate the delays
corresponding to the implementation of mitigation strategies
as part of the state-space infectious disease modeling [52] [9].
However, the proposed models oversimplify the probabilistic
nature of transition. Specifically, our model treats delays as
additional predefined periods in the scope of the Poisson

arrival process and calculates the average number of arrivals
to the state within these periods. Lastly, virus mutation and
vaccination directly impact the p and, subsequently, the num-
ber of new cases in the host populations. However, mutation
and development of immunity resilience against the virus
are overlooked as contributing factors in the literature when
modeling the disease’s spread. our proposed model considers
mutation, development of immunity resilience, and immunity
loss as part of the state-space model. This framework enables
the assessment of disease spread across diverse societies and
sub-societies, considering mitigation implementation delays,
immunity responses, and vaccination profiles. Our model
offers a robust framework crucial for managing prolonged
pandemics in large populations affected by waves of mutation
and implementation delays. Additionally, it simulates future
pandemic waves based on anticipated timelines for mitigation
strategies and mutation occurrences. Our model provides
a mathematical foundation empowering policymakers to en-
hance preparedness and determine optimal vaccination timing
given available resources for current and potential outbreaks.
By utilizing our framework, health authorities gain a powerful
and adaptable tool to objectively conceptualize and forecast
the endemic state, considering mitigation interventions and
vaccination deployment.
VI. FUTURE RESEARCH

Future direction of research includes expanding the model to
incorporate additional complexities such as spatial heterogene-
ity in a large multi-clustered society, demographic factors, and
behavioral dynamics, including mobility in a networked model
designed based on the proposed framework. This can further
enhance the translational impact for complex future pandemic
modeling at a large scale. Furthermore, exploring optimization
techniques based on the proposed model for resource alloca-
tion in terms of mitigation strategies and vaccination would
offer practical suggestions for public health decision-makers.
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