MagicCloth: Protect User Privacy in AR Streaming

Yuming Hu!, Mingyu Zhu?, Qiao Jin!, Feng Qian!, Bin Li?
'Department of Computer Science and Engineering, University of Minnesota
’Department of Electrical Engineering, Pennsylvania State University

ABSTRACT

With the growing number of users, Augmented Reality (AR)
privacy issues have aroused researchers’ concerns. Our work
focuses on the protection of privacy-sensitive objects in in-
door settings. We proposed a novel privacy protection mech-
anism MagicCloth for AR live streaming. When the user
covers the privacy-sensitive object with a specially designed
cloth, MagicCloth can accurately track it in real time, and
replace it with a virtual object based on its shape and size
seamlessly. By wisely integrating lightweight 0-1 segmenta-
tion, pattern detection, and AR plane tracking techniques,
our MagicCloth system achieves real-time performance on
Android smartphones. We extensively analyze the challenges
involved in object replacement and have put forth corre-
sponding solutions. In our future work, we aim to implement
and refine these proposed solutions to effectively address
the identified challenges and achieve seamless and privacy-
preserving object replacement in AR scenarios.

CCS CONCEPTS

« Security and privacy — Privacy protections; - Human-
centered computing — Mobile devices.

KEYWORDS

Augmented reality, visual privacy, object replacement

ACM Reference Format:

Yuming Hu, Mingyu Zhu, Qiao Jin, Feng Qian, Bin Li. 2023. Mag-
icCloth: Protect User Privacy in AR Streaming. In The 1st ACM
Workshop on Mobile Immersive Computing, Networking, and Systems
(ImmerCom ’23), October 6, 2023, Madrid, Spain. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3615452.3617936

The current affiliation of Feng Qian is the University of Southern California.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ImmerCom °23, October 6, 2023, Madrid, Spain

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0339-3/23/10...$15.00
https://doi.org/10.1145/3615452.3617936

1 INTRODUCTION

Augmented reality (AR) privacy is an important aspect of
AR technology that focuses on protecting users’ privacy
and mitigating potential privacy risks associated with AR
experiences [21]. Several potential privacy problems can
arise in AR live streaming. For instance, when sharing AR
content, users may inadvertently display private items or
sensitive information to the viewers [10]. The integration of
virtual content (e.g., mirror) with real-world objects can lead
to unintended privacy violations, as virtual elements might
interact with private spaces or personal belongings [26].

This paper focuses on the protection of privacy-sensitive
objects (e.g., a statue) in indoor scenarios, such as bedrooms.
Furthermore, to avoid privacy leakage during data transmis-
sion (or on servers), we argue that the AR privacy protection
system should completely run on the local smartphone. Note
that we currently only consider privacy concerns for sta-
tionary objects. These factors bring us many challenges and
requirements. 1) The user may move the smartphone around
at any time, causing the camera to lose focus and produce
blurry images. 2) Smartphones have limited computing re-
sources. Live streaming typically requires 30 FPS, so heavy
deep-learning models are impractical in this case. 3) We do
not know what the privacy-sensitive object is or what its
shape and size are. To provide a better user experience, a
privacy-protection solution should better be out of the box.
Protecting the privacy of individuals and objects within these
controlled spaces requires careful consideration and effective
privacy-preserving mechanisms.

Researchers have explored different approaches and tech-
niques to safeguard the privacy of AR users. Hu et al. [10]
proposed a fine-grained control framework, which splits the
visual process and networking process. Users can choose
whether to share their AR content with others at any time.
However, in a real-world scenario, the user may not be aware
that a private item appears on the smartphone screen. Zhu
et al. [27] utilized smart LEDs for privacy protection. These
LEDs flicker in a well-designed waveform, preventing unau-
thorized users from taking photos or videos. However, it
cannot protect some individual privacy items alone. The
most common solutions are vision-based (including neural
network models) [11, 14, 15, 20, 24, 26], which are computa-
tionally heavy. Besides, we do not know what each user’s
privacy-sensitive objects are. Therefore, AR users might be

https://doi.org/10.1145/3615452.3617936
https://doi.org/10.1145/3615452.3617936

ImmerCom ’23, October 6, 2023, Madrid, Spain

required to collect images that contain the objects and re-
train the models before using them. Diminished Reality (DR)
[5] protects user privacy by removing the sensitive object.
In addition to slow speed, DR often suffers from poor visual
effects due to complex backgrounds and lighting conditions.
Overall, these solutions are not suitable for AR live streaming,
especially for large-scale daily use in indoor scenarios.

In this work, we proposed a new privacy protection mech-
anism MagicCloth for AR live streaming. The fundamental
concept of MagicCloth involves three main steps. Firstly, the
user covers a privacy-sensitive object with a cloth printed
with unique patterns. Secondly, we leverage an ad hoc light-
weight model to identify and monitor the movement of the
cloth. Finally, we seamlessly replace the target with a virtual
object, thereby ensuring privacy while providing a visually
enhanced experience. The cloth itself can visually prevent
viewers from seeing the privacy-sensitive object. Neverthe-
less, viewers might still know the geometric information
of the object, which can leak private information. Our ul-
timate goal is to protect user privacy while maintaining a
visual experience. Instead of adopting heavy DR solutions,
we replace the target with a virtual object. In this way, we
can obscure the target, hide its geometric information, and
provide a better visual experience.

MagicCloth system mainly consists of three modules, in-
cluding 0-1 segmentation, object replacement, and pattern
detection. Note that we have only finished the segmentation
and detection modules, and we will discuss our ideas about
object replacement in §3. Different from traditional segmen-
tation tasks [12], our 0-1 segmentation only needs to identify
one type of target, i.e., a piece of cloth with specially designed
patterns. Therefore we can customize a lightweight neural
network model to segment the cloth from the background.
We then constructed a dataset containing everyday indoor
scenes and trained our model based on it. Once obtaining
the accurate location of the target, we can employ object re-
placement to generate a virtual object based on the target’s
size, shape and position. Unfortunately, our model is still
time-consuming (~100 ms on smartphones) even though
it is lightweight. So MagicCloth incorporates AR-specific
tracking methods [8], allowing for accurate and consistent
tracking of objects within the AR scene. It helps us update
the location of the virtual object, but its tracking error accu-
mulates over time and is sensitive to fast motion. Hence, we
utilize pattern detection, which has a computation time of
~10 ms, to monitor the outcomes of plane tracking. Pattern
detection is to locate the specially designed patterns on the
cloth. If the locations of patterns are severely offset from that
of the virtual object, we need to rerun the 0-1 segmentation
model to regenerate the virtual object. By incorporating this

Yuming Hu, et al.

pattern-based auxiliary detection tool, we enhance the ro-
bustness and reliability of our overall privacy preservation
approach in indoor AR settings.

Our contributions are summarized as follows.

e We propose a novel framework MagicCloth for real-
time privacy protection in AR live streaming.

e Lightweight segmentation model, pattern detection,
and AR plane tracking are incorporated to achieve fast
and accurate target tracking.

e We further discuss our idea of object replacement,
which generates virtual items that are similar in shape
and size to the target.

2 SYSTEM

In this part, we will talk about pattern detection, target track-
ing and 0-1 segmentation modules. The object replacement
for visual privacy is discussed in §3.

2.1 Overview

To protect the privacy of users, we aim to replace the sen-
sitive object with virtual objects. Before that, users need to
cover the object with a cloth, on which the specially designed
patterns are printed.

Next, we will talk about three parts of MagicCloth: 1) pat-
tern detection, 2) target tracking, and 3) 0-1 segmentation.
Since we cover the private object with cloth, we only need
to detect the cloth rather than the object. A specific pattern
(i.e., annulus) is printed on the cloth, to accelerate the ob-
ject detection, and details can be found in §2.2. As shown in
Figure 1, our pattern detection will find the annulus on the
cloth, further obtaining the target position and providing it
to the AR module. It takes 10-30 ms (depending on the target
number) to achieve pattern detection for Full HD images (i.e.,
1080P) on Android devices (e.g., Samsung S21 Ultra), thus we
leverage target tracking to reduce the latency. Our tracking
method is based on MOSSE filter [3], and can locate the tar-
get in ~ 8 ms. The target location obtained through pattern
detection and target tracking is only bounding-box level,
which is insufficient for pixel-level object replacement or di-
minished reality (DR). Hence we utilize a transformer-based
framework to achieve 0-1 segmentation, which distinguishes
the target (i.e., cloth) from the background. Besides, long-
time AR plane tracking is unreliable, so we will regularly
run the segmentation model to rectify the tracking result.

2.2 Pattern Detection

To improve detection accuracy, the pattern should be care-
fully chosen. A suitable pattern cannot be very large or small,
and it needs to be simple. In this paper, we choose the annu-
lus as our pattern (Figure 2), which is insensitive to rotation.
Its dimension is set to be 10 cm X 10 cm.

MagicCloth: Protect User Privacy in AR Streaming

" | 1080P Model

: o
Cropping O——{ 720P Model
[} o

ImmerCom ’23, October 6, 2023, Madrid, Spain

Object
Target Contour Replacement

Frame i
| 480P Model

|
AR Plane
Tracking

No

IMU Data Target Yes

Tracking

Every 1 second

— Every 1 frame

Pattern
Detection

Figure 1: System overview.

Figure 2: The annulus pattern.

During pattern detection, our target is to find any region
in the image that is similar to our target pattern (i.e., annulus).
As shown in Figure 2, the length ratio of the black ring, white
ring and central black ring is 1:1:2. For the middle row of
the annulus pattern, there would be 5 consecutive black and
white blocks, and their length ratio is 1:1:2:1:1 (denoted as
std_ratio). For the middle column (i.e., the vertical direction),
there exists the same situation. Besides, colors (even in HSV
space) can be greatly influenced by lighting conditions. Con-
sidering this factor, our pattern detection algorithm focuses
on grayscale images, to enhance its robustness. The whole
detection procedure contains 3 parts. 1) We scan each row
to find the consecutive black and white blocks. 2) For the
central black block, we then scan in the vertical direction.
3) If both the horizontal and vertical scan result shows this
region is a candidate, we will further examine the similar-
ity between this region and the template (i.e., the annulus
pattern). The detailed procedure is described as follows.

o Step @: In each row of the gray-scale image, the pattern
detection algorithm searches for 5 consecutive blocks of
black and white color (denoted as row_blocks). If the length
ratio of row_blocks is similar to std_ratio, we then go to @.

o Step : For the central black block of row_blocks, we will
scan the column where its midpoint (denoted as midpoint) is
located. In the vertical direction, we search for 5 consecutive
blocks of black and white color (denoted as col_blocks). Note
that midpoint is also located within the central black block
of col_blocks. If the length ratio of col_blocks is similar to
std_ratio, we then go to ©.

o Step ®: Now we can obtain the approximate bounding
box (denoted as bbox) of the candidate region based on
row_blocks and col_blocks. First, we crop the bbox region,
and resize it to 32 X 32 pixels. Second, we leverage Pearson
correlation [6] to calculate the similarity between this region
and the template (i.e., an annulus pattern), which is also 32 X
32 pixels in size. Note that the computation of correlation is
relatively time-expensive, so we only compare the candidate
region with our template if it passes the test in @ and @.

Figure 3: An example of pattern detection.

When the smartphone is not being moved, we only per-
form the pattern detection every 1 second to save energy.
The detection frequency will be increased when the user
moves faster. Moreover, in our algorithm, the “black” and
“white” color is not defined by its pixel value, but the relative

ImmerCom ’23, October 6, 2023, Madrid, Spain

color difference between pixels. During the scanning, if the
value of a pixel is delta smaller than the previous one, we
will regard this pixel as black, and the previous one as white.

2.3 Target Tracking

Intuitively, the difference between two consecutive frames in
avideo is oftentimes relatively small. Especially, in the indoor
AR streaming scenario, the user may even not move his/her
smartphone. As a result, there is no need to conduct pattern
detection in every frame. Instead, once we successfully detect
the targets in a frame, we can choose to track them in the
next few frames.

In this work, the target tracking is built upon the MOSSE
filter [3]. Even though the tracker based on the MOSSE filter
can achieve very high performance, there still remains a real-
world challenge. Note that the speed of the tracker depends
on its filter size. We can achieve almost 300 FPS in pattern
tracking with a filter of 128 x 128 pixels. It is enough for
tracking an object about the size of a chair at a distance of 5
m. However, when the user is close to the object (e.g., < 1 m),
the cloth can take up half of a frame. In this case, the tracking
delay may exceed 1 second, which is obviously unacceptable.
Our solution is based on the image pyramid, and the whole
process is introduced next.

e Step @: For each frame in the video, we first convert it
to grayscale, and then construct an image pyramid [1]. The
pyramid contains a series of down-sampled images of the
frame, including the 1080P, 540P, and 270P ones.

o Step @: If the bounding box of the target is > 1/4 of the
frame, we will track this target in the 270P image. When
the bounding box is < 1/16 of the frame, the original 1080P
image will be used for object tracking. In other cases, the
540P images are adopted during tracking the target.

o Step ©: We leverage the MOSSE filter to track the target (i.e.,
a cloth with a printed pattern), of which the initial position
is obtained through the method described in §2.2.

o Step ®: When the tracker shows we have lost our target,
we will run the pattern detection immediately.

Although our tracking algorithm can quickly localize the
targets, there still remain two main issues. First, the target
size in each image will change when the user moves toward
or backward. For instance, a user is 5 m away from the target
(i.e., cloth) at the beginning, and its bounding box is around
256 X 256 pixels in size. In this case, the initial MOSSE filter
is set to 256 X 256 pixels. When the user moves toward the
target, its bounding box can even take up nearly 50% of the
original image. Note that this might happen in as little as
5 seconds. To maintain low tracking latency, we need to
adapt the image resolution. Additionally, the filter should
be resized according to image resolution. When we change

Yuming Hu, et al.

the image resolution from 1080P to 540P, we need to reduce
the filter size from 256 X 256 pixels to 128 X 128 pixels, and
down-sample the filter content correspondingly.

Second, it is unnecessary to run the tracker all the time.
1) While the user/smartphone remains motionless, there is
no need to update our estimate of the target’s location in
the image. 2) If the user/smartphone moves significantly,
our tracker will no longer be able to locate the target. In
general, it is only necessary to run target tracking when
the user is moving moderately. Note that we only take into
consideration the stationary objects. In this paper, IMU data
(i.e., accelerometer and gyroscope data) are used to estimate
the motion state of the camera. We then decide whether
to run target tracking based on the motion state. Due to
measurement errors and noises, it is difficult to calculate the
accurate motion of the smartphone-based just on IMU data.
Therefore, we run a Kalman filter [2] to combine the tracking
results with the IMU data.

2.4 0-1Segmentation

Since the privacy object is covered by a piece of cloth, there
is no need to implement classical semantic segmentation or
instance segmentation [12]. We are only required to con-
duct 0-1 segmentation, which detects just one type of target,
namely the cloth with annulus patterns. Besides, the target
oftentimes only takes up a small portion of the image. In this
case, we do not need to use the whole frame/image as the
input of our segmentation model. We crop the region in the
current frame that contains the target in the previous frame,
and use this region (instead of the entire image) for segmen-
tation. This region is set to be at least 4x the bounding box of
the target in size. 3) Additionally, this model runs on smart-
phones. Under the premise of ensuring accuracy, it should
be lightweight enough to reduce computation latency.

Figure 4: An example of the 0-1 segmentation result.

In this work, we employ a pre-trained SegFormer model
as the foundation of our semantic segmentation method.
SegFormer provides a powerful and efficient framework
for semantic segmentation tasks, combining transformers
and lightweight MLP decoders. We leverage the pre-trained

MagicCloth: Protect User Privacy in AR Streaming

weights of the SegFormer model, which have been trained on
large-scale dataset ADE20k at resolution 512 X 512, to initial-
ize our network. Then we fine-tune the SegFormer model on
our dataset, adjusting the network parameters to specialize
in the nuances and characteristics of our target semantic seg-
mentation task. Combining the strengths of the pre-trained
SegFormer model and the fine-tuning process, we achieve a
robust and tailored semantic segmentation method that can
accurately delineate the cloth region in our dataset.

As shown in Figure 1, we build three segmentation models
with different input sizes, which is 1080P, 720P, and 480P,
respectively. When cropping the region, we set its size to one
of the above three resolutions. Then we choose the model
according to the region size for 0-1 segmentation. Note that
if multiple objects are found in the pattern detection, we
will not crop the image, but use the 1080P model directly. To
save power, we run the segmentation model every 1 second,
updating the contour of the target.

3 OBJECT REPLACEMENT

In our research, we aim to seamlessly replace real-world
objects with virtual objects to safeguard user privacy. Object
replacement (OR) in AR scenarios consists of multiple steps.
We begin by performing cloth detection and segmentation,
where our focus lies in accurately identifying and isolating
cloth within the scene. Once the cloth is detected and seg-
mented, we employ diminished reality (DR) techniques to
remove the cloth from the captured video feed.

Diminished reality (DR) techniques can create the illu-
sion that the removed objects are no longer present in the
scene, thus altering the user’s perception of reality. Various
approaches have been proposed in the literature to achieve
DR, ranging from computer vision-based methods [7, 13] to
advanced image processing algorithms [22]. Some studies
have explored the use of techniques such as image-based ren-
dering [17], texture rendering [16, 18], and pixel replacement
[9] to seamlessly fill in the removed areas with suitable con-
tent that blends naturally with the surrounding environment.
Jan et al. [9] have also investigated different applications of
DR, including video editing and live streaming. Although the
field of diminished reality is still relatively nascent, ongoing
advancements in computer vision, image processing, and
real-time rendering continue to push the boundaries of this
technology, paving the way for more realistic and immersive
augmented experiences. In our case, we apply DR to remove
the cloth from the scene, creating the illusion that the cloth
is no longer present.

In addition, Glen et al. [20] demonstrated the potential of
combining ARCore [8] with DR techniques, which is still rel-
atively less explored compared to AR. Most AR applications
tend to focus on enhancing or adding virtual content to the

ImmerCom ’23, October 6, 2023, Madrid, Spain

real world rather than removing or diminishing real-world
elements. And the approach proposed in their work does
not involve object detection or tracking, while relying on
manually defined regions of interest (ROI). This limitation
restricts its applicability, particularly in scenarios involving
video streaming. In our research, we intend to apply dimin-
ished reality techniques in the context of video streaming,
coupled with semantic segmentation methods, robust track-
ing methods and ARCore plane tracking methods.

With the cloth successfully removed using diminished re-
ality, we can then seamlessly replace the void left by the cloth
with a virtual object. This involves integrating the virtual
object into the AR scene in a visually coherent manner, ensur-
ing it aligns with the surrounding environment and appears
natural to the viewer. However, the process of object replace-
ment through diminished reality poses several challenges.
Achieving accurate and robust cloth detection and segmen-
tation is crucial for seamless object removal. The detection
and segmentation algorithms must account for variations in
cloth appearance, lighting conditions, and occlusions. Ad-
ditionally, ensuring smooth and realistic integration of the
virtual object into the scene requires precise alignment, scale
adaptation, and lighting harmonization.

To facilitate the object replacement process, we propose
the establishment of an indoor object database. This data-
base would contain a diverse collection of virtual objects
that match various shapes and sizes. By leveraging this data-
base, we can dynamically select a suitable replacement object
based on the shape and size of the cloth that was removed.
This allows us to seamlessly integrate the virtual object into
the scene while preserving the privacy of the original target.

4 EVALUATION
4.1 Implementation

For running speed reasons, we implemented the key modules
mainly in C++, and ran them on Android via NDK. The device
we conducted performance tests on is the Samsung S21 Ultra,
which runs Android 13 and supports Google ARCore [8].
Pattern detection and target tracking are based on OpenCV
[4]. The segmentation model is built upon Pytorch. After
training the model on the PC, we converted it to an Android
version by using Pytorch Mobile [19].

We used the Segformer-B0 model pre-trained on ADE20K
dataset and then fine-tuned it on our own dataset with an
NVIDIA T4 GPU. Some weights were not initialized from the
pre-trained model and are newly initialized since we only did
0-1 segmentation. During training, we applied auto-orient
and set up crop size to 640 X 640 on our dataset. We trained
the models using AdamW optimizer for 12K iterations and
used a batch size of 8. During the evaluation, we report

ImmerCom ’23, October 6, 2023, Madrid, Spain

semantic segmentation performance using mean Intersection
over Union (mloU).

Dataset. Our dataset incorporates various challenging fac-
tors to capture real-world scenarios, involving different cam-
era angles, distances, lighting conditions, and smartphone
movements. Besides, the dataset is collected in two scenarios,
including the living room and bedroom. It consists of about
1000 images, which we split into 70% for training, 20% for
validation and 10% for testing. In the future, we will enrich
our dataset by considering more situations like foreground
objects partially occluding the cloth. Note that these images
are extracted from the 1080P videos, which are captured by
the Samsung S21 Ultra.

4.2 Performance

Module latency. Table 1 demonstrates the latency (i.e., com-
putation time) of each module. For pattern detection, tar-
get tracking and segmentation, their average latencies are
12.7 ms, 8.1 ms and 68.6 ms, respectively. The pattern detec-
tion algorithm in §2.2 has different computation times (i.e.,
module latency) for different images. There might be many
candidate regions passing Step @ and @, and the subsequent
correlation computation in ® is time-consuming. Compared
to others, the 0-1 segmentation module takes the longest
computation time. Among these three modules, only the
segmentation is built based on the neural network, which
requires a large amount of calculation for online inference.

Table 1: The latency of each module. The filter size in
target tracking is 250 x 250 pixels, and the input of
segmentation model is 720P.

Pattern Detection Target Tracking Segmentation

12.7 +£ 5.3 ms 8.1 £ 4.6 ms 68.6 = 1.9 ms

1.00
0.99
9
© 0.98
o}
S0.97
<
0.96
0.95

0 3 6 9 12
of step (K)

Figure 5: The accuracy of the 0-1 segmentation model.

Segmentation Accuracy. The pre-trained SegFormer
was utilized in our segmentation module, to accelerate the of-
fline training. Figure 5 plots the accuracy trend of our model

Yuming Hu, et al.

Table 2: The accuracy of segmentation results.

0-1 Segmentation SegFormer [25]
mloU (%) 99.1 37.4

during the training procedure. The accuracy can already
achieve 95% at the 100th step, and finally reaches up to 99.7%.
The testing results are shown in Table 2. Our model can ob-
tain a mean IoU of 99.1%, while SegFormer can only achieve
37.4% IoU on average. Besides, the pixel-level accuracy of
our model can even reach 99.6%. These results illustrate that
after the adaptation in §2.4, our model can outperform the
original SegFormer in terms of both accuracy and IoU when
detecting the privacy object.

5 RELATED WORK AND CONCLUSION

Mixed Reality (MR). MR [23] can protect user privacy by

replacing the target with some other objects. TransforMR

[11] combines pose estimation, instance segmentation and

video inpainting to achieve pose-aware object substitution. It

builds a meaningful and interactive AR scene for users. How-
ever, TransformMR is compute-intensive and has poor real-
time performance. Lindlbauer et al. [15] propose a Remixed

Reality through live reconstruction of the 3D scene. To achieve
that, they need to deploy multiple external depth cameras,

limiting their daily usage.

Diminished Reality (DR). DR focuses on the removal or
reduction of real-world objects or elements from a live video
feed [5, 7, 13, 22]. Queguiner et al. [20] utilizes image inpaint-
ing to achieve DR, which does not need semantic segmenta-
tion. It requires that the clean 3D scene needs to be scanned
beforehand, which is often impractical in real-world scenar-
ios. VINet [14] leverages the deep neural network (DNN) to
deal with video inpainting. Similar to other DNN models
[24], it is difficult for VINet to realize real-time processing
(e.g., 30FPS) of 1080P video on Android smartphones.

Conclusion. In this work, we designed MagicCloth to pre-
serve user privacy in AR streaming. It adopts a lightweight
segmentation model to detect cloth with special patterns,
achieving > 99% accuracy. The pattern detection algorithm
helps rectify the target location. The cloth itself provides ba-
sic occlusion for objects. Combing these factors, MagicCloth
effectively detects the target, and further leverages object
replacement to protect/hide privacy-sensitive items.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants: 1915122,
2106090, 2212298, 2152610, and 2152610.

MagicCloth: Protect User Privacy in AR Streaming

REFERENCES

(1]

[8
[9]

=

(10]

(11

—

(12]

(13

[t

(14]

[15

—

[16]

[17

—

(18]

Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt,
and Joan M Ogden. 1984. Pyramid methods in image processing. RCA
engineer 29, 6 (1984), 33-41.

Gary Bishop, Greg Welch, et al. 2001. An introduction to the kalman
filter. Proc of SIGGRAPH, Course 8, 27599-23175 (2001), 41.

David S Bolme,] Ross Beveridge, Bruce A Draper, and Yui Man Lui.
2010. Visual object tracking using adaptive correlation filters. In
2010 IEEE computer society conference on computer vision and pattern
recognition. IEEE, 2544-2550.

Gary Bradski and Adrian Kaehler. 2008. Learning OpenCV: Computer
vision with the OpenCV library. " O’Reilly Media, Inc.".

Yi Fei Cheng, Hang Yin, Yukang Yan, Jan Gugenheimer, and David
Lindlbauer. 2022. Towards understanding diminished reality. In Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing
Systems. ACM, 1-16.

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Ben-
esty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson
correlation coefficient. Noise reduction in speech processing (2009), 1-4.
Vasileios Gkitsas, Vladimiros Sterzentsenko, Nikolaos Zioulis, Geor-
gios Albanis, and Dimitrios Zarpalas. 2021. Panodr: Spherical
panorama diminished reality for indoor scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3716~
3726.

Google. 2023. AR Core. https://developers.google.com/ar.

Jan Herling and Wolfgang Broll. 2012. Pixmix: A real-time approach to
high-quality diminished reality. In 2012 ieee international symposium
on mixed and augmented reality (ismar). IEEE, 141-150.

Jinhan Hu, Andrei Iosifescu, and Robert LiKamWa. 2021. Lenscap:
split-process framework for fine-grained visual privacy control for
augmented reality apps. In Proceedings of the 19th annual international
conference on mobile systems, applications, and services. 14-27.
Mohamed Kari, Tobias Grosse-Puppendahl, Luis Falconeri Coelho,
Andreas Rene Fender, David Bethge, Reinhard Schiitte, and Christian
Holz. 2021. Transformr: Pose-aware object substitution for composing
alternate mixed realities. In 2021 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). IEEE, 69-79.

Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias Hein, and
Bernt Schiele. 2017. Simple does it: Weakly supervised instance and se-
mantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 876-885.

Daiki Kido, Tomohiro Fukuda, and Nobuyoshi Yabuki. 2020. Dimin-
ished reality system with real-time object detection using deep learning
for onsite landscape simulation during redevelopment. Environmental
Modelling & Software 131 (2020), 104759.

Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So Kweon. 2019.
Deep video inpainting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 5792-5801.

David Lindlbauer and Andy D Wilson. 2018. Remixed reality: Manipu-
lating space and time in augmented reality. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. 1-13.

Siim Meerits and Hideo Saito. 2015. Real-time diminished reality for
dynamic scenes. In 2015 IEEE International Symposium on Mixed and
Augmented Reality Workshops. IEEE, 53-59.

Shohei Mori, Momoko Maezawa, Naoto Ienaga, and Hideo Saito. 2016.
Detour light field rendering for diminished reality using unstructured
multiple views. In 2016 IEEE international symposium on mixed and
augmented reality (ISMAR-Adjunct). IEEE, 292-293.

Shohei Mori, Fumihisa Shibata, Asako Kimura, and Hideyuki Tamura.
2015. Efficient use of textured 3D model for pre-observation-based
diminished reality. In 2015 IEEE international symposium on mixed and

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

ImmerCom ’23, October 6, 2023, Madrid, Spain

augmented Reality workshops. IEEE, 32-39.

PyTorch. 2023. PyTorch Mobile. https://pytorch.org/mobile/home.
Glen Queguiner, Matthieu Fradet, and Mohammad Rouhani. 2018. To-
wards mobile diminished reality. In 2018 IEEE International Symposium
on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, 226—
231.

Franziska Roesner, Tadayoshi Kohno, and David Molnar. 2014. Security
and privacy for augmented reality systems. Commun. ACM 57, 4 (2014),
88-96.

Sanni Siltanen. 2017. Diminished reality for augmented reality interior
design. The Visual Computer 33 (2017), 193-208.

Maximilian Speicher, Brian D Hall, and Michael Nebeling. 2019. What
is mixed reality?. In Proceedings of the 2019 CHI conference on human
factors in computing systems. 1-15.

Silvan Weder, Guillermo Garcia-Hernando, Aron Monszpart, Marc
Pollefeys, Gabriel] Brostow, Michael Firman, and Sara Vicente. 2023.
Removing objects from neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
16528-16538.

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M
Alvarez, and Ping Luo. 2021. SegFormer: Simple and efficient design
for semantic segmentation with transformers. Advances in Neural
Information Processing Systems 34 (2021), 12077-12090.

Yiqin Zhao, Sheng Wei, and Tian Guo. 2022. Privacy-preserving Re-
flection Rendering for Augmented Reality. In Proceedings of the 30th
ACM International Conference on Multimedia. 2909-2918.

Shilin Zhu, Chi Zhang, and Xinyu Zhang. 2017. Automating visual
privacy protection using a smart led. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking. 329—
342.

https://developers.google.com/ar
https://pytorch.org/mobile/home

	Abstract
	1 Introduction
	2 System
	2.1 Overview
	2.2 Pattern Detection
	2.3 Target Tracking
	2.4 0-1 Segmentation

	3 Object Replacement
	4 Evaluation
	4.1 Implementation
	4.2 Performance

	5 Related Work and Conclusion
	Acknowledgments
	References

