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Abstract—In practice, many types of manipulation actions
(e.g., pick-n-place and push) are needed to accomplish real-
world manipulation tasks. Yet, limited research exists that
explores the synergistic integration of different manipulation
actions for optimally solving long-horizon task-and-motion
planning problems. In this study, we propose and investigate
planning high-quality action sequences for solving long-horizon
tabletop rearrangement tasks in which multiple manipulation
primitives are required. Denoting the problem rearrangement
with multiple manipulation primitives (REMP), we develop
two algorithms, hierarchical best-first search (HBFS) and
parallel Monte Carlo tree search for multi-primitive rearrange-
ment (PMMR) toward optimally resolving the challenge. Ex-
tensive simulation and real robot experiments demonstrate
that both methods effectively tackle REMP, with HBFS
excelling in planning speed and PMMR producing human-
like, high-quality solutions with a nearly 100% success rate.
Source code and supplementary materials will be available at
https://github.com/arc-1/remp.

I. INTRODUCTION

Real-world manipulation tasks, e.g., rearranging a messy
tabletop or furniture in the house, often require multiple
manipulating primitives (e.g., pick-n-place, pushing, toppling,
etc.) to accomplish. When rearranging small/light objects,
e.g., a cell phone on a table or a small chair in a room, it is
convenient to do a pick-n-place, i.e., to pick up the object, lift
it above other objects, move it across the space to above its
destination on the table, and then place it. On the other hand,
for handling large/heavy objects, e.g., a thick book or a heavy
couch, pushing or dragging close to the space’s surface is
more commonly adopted, executed with added caution. In this
case, planning the object’s motion trajectory must consider
avoiding colliding with other objects more carefully. Solving
such long-horizon task-and-motion planning tasks efficiently
and optimally is highly challenging, as it involves not only
an extended horizon but also selecting among multiple types
of manipulation primitives at each step, both of which add
to the combinatorial explosion of the search space.

Toward quickly and optimally solving rearrangement tasks
using multiple manipulation primitives, we focus on a tabletop
setting where both pick-n-place and pushing are employed to
rearrange objects (see Fig. 1). Many objects, such as those
shown in Fig. 1(e), cannot be easily picked up and moved
around without damaging or disassembling the object. For
example, as shown in Fig. 1(f)(g), books and certain boxes
cannot be moved around using suction-based pick-n-place
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Fig. 1: (a) Overview of system setup, a camera is mounted on the end-
effector for perception. (b) - (d) An example case and an intermediate step
in solving it. (e) Example objects requiring push. (f:) pick-n-place may break
the book. (g) pick-n-place will separate a box, failing to pick it up.

manipulation primitive (note that it is also difficult to do
pick-n-place using fingered grippers). However, these objects
can be effectively rearranged using a pushing manipulation
primitive in which the suction-based end-effector holds the
object on or close to the tabletop and pushes/drags the object
around (see Fig. 1(c)). We call the frequently encountered yet
largely unaddressed problem rearrangement with multiple
manipulation primitives (REMP). This study on REMP
brings the following contributions:

o With the formulation of REMP, we propose a first formal
study of solving long-horizon rearrangement tasks utilizing
multiple distinctive precision manipulation primitives with
the goal of computing an optimized manipulation sequence.
Due to its high practical relevance, REMP constitutes an
important specialized task and motion planning problem.

o We developed two novel algorithms for REMP, the first of
which is a fast rule-based solution capable of effectively
and quickly solving non-trivial REMP instances. The
second, leveraging Monte Carlo tree search (MCTS) [1]
and parallelism to look further into the planning horizon,
delivers a much higher success rate for more challenging
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tasks, providing higher-quality solutions simultaneously.
« We thoroughly evaluate our methods in simulation and ex-
tensive real robot experiments. In particular, our real robot
experiments with integrated vision solutions, demonstrate
that our algorithms can be readily applied to interact with
everyday household objects in real-world scenarios.

II. RELATED WORK

Robot manipulation [2] actions can typically be classified
into two primary categories: prehensile [3], [4] and non-
prehensile [5]-[7]. In prehensile manipulation, a robot’s
gripper secures a grasp of the target object, allowing the
object to move in with the end-effector. Fingered grasping
and suction are two common prehensile manipulation ac-
tions. Non-prehensile manipulation leverages contact between
objects and the environment, e.g., pushing, dragging, and
toppling. While prehensile actions are limited in variety, non-
prehensile actions abound [2], [8], [9]. Limiting to tabletop
rearrangement, pushing has been used extensively [10], [11]
for relocating objects without lifting the object away from the
surface. However, pushing objects to follow a desired SE(2)
(i.e., 2D translation and rotation) trajectory with precision and
speed is difficult. This leads to our design of a suction-based
pushing manipulation primitive (Fig. 1(c)), which is a mixed
prehensile/non-prehensile primitive.

Precisely and efficiently rearranging objects on a tabletop
workspace, especially when object density is high, requires
carefully allocating available space on the tabletop to facilitate
the relocation of objects. Tang et al. [12] consider removing
objects from the workspace during the rearrangement of
certain objects, reducing search space. We note that push is
also used here but is used in an assistive capacity. Similarly,
external space is used to temporally hold objects so that more
space becomes free for rearranging in [13]. Rearranging
objects in confined dense clutter scenes is considered in [3]
where a heuristics-guided lazy search is applied. In [4], [14],
[15], rearrangement has been studied in shelve setups. In
prior research by Han et al. [16], the problem is translated
into a graph-based formulation, factoring in the dependency
graph among objects. We note that these studies on tabletop
arrangement exclusively work with pick-n-place manipulation.
As such, these methods do not readily translate to REMP.

Many research efforts leverage reinforcement learning to
address related challenges. The episodic nature of rearrange-
ment often requires considering extended planning horizons.
Consequently, combining MCTS with a predictive network
is often an effective strategy. For instance, Huang et al. [17]
demonstrated the use of push actions to clear space, enabling
the target object retrieval from cluttered environments. A
similar scenario, albeit in 3D, has also been explored in [18].
The concept of segregating objects into distinct regions using
push actions is explored in [19], while transitioning objects
from initial to goal positions via push actions is discussed
in [7]. Notably, all these studies employ predictive networks
to accelerate the simulation phase of MCTS. In contrast, this
paper diverges from these approaches in that we primarily
leverage MCTS for planning, which already demonstrates

commendable performance. Even with recent advancements
in network-based push prediction, as seen in [10], there is still
significant reliance on traditional path-planning algorithms
for guidance. The efficacy of using predictive networks to
direct MCTS, especially in push action scenarios necessitating
object avoidance, remains an open question.

ITI. PRELIMINARIES
A. Rearrangement with Multiple Manipulation Primitives

We now specify the concrete rearrangement with multiple
manipulation primitives (REMP) studied in this work. Let the
workspace be W is a 2D rectangle. The robot is provided with
a start image (state) s and a goal image (state) s, containing
the initial and desired object arrangements. The robot must
rearrange the objects to match the configurations specified in
54. Two manipulation primitives are permitted: pick-n-place
App and push (from top) Ay:. The robot’s objective is to
complete the task efficiently in terms of the execution time.
The start and goal states and the objects’ transportation should
be collision-free, and all objects should remain within the
workspace. It is assumed that all tasks are feasible, i.e., there
is always a viable solution P = {ay, as, ..., a, } leading from
the start state s, to the goal state s,, where a € {App, Ap }.

A state s; represents the pose of objects at time ¢t. A
pick-n-place action is specified by pick pose (xg,yo,00)
and place pose (z1,y1,01). A push action is specified by
trajectories {(xo,v0,60); s (Tn,Yn,0n)}, where the robot
holds the object against the tabletop at the initial pose, and
then push it following the waypoints, ending at the final pose.

One assumption is that the object should be capable of
being stably positioned on the workspace, as all primitives
are considered to be quasi-static.

B. Monte Carlo Tree Search

The Monte Carlo tree search (MCTS) algorithm has broad
applications. It is prevalent in turn-based tasks such as the
game of Go [20], but its usage extends beyond such contexts.
MCTS plays a crucial role in solving rearrangement tasks [21]—
[23]. As an anytime tree search algorithm, MCTS is designed
to run for a fixed amount of time, each consisting of four
stages: selection, expansion, simulation, and backpropagation.
Fundamentally, MCTS preferentially exploits nodes that yield
superior outcomes. To strike a balance between exploration
and exploitation in the selection phrase, an upper confidence
bound (UCB) [24] formula is utilized (see Eq. 1), where n
is the parent node of n’, and Q(n’) is the total reward n’
received after N (n’) visits.

Q(n)
arg max +c
n’ Echildren of n N(n/)

2In N(n)
N(n') ~’

ey

IV. METHODOLOGY

This work addresses the primary challenge of synergistic
integration of pick-n-place and push actions. Because planning
a push involves collision-free path planning in SFE(2), which
is time-consuming, it poses a significant challenge if many
push actions are explored. MCTS offers a solution capable



of elegantly negotiating between the two disparate actions
while maintaining optimality, given ample planning time.

A. Action Space Design

Planning requires searching through candidate manipulation
actions, which must first be sampled. Action space design
refers to action sampling, which plays a critical role in
dictating the expansion of the tree search because there are an
uncountably infinite number of possible manipulation actions.
In sampling pick-n-place actions, we must ensure the place
pose is collision-free. The same applies to a push action’s
final pose (though, in addition, the entire trajectory connecting
all waypoints for a push action must be collision-free). Four
criteria are applied to sample the place/final poses for pick-
n-place/push actions at the current state s;:

1) Random. A naive approach randomly samples collision-
free place/final poses for pick-n-place/push actions.

2) Around Current and Goal. Random sampling is not
always efficient. For object o;, favoring regions around
the current and goal poses of o; in s, can be helpful.

3) Grid. Additionally, we adopt a grid-based sampling
strategy. By modeling an object as a 2D polygon, we
encapsulate it within a rotated bounding box. This allows
us to generate a tiled representation in the workspace,
denoted as W, resembling a grid structure. This method
proves advantageous for covering boundary areas, which
can be hard to sample through random methods.

4) Direct to Goal. If o; can be directly placed at its goal, this
pose will be prioritized over the above three samplings
in the search process.

Once the place/final poses
have been sampled, a A,,
sample is obtained. However,
Ay requires an additional
step - generating a trajectory
from the current pose to the
place pose for o;. We employ
RRT-connect [25] during the
tree search and LazyRRT [26]
for robot execution to produce
such collision-free trajectories
with a set time limit. An exam-
ple of sampling the final pose
for a push action is shown
in Fig. 2. The criteria for sampling are crucial in solving
the problem. Relying solely on standard uniform sampling
often proves inefficient, particularly when sampling around
boundaries and certain edge cases. While one might consider
increasing the sample size to cover these edge cases, this
inadvertently leads to many redundant actions that are time-
consuming to process.

Fig. 2: Consider action sampling
for labeled 3 to be manipulated
using push (there are a total of four
objects). The absence of sampled
actions in the right region is at-
tributed to obstructions posed by
objects 0, 1, and 2, preventing the
movement of object 3 to that area.

B. Hierarchical Best-First Search

The first algorithm we designed for REMP is a (greedy)
best-first search algorithm called hierarchical best-first search
(HBFS). HBFS is outlined in Alg. 1 and operates according
to the following sequence of steps:

« (Lines 3-4) When objects can be directly moved to their
goal poses, an action cost is computed for each. The action
yielding the smallest cost is then applied.

o (Lines 5-9) For each object o;, HBFS identifies which
objects occupy o;’s goal and attempts to displace these
obstructing objects in the direction of their respective goals.
If no actions are feasible in this direction, a random action
is sampled. Again, the action associated with the smallest
cost is selected and implemented.

o (Line 10) If the above steps do not yield a viable action,
an action is randomly selected for execution.

The above three phases of HBFS may best be viewed as

a three-level hierarchical search. To boost its performance

and solution optimality, HBFS is implemented by leveraging

multi-core capabilities of modern CPUs. This is realized by
executing multiple HBFS in parallel and choosing the best
action among the returned solutions.

Algorithm 1: Hierarchical Best-First Search (HBFS)

1 Function HBF'S (ss, sg)

2 S 4 S5, A O
3 for o; in s do A + AU {move o; to its goal}
4 if |A| > 0 then return the lowest cost action from A
5 for o; in s do
6 obs < objects occupy the goal pose of o;
7 for o; in obs do
8 A+ AU
{move o; towards its goal, otherwise at random}
9 if |A| > 0 then return the lowest cost action from A
10 return a randomly sampled action

C. Speeding up MCTS with Parallelism

Standard MCTS is more straightforward to implement, but
it does not fully utilize multi-core processing capabilities of
modern hardware. We introduce parallelism to the expansion
and simulation stages of MCTS, leverage tree parallelization
techniques [27]. The application of parallelism allows for
decoupling the select and expand stages from the simulation
stage in an MCTS iteration. The decoupling allows multiple
MCTS iterations to be carried out simultaneously, limited
only by the number of CPU cores. The standard UCB formula
used in MCTS is updated as Eq. 2,

) . \/mn(zv(n)f N(n)
Nw)+N(n)

arg max -
n’ €children of n N(n’) + N(Tl/)

where the idea of virtual loss [27] is applied by adding
one extra virtual visit counts N that indicates a node has
been selected but not yet simulated and backpropagated.
Since the simulation and subsequent backpropagation stages
are not yet completed, the tree search algorithm must
be notified to update the (Q and N of the node. This
adjustment minimizes the likelihood of revisiting the node in
the next iteration, implementing a conservative approach in
anticipation of a potentially poor reward. Once the simulation
stage has concluded, ) is updated in backpropagation with



returned reward from simulation result, N increments and N
decrements.

D. Adaption MCTS for REMP

Given REMP’s extremely large search space due to push
actions’ trajectory planning requirements, modifications are
introduced to best apply MCTS to REMP.

Action Space Bias. The action space used in the simulation
stage is a subset of that used in the expansion stage. Given
that one iteration of the simulation stage constitutes a coarse
estimation of action and state, reducing the number of actions
leads to a larger number of total iterations.

Biased Simulation. A straightforward implementation
of the simulation stage in MCTS is a random policy that
indiscriminately selects an action for execution, ultimately
obtaining a reward at the final state reached. In our imple-
mentation, we adopt a heuristic to guide the action selection
in the simulation stage towards the ultimate goal of a given
object. Specifically, with a probability of 6;,, (dynamically
changed based on depth of the search), a random action is
selected; otherwise, an attempt is made to select an action
that will put an object on its goal pose. This introduces
a bias in the simulation stage, which offsets the drawback
of limited iterations due to the time-consuming nature of
motion planning and collision checking. We note that we did
not adopt a recent advancement in MCTS for long-horizon
planning that injects a data-driven element to partially learn
the reward, e.g., a neural network can be trained to evaluate
the quality of an action-state pair [7], [17], [19].

Reward Shaping. We structure the reward to favor the goal
state but without introducing undue bias. The reward function
plays a critical role as it steers the tree search, composed of
three components. Firstly, if the task is accomplished, with all
objects placed at their goal poses, a reward of 17, is awarded.
Secondly, if an object o; is located at its goal pose, a reward
T, 1s given. The cumulative reward from all objects, denoted
as R,, is computed as R, = Zl To,. Lastly, the reward
structure also takes into account the cost associated with
the movement of objects. For the pick-n-place action (Ap),
the cost corresponds to the Euclidean distance between the
pick and place poses, with an additional fixed cost factored
in. For the push action (A,;), the cost is determined by the
Euclidean distance of the path, also supplemented by a fixed
cost. Additionally, a base reward is computed R, = R,(so)
from initial state sg, which is used to normalize the final
reward during the search. For each iteration, a reward is
returned by the simulation stage and is updated during the
backpropagation stage.

R - {max(O, R, — cost — Ry), if s; is goal state

max(0, R,(s;) — cost — Rp), otherwise

Traditionally, () retains the average reward values derived
from simulation results, providing a robust estimation for
action over millions of iterations. However, in our case, we
aimed to maintain the planning time within reasonable limits.
Therefore, we introduced a priority queue to store simulation
results, which serves as the @ value in the algorithm. For

the purpose of calculation in Eq. 2, we only preserve the
top k rewards, similarly in the previous work [17]. There is
a possibility that during a simulation, a subsequent action
may transition the state to one with lower rewards, thereby
negating the benefits of a preceding beneficial action within
that simulation. To limit the search time, we choose to return
the maximum reward encountered at the intermediate steps
during the simulation instead of the final reward. Therefore,
the returned reward from a simulation is given by
max(f - max (R;), Rn)-y™,
iem—1

where 3 € (0, 1] is a scaling parameter and m is the total steps
used in the simulation. ~y is the discount factor, encouraging
the problem to be solved in the early stage if possible.

Due to limited space, we omit the pseudo-code of the par-
allel MCTS algorithm but note that all details for reproducing
the algorithm have been fully specified. We call the resulting
algorithm parallel Monte Carlo tree search for multi-primitive
rearrangement or PMMR.

V. EXPERIMENTAL EVALUATION

We evaluate HBFS and PMMR methods for REMP in
simulated environments and on a real robot. Regardless of
whether it is a simulation or a real robot experiment, both
algorithms perform percept-plan-act loops until the task is
solved or the budgeted time is over. All experiments were
conducted on an Intel i9-10900K (10 CPU cores) desktop
PC and run in Python. As a note, limited testing shows that
using Intel i9-13900K (24 CPU cores) reduces the planning
time by roughly half, demonstrating the effectiveness and
scalability of employing parallelism (code in Python).
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Fig. 3: Example cases. The top row shows the start states and the bottom
goal states. Lightly shaded objects can be pick-n-placed; heavily shaded
objects must be manipulated using push. Cases 4.1, r.7.3, and r.8.3 are
evaluated and presented in Fig. 4. Objects are distinguished by color.
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A. Simulation Studies

Simulation is conducted in PyBullet [28]. A real robot setup,
consisting of a Universal Robot UR5e + OnRobot VGC-10
vacuum gripper, is replicated. The robot operates under end-
effector position control; the workspace measures 0.78 x
0.52m?. 25 feasible scenarios are created where all objects
are confined within the workspace. Object sizes, shapes, and
poses are randomly determined in each scenario (see Fig. 3 for
some examples). Cases that are trivial to solve (e.g., objects
that happen to be mostly small) are filtered. The number
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Fig. 4: As an expanded illustration of Tab. I, the upper plot lists the number of actions the robot executes to resolve individual cases. The lower plot lists
the robot’s execution times in solving the individual cases following the computed plan. For the labels on the horizontal axis, the first digit indicates the
number of objects contained within each case, while the second digit represents the index of the cases. Cases beginning with the prefix ’r’ are the ones that

are constructed for and executed by the real robot setup.

of objects ranges from four to eight; five distinct cases are
generated for each specified number of objects.

In evaluating PMMR, each percept-plan-act loop runs for
a predetermined duration to identify the best next action until
the problem is resolved or the maximum number of actions
has been exhausted. If the latter occurs, it is treated as a
failed case. We denote the corresponding PMMR method
as PMMR-X, where X is the maximum number of seconds
allowed in a single iteration of the loop. We settled on PMMR-
40 as the main PMMR method used in the evaluation. In
both simulation and real robot experiments, for PMMR-40,
we keep the top & = 100 for ) value, ¢ = 1.5 in Eq. 2.
The max MCTS tree depth D is based on the number of
objects N: D = 2N +2. 0., is based on the depth d of the
node 6y, = max(—0.106 + 0.231d — 0.013d%,0.2). These
numbers are handpicked, representing that as the tree goes
deeper, the probability of selecting a random action should
be increased. r, = 0.7 for object can be operated by A,,,
the R, = 2ro/N. For an object that can be operated by A,
the reward is given to 1.17,. We set 8 = 0.5 and v = 0.9 to
scale the reward.

Robot Time | Completion | Num. of Actions | Plan Time
PMMR-40| 29.17s 98.00% 8.90 264.99s
HBFS 36.22s 54.50% 13.72 30.04s

TABLE I: Simulation experiment results for 25 simulated cases and 15 real
robot experiments for HBFS and PMMR-40.

Individual experiment results for all cases are shown
in Fig. 4 (which also includes cases used for real-robot
experiments, to be detailed in Sec. V-C). Detailed experiment
results are presented in Tab. 1. Here, robot time refers to the
cumulative time required for the robot to execute all actions,
while completion refers to the success rate. The number of
actions quantifies the execution of atomic actions, represented
by App, Apt. The plan time is the total planning time. Each
case underwent five independent trials.

Failure often happens because the case requires more than
15 actions to solve (even for humans). A failure may be due
to sampled actions not containing a solution or the search not
being deep enough. Sometimes, the algorithm can recover
from an early bad choice, but not always since the number
of iterations is capped. We observe that, while HBFS runs
relatively fast in comparison to PMMR-40, it frequently fails
(55% success v.s. 98% for PMMR-40) and uses many more
actions (13.7 v.s. 8.9 for PMMR-40). Visually, as can be
seen in the accompanying video, the actions generated by
PMMR-40 are much more human-like than those by HBFS
(same holds for real robot experiments).

B. Ablation Studies

We investigated the impact of time budgets, the depth of
tree search, and the base reward R, on solving REMP. The
time budget is critical; an extended search duration tends
to yield better results. However, it is necessary to balance
planning time and solution quality. An insufficient search
might sample highly suboptimal paths, leading to locally
optimal actions. As depicted in Fig. 5 and Tab. II shows
the correlation between planning time and solution quality,
leading us to select PMMR-40 for our main evaluation.

A shallow MCTS (PMMR-40 (D = 3), max MCTS tree
depth of 3) was included specifically to compare with HBFS,
which has three “depth levels” per iteration.

In terms of reward design, as detailed in section IV, we
introduced a base reward R}, which serves to normalize the
reward to O at root. Without this adjustment, the tree search
might commence with a non-zero reward signal, where a
disadvantageous branch may still return a reward, causing the
search to frequently explore such branches. By comparing
PMMR-40 (no-Rp) in Tab. II with PMMR-40 in Tab. I, we
observe that the introduction of R, aids the tree search.



Robot Time | Completion | Num. of Actions | Plan Time
PMMR-10 35.60s 94.00% 10.51 103.61s
PMMR-20 32.46s 96.00% 9.86 155.68s
PMMR-60 27.93s 99.50% 8.53 358.44s
PMMR-40 (D =3)| 57.83s 32.50% 16.62 641.76s
PMMR-40 (no-Ry) 32.92s 94.00% 9.83 270.65s

TABLE II: Ablation studies for all 40 cases to be compared to Tab. 1.
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Fig. 5: PMMR is evaluated with different time budgets. The reported values
are averaged over 40 cases.

C. Real Robot Experiments

In simulation, we emulate the vacuum function by attaching
the object to the end-effector using an extra link via a fixed
joint. We employ two vacuum cups to provide sufficient
suction power to ensure a robust connection in the real-world
setup. The point of suction on the object is taken as its center,
assuming this central area is flat. Similar to simulation studies,
the number of objects ranges from four to eight, and three
distinct cases are generated for each number of objects.

Fig. 6: The full set of objects used in our real robot experiments.

A RealSense D455 camera is affixed to the robot’s wrist,
capturing the scene from a top-down perspective, and an
orthogonal view is rendered from the point cloud. We employ
the Segment Anything Model [29] to extract masks of the
objects present on the table. Subsequently, OpenCV [30] is
applied to determine the contours and approximate them into
polygons, which are then used for planning. An additional
step determines each object’s SF(2) poses. For each case,
the experiment is repeated at least three times.

Due to the small sim-to-real gap, We let the algorithm
plan the entire sequence of manipulation actions at the
beginning, which generally works well. If no solution is
found using 20 actions, we mark it as a failure; otherwise,
the robot executes the actions. Robot time is not recorded for
failure cases, hence its absence in Tab. III. For completeness,
in cases where both PMMR and HBFS succeed at least

once, HBFS averages 15.15 actions and PMMR 9.56, with
robot (execution) times of 96.62 seconds and 95.75 seconds,
respectively (but, note that HBFS fails much more frequently).
Results from individual benchmarks across 15 cases are
presented in Fig. 7. Each case was subjected to three
independent trials. In real robot experiments, the cases are
intentionally designed to be challenging to solve. A greedy
action may exacerbate the problem, making it even more
difficult to resolve. Consequently, the completion rate of
HBFS is significantly reduced.

Robot Time | Completion | Num. of Actions | Plan Time
PMMR-40 95.75s%* 96.44% 9.56 292.02s
HBFS 96.62s* 38.33% 15.15 29.05s
PMMR-40 (Sim) — 94.67% 10.44 306.41s
HBFS (Sim) — 45.33% 14.99 22.18s

TABLE III: Experiment results of real robot trials across 15 cases, with
time budgets constrained to a maximum of 40 seconds for a single MCTS
run. The robot time is only considered in cases where both methods succeed
at least once. Additionally, benchmarks from simulations covering 15 cases
are included for sim-to-real gap comparisons. The robot time for PMMR-40
and HBF, denoted with an asterisk, is recorded only for successful cases.
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Fig. 7: As an expanded illustration of Tab. III, this plot illustrates the
number of actions the robot executes to resolve individual cases.

VI. CONCLUSION AND FUTURE DIRECTIONS

We make the observation that humans frequently solve
manipulation challenges using multiple types of manipulation
actions. In contrast, there has been relatively limited research
tackling planning high-quality resolutions for long-horizon
manipulation tasks exploring the synergy of multiple ma-
nipulation actions. Inspired by how humans solve everyday
manipulation tasks, in this paper, we propose and study the
rearrangement with multiple manipulation primitives (REMP)
problem. Toward optimally solving REMP, we developed
two effective methods, HBFS and PMMR, with PMMR
especially adept at solving difficult REMP instances with high
success rates and producing high-quality solution sequences,
which are confirmed with thorough simulation and real robot
experiments, going through the full percept-plan-act loops.

With the current work paving the way, in future studies,
we plan to expand the research in two directions: (1) We
will explore adding additional manipulation actions (e.g.,
pushing multiple objects, flipping objects) and solving more
difficult rearrangement tasks (e.g., stacking to form complex
structures), and (2) Leveraging the current algorithms to
generate training data, we will develop data-driven methods
(e.g., machine learning and/or reinforcement learning) to
further speed up the planning process.
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