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The social brain hypothesis posits that species with larger brains tend to have greater social
complexity. Various lines of empirical evidence have supported the social brain hypothesis,
including evidence from the structure of social networks. Cooperation is a key component of
group living, particularly among primates, and theoretical research has shown that particular
structures of social networks foster cooperation more easily than others. Therefore, we
hypothesized that species with a relatively large brain size tend to form social networks that
better enable cooperation. In the present study, we combine data on brain size and social
networks with theory on the evolution of cooperation on networks to test this hypothesis in
non-human primates. We have found a positive effect of brain size on cooperation in social
networks even after controlling for the effect of other structural properties of networks that

are known to promote cooperation.

I. INTRODUCTION

The social brain hypothesis states that, among primates, brain size is positively associated with
social complexity [1]. Group size, in terms of the number of individuals, is one aspect of social
complexity [2]. Studies have found a positive association between brain size and the typical sizes of
defined social units [1, 3] as well as more focused subgroups, such as the number of regular social
contacts an individual maintains [4-7]. However, some studies have found stronger relationships
between brain size and other behaviors, such as diet [8], or found the relationship between brain
size and group size to be relatively weak [9] or inconsistent across data sets [10].

Although group size is the most studied potential correlate of brain size in the social brain

hypothesis literature, it is not the only one [11]. Patterns of behavior between individuals in
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differentiated pairwise interactions can also be thought of as an important component of social
complexity [2, 11, 12]. Such pairwise interactions can be represented as social networks. Network
science is a common tool for studying complex systems, and researchers have investigated several
network indices in relation to the social brain hypothesis. Examples include the number of con-
nections an individual maintains (also known as the node’s degree) [4-6], the number of different
types of connections [5], the number of individuals in a subgroup who can connect to each other by
a sequence of edges (i.e., the size of strongly connected components) [4], the number of connections
normalized by the number of individuals (called the network density) [13], and more sophisticated
measures of network structure [13, 14]. The results of all of these network-based studies are largely
consistent with the social brain hypothesis.

Social networks have both benefits and costs that make them relevant to the evolution of social-
ity. The structure of animal social networks has been suggested to affect, for example, the speed
of diffusion of information, mating behavior, predator avoidance, communication efficiency, and
group movement [14-17]. On the other hand, network structure determines disease transmission
potential and epidemic outcomes in populations, because a pathogen can only spread if the relevant
form of contact exists between two individuals. Networks with high degree heterogeneity (i.e. high
variation in the number of contacts among individuals) have increased transmission potential due
to the presence of superspreaders which cause rapid, explosive outbreaks of disease in a popula-
tion [18]. Animal social networks that we observe today may therefore be a result of evolutionary
processes in which more advantageous network structures have proliferated at the expense of less
advantageous structures under restrictions imposed by the environment and trade-offs between
different objectives.

One function for which social networks are particularly relevant is cooperation. Individuals
of various animal species cooperate with each other, even cooperating with non-kin and in social
dilemma situations in which non-cooperation is more lucrative than cooperation [19-25] (but see
Refs. [22, 26, 27], which point out that empirical evidence of cooperation in animal groups remains
relatively scarce). Although cooperation under social dilemmas is an evolutionary puzzle, theoreti-
cal research has suggested various mechanisms enabling cooperation, such as direct reciprocity (i.e.,
repeated interaction) and indirect reciprocity (specifically, reputation-based mechanisms) [28, 29].
Signaling, including symbolic communication, has been proposed as another mechanism that can
enable cooperation [30], and recent theory has suggested that structured populations may facilitate
the spread of cooperation in the presence of symbolic communication when compared to well-mixed

populations [31]. The structure of social networks is itself one mechanism that may promote co-
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operation, a concept known as network reciprocity [29, 32-35]. Specifically, a relatively small
node degree (i.e., the number of neighboring individuals per individual) [36, 37] and heterogeneity
among individuals in the network in terms of the degree [38, 39] can both promote cooperation
compared to well-mixed populations depending on the assumptions underlying the evolutionary
process models. In addition, it has long been known that clustering of the network (i.e., abundance
of short cycles such as triangles and squares) promotes cooperation, which is often referred to as
spatial reciprocity [29, 40, 41].

The purpose of the present study is to investigate the link between the social brain hypothesis
and cooperation in social networks. While cooperation occurs in various animal taxa [21, 23], here
we focus on non-human primates because both brain size and social network data are available for
many primate species. Recently developed mathematical theory enables us to quantify the extent
to which a network itself supports the spread of cooperation [37]. We use this theory and test
whether species with larger brains form social networks that foster cooperation to a greater extent
than networks for other species.

Specifically, using game theory and the properties of random walks on networks, Allen et al.
[37] derived an expression which predicts, for an arbitrary weighted, undirected network, how much
larger the benefit b of cooperating must be, when compared to its cost ¢, in order to favor the spread
of cooperation. The theory by Allen and colleagues relies on a death-birth process which, given an
invading cooperator and assuming no mutation, leads to fixation of either cooperation or defection
(Fig. 1; see the Materials and methods section for details). For a given network, cooperation fixates
with a higher probability when b/c is larger in general. In particular, cooperation fixates with a
probability larger than a baseline probability when b/c is larger than a threshold value, denoted
(b/c)*, and the (b/c)* value depends on the network structure (see the Materials and methods
section for mathematical details). Because a small (b/c)* value implies that cooperation fixates
relatively easily for a relatively small value of b/c, networks with a small (b/c)* value favor the
spread of cooperation. Our hypothesis is that nonhuman primate species with larger neocortex

ratios are associated with social networks that have lower (b/c)* values.
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FIG. 1. A single round of the death-birth process with selection on birth. (a) Each player gains an averaged
payoff by interacting with all its neighbors. We denote cooperator and defector by C and D, respectively.
(b) We select a node to be updated uniformly at random. In our example we choose the node denoted
by i. Then, one of i’s neighbors, denoted by j, whose payoff value is shown, will replace ¢. We select
as j each neighbor of ¢ with probability proportional to its expected payoff; the probability to select this
J is given by [1 +n(b/2 —¢)]/[1 + n(—c) + 1 +n(b/2) + 1+ nb/3) + 1 +n(b/4—c) +1+nb/2 —¢c)] =
[12 4+ 6n(b — 2¢)]/[60 + n(19b — 36¢)], where n < 1 denotes the selection strength, b denotes the benefit from
cooperating, and ¢ denotes the cost of cooperating. (c¢) In this example, j is a cooperator and replaces the

defector on the ith node.
II. MATERIALS AND METHODS

A. Evolutionary game dynamics and the derivation of (b/c)*

In this section, we explain the derivation of (b/c)* for any given network under the weak selection

limit, following [37].

1. Networks and discrete-time random walk

We assume connected and undirected networks with N nodes. For each pair of nodes ¢,j €
{1,..., N}, we denote the edge weight by w;; > 0. We set w;; = 0 if there is no edge (,j). We
allow self-loops, i.e., the case of w;; > 0 [37]. The weighted degree of node 14, also referred to as
node strength, is given by s; = Z;Vﬂ Wij.

We start with explaining discrete-time random walks on networks because they are necessary
for describing both the evolutionary game dynamics and the derivation of (b/c)*. By definition, a
discrete-time random walk on the network is simple if the walker located on the ith node moves
to any jth node in a single time step with probability proportional to wj;, i.e., with probability
pij = w;j/s;. The transition probability matrix P = (p;;) of the simple random walk is given
by P = D~'W, where D = diag(si,...,sy), i.e., the diagonal matrix whose diagonal entries are

equal to s1,s2,...,5n, and W = (wj;) with 4,5 € {1,..., N} is the weighted adjacency matrix.
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Let w = (m1,...,mn) be the stationary probability vector of the random walk with transition
probability matrix P. Vector 7 is the solution of wP = = satisfying Zf\; 1™ = N. It holds true
for undirected networks that [42, 43]

S

:ZNi’Z, ie{l,...,N}. (1)
=15

T

2.  (ift-giving game and evolutionary dynamics under the death-birth updating rule

We use the gift-giving game, also called the donation game, which is a subtype of the prisoner’s
dilemma game. In the gift-giving game, which is a two-player game, one player, called the donor,
decides whether or not to pay a cost ¢ (> 0). If the donor pays ¢, which we refer to as cooperation,
then the other player, called the recipient, receives benefit b, which we assume to be larger than
c. If the donor decides not to pay ¢, which we refer to as defection, then the donor does not lose
anything, and the recipient does not gain anything. We assume that each player plays the game
with each neighbor once as donor and another time as recipient in a single round of evolutionary

dynamics. Then, the payoff matrix of the gift-giving game between a pair of players is given by

C D

C{b—c —c
, (2)
D b 0

where C and D represent cooperation and defection, respectively, and the payoff values represent
those for the row player.

We set x; = 0 or x; = 1 when the ith player is defector or cooperator, respectively. Then, the
state of the entire network is specified by a binary vector & = (x1,...,zy) € {0,1}". The payoff

of the 7th node averaged over all its neighbors is given by

N
fl(:li) = —CZ; + bzpijSUj. (3)

=1

We set the reproductive rate of node i in state = by
Ri(x) = 1+ nfi(x), (4)

where 7 (> 0) represents the strength of natural selection. When n — 0, the payoff, f;(x) only
weakly impacts the selection, which is called the weak selection regime. A justification of weak
selection is that, in reality, many different factors may contribute to the overall fitness of an

individual, and the prisoner’s dilemma game may be just one such contributor [36, 37].
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We assume evolutionary dynamics of the gift-giving game driven by the death-birth process with
selection on birth [36, 37]. By definition, we first select a node to be updated (i.e., die), denoted
by 4, uniformly at random. Second, we select one of the neighbors of the ith node, denoted by j,
for reproduction (i.e., give birth), with the probability proportional to w;;R;(x). Third, i copies
the type (i.e., defection or cooperation) of j. These three steps constitute a single round of the

evolutionary dynamics; see Fig. 1 for a schematic.

3. Fization probability for cooperation and the expression of (b/c)*

Because we omitted mutation, the death-birth process in any finite network eventually termi-
nates in the state in which all individuals are uniformly cooperators or defectors. We call these
final states fixation of cooperation or defection. According to a standard convention, we assume
that the initial state contains one cooperator node and N — 1 defector nodes and that each node
is the unique initial cooperator with the equal probability 1/N. We denote by pc the probability
that cooperation fixates. Defection fixates with probability 1 — pc. We say that natural selection
favors cooperation if pc > 1/N [36, 37, 44, 45].

Allen et al. showed that [37]

1
po = - + g [=er2 4+ b(rs = 7)) + O(n?), (5)
where
NN
Tk = Zzﬂ-ipz('j)tij, (6)
i=1 j=1
)

pz(?) is the (4, 7)th entry of matrix P*, which implies that pi;’ = pij, and

0 if i =7,
tij = N (7)
14+ % Zk:l (piktjk + pjktik) otherwise.
Equation (7) implies that t;; = tj; is the mean coalescence time of two random walkers when one
walker is initially located at the ith node and the other walker is initially located at the jth node.
Note that pgf) is the k-step transition probability of the random walk from the ith to the jth node.
Therefore, 74, is the expected value of ¢;; when j is the node at which the random walker arrives

after k steps starting at the ith node under the stationary distribution [37]. Equation (5) implies

that the natural selection favors cooperation (i.e., pc > 1/N) under weak selection if and only if

(i) g (D* 737—271' ®)
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It should be noted that the right-hand side of Eq. (8) only depends on the adjacency matrix of the
network, W. Therefore, the network structure determines whether and how much natural selection
favors cooperation in the present model. Note that (b/c)* is a threshold value: cooperation is
predicted to fixate with a probability larger than 1/N when the ratio of benefit b to cost ¢ of a
particular cooperative behavior is larger than (b/c)*. Thus, cooperation spreads more easily on
networks with lower (b/c)*.

We calculated (b/c)* for each network using our in-house code in Python 3.10, which implements
the procedures described in [37]; the code is available at https://github.com/ngmaclaren/cooperation-

threshold.

B. Data

The data for this study come from the Animal Social Network Repository (ASNR) [46, 47]. The
ASNR contains 770 non-human social networks from eight animal classes and 69 species. For each
network in this data set, nodes represent an individual animal. Edges represent a specific type of
contact between two animals, such as grooming in primates and trophallaxis in ants, as well as
more general contact such as group membership and spatial proximity.

There are 114 non-human primate social networks in the ASNR, including 60 grooming net-
works, 31 spatial proximity networks, 10 mating networks, and 13 networks with other contact
types. Most sampled populations are free-ranging (84), with some captive (18) and some semi-
freeranging (7) populations, as well as five populations for which the type was not recorded. There
are 99 catarrhine primate networks, 13 platyrrhine networks, and 2 strepsirrhine networks. Sam-
pling of the different contrasts represented in the ASNR is thus somewhat unbalanced but reflects
the sampling effort present in the literature.

To test our hypothesis we require that, to the best extent possible, the edges represent prosocial
contacts between individuals. Other contact types, such as dominance or mating, may reflect
motives that are not relevant to the spread of cooperative behaviors, and proximity-based networks
may reflect individuals who are co-located by chance or interest in a common resource rather
than for social interaction. We therefore used the ASNR networks with the interaction types
labeled “grooming”, “physical contact”, and “overall mix”; the “overall mix” category captures
one additional network that recorded grooming behavior. We thus obtained 67 possible networks,
which we regarded as undirected weighted networks.

Thirteen out of the 67 networks yielded negative (b/c)* values, which imply that spiteful behav-
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Species (b/e)* Neocortex Ratio Brain mass N (k) (s) C C
Sapajus apella 12.59 2.25 66.63 12 7.17 7.17  0.69 0.08
Macaca arctoides 18.63 2.43 100.7 20  10.62 17.13 0.62 0.08
Cercopithecus campbelli  34.46 2.21 57.39 15 7.87 7.87 0.66 0.05
Papio cynocephalus 4.30 2.68 163.19 11 2.56 3.56 0.16 0.07
Macaca fascicularis 2.18 2.6 63.98 10.5  3.86 5.89 0.35 0.02
Macaca fuscata 12.98 2.45 102.92 9 6.52 92,53 0.91 0.06
Ateles geoffroyi 10.02 2.35 105.09 15 6 6 0.53 0.09
Colobus guereza 8.76 2.32 74.39 8 4.5 4.5 0.59 0.10
Ateles hybridus 11.81 2.35 103.05 17 8.47 79447 0.81 0.09
Macaca mulatta 8.10 2.6 88.98 78 14.3  41.33 0.29 0.02
Pan paniscus 5.04 3.22 341.29 19 5.79 5.79 046 0.06
Papio papio 4.88 2.76 163.19 25 7.76 776 041 0.03
Erythrocebus patas 8.13 2.96 97.73 19 5.16 5.16  0.56 0.07
Macaca radiata 28.22 2.28 74.87 18 9.86 15.74 0.70 0.11
Macaca sylvanus 3.08 2.37 93.2 8 7 26.97 1 0.02
Macaca tonkeana 24.12 2.6 93.7 25 1448 1448 0.62 0.07
Pan troglodytes 11.42 3.22 368.35 24 8.58 8.58 0.65 0.08

TABLE I. Properties of primate social networks returned by our selection procedures, sorted by (b/c)*.
Values are medians of all the networks for Papio cynocephalus, Macaca fasicularis, M. fuscata, M. mulatta,
and M. radiata. NCR: neocortex ratio, N: number of nodes, (k): average node degree, (s): average node

strength, C: clustering coefficient, Cy: weighted clustering coefficient.

ior evolves instead of cooperation [37, 48]. We discarded these networks because we are interested in
cooperation under social dilemma situations, and because the qualitatively different interpretation
of a unit change for (b/c)* values above and below zero (i.e., a unit change in the positive direc-
tion below zero means that spite evolves more easily, whereas a similar change above zero means
that cooperation evolves less easily) violates regression modeling assumptions. Additionally, we
discarded one network that was composed of two disconnected dyads and used the remaining 53
connected networks for our analysis. Most species had a single network in the repository. The
exceptions were Papio cynocephalus (which had 23 networks), Macaca fascicularis (2), M. fuscata
(4), M. mulatta (9), and M. radiata (2). For these species we took the median for (b/c)* and for
the network-based explanatory variables explained in Section II C to prevent a few species, such
as P. cynocephalus and M. mulatta, from dominating the set of networks to be analyzed. In this
manner, we reduced the 53 networks to observations on 17 species for further analysis (Table I).
We used the species-level neocortex ratio (NCR) estimate from [4] for all but one species,

Colobus guereza; a species-level NCR estimate was not available in [4], so we used the genus-level
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NCR estimate from [3]. Additionally, we used the brain mass data from [49] for all species except
Papio papio, for which the data is not present. For Papio papio, we used the data of the closely
related species P. cynocephalus [50]. Because the size of several regions of the brain may correlate
with social complexity [5-7], we included overall brain mass as a relatively simple measure, when
compared to the NCR, of species’ neurological complexity [8] that may also correlate with sociality
[51]. These two measures (i.e., brain mass and NCR) are highly correlated with each other (see
Section III). Given the unbalanced sampling mentioned above, we did not include controls for
phylogeny, social system, foraging behavior, whether the group was free-ranging or captive, or

type of behavior captured by the network. See Section IV for further discussion of this limitation.

C. Analysis

Data analysis was conducted in R [52]; the code is available at https://github.com/ngmaclaren/cooperation-

threshold. We used the “MuMIn” package [53] to implement the model selection procedure
described below.

We fitted generalized linear models (GLMs) to test whether NCR and other variables were
associated with the difficulty of cooperation, (b/c)*, which we used as the dependent variable.
We considered seven explanatory variables: NCR, brain mass in grams, and five network indices.
The five network indices are the number of nodes in the network, denoted by N, the average
degree over the N nodes, (k), the average node strength (i.e., the average of the weighted degree
over the N nodes), (s), the clustering coefficient, C, and the weighted clustering coefficient, Chy.
The clustering coefficient is the average over all nodes of the local clustering coefficient; the local
clustering coefficient for the ith node is the number of triangles (i.e., (¢, i), (¢, "), and (¢, i")
are edges of the network) divided by the number of possible triangles involving the ith node
(i.e., ki(ki — 1)/2, where k; is the node i’s degree) [54, 55]. The weighted clustering coefficient is
calculated similarly to the unweighted version except that it uses the geometric mean of the edge
weights instead of a count of edges [56]. We include these network indices because each of these
indices can affect (b/c)* regardless of the potential relationship between brain size and (b/c)* [37].
Because brain mass, body mass, (s), and Cy are positive and obey right-skewed distributions, we
used the natural logarithm transform of each of these variables.

We began our modeling process from a position of relative ignorance, including these seven
explanatory variables as predictors. By design, our outcome variable, (b/c)*, is positive and contin-

uous, suggesting a model with gamma-distributed errors. To test our choice, we built five different
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models, each with all seven explanatory variables, with different error models and link functions
(i.e., gamma and Gaussian distributions with both inverse and log links, and a quasi-Poisson model)
and calculated the deviances of each [57]. As expected, the gamma models fit well (x? test with
d.f.=8; p=0.968 and 0.991 for the inverse and log links, respectively), whereas the other models
did not (p < 0.001 for each). The residual deviances associated with both gamma-based models
are small (inverse link: 2.90, log link: 2.01) relative to the remaining models (quasi-Poisson: 27.61,
Gaussian inverse link: 236.09, Gaussian log link: 374.50), further suggesting good fit [57]. Because
the model with gamma-distributed errors and the log link had the minimum residual deviance, we
used that model for further analysis [57].

The number of explanatory variables (i.e., seven) is relatively large given the number of observa-
tions (i.e., 17). Therefore, we ran an AIC-based model selection, as follows. First, we evaluated all
possible models—excluding any model with both brain mass and NCR as predictor variables—and
calculated the AICc for each model. AICc is a modification of the Akaike Information Criterion
(AIC) that is preferred for model selection when data sets are relatively small [58]. Specifically,
AICc is defined as AICH(2k? +2k)/(n — k — 1), where k is the degrees of freedom of the model and
n is the number of observations. When n is small, AICc values increase more with each additional
model parameter than the traditional AIC does; the difference between the two metrics becomes
small when n is large. Model selection based on AICc thus tends to support fewer model param-
eters at small n than traditional AIC. A recommended rule is to use AICc when n/k < 40 [58];
for a model in this study with three predictor variables, an intercept, and an error parameter, we
obtain n/k = 17/5 = 3.4 < 40. We sorted all evaluated models by AICc: the models with minimal

AICc values realize the best fit to the data with the fewest variables.

III. RESULTS

We show the sorted AICc values for all 96 models which met our initial selection criteria in
Fig. 2. Figure 2 shows that the best and second-best models are fairly similar in terms of AICc,
but the third-best model has somewhat poorer AICc. Setting a cutoff at AAICc = 3, where AAICc
means the absolute difference in the AICc value relative to the smallest value, allows us to focus
on two models that are similar in terms of AICc but clearly better than any other alternatives.
We summarize these two models in Table II. These two models are superior to the full model
in terms of AICc (full model AICc: 132.39, Model 1: 106.91, Model 2: 108.01) and collinearity

(maximum variance inflation factor for the full model: 5.08, Model 1: 1.03, Model 2: 1.02) without
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FIG. 2. Akaike Information Criterion adjusted for small samples (AICc) for all possible models. Possible
models are generalized linear models with gamma-distributed errors, a natural logarithm link function, and
zero or more of the following explanatory variables: neocortex ratio, brain size, number of nodes, average

node degree, average node strength, clustering coefficient, and weighted clustering coefficient.

a substantial reduction in variance explained (full model McFadden’s pseudo-R?: 0.77, Model 1:
0.73, Model 2: 0.72).

The two best models both include a measure of brain size—overall brain mass in Model 1 and
NCR in Model 2—and two network features: average node degree (k) and the weighted clustering
coefficient Cy, (Table II). As is expected given the correlation between brain mass and NCR in
this data (r = 0.843, mentioned above), coefficient estimates for the two models are similar: the
coefficients on both brain size variables are both negative, whereas the coefficients on average node
degree and weighted clustering are positive. Thus, we find that, when average degree and weighted
clustering are held constant, brain size is inversely associated with (b/c)* in this data: primates
with larger brains are associated with social networks that favor the spread of cooperation. We
visualize the association between NCR and (b/c)*, controlling for average degree and weighted
clustering, in Fig. 3.

Although overall trends in the data support the social brain hypothesis, there is substantial

uncertainty in the coefficient estimates (see Table II). We visualize this uncertainty in Fig. 4, which



275

276

277

278

279

280

281

282

283

284

286

287

12

95% CI
Model 1 Estimate  SE Lower  Upper
Intercept 6.398 1.503  3.469  9.277
Brain mass —-0.522  0.256 —0.958 —0.051
(k) 0.138 0.041  0.050  0.230
Cy 0.944 0243 0.390  1.460
AlCc 106.910
Deviance 2.353
Pseudo-R? 0.73

95% CI
Model 2 Estimate  SE Lower  Upper
Intercept 5.809 1.329 3.134  8.479
Neocortex ratio  —0.827  0.437 —1.590 —0.010
(k) 0.135 0.042 0.048 0.228
Cu 0.844 0.249  0.281 1.361
AlICc 108.010
Deviance 2.507
Pseudo-R? 0.72

TABLE II. The best two models, i.e., the models with AAICc < 3. The dependent variable is (b/c)*.
All models are generalized linear models with gamma-distributed errors and a natural logarithm link. A
negative coefficient indicates that a larger value of the predictor is associated with a smaller value of (b/c)*,
suggesting that cooperation spreads more easily on a network. SE stands for the standard error; CI stands for

confidence interval; (k) and C\ represent average degree and the weighted clustering coefficient, respectively.

shows the point estimate for each coefficient (open markers) in both models (indicated by color
and marker shape) along with the profile likelihood 95% confidence intervals (horizontal lines).
The confidence intervals are all relatively wide compared with the magnitude of the coefficient,
suggesting that the size and noisiness of our data inhibit our ability to make precise estimates of
the relationship between brain size and (b/c)*.

Finally, we note that neither of the best two models has more than three explanatory variables,
suggesting that adding more explanatory variables would not be useful in better explaining (b/c)*
across the different networks. This observation indicates that our data do not support differen-
tiating between the effects of brain mass and neocortex ratio by, for example, including one as a
control on the other in a regression model. The failure of group size N to appear in the best models
is also notable, which we discuss in the Discussion section. This finding suggests that the rela-
tionship between brain size and the spread of cooperative behavior may be independent of group

size. Finally, neither the average weighted degree (s) nor the unweighted clustering coefficient C'
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appeared in the five best models.

IV. DISCUSSION

Our findings suggest that primate species with larger brains tend to form networks which, based
on results from game theory [37], support the spread of cooperative behaviors. Thus, our primary
results are consistent with the social brain hypothesis. Our results are also consistent with previous
findings on the effect of network structure on cooperation in primates [59].

Group size and NCR are only weakly correlated with each other in our data (r = 0.203).
This result is only marginally consistent with previous studies, which showed a strong association
between group size, which has been used as a proxy for social complexity [11], and NCR; this
association is a central result supporting the social brain hypothesis [60]. A weak association
between group size and NCR in our data may be due to different definitions of the group size used
in our study and the previous ones. The group size used in this study is the observed number of

individuals in a single group. That group was captive in some studies, and there may be other
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constraints on the observed group size in a particular study that may make the group size value
different from what may be typical in wild populations. This difference may have depressed the
relationship between group size and the NCR, and also the relationship between group size and
cooperation in the present study. Alternatively, we note that primate groups may form for a variety
of reasons, such as protection from predators, which neither relate specifically to cooperation nor
necessarily indicate an increased cognitive demand on group members. By including group size as
a potential predictor of the cooperation threshold, we hypothesized that groups with larger size will
have consistent differences in their cooperation threshold from groups of smaller size. We found
that this is not the case within the limits of our analysis. Thus, our present findings are orthogonal
to previous tests of the social brain hypothesis.

Our data indicate a notable level of uncertainty in the observed trends. An important reason
for this uncertainty is the relatively small sample size of our final data set. Additionally, as we
described in Section II, our models do not control for a variety of factors, such as phylogeny and
study design. Omitting these variables might account for some of our reported error variance.

However, these factors are represented in a very uneven way in the primate networks available
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in the ASNR, limiting our ability to control for them in our models in a meaningful way. For
example, of the 17 species in our final data set, 11 are cercopithecine primates and of those, seven
are macaques. No lemur or other strepsirrhine species are represented at all. The situation is
even more extreme in the data set prior to aggregation to the species level, in which 44 of the 53
networks came from two cercopithecine genera: Papio (23) and Macaca (21). Thus, although the
phylogenetic signal in group size and related variables has been previously shown to be relatively
weak [61], we are limited in our ability to control for phylogenetic effects that may be present in
our model. We face a similar situation in attempting to control for study design, which can affect
the structure of observed networks [62]: in our data, most groups were sampled according to social
group membership, none were sampled according to a geographic area, and the only captive groups
were 10 of the 21 macaque networks. Finally, some uncertainty in our estimates may be due to the
brain mass and NCR measurements themselves, which are difficult to obtain and thus not based on
large samples of individuals nor available for all species [63]. Because of these conditions, we have
chosen to simplify our model to accommodate a small sample [64], rather than take a maximal
approach, with which we would include as many theoretically important variables in the model as
possible [65, 66]. We recognize that our decisions reduce both the sample size and the potential
generalizability of our study [67]. Additional data from species more evenly spread across primate
taxa will help address these concerns, as well as support mediation analysis to better test between
competing causal hypotheses.

From a theoretical perspective, our work is also limited by the assumptions made by Allen et al.’s
theory [37]. Specifically, their theory assumes fixed, undirected networks and binary strategies (i.e.,
cooperation or defection). Such assumptions do not realistically represent primate social networks,
which may be dynamic, have asymmetric ties (i.e., individual A grooms individual B more than the
reverse), and be characterized by complex behavioral strategies. This lack of an explicit connection
between models and reality has been recognized as a major challenge in evolutionary game theory
[68]. The strength of Allen et al.’s results and others is in providing insight into the general
mechanisms of the evolution of cooperation [69]. Our study addresses this gap by showing that
predictions from the social brain hypothesis, based on observations, are in line with those from
evolutionary game theory.

Despite these caveats, the present results allow us to make several additional observations. For
example, we observe that cooperation spreads less easily on networks in which individuals tend
to have many social partners (i.e., large average degree) or tend to form clusters (i.e., connected

triangles). While the former observation agrees with the literature [36, 37], the latter is apparently
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inconsistent with the concept of spatial reciprocity, which states that high clustering in networks
promotes cooperation [29, 40, 41]. In fact, results supporting spatial reciprocity have been derived
for the fraction of cooperators in the quasi-stationary state of evolutionary dynamics in relatively
large networks rather than the fixation probability for the cooperator strategy; we examined the
latter quantity in this study. The effect of clustering on the fixation probability for cooperation
is not systematically known. For example, some numerical simulations suggest that clustering,
which is present in most empirical networks, does not facilitate the fixation of cooperation [36, 70].
Therefore, our results are in fact not contradictory to the known results for spatial reciprocity, and
fixation of cooperation in clustered networks remains to be investigated.

Cooperative group living is often advantageous in the animal kingdom because it can provide
protection from predators and increase the efficiency of foraging tactics [20, 71]. However, one
of the most commonly cited disadvantages to cooperative group living is the increase in disease
transmission potential [71, 72]. In fact, previous work suggests that the average degree is the most
important aspect of network structure in determining the transmission potential for pathogens on
a network [62]. Our results show that average degree is negatively associated with the evolution of
cooperation, a finding supported by previous theoretical work [36]. Given that small average degrees
are beneficial for both enhancing cooperation and reducing pathogen transmission opportunity,
cooperation and protection against disease transmission potential might have coevolved through a
decrease in the average degree of social networks. Maintaining contacts is also costly for individuals.
However, a large average degree helps robustness of networks against node and edge failures [17,
73]. We may be able to further discussion of the evolution of network structure and social brain
hypotheses by simultaneously taking into account multiple functions of animal society such as
cooperation, protection against infection, robustness, and communication efficiency.

The present work also opens avenues for further work to explore the intersection between the
social brain hypothesis, networks, and cooperation. For example, most of the social networks in
our sample are grooming networks. However, network structure may vary according to the type of
prosocial contact even for the same species of animals [62]. It is not currently known if differences
in network structure associated with different behaviors also reflect differences in the spread of
cooperation or other indices of social complexity. Furthermore, the spread of spite on ostensibly
prosocial networks is an important possibility, but insufficiently characterized. Although further
comparative work along these lines is currently limited by available data [46], various technological
and algorithmic developments of automatic data collection [17, 74] are expected to allow us to

access more data and explore these topics in the near future.
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