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The social brain hypothesis posits that species with larger brains tend to have greater social12

complexity. Various lines of empirical evidence have supported the social brain hypothesis,13

including evidence from the structure of social networks. Cooperation is a key component of14

group living, particularly among primates, and theoretical research has shown that particular15

structures of social networks foster cooperation more easily than others. Therefore, we16

hypothesized that species with a relatively large brain size tend to form social networks that17

better enable cooperation. In the present study, we combine data on brain size and social18

networks with theory on the evolution of cooperation on networks to test this hypothesis in19

non-human primates. We have found a positive effect of brain size on cooperation in social20

networks even after controlling for the effect of other structural properties of networks that21

are known to promote cooperation.22

I. INTRODUCTION23

The social brain hypothesis states that, among primates, brain size is positively associated with24

social complexity [1]. Group size, in terms of the number of individuals, is one aspect of social25

complexity [2]. Studies have found a positive association between brain size and the typical sizes of26

defined social units [1, 3] as well as more focused subgroups, such as the number of regular social27

contacts an individual maintains [4–7]. However, some studies have found stronger relationships28

between brain size and other behaviors, such as diet [8], or found the relationship between brain29

size and group size to be relatively weak [9] or inconsistent across data sets [10].30

Although group size is the most studied potential correlate of brain size in the social brain31

hypothesis literature, it is not the only one [11]. Patterns of behavior between individuals in32
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differentiated pairwise interactions can also be thought of as an important component of social33

complexity [2, 11, 12]. Such pairwise interactions can be represented as social networks. Network34

science is a common tool for studying complex systems, and researchers have investigated several35

network indices in relation to the social brain hypothesis. Examples include the number of con-36

nections an individual maintains (also known as the node’s degree) [4–6], the number of different37

types of connections [5], the number of individuals in a subgroup who can connect to each other by38

a sequence of edges (i.e., the size of strongly connected components) [4], the number of connections39

normalized by the number of individuals (called the network density) [13], and more sophisticated40

measures of network structure [13, 14]. The results of all of these network-based studies are largely41

consistent with the social brain hypothesis.42

Social networks have both benefits and costs that make them relevant to the evolution of social-43

ity. The structure of animal social networks has been suggested to affect, for example, the speed44

of diffusion of information, mating behavior, predator avoidance, communication efficiency, and45

group movement [14–17]. On the other hand, network structure determines disease transmission46

potential and epidemic outcomes in populations, because a pathogen can only spread if the relevant47

form of contact exists between two individuals. Networks with high degree heterogeneity (i.e. high48

variation in the number of contacts among individuals) have increased transmission potential due49

to the presence of superspreaders which cause rapid, explosive outbreaks of disease in a popula-50

tion [18]. Animal social networks that we observe today may therefore be a result of evolutionary51

processes in which more advantageous network structures have proliferated at the expense of less52

advantageous structures under restrictions imposed by the environment and trade-offs between53

different objectives.54

One function for which social networks are particularly relevant is cooperation. Individuals55

of various animal species cooperate with each other, even cooperating with non-kin and in social56

dilemma situations in which non-cooperation is more lucrative than cooperation [19–25] (but see57

Refs. [22, 26, 27], which point out that empirical evidence of cooperation in animal groups remains58

relatively scarce). Although cooperation under social dilemmas is an evolutionary puzzle, theoreti-59

cal research has suggested various mechanisms enabling cooperation, such as direct reciprocity (i.e.,60

repeated interaction) and indirect reciprocity (specifically, reputation-based mechanisms) [28, 29].61

Signaling, including symbolic communication, has been proposed as another mechanism that can62

enable cooperation [30], and recent theory has suggested that structured populations may facilitate63

the spread of cooperation in the presence of symbolic communication when compared to well-mixed64

populations [31]. The structure of social networks is itself one mechanism that may promote co-65
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operation, a concept known as network reciprocity [29, 32–35]. Specifically, a relatively small66

node degree (i.e., the number of neighboring individuals per individual) [36, 37] and heterogeneity67

among individuals in the network in terms of the degree [38, 39] can both promote cooperation68

compared to well-mixed populations depending on the assumptions underlying the evolutionary69

process models. In addition, it has long been known that clustering of the network (i.e., abundance70

of short cycles such as triangles and squares) promotes cooperation, which is often referred to as71

spatial reciprocity [29, 40, 41].72

The purpose of the present study is to investigate the link between the social brain hypothesis73

and cooperation in social networks. While cooperation occurs in various animal taxa [21, 23], here74

we focus on non-human primates because both brain size and social network data are available for75

many primate species. Recently developed mathematical theory enables us to quantify the extent76

to which a network itself supports the spread of cooperation [37]. We use this theory and test77

whether species with larger brains form social networks that foster cooperation to a greater extent78

than networks for other species.79

Specifically, using game theory and the properties of random walks on networks, Allen et al.80

[37] derived an expression which predicts, for an arbitrary weighted, undirected network, how much81

larger the benefit b of cooperating must be, when compared to its cost c, in order to favor the spread82

of cooperation. The theory by Allen and colleagues relies on a death-birth process which, given an83

invading cooperator and assuming no mutation, leads to fixation of either cooperation or defection84

(Fig. 1; see the Materials and methods section for details). For a given network, cooperation fixates85

with a higher probability when b/c is larger in general. In particular, cooperation fixates with a86

probability larger than a baseline probability when b/c is larger than a threshold value, denoted87

(b/c)∗, and the (b/c)∗ value depends on the network structure (see the Materials and methods88

section for mathematical details). Because a small (b/c)∗ value implies that cooperation fixates89

relatively easily for a relatively small value of b/c, networks with a small (b/c)∗ value favor the90

spread of cooperation. Our hypothesis is that nonhuman primate species with larger neocortex91

ratios are associated with social networks that have lower (b/c)∗ values.92
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FIG. 1. A single round of the death-birth process with selection on birth. (a) Each player gains an averaged

payoff by interacting with all its neighbors. We denote cooperator and defector by C and D, respectively.

(b) We select a node to be updated uniformly at random. In our example we choose the node denoted

by i. Then, one of i’s neighbors, denoted by j, whose payoff value is shown, will replace i. We select

as j each neighbor of i with probability proportional to its expected payoff; the probability to select this

j is given by [1 + η(b/2 − c)]/[1 + η(−c) + 1 + η(b/2) + 1 + η(b/3) + 1 + η(b/4 − c) + 1 + η(b/2 − c)] =

[12+ 6η(b− 2c)]/[60+ η(19b− 36c)], where η ≪ 1 denotes the selection strength, b denotes the benefit from

cooperating, and c denotes the cost of cooperating. (c) In this example, j is a cooperator and replaces the

defector on the ith node.

II. MATERIALS AND METHODS93

A. Evolutionary game dynamics and the derivation of (b/c)∗94

In this section, we explain the derivation of (b/c)∗ for any given network under the weak selection95

limit, following [37].96

1. Networks and discrete-time random walk97

We assume connected and undirected networks with N nodes. For each pair of nodes i, j ∈98

{1, . . . , N}, we denote the edge weight by wij ≥ 0. We set wij = 0 if there is no edge (i, j). We99

allow self-loops, i.e., the case of wii > 0 [37]. The weighted degree of node i, also referred to as100

node strength, is given by si =
∑N

j=1wij .101

We start with explaining discrete-time random walks on networks because they are necessary102

for describing both the evolutionary game dynamics and the derivation of (b/c)∗. By definition, a103

discrete-time random walk on the network is simple if the walker located on the ith node moves104

to any jth node in a single time step with probability proportional to wij , i.e., with probability105

pij = wij/si. The transition probability matrix P = (pij) of the simple random walk is given106

by P = D−1W , where D = diag(s1, . . . , sN ), i.e., the diagonal matrix whose diagonal entries are107

equal to s1, s2, . . . , sN , and W = (wij) with i, j ∈ {1, . . . , N} is the weighted adjacency matrix.108
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Let π = (π1, . . . , πN ) be the stationary probability vector of the random walk with transition109

probability matrix P . Vector π is the solution of πP = π satisfying
∑N

i=1 πi = N . It holds true110

for undirected networks that [42, 43]111

πi =
si∑N
ℓ=1 sℓ

, i ∈ {1, . . . , N}. (1)

2. Gift-giving game and evolutionary dynamics under the death-birth updating rule112

We use the gift-giving game, also called the donation game, which is a subtype of the prisoner’s113

dilemma game. In the gift-giving game, which is a two-player game, one player, called the donor,114

decides whether or not to pay a cost c (> 0). If the donor pays c, which we refer to as cooperation,115

then the other player, called the recipient, receives benefit b, which we assume to be larger than116

c. If the donor decides not to pay c, which we refer to as defection, then the donor does not lose117

anything, and the recipient does not gain anything. We assume that each player plays the game118

with each neighbor once as donor and another time as recipient in a single round of evolutionary119

dynamics. Then, the payoff matrix of the gift-giving game between a pair of players is given by120


C D

C b− c −c

D b 0

, (2)

where C and D represent cooperation and defection, respectively, and the payoff values represent121

those for the row player.122

We set xi = 0 or xi = 1 when the ith player is defector or cooperator, respectively. Then, the123

state of the entire network is specified by a binary vector x = (x1, . . . , xN ) ∈ {0, 1}N . The payoff124

of the ith node averaged over all its neighbors is given by125

fi(x) = −cxi + b
N∑
j=1

pijxj . (3)

We set the reproductive rate of node i in state x by126

Ri(x) = 1 + ηfi(x), (4)

where η (≥ 0) represents the strength of natural selection. When η → 0, the payoff, fi(x) only127

weakly impacts the selection, which is called the weak selection regime. A justification of weak128

selection is that, in reality, many different factors may contribute to the overall fitness of an129

individual, and the prisoner’s dilemma game may be just one such contributor [36, 37].130
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We assume evolutionary dynamics of the gift-giving game driven by the death-birth process with131

selection on birth [36, 37]. By definition, we first select a node to be updated (i.e., die), denoted132

by i, uniformly at random. Second, we select one of the neighbors of the ith node, denoted by j,133

for reproduction (i.e., give birth), with the probability proportional to wijRj(x). Third, i copies134

the type (i.e., defection or cooperation) of j. These three steps constitute a single round of the135

evolutionary dynamics; see Fig. 1 for a schematic.136

3. Fixation probability for cooperation and the expression of (b/c)∗137

Because we omitted mutation, the death-birth process in any finite network eventually termi-138

nates in the state in which all individuals are uniformly cooperators or defectors. We call these139

final states fixation of cooperation or defection. According to a standard convention, we assume140

that the initial state contains one cooperator node and N − 1 defector nodes and that each node141

is the unique initial cooperator with the equal probability 1/N . We denote by ρC the probability142

that cooperation fixates. Defection fixates with probability 1 − ρC. We say that natural selection143

favors cooperation if ρC > 1/N [36, 37, 44, 45].144

Allen et al. showed that [37]145

ρC =
1

N
+

η

2N
[−cτ2 + b(τ3 − τ1)] +O(η2), (5)

where146

τk =

N∑
i=1

N∑
j=1

πip
(k)
ij tij , (6)

p
(k)
ij is the (i, j)th entry of matrix P k, which implies that p

(1)
ij = pij , and147

tij =


0 if i = j,

1 + 1
2

∑N
k=1(piktjk + pjktik) otherwise.

(7)

Equation (7) implies that tij = tji is the mean coalescence time of two random walkers when one148

walker is initially located at the ith node and the other walker is initially located at the jth node.149

Note that p
(k)
ij is the k-step transition probability of the random walk from the ith to the jth node.150

Therefore, τk is the expected value of tij when j is the node at which the random walker arrives151

after k steps starting at the ith node under the stationary distribution [37]. Equation (5) implies152

that the natural selection favors cooperation (i.e., ρC > 1/N) under weak selection if and only if153 (
b

c

)
>

(
b

c

)∗
≡ τ2

τ3 − τ1
. (8)
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It should be noted that the right-hand side of Eq. (8) only depends on the adjacency matrix of the154

network, W . Therefore, the network structure determines whether and how much natural selection155

favors cooperation in the present model. Note that (b/c)∗ is a threshold value: cooperation is156

predicted to fixate with a probability larger than 1/N when the ratio of benefit b to cost c of a157

particular cooperative behavior is larger than (b/c)∗. Thus, cooperation spreads more easily on158

networks with lower (b/c)∗.159

We calculated (b/c)∗ for each network using our in-house code in Python 3.10, which implements160

the procedures described in [37]; the code is available at https://github.com/ngmaclaren/cooperation-161

threshold.162

B. Data163

The data for this study come from the Animal Social Network Repository (ASNR) [46, 47]. The164

ASNR contains 770 non-human social networks from eight animal classes and 69 species. For each165

network in this data set, nodes represent an individual animal. Edges represent a specific type of166

contact between two animals, such as grooming in primates and trophallaxis in ants, as well as167

more general contact such as group membership and spatial proximity.168

There are 114 non-human primate social networks in the ASNR, including 60 grooming net-169

works, 31 spatial proximity networks, 10 mating networks, and 13 networks with other contact170

types. Most sampled populations are free-ranging (84), with some captive (18) and some semi-171

freeranging (7) populations, as well as five populations for which the type was not recorded. There172

are 99 catarrhine primate networks, 13 platyrrhine networks, and 2 strepsirrhine networks. Sam-173

pling of the different contrasts represented in the ASNR is thus somewhat unbalanced but reflects174

the sampling effort present in the literature.175

To test our hypothesis we require that, to the best extent possible, the edges represent prosocial176

contacts between individuals. Other contact types, such as dominance or mating, may reflect177

motives that are not relevant to the spread of cooperative behaviors, and proximity-based networks178

may reflect individuals who are co-located by chance or interest in a common resource rather179

than for social interaction. We therefore used the ASNR networks with the interaction types180

labeled “grooming”, “physical contact”, and “overall mix”; the “overall mix” category captures181

one additional network that recorded grooming behavior. We thus obtained 67 possible networks,182

which we regarded as undirected weighted networks.183

Thirteen out of the 67 networks yielded negative (b/c)∗ values, which imply that spiteful behav-184

https://github.com/ngmaclaren/cooperation-threshold
https://github.com/ngmaclaren/cooperation-threshold
https://github.com/ngmaclaren/cooperation-threshold
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Species (b/c)∗ Neocortex Ratio Brain mass N ⟨k⟩ ⟨s⟩ C C̃w

Sapajus apella 12.59 2.25 66.63 12 7.17 7.17 0.69 0.08

Macaca arctoides 18.63 2.43 100.7 20 10.62 17.13 0.62 0.08

Cercopithecus campbelli 34.46 2.21 57.39 15 7.87 7.87 0.66 0.05

Papio cynocephalus 4.30 2.68 163.19 11 2.56 3.56 0.16 0.07

Macaca fascicularis 2.18 2.6 63.98 10.5 3.86 5.89 0.35 0.02

Macaca fuscata 12.98 2.45 102.92 9 6.52 92.53 0.91 0.06

Ateles geoffroyi 10.02 2.35 105.09 15 6 6 0.53 0.09

Colobus guereza 8.76 2.32 74.39 8 4.5 4.5 0.59 0.10

Ateles hybridus 11.81 2.35 103.05 17 8.47 794.47 0.81 0.09

Macaca mulatta 8.10 2.6 88.98 78 14.3 41.33 0.29 0.02

Pan paniscus 5.04 3.22 341.29 19 5.79 5.79 0.46 0.06

Papio papio 4.88 2.76 163.19 25 7.76 7.76 0.41 0.03

Erythrocebus patas 8.13 2.96 97.73 19 5.16 5.16 0.56 0.07

Macaca radiata 28.22 2.28 74.87 18 9.86 15.74 0.70 0.11

Macaca sylvanus 3.08 2.37 93.2 8 7 26.97 1 0.02

Macaca tonkeana 24.12 2.6 93.7 25 14.48 14.48 0.62 0.07

Pan troglodytes 11.42 3.22 368.35 24 8.58 8.58 0.65 0.08

TABLE I. Properties of primate social networks returned by our selection procedures, sorted by (b/c)∗.

Values are medians of all the networks for Papio cynocephalus, Macaca fasicularis, M. fuscata, M. mulatta,

and M. radiata. NCR: neocortex ratio, N : number of nodes, ⟨k⟩: average node degree, ⟨s⟩: average node

strength, C: clustering coefficient, C̃w: weighted clustering coefficient.

ior evolves instead of cooperation [37, 48]. We discarded these networks because we are interested in185

cooperation under social dilemma situations, and because the qualitatively different interpretation186

of a unit change for (b/c)∗ values above and below zero (i.e., a unit change in the positive direc-187

tion below zero means that spite evolves more easily, whereas a similar change above zero means188

that cooperation evolves less easily) violates regression modeling assumptions. Additionally, we189

discarded one network that was composed of two disconnected dyads and used the remaining 53190

connected networks for our analysis. Most species had a single network in the repository. The191

exceptions were Papio cynocephalus (which had 23 networks), Macaca fascicularis (2), M. fuscata192

(4), M. mulatta (9), and M. radiata (2). For these species we took the median for (b/c)∗ and for193

the network-based explanatory variables explained in Section IIC to prevent a few species, such194

as P. cynocephalus and M. mulatta, from dominating the set of networks to be analyzed. In this195

manner, we reduced the 53 networks to observations on 17 species for further analysis (Table I).196

We used the species-level neocortex ratio (NCR) estimate from [4] for all but one species,197

Colobus guereza; a species-level NCR estimate was not available in [4], so we used the genus-level198
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NCR estimate from [3]. Additionally, we used the brain mass data from [49] for all species except199

Papio papio, for which the data is not present. For Papio papio, we used the data of the closely200

related species P. cynocephalus [50]. Because the size of several regions of the brain may correlate201

with social complexity [5–7], we included overall brain mass as a relatively simple measure, when202

compared to the NCR, of species’ neurological complexity [8] that may also correlate with sociality203

[51]. These two measures (i.e., brain mass and NCR) are highly correlated with each other (see204

Section III). Given the unbalanced sampling mentioned above, we did not include controls for205

phylogeny, social system, foraging behavior, whether the group was free-ranging or captive, or206

type of behavior captured by the network. See Section IV for further discussion of this limitation.207

C. Analysis208

Data analysis was conducted in R [52]; the code is available at https://github.com/ngmaclaren/cooperation-209

threshold. We used the “MuMIn” package [53] to implement the model selection procedure210

described below.211

We fitted generalized linear models (GLMs) to test whether NCR and other variables were212

associated with the difficulty of cooperation, (b/c)∗, which we used as the dependent variable.213

We considered seven explanatory variables: NCR, brain mass in grams, and five network indices.214

The five network indices are the number of nodes in the network, denoted by N , the average215

degree over the N nodes, ⟨k⟩, the average node strength (i.e., the average of the weighted degree216

over the N nodes), ⟨s⟩, the clustering coefficient, C, and the weighted clustering coefficient, C̃w.217

The clustering coefficient is the average over all nodes of the local clustering coefficient; the local218

clustering coefficient for the ith node is the number of triangles (i.e., (i, i′), (i, i′′), and (i′, i′′)219

are edges of the network) divided by the number of possible triangles involving the ith node220

(i.e., ki(ki − 1)/2, where ki is the node i’s degree) [54, 55]. The weighted clustering coefficient is221

calculated similarly to the unweighted version except that it uses the geometric mean of the edge222

weights instead of a count of edges [56]. We include these network indices because each of these223

indices can affect (b/c)∗ regardless of the potential relationship between brain size and (b/c)∗ [37].224

Because brain mass, body mass, ⟨s⟩, and C̃w are positive and obey right-skewed distributions, we225

used the natural logarithm transform of each of these variables.226

We began our modeling process from a position of relative ignorance, including these seven227

explanatory variables as predictors. By design, our outcome variable, (b/c)∗, is positive and contin-228

uous, suggesting a model with gamma-distributed errors. To test our choice, we built five different229

https://github.com/ngmaclaren/cooperation-threshold
https://github.com/ngmaclaren/cooperation-threshold
https://github.com/ngmaclaren/cooperation-threshold
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models, each with all seven explanatory variables, with different error models and link functions230

(i.e., gamma and Gaussian distributions with both inverse and log links, and a quasi-Poisson model)231

and calculated the deviances of each [57]. As expected, the gamma models fit well (χ2 test with232

d.f. = 8; p = 0.968 and 0.991 for the inverse and log links, respectively), whereas the other models233

did not (p ≤ 0.001 for each). The residual deviances associated with both gamma-based models234

are small (inverse link: 2.90, log link: 2.01) relative to the remaining models (quasi-Poisson: 27.61,235

Gaussian inverse link: 236.09, Gaussian log link: 374.50), further suggesting good fit [57]. Because236

the model with gamma-distributed errors and the log link had the minimum residual deviance, we237

used that model for further analysis [57].238

The number of explanatory variables (i.e., seven) is relatively large given the number of observa-239

tions (i.e., 17). Therefore, we ran an AIC-based model selection, as follows. First, we evaluated all240

possible models—excluding any model with both brain mass and NCR as predictor variables—and241

calculated the AICc for each model. AICc is a modification of the Akaike Information Criterion242

(AIC) that is preferred for model selection when data sets are relatively small [58]. Specifically,243

AICc is defined as AIC+(2k2+2k)/(n−k−1), where k is the degrees of freedom of the model and244

n is the number of observations. When n is small, AICc values increase more with each additional245

model parameter than the traditional AIC does; the difference between the two metrics becomes246

small when n is large. Model selection based on AICc thus tends to support fewer model param-247

eters at small n than traditional AIC. A recommended rule is to use AICc when n/k < 40 [58];248

for a model in this study with three predictor variables, an intercept, and an error parameter, we249

obtain n/k = 17/5 = 3.4 ≪ 40. We sorted all evaluated models by AICc: the models with minimal250

AICc values realize the best fit to the data with the fewest variables.251

III. RESULTS252

We show the sorted AICc values for all 96 models which met our initial selection criteria in253

Fig. 2. Figure 2 shows that the best and second-best models are fairly similar in terms of AICc,254

but the third-best model has somewhat poorer AICc. Setting a cutoff at ∆AICc = 3, where ∆AICc255

means the absolute difference in the AICc value relative to the smallest value, allows us to focus256

on two models that are similar in terms of AICc but clearly better than any other alternatives.257

We summarize these two models in Table II. These two models are superior to the full model258

in terms of AICc (full model AICc: 132.39, Model 1: 106.91, Model 2: 108.01) and collinearity259

(maximum variance inflation factor for the full model: 5.08, Model 1: 1.03, Model 2: 1.02) without260
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FIG. 2. Akaike Information Criterion adjusted for small samples (AICc) for all possible models. Possible

models are generalized linear models with gamma-distributed errors, a natural logarithm link function, and

zero or more of the following explanatory variables: neocortex ratio, brain size, number of nodes, average

node degree, average node strength, clustering coefficient, and weighted clustering coefficient.

a substantial reduction in variance explained (full model McFadden’s pseudo-R2: 0.77, Model 1:261

0.73, Model 2: 0.72).262

The two best models both include a measure of brain size—overall brain mass in Model 1 and263

NCR in Model 2—and two network features: average node degree ⟨k⟩ and the weighted clustering264

coefficient C̃w (Table II). As is expected given the correlation between brain mass and NCR in265

this data (r = 0.843, mentioned above), coefficient estimates for the two models are similar: the266

coefficients on both brain size variables are both negative, whereas the coefficients on average node267

degree and weighted clustering are positive. Thus, we find that, when average degree and weighted268

clustering are held constant, brain size is inversely associated with (b/c)∗ in this data: primates269

with larger brains are associated with social networks that favor the spread of cooperation. We270

visualize the association between NCR and (b/c)∗, controlling for average degree and weighted271

clustering, in Fig. 3.272

Although overall trends in the data support the social brain hypothesis, there is substantial273

uncertainty in the coefficient estimates (see Table II). We visualize this uncertainty in Fig. 4, which274
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95% CI

Model 1 Estimate SE Lower Upper

Intercept 6.398 1.503 3.469 9.277

Brain mass −0.522 0.256 −0.958 −0.051

⟨k⟩ 0.138 0.041 0.050 0.230

C̃w 0.944 0.243 0.390 1.460

AICc 106.910

Deviance 2.353

Pseudo-R2 0.73

95% CI

Model 2 Estimate SE Lower Upper

Intercept 5.809 1.329 3.134 8.479

Neocortex ratio −0.827 0.437 −1.590 −0.010

⟨k⟩ 0.135 0.042 0.048 0.228

C̃w 0.844 0.249 0.281 1.361

AICc 108.010

Deviance 2.507

Pseudo-R2 0.72

TABLE II. The best two models, i.e., the models with ∆AICc < 3. The dependent variable is (b/c)∗.

All models are generalized linear models with gamma-distributed errors and a natural logarithm link. A

negative coefficient indicates that a larger value of the predictor is associated with a smaller value of (b/c)∗,

suggesting that cooperation spreads more easily on a network. SE stands for the standard error; CI stands for

confidence interval; ⟨k⟩ and C̃w represent average degree and the weighted clustering coefficient, respectively.

shows the point estimate for each coefficient (open markers) in both models (indicated by color275

and marker shape) along with the profile likelihood 95% confidence intervals (horizontal lines).276

The confidence intervals are all relatively wide compared with the magnitude of the coefficient,277

suggesting that the size and noisiness of our data inhibit our ability to make precise estimates of278

the relationship between brain size and (b/c)∗.279

Finally, we note that neither of the best two models has more than three explanatory variables,280

suggesting that adding more explanatory variables would not be useful in better explaining (b/c)∗281

across the different networks. This observation indicates that our data do not support differen-282

tiating between the effects of brain mass and neocortex ratio by, for example, including one as a283

control on the other in a regression model. The failure of group size N to appear in the best models284

is also notable, which we discuss in the Discussion section. This finding suggests that the rela-285

tionship between brain size and the spread of cooperative behavior may be independent of group286

size. Finally, neither the average weighted degree ⟨s⟩ nor the unweighted clustering coefficient C287
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FIG. 3. Threshold for cooperation, (b/c)∗, as a function of the neocortex ratio. Each circle represents a

primate species. The solid line represents the predicted (b/c)∗ given median values for average degree and

weighted clustering coefficient. The dotted lines indicate twice the standard error of prediction.

appeared in the five best models.288

IV. DISCUSSION289

Our findings suggest that primate species with larger brains tend to form networks which, based290

on results from game theory [37], support the spread of cooperative behaviors. Thus, our primary291

results are consistent with the social brain hypothesis. Our results are also consistent with previous292

findings on the effect of network structure on cooperation in primates [59].293

Group size and NCR are only weakly correlated with each other in our data (r = 0.203).294

This result is only marginally consistent with previous studies, which showed a strong association295

between group size, which has been used as a proxy for social complexity [11], and NCR; this296

association is a central result supporting the social brain hypothesis [60]. A weak association297

between group size and NCR in our data may be due to different definitions of the group size used298

in our study and the previous ones. The group size used in this study is the observed number of299

individuals in a single group. That group was captive in some studies, and there may be other300
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FIG. 4. Coefficient estimates for the two models with ∆AICc < 3. Both models are generalized linear

models with gamma-distributed errors and a natural logarithm link function and express the association

beteween three explanatory variables and (b/c)∗. Each model is represented by a different color and type

of marker. The markers represent the coefficient values. The lines represent the profile likelihood 95%

confidence intervals.

constraints on the observed group size in a particular study that may make the group size value301

different from what may be typical in wild populations. This difference may have depressed the302

relationship between group size and the NCR, and also the relationship between group size and303

cooperation in the present study. Alternatively, we note that primate groups may form for a variety304

of reasons, such as protection from predators, which neither relate specifically to cooperation nor305

necessarily indicate an increased cognitive demand on group members. By including group size as306

a potential predictor of the cooperation threshold, we hypothesized that groups with larger size will307

have consistent differences in their cooperation threshold from groups of smaller size. We found308

that this is not the case within the limits of our analysis. Thus, our present findings are orthogonal309

to previous tests of the social brain hypothesis.310

Our data indicate a notable level of uncertainty in the observed trends. An important reason311

for this uncertainty is the relatively small sample size of our final data set. Additionally, as we312

described in Section II, our models do not control for a variety of factors, such as phylogeny and313

study design. Omitting these variables might account for some of our reported error variance.314

However, these factors are represented in a very uneven way in the primate networks available315
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in the ASNR, limiting our ability to control for them in our models in a meaningful way. For316

example, of the 17 species in our final data set, 11 are cercopithecine primates and of those, seven317

are macaques. No lemur or other strepsirrhine species are represented at all. The situation is318

even more extreme in the data set prior to aggregation to the species level, in which 44 of the 53319

networks came from two cercopithecine genera: Papio (23) and Macaca (21). Thus, although the320

phylogenetic signal in group size and related variables has been previously shown to be relatively321

weak [61], we are limited in our ability to control for phylogenetic effects that may be present in322

our model. We face a similar situation in attempting to control for study design, which can affect323

the structure of observed networks [62]: in our data, most groups were sampled according to social324

group membership, none were sampled according to a geographic area, and the only captive groups325

were 10 of the 21 macaque networks. Finally, some uncertainty in our estimates may be due to the326

brain mass and NCR measurements themselves, which are difficult to obtain and thus not based on327

large samples of individuals nor available for all species [63]. Because of these conditions, we have328

chosen to simplify our model to accommodate a small sample [64], rather than take a maximal329

approach, with which we would include as many theoretically important variables in the model as330

possible [65, 66]. We recognize that our decisions reduce both the sample size and the potential331

generalizability of our study [67]. Additional data from species more evenly spread across primate332

taxa will help address these concerns, as well as support mediation analysis to better test between333

competing causal hypotheses.334

From a theoretical perspective, our work is also limited by the assumptions made by Allen et al.’s335

theory [37]. Specifically, their theory assumes fixed, undirected networks and binary strategies (i.e.,336

cooperation or defection). Such assumptions do not realistically represent primate social networks,337

which may be dynamic, have asymmetric ties (i.e., individual A grooms individual B more than the338

reverse), and be characterized by complex behavioral strategies. This lack of an explicit connection339

between models and reality has been recognized as a major challenge in evolutionary game theory340

[68]. The strength of Allen et al.’s results and others is in providing insight into the general341

mechanisms of the evolution of cooperation [69]. Our study addresses this gap by showing that342

predictions from the social brain hypothesis, based on observations, are in line with those from343

evolutionary game theory.344

Despite these caveats, the present results allow us to make several additional observations. For345

example, we observe that cooperation spreads less easily on networks in which individuals tend346

to have many social partners (i.e., large average degree) or tend to form clusters (i.e., connected347

triangles). While the former observation agrees with the literature [36, 37], the latter is apparently348
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inconsistent with the concept of spatial reciprocity, which states that high clustering in networks349

promotes cooperation [29, 40, 41]. In fact, results supporting spatial reciprocity have been derived350

for the fraction of cooperators in the quasi-stationary state of evolutionary dynamics in relatively351

large networks rather than the fixation probability for the cooperator strategy; we examined the352

latter quantity in this study. The effect of clustering on the fixation probability for cooperation353

is not systematically known. For example, some numerical simulations suggest that clustering,354

which is present in most empirical networks, does not facilitate the fixation of cooperation [36, 70].355

Therefore, our results are in fact not contradictory to the known results for spatial reciprocity, and356

fixation of cooperation in clustered networks remains to be investigated.357

Cooperative group living is often advantageous in the animal kingdom because it can provide358

protection from predators and increase the efficiency of foraging tactics [20, 71]. However, one359

of the most commonly cited disadvantages to cooperative group living is the increase in disease360

transmission potential [71, 72]. In fact, previous work suggests that the average degree is the most361

important aspect of network structure in determining the transmission potential for pathogens on362

a network [62]. Our results show that average degree is negatively associated with the evolution of363

cooperation, a finding supported by previous theoretical work [36]. Given that small average degrees364

are beneficial for both enhancing cooperation and reducing pathogen transmission opportunity,365

cooperation and protection against disease transmission potential might have coevolved through a366

decrease in the average degree of social networks. Maintaining contacts is also costly for individuals.367

However, a large average degree helps robustness of networks against node and edge failures [17,368

73]. We may be able to further discussion of the evolution of network structure and social brain369

hypotheses by simultaneously taking into account multiple functions of animal society such as370

cooperation, protection against infection, robustness, and communication efficiency.371

The present work also opens avenues for further work to explore the intersection between the372

social brain hypothesis, networks, and cooperation. For example, most of the social networks in373

our sample are grooming networks. However, network structure may vary according to the type of374

prosocial contact even for the same species of animals [62]. It is not currently known if differences375

in network structure associated with different behaviors also reflect differences in the spread of376

cooperation or other indices of social complexity. Furthermore, the spread of spite on ostensibly377

prosocial networks is an important possibility, but insufficiently characterized. Although further378

comparative work along these lines is currently limited by available data [46], various technological379

and algorithmic developments of automatic data collection [17, 74] are expected to allow us to380

access more data and explore these topics in the near future.381
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[14] C. Pasquaretta, M. Levé, N. Claidiere, E. Van de Waal, A. Whiten, A. J. J. MacIntosh, M. Pelé, M. L.428
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