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Abstract9

The population structure often impacts evolutionary dynamics. In constant-selection evo-10

lutionary dynamics between two types, amplifiers of selection are networks that promote the11

fitter mutant to take over the entire population, and suppressors of selection do the opposite.12

It has been shown that most undirected and unweighted networks are amplifiers of selection13

under a common updating rule and initial condition. Here, we extensively investigate how14

edge weights influence selection on undirected networks. We show that random edge weights15

make small networks less amplifying than the corresponding unweighted networks in a majority16

of cases and also make them suppressors of selection (i.e., less amplifying than the complete17

graph, or equivalently, the Moran process) in many cases. Qualitatively, the same result holds18

true for larger empirical networks. These results suggest that amplifiers of selection are not as19

common for weighted networks as for unweighted counterparts.20

1 Introduction21

Evolutionary dynamics models enable us to study how populations change over time under natural22

selection. Although effects of population structure on evolutionary dynamics have been studied for23

decades, a seminal paper by Lieberman and colleagues spurred mathematical and numerical studies24

of evolutionary dynamics under any population structure modeled as networks, which are often25

referred as evolutionary graph theory [1]. One of the simplest setting of the evolutionary graph26

theory is to consider dynamics in which two types, which are called resident and mutant types and27

have a type-dependent constant fitness value, stochastically compete on the given network [1–5].28

We call this dynamics the constant-selection dynamics. An individual of either type is assumed to29

occupy a node of the network, and individuals with the larger fitness reproduce on the neighboring30

nodes with a higher frequency. The constant-selection dynamics model allows us to systematically31

compute, among other things, the probability and time to fixation, i.e., the situation in which all32

the nodes are eventually monopolized by one type. In the absence of mutation, which we assume33

throughout the present paper as many other papers do, fixation is the absorbing state of the34

evolutionary dynamics, and how fixation occurs crucially depends on the network structure.35
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In constant-selection dynamics, there are amplifiers of selection, which are defined as networks36

that amplify the fitness difference of the fitter type. In other words, the fitter type is more likely37

to fixate in an amplifying network compared to in the Moran process (i.e., the complete graph).38

In contrast, suppressors of selection suppress the fitness difference in the sense that the fitter39

type is less likely to fixate than in the Moran process. We schematically illustrate an amplifier of40

selection, suppressor of selection, and the Moran process in Fig. 1. In fact, most of the undirected41

unweighted networks are known to be amplifiers of selection under the most common combination42

of the updating rule (i.e., the birth-death rule, introduced in section 2) and initial condition (i.e.,43

uniform initialization, or uniform distribution of the single initial mutant over the nodes in the44

network). For example, 100 out of 112 (89.3%) networks on six nodes, 791 out of 853 (92.7%)45

networks on seven nodes, and 10,544 out of 11,117 (94.8%) networks on eight nodes are amplifiers46

of selection [6]. In contrast, suppressors of selection are rare under the same condition; 1 out of47

112 (0.89%) networks on six nodes, 3 out of 853 (0.35%) networks on seven nodes, and 90 out48

of 11,117 (0.81%) networks on eight nodes are suppressors of selection [6–8]. However, research49

has shown that this prevailing result that most networks are amplifiers of selection is not robust50

against generalizations of the network model, even if one pertains to the birth-death rule combined51

with uniform initialization. Specifically, amplifiers of selection are substantially less common and52

suppressors of selection are more common for small directed networks [9], small temporal (i.e.,53

time-varying) networks [10], hypergraphs of various sizes [11], and multi-layer networks of various54

sizes [12]. In the present study, we ask whether amplifiers or suppressors of selection are common for55

weighted networks, which are a most basic extension of the simple (i.e., undirected and unweighted)56

networks.57

Weighted networks may substantially change constant-selection evolutionary dynamics on net-58

works. For example, edge weights can be exploited for constructing various amplifiers of selec-59

tion [13–15]. Furthermore, weighted networks can provide substantial amplification with a negligi-60

ble increase in the fixation time [16, 17]. Introduction of edge weights also facilitates generation of61

amplifiers of selection under the so-called death-birth updating [18,19], whereas these amplifiers are62

mathematically known to be of “transient” type [18]. Furthermore, the fan graph, proposed in [19],63

changes from a suppressor of weak selection to an amplifier of weak selection under the birth-death64

updating rule as a single edge weight increases [20].65

Despite these studies, however, relationships between edge weights and the strength of selection66

remain elusive. In this paper, we provide multiple lines of evidence to suggest the abundance of67

suppressors of selection among weighted networks. For simplicity, we assume that the network is68

undirected. Our main finding is that suppressors of selection are much more common for weighted69

networks than their unweighted counterparts. We also find that one can also systematically create70

either amplifiers or suppressors of selection by varying the edge weights, as previous studies showed71

[19, 20], in the case of weighted networks with high symmetry.72

2 Model73

Consider a static undirected weighted network with N nodes. At every discrete time step, we74

assume that each node is either a resident or mutant. The resident and mutant have fitness 175

and r, respectively. The fitness represents the propensity with which each type is selected for76

reproduction in each time step. The mutant type is assumed to initially occupy just one node,77

which is selected uniformly at random among the N nodes. The other N − 1 nodes are initially78
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Figure 1: Visualization of amplifiers and suppressors of selection relative to the Moran process.
The different lines represent the fixation probability as a function of the fitness of the mutant, r.
We set the fitness of the resident to 1. The vertical dotted line marks r = 1, at which the mutant
and resident types have the same strength and the fixation probability is equal to 1/N for all the
three curves.

occupied by the resident type.79

We then run the Birth-death (Bd) process, which is a generalization of the Moran process to80

networks [1,4,21–24]. Specifically, in every discrete time step, we select a node v to reproduce with81

the probability proportional to its fitness value. Next, we select a neighbor of v, denoted by v′, with82

the probability proportional to the weight of the undirected edge (v, v′). Then, the type at v (i.e.,83

either resident or mutant) replaces that at v′. We repeat this process until the entire population is84

of a single type, either resident or mutant, which we call the fixation.85

We also study the death-Birth (dB) updating rule [7, 18, 19, 25, 26]. With the dB rule, one first86

selects a node v to die uniformly at random in each time step. Then, one selects a neighbor v′ of v87

with the probability proportional to the product of v′’s fitness and the weight of edge (v, v′). The88

type at v′ replaces that of v to complete a single time step.89

3 Methods for computing the fixation probability90

As has been done in other studies, we investigate the fixation probability of a single initial mu-91

tant. We compute the fixation probability of weighted networks as follows [1, 27]. The state of92

the constant-selection evolutionary dynamics on the network is specified by binary vector s =93

(s1, . . . , sN )
⊤
, where si = 0 or si = 1 if the ith node is inhabited by a resident or mutant, re-94

spectively, and ⊤ represents the transposition. There are 2N states. To describe the transition95
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probability matrix T among the states, we use the N × N weighted adjacency matrix of the net-96

work, denoted by W = (Wij), where Wij is the weight of edge (i, j). To delineate the states,97

we require an indexing order. We achieve this using a bijective function f from the set of the98

states, denoted by S, to {1, . . . , 2N}. Let s denote a state with m mutants, where si = 1 for99

i ∈ {g(1), . . . , g(m)} and si = 0 for i ∈ {g(m + 1), . . . , g(N)}, with g being a permutation of100

{1, . . . , N}.101

Consider state s′ having m + 1 mutants, such that s′i = 1 for i ∈ {g(1), . . . , g(m), g(ℓ)} and102

s′i = 0 for i ∈ {g(m + 1), . . . , g(ℓ− 1), g(ℓ+ 1), . . . ,g(N)}. Here, the difference between s and s′103

is solely at position g(ℓ), corresponding to a transition of a resident in s to a mutant in s′. The104

probability of the transition from s to s′ is given by105

Tf(s),f(s′) =
r

rm+N −m

m∑
m′=1

Wg(m′),g(ℓ)

w(g(m′))
, (1)106

where w(i) is the strength (i.e., weighted degree) of the ith node and equal to
∑N

j=1 Wij .107

Consider another state s′′ with m− 1 mutants, where s′′i = 1 for i ∈ {g(1), . . . , g(m̃− 1), g(m̃+108

1), ..., g(m)} and s′′i = 0 for i ∈ {g(m̃), g(m + 1), . . . , g(N)}, with m̃ ∈ {1, . . . ,m}. Then, the109

probability of the transition from s to s′′ is given by110

Tf(s),f(s′′) =
1

rm+N −m

N∑
m′=m+1

Wg(m′),g(m̃)

w(g(m′))
. (2)111

Finally, the probability that state s does not change in one time step is equal to112

Tf(s),f(s) = 1− 1

rm+N −m

[
N∑

ℓ=m+1

m∑
m′=1

Wg(m′),g(ℓ)

w(g(m′))
+

m∑
m̃=1

N∑
m′=m+1

Wg(m′),g(m̃)

w(g(m′))

]
. (3)113

We let xf(s) be the probability of fixation when the dynamics start from s. We observe that114

xf(s) =
∑
s′∈S

Tf(s),f(s′)xf(s′). (4)115

Let x denote the vector of length 2N that contains xf(s) for all states s ∈ S. Then, we can116

succincctly write Eq. (4) as follows:117

x = Tx. (5)118

Note that T is a 2N × 2N matrix. Because xf([0,...,0]) = 0 and xf([1,...,1]) = 1, we only need to solve119

a set of 2N − 2 linear equations. The fixation probability ρ under the uniform initialization, i.e.,120

when the location of the single initial mutant is selected from all the nodes uniformly at random,121

is given by122

ρ =
1

N

∑
s′∈S1

xf(s′), (6)123

where S1 denotes the set containing the N states having just one mutant.124

We define amplifiers and suppressors of selection as follows; similar definitions were used in125

the literature [1, 28]. Let ρG (r) and ρM (r) denote the fixation probability of a network G and126
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of the Moran process (i.e., Bd process on the complete graph) with the same number of nodes,127

respectively, when the fitness of the mutant is equal to r. It is known that (see e.g. [2])128

ρM (r) =
1− 1

r

1− 1
rN

. (7)129

If ρG (r) < ρM (r) when r < 1 and ρG (r) > ρM (r) when r > 1, then network G is an amplifier of130

selection. If ρG (r) > ρM (r) when r < 1 and ρG (r) < ρM (r) when r > 1, then G is a suppressor of131

selection. To convey the concept of amplifier and suppressor of selection, we compare ρG (r) for a132

hypothetical amplifier of selection, ρG (r) for a hypothetical suppressor of selection, and ρM (r) in133

Fig. 1.134

For a given network G, we only numerically computed the fixation probability at several values135

of r. We say that the network is an amplifier of selection if ρG (r) < ρM (r) at r ∈ {0.7, 0.8, 0.9}136

and ρG (r) > ρM (r) at r ∈ {1.1, 1.2, 1.3, 1.4, 1.5, 1.6} and that it is a suppressor of selection if137

ρG (r) > ρM (r) at r ∈ {0.7, 0.8, 0.9} and ρG (r) < ρM (r) at r ∈ {1.1, 1.2, 1.3, 1.4, 1.5, 1.6}. Some138

networks are neither amplifier nor suppressor of selection [6]. It should be noted that, similar to139

a majority of work on constant-selection dynamics, we do not assume weak selection, which would140

correspond to r only slightly different from 1.141

4 Results142

4.1 Networks on six nodes143

We first analyzed the fixation probability in connected networks with six nodes. There are 112144

non-isomorphic undirected connected networks on six nodes. The rationale behind the analysis145

of six-node networks is that they allow us to compute the analytical solutions owing to a feasible146

number of equations (i.e., 26 − 2 = 62) without assuming particular symmetry in the network147

structure. For each non-isomorphic network, we assigned each edge in the network a random148

weight independently distributed according to the uniform density on (0, 1], generating a weighted149

network. Empirical weighted networks have various weight values, and the uniform density is a150

simple model of such variability. We generated 100 such weighted networks for each of the 112151

networks on six nodes. We analyzed the fixation probability for each weighted network under152

the Bd updating rule and uniform initialization and classified it into either amplifier of selection,153

suppressor of selection, or neither. We also analyzed the fixation probability under the dB updating154

rule in the same manner. Under dB updating rule, the only amplifiers of selection were transient155

amplifiers (i.e., their amplification effect disappears as fitness increases beyond a certain threshold)156

even if one allows directed and weighted networks [18].157

We show the number of amplifiers, suppressors, neither networks in Table 1. The table indicates158

that 3862 out of 11200 (34.5%) of the weighted networks are suppressors of selection under the Bd159

rule. This result is in stark contrast with that for unweighted networks on six nodes, for which160

only one of the 112 networks is a suppressor of selection [8]. Table 1 also indicates that there is161

no amplifier and that most of the networks (99.3%) are suppressors of selection under the dB rule.162

This result is consistent with that for unweighted networks [7, 8].163

To further compare between the unweighted and weighted networks, we computed the difference164

in the fixation probability between any six-node weighted network and the Moran process at two165

values of r, i.e., r = 0.9 and 1.3. If the difference is negative at r = 0.9 and positive at r = 1.3,166
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Table 1: Number of amplifiers and suppressors of selection among 11200 connected undirected and
weighted networks on six nodes.

Rule Amplifier Suppressor Neither
Bd 6165 3862 1173
dB 0 11125 75

it is strongly suggested that the weighted network is an amplifier of selection. In contrast, if the167

difference is positive at r = 0.9 and negative at r = 1.3, the network is likely to be a suppressor168

of selection. For the Bd rule, we plot the thus computed difference in the fixation probability169

at r = 0.9 and r = 1.3 in Figs. 2(a) and 2(b), respectively. The horizontal axis represents the170

index of the network. We indexed the 112 networks in ascending order of the fixation probability171

of the unweighted network in Fig. 2(a) and in descending order of the fixation probability of the172

unweighted network in Fig. 2(b). The small squares in black represent the fixation probability of173

the unweighted networks. It should be noted that the indexing order of the networks is different174

between Fig. 2(a) and Fig. 2(b), whereas the two orderings tend to be similar. For each of the 112175

unweighted networks on six nodes, we randomly generated 20 weighted networks according to the176

same procedure as those used in Table 1 and calculated the difference in the fixation probability177

from the Moran process. The small circles in magenta represent the difference for each weighted178

network from the Moran process in terms of the fixation probability.179

Figure 2 shows that a large portion of the weighted networks have a positive difference in the180

fixation probability relative to the Moran process (i.e., a positive value on the vertical axis) at181

r = 0.9 (45.0%; see Fig. 2(a)) and a negative difference at r = 1.3 (43.8%; see Fig. 2(b)). We have182

confirmed that 43.1% of the weighted networks satisfy both of the these two properties and therefore183

are strongly suggested to be suppressors of selection. As expected, this last fraction is consistent184

with the numbers reported in Table 1. Furthermore, the figure shows that a large portion of the185

weighted networks have a higher fixation probability than the corresponding unweighted network186

at r = 0.9 (74.3%; see Fig. 2(a)) and a lower fixation probability than the unweighted network at187

r = 1.3 (75.7%; see Fig. 2(b)). Therefore, adding random edge weights to an unweighted network188

is more likely to cause the network to become more suppressing than vice versa.189

We plot the corresponding results for the dB updating rule in Figs. 2(c) and 2(d). Consistent190

with the results shown in Table 1, these figures, showing few negative values in Fig. 2(c) and191

positive values in Fig. 2(d), affirm that few of these weighted networks are amplifiers of selection.192

Furthermore, as in the case of the Bd updating rule, adding random edge weights is likely to make193

the network more suppressing under the dB updating rule. Specifically, 83.0% of the weighted194

networks have a higher fixation probability than the corresponding unweighted network at r = 0.9195

(see Fig. 2(c)), and 85.3% of the weighted networks have a lower fixation probability than the196

unweighted network at r = 1.3 (see Fig. 2(d)). Therefore, we conclude that adding edge weights197

to six-node networks strongly tends to make the network more suppressing under both Bd and dB198

rules.199

4.2 Larger symmetric networks200

In this section, we examine the fixation probability of larger weighted networks with symmetry, i.e.,201

weighted complete and star graphs. The symmetry of the networks allows us to analytically com-202
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pute the fixation probability of much larger networks than six-node networks because the fixation203

probability of the nodes in the symmetric position (technically called structurally equivalent nodes)204

have the same fixation probability. To be able to exploit the symmetry of the network, one cannot205

assign random edge weights independently for all edges. Therefore, we have decided to construct206

minimal models of edge weight with which we systematically vary the edge weight w shared by a207

particular group of nodes. In this and the following sections, we focus on the Bd updating rule.208

4.2.1 Weighted complete graphs209

The complete graph is isothermal, i.e., the fixation dynamics on it is trivially equivalent to the210

Moran process. We consider weighted complete graphs that have one edge of weight w and the211

remaining edges with edge weight 1. See Fig. 3(a) for an example with N = 8. Because the two212

nodes connected with the edge with weight w are structurally equivalent to each other, so are the213

other N−2 nodes, we only need to solve a set of linear equations with 3(N−1) unknowns to obtain214

the fixation probability, ρ (see Appendix A). Figures 3(b), (c), and (d) show the difference between215

the weighted complete graph with N = 4, 10, and 150 nodes, respectively, and the Moran process in216

terms of ρ. Figure 3(b) indicates that the weighted complete graph with N = 4 nodes is a suppressor217

of selection when w = 0.5, 2, and 5 because the difference is positive for r < 1 and negative for218

r > 1. We note that ρ of the weighted complete graph is visually close to that of the Moran process219

when w = 0.5; the orange line in Figure 3(b) is almost hidden behind the black horizontal line220

marking 0. In contrast, the weighted complete graph with N = 4 is an amplifier of selection when221

w = 0.1 because the difference is negative for r < 1 and positive for r > 1. Additionally, as w222

increases, the weighted complete graph becomes a stronger suppressor of selection. The results for223

N = 10 and N = 150, shown in Figs. 3(c) and (d), respectively, are qualitatively the same as those224

for N = 4. The suppressing effect becomes stronger as w increases and weaker as N increases.225

To assess the generality of these results, we consider a wider family of weighted complete graphs226

constructed as follows. We divide the nodes in a complete graph into two sets, one with N1 nodes,227

and the other with N −N1 ≡ N2 nodes. We set the weights of the edges between pairs of the N1228

nodes to w1, and those for the edges between pairs of the N2 nodes to w2. The weight of the edges229

connecting a node in the first set and a node in the second set is 1. See Fig. 4(a) for an example230

with N1 = 4 and N2 = 3. The weighted complete graphs analyzed in Fig. 3 are a special case of231

the present family of weighted complete graphs with N1 = 2, w1 = w, and w2 = 1. Because of the232

structural equivalence among the N1 nodes and that among the N2 nodes, we only need to solve233

a set of linear equations with (N1 + 1) × (N2 + 1) unknowns to obtain the fixation probability at234

each value of r. We describe the set of linear equations, including the special case considered with235

Fig. 3, in Appendix A.236

In Figs. 4(b) and (c), we show the fixation probability relative to that for the Moran process in237

the case of N1 = N2 = 5 (therefore, N = 10) and N1 = N2 = 25 (therefore, N = 50), respectively.238

We set w2 = 1 and vary w1. The figure indicates that, for both values of N , the weighted complete239

graphs are amplifiers of selection when w1 < 1 and suppressors of selection when w1 > 1. The240

networks are stronger suppressors of selection when w1 is larger. These results are similar to241

those shown in Figs. 3(b)–(d) except that, in Figs. 3(b)–(d), w = 0.5 yields a weak suppressor of242

selection, whereas the same value of w yields an amplifier of selection in Figs. 4(b) and (c). Note243

that the unweighted complete graph, corresponding to w1 = 1, is isothermal, which is consistent244

with Figs. 4(b) and (c).245

In Figs. 4(d) and (e), we show the fixation probability of the weighted complete graphs with246
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N1 = N2 = 50 relative to that of the Moran process, as a function of w1 and w2. We set r = 0.9 and247

r = 1.3 in Figs. 4(d) and (e), respectively. In both Figs. 4(d) and (e), the weighted complete graphs248

and the Moran process have the same fixation probability when w1 = w2, shown in white. This249

result is expected because the weighted complete graph is an isothermal graph when N1 = N2 and250

w1 = w2. Furthermore, the weighted complete graph is an amplifier of selection (i.e., region shown251

in blue in Fig. 4(d) and red in Fig. 4(e)) roughly when w1w2 > 1. Conversely, it is a suppressor of252

selection (i.e., region shown in red in Fig. 4(d) and blue in Fig. 4(e)) roughly when w1w2 < 1.253

4.2.2 Weighted star graphs254

Unweighted star graphs are known to be strong amplifiers of selection under the combination of the255

Bd rule and the uniformly distributed initial mutant [1, 15]. In this section, we consider weighted256

star graphs in which we divide the N nodes into three sets, one node set V1 with N1 leaf nodes,257

another node set V2 with N2 different leaf nodes, and a single hub node, where N1 +N2 + 1 = N .258

There are N−1 leaf nodes in total. Each leaf node in V1 is adjacent to the hub node by an edge with259

weight w. Each leaf node in V2 is adjacent to the hub node by an edge with weight 1. See Fig. 5(a)260

for an example. We derive the transition probabilities of the fixation dynamics on the weighted star261

graph in Appendix B. We need to solve a set of linear equations with 2(N1 +1)(N2 +1) unknowns.262

In Figs. 5(b), (c), and (d), we show the fixation probability, ρ, of the weighted star graph relative263

to that for the Moran process when N = 4, 12, and 40, respectively, each with four values of w.264

We set N1 = N/4 in these figures. Figure 5(b) shows that the weighted star graph with N = 4265

nodes (and therefore N1 = 1) is a suppressor of selection when w = 0.1. The weighted star graph266

with N = 4 is a weaker amplifier of selection than the corresponding unweighted star graph when267

w = 0.5 and w = 2. Last, it is a transient amplifier of selection [19] when w = 5. In other words, it268

transitions from being an amplifier of selection to being a suppressor of selection approximately at269

r = 2.35 as r increases. Overall, the weighted complete graph with N = 4 nodes is more suppressing270

than the unweighted counterpart across these values of w. The weighted star graphs with N = 12271

(see Fig. 5(c)) and N = 40 (see Fig. 5(d)) nodes are also more suppressing than their unweighted272

counterparts.273

Figure 5(e) shows ρ of the weighted star graph relative to that for the Moran process when274

N = 20, with three values of N1 and three values of w. Note that we set w > 1 without loss of275

generality because the network remains the same if one swaps V1 and V2 and changes w to 1/w.276

The figure indicates that all the weighted star graphs are less amplifying than the unweighted star277

graph. In Figs. 5(f) and (g), we plot the difference between the weighted star graph and Moran278

process in terms of ρ when N = 40, for different values of N1 (and hence N2 = N − N1 − 1) and279

w. We set r = 0.9 in Fig. 5(f) and r = 1.3 in Fig. 5(g). We have marked the value of ρ for the280

unweighted star graph using a black line on the color bar (at −0.00160 in Fig. 5(f) and 0.160 in281

Fig. 5(g), indicated by arrows) and made it correspond to white on the color scale. We find that a282

large portion of the parameter space makes the weighted star graphs weaker amplifiers of selection283

than the unweighted star graph (i.e., region shown in red in Fig. 5(f) and blue in Fig. 5(g); roughly284

for the combination of any w and N1 ≥ 11). In this parameter region, a larger value of w makes the285

weighted star graph less amplifying, and this result is consistent with those shown in Fig. 5(e). In286

contrast, Figs. 5(f) and (g) suggest that the weighted star graph with N1 ≤ 7 is a stronger amplifier287

of selection than the unweighted star graph.288

To summarize the results for the symmetric networks, we find that it is possible to deliberately289

assign the edge weights to easily make the weighted network more suppressing than the correspond-290
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ing unweighted network.291

4.3 Empirical networks292

In this section, we numerically simulate the Bd process on six empirical weighted networks. We pro-293

vide detailed descriptions of the empirical networks in Appendix B. The rationale behind this anal-294

ysis is that many empirical networks are weighted networks. Here we compare empirical weighted295

networks against the case in which the edge weight is ignored. Another purpose of the present296

analysis is to validate our findings for the six-node networks and symmetrical networks presented297

in the previous sections on the empirical networks, which are larger than six-node networks and298

asymmetric.299

To initialize each simulation, we place a mutant on a node selected uniformly at random.300

Then, in each time step, we select a node, denoted by v, that reproduces with the probability301

proportional to the fitness. Then, we select a neighbor of v for death uniformly at random. We302

repeat this process until all the nodes were of the same type. For each network and value of r, we303

carried out 3.5×105 simulations in parallel on 40 cores, giving us a total of 120×105 simulations. We304

obtained the fixation probability as the fraction of runs in which the mutant fixated. We simulated305

the weighted networks with r ∈ {0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6} for all the networks .306

We show in Fig. 6 the fixation probability of the unweighted and weighted empirical networks307

relative to the fixation probability of the Moran process, with one empirical network in each panel.308

Figure 6(a) indicates that the unweighted raccoon network is a weak amplifier of selection, whereas309

the weighted raccoon network is a relatively strong suppressor of selection. The results for the310

primate networks, shown in Fig. 6(b), are qualitatively the same as those for the raccoons networks311

shown in Fig. 6(a). Figure 6(c) shows the results for ants’ colony networks. Different from the other312

networks, this network shows almost indistinguishably similar fixation probability as a function of313

r between the unweighted and weighted variants of the network, both of which are amplifiers314

of selection. Figure 6(d) indicates that the unweighted sparrow network is a moderately strong315

amplifier of selection and that the weighted sparrow network is a much weaker amplifier of selection316

than the unweighted counterpart. Figure 6(e) indicates that the unweighted Kilifi network is an317

amplifier of selection and that the weighted version is a suppressor of selection. Lastly, the results for318

the hospital networks, shown in Fig. 6(f), are similar to those for the Kilifi networks (see Fig. 6(e)).319

Overall, these results indicate that weighted networks tend to make the network less amplifying320

than their unweighted counterparts, with an exception shown in Fig. 6(c).321

5 Discussion322

We have shown that, under the Bd updating rule and uniform initialization, a large proportion323

of the weighted networks on six nodes are less amplifying than their corresponding unweighted324

networks. Furthermore, a majority of these less amplifying networks are suppressors of selection325

relative to the Moran process. This result is in stark contrast to the case of unweighted networks,326

for which there are 100 amplifiers and just 1 suppressor of selection among the 112 possible networks327

with six nodes [8]. In the case of the dB rule and uniform initialization, unweighted networks are328

never an amplifier of selection [18], and most unweighted networks are suppressors of selection [7,8].329

Weighted networks on six nodes under the same condition did not yield any amplifiers of selection.330

Furthermore, under the dB rule, a majority of the weighted networks on six nodes were stronger331

suppressors of selection than the corresponding unweighted networks, which are already suppressors332
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of selection in a majority of cases. The result that many weighted networks are suppressors of333

selection or at least less amplifying than their unweighted counterparts also holds true for five out334

of the six empirical networks we have investigated. For the other empirical network, the weighted335

and unweighted networks behaved similarly in terms of the fixation probability. For symmetric336

networks, which allow semi-analytical solutions, the results are more nuanced. We have shown that,337

depending on the value of parameters controlling some edge weights, the weighted complete graph338

and weighted star graph can be either more amplifying or less amplifying than their unweighted339

counterparts. Overall, we conclude that introducing an edge weight is an easy method to make the340

network more suppressing than the original unweighted networks or the Moran process. The present341

results add weighted networks to an existing list of popular variations of the networks, such as the342

directed networks [36], temporal networks [10], hypergraphs [11], and multilayer networks [12], that343

induce suppressors of selection under the Bd rule and uniform initialization, for which the amplifiers344

of selection are a norm for simple networks.345

For evolutionary social dilemma games on networks, dynamics of edge weights with which prof-346

itable edges are strengthened and unprofitable edges are weakened promotes cooperation [37, 38].347

Aspiration-based coevolution of edge weights [39] and reputation-based adaptive adjustment of edge348

weights [40, 41] can also lead to evolution of cooperation. Even for static weighted networks, an349

increased heterogeneity in edge weights tends to enhance cooperation [42–44]. Inspired by these350

studies, dynamically varying edge weights in constant-selection evolutionary processes may yield351

interesting phenomena.352

From engineering points of view, changing the edge weight may be easier than creating new353

edges or severing existing edges. Furthermore, weighted rather than unweighted networks better354

justify application of a perturbation theory that aims to assess the effect of changing edge weights355

by a small amount on properties of fixation such as the fixation probability and time. Note that,356

for evolutionary games on networks, such perturbation theory has been developed [45–47]. Opti-357

mization of the edge weight given the unweighted network structure may also be an easier problem358

than the optimization of the network structure because only the latter is apparently a combinato-359

rial problem. Construction of arbitrarily strong amplifiers of selection by weighted networks has360

already been examined [15, 17]. Although one can engineer to create strong amplifiers, as these361

studies showed, an overall tendency found in the present study is that random assignment of edge362

weights tends to make networks suppressors of selection. Furthermore, megastars, which are di-363

rected unweighted networks, provide a family of strongly amplifying networks [48]. Megastars and364

the so-called dense incubators were later shown to be the most amplifying family of strongly am-365

plifying networks among all the strongly connected directed networks and connected undirected366

networks, respectively [49]. Maximization of the fixation probability with respect to the choice of367

the initially mutant nodes has also been examined [50]. Another type of optimization problem in368

fixation dynamics is the positional Moran process [51]. In the positional Moran process, the fitness369

difference of the mutants is only realized on a subset of the entire node set, which one can engineer.370

It may be interesting to further explore optimization of weighted networks in terms of the fixation371

probability or time, or the extent of amplification or suppression of selection, including through372

perturbation theory.373
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Appendix A Transition probabilities for the weighted com-378

plete graph379

In this section, we describe the transition probabilities for the fixation dynamics on the weighted380

completed graph. As described in section 4.2.1, we consider a complete weighted graph on N nodes381

where the nodes are divided into two sets, one with N1 nodes and the other with N − N1 ≡ N2382

nodes. A state in the dynamics on this network is specified by the ordered pair (i, j), where383

i ∈ {0, 1, . . . N1} and j ∈ {0, 1, . . . , N2}. State (i, j) indicates that i out of the N1 nodes and j out384

of the N2 nodes are occupied by mutants.385

The transition probability matrix is given by386

T(i,j)→(i′,j′) =



ri
F1

· w1(N1−i)
s1

+ rj
F1

· N1−i
s2

if i = 0 and i′ = 1,

N1−i
F1

· w1i
s1

+ N2−j
F1

· i
s2

if i = 1 and i′ = 0,

ri
F1

· N2−j
s1

+ rj
F1

· w2(N2−j)
s2

if j = 0 and j′ = 1,

N1−i
F1

· j
s1

+ N2−j
F1

· w2j
s2

if j = 1 and j′ = 0,

1−
∑

(i′′,j′′,k′′)̸=
(i,j,k)

T
(1)
(i,j,k)→(i′′,j′′,k′′) if (i′, j′) = (i, j),

0 otherwise,

(8)387

where388

F1 =(i+ j)r + (N − i− j), (9)389

s1 =w1(N1 − 1) +N2, (10)390

s2 =w2(N2 − 1) +N1. (11)391

We recall from Eq. (4) that xf(s) is the probability that the mutant fixates when the evolutionary392

dynamics start from state s. Using Eq. (6), we obtain393

ρ =
N1

N
x∗
f((1,0)) +

N2

N
x∗
f((0,1)) (12)394

because (1, 0) and (0, 1) are the only states in which just one mutant is present. Note that there are395

N1 ways to realize state (1, 0), depending on which one node out of the N1 nodes is of the mutant396

type, and N2 ways to realize state (0, 1).397
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Appendix B Transition probabilities for the weighted star398

graph399

In this section, we describe the transition probabilities for the fixation dynamics on the weighted400

star graph. A state in the dynamics on this network is specified by the ordered triplet (i, j, k),401

where i ∈ {0, 1}, j ∈ {0, 1, . . . N1}, and k ∈ {0, 1, . . . , N2}. State (i, j, k) indicates that the hub402

node having degree N − 1 hosts a resident (if i = 0) or mutant (if i = 1), j out of the N1 leaves are403

mutants, and k out of the N2 leaves are mutants.404

The transition probability matrix is given by405

T(i,j,k)→(i′,j′,k′) =



r(j+k)
F2

if i = 0 and i′ = 1,

1
F2

· wj
s3

if i = 0 and j = j′ + 1,

1
F2

· b
s3

if i = 0 and k = k′ + 1,
(N1−j)+(N2−k)

F2
if i = 1 and i′ = 0,

r
F2

· w(N1−j)
s3

if i = 1 and j′ = j + 1,

r
F2

· N2−k
s3

if i = 1 and k′ = k + 1,

1−
∑

(i′′,j′′,k′′) ̸=
(i,j,k)

T(i,j,k)→(i′′,j′′,k′′) if (i′, j′, k′) = (i, j, k),

0 otherwise,

(13)406

where407

F2 = r(i+ j + k) + [N1 +N2 + 1− (i+ j + k)] (14)408

and409

s3 = wN1 +N2. (15)410

Then, we solve the system of linear equations given by Eq. (4). Finally, using Eq. (6), we obtain411

ρ =
1

N
x∗
f((1,0,0)) +

N1

N
x∗
f((0,1,0)) +

N2

N
x∗
f((0,0,1)), (16)412

because (1, 0, 0), (0, 1, 0), and (0, 0, 1) are the only states in which one mutant is present. The hub413

node being initially occupied by a mutant corresponds to state (1, 0, 0). The probability of this414

event is 1/N . Similarly, there are N1 ways in which the network is in state (0, 1, 0) and N2 ways in415

which the network is in state (0, 0, 1).416

417

Appendix C Description of the empirical networks418

In secion 4.3, we used the following six empirical networks, which we acquired from https:419

//networkrepository.com/ [52].420

First, we use a social network of raccoons [29]. The data were collected using proximity logging421

collars on a wild suburban raccoon population within a 20-ha area of Ned Brown Forest Preserve422

in Cook County, Illinois, USA, observed for 52 weeks from July 2004 to June 2005. An event423
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was recorded whenever two raccoons came in close proximity (i.e., 1-1.5m) of each other. A node424

represents a raccoon. An edge represents a proximity event between two raccoons. We set the edge425

weight to the total time that the given pair of raccoons spent in proximity. In total, there are426

N = 24 nodes and 1997 edges.427

Second, we use a primate network based on a wild group of N = 25 Macaca fuscata individuals428

in Yakushima, Japan [30]. The population was free ranging and not captive. An edge represents429

grooming interaction between the individuals. There are 1340 edges. An event implies an interaction430

for greater than one minute. The edge weight is equal to the number of grooming interactions431

between the two individuals.432

Third, we use data from an ants’ colony [31]. Each of the N = 39 nodes represents an ant in433

a colony. Each of the 330 edges represents a trophallaxis event, which was recorded when the two434

ants were engaged in mandible-to-mandible contact for greater than one second. The edge weight435

is equal to the number of events involving the two ants.436

Fourth, we use a social network of sparrows [32]. A flock was defined as a group of birds within437

an approximately 5-meter radius. A node represents a bird. Edges represent the so-called simple438

ratio association index [33] distributed between 0 and 1, encoding flock co-membership. There are439

N = 40 nodes and 305 edges.440

Fifth, we use contacts between members of five households in the Matsangoni sub-location within441

the Kilifi Health and Demographic Surveillance Site (KHDSS) in coastal Kenya [34]. A household442

was characterized as a collection of individuals who shared a common kitchen. Each participant in443

the study wore a sensor capable of detecting another sensor within a 1.5-meter radius. Each node444

represents a household member. An edge denotes a recorded interaction between two members.445

The study documented 47 nodes and 219 pairwise interactions across individuals from different446

households and 32,426 pairwise interactions within the same household. The edge weight is equal447

to the number of interaction events between two individuals.448

Sixth, we use a human contact network in a hospital [35]. Data collection took place in a449

university hospital’s geriatric unit in Lyon, France, between December 6, 2010, at 1 pm, and450

December 10, 2010, at 2 pm. Nineteen beds were located in the unit. Thirty-one patients were451

hospitalized, and 50 professionals worked in the unit during the recording period. Among a total of452

81 individuals, N = 75 individuals, i.e., 29 patients and 46 medical staff, participated in the study.453

Among the medical staff were 27 nurses or nurses’ aides, 11 medical doctors, and 8 administrative454

staff members. An edge represents a time-stamped contact between two individuals; there are455

32, 424 time-stamped edges. The edge weight is the number of times an event occurred between a456

pair of nodes.457
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Figure 2: Fixation probability of weighted networks on six nodes, for the Bd and dB updating.
The horizontal axis represents the index of the 112 non-isomorphic unweighted networks on six
nodes. For each unweighted network, we assigned random edge weights to generate a weighted
network 20 times. The vertical axis represents the difference from the Moran process in terms of
the fixation probability. (a) Bd rule, r = 0.9. (b) Bd rule, r = 1.3. (c) dB rule, r = 0.9. (d)
dB rule, r = 1.3. A magenta circle represents a weighted network. A black square represents the
corresponding unweighted network.
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Figure 3: Fixation probability of weighted complete graphs with a single edge with a different edge
weight. (a) An example network with N = 8 nodes. The single edge with weight w ̸= 1 is shown by
the thick line. (b)–(d) Fixation probability relative to that of the Moran process for the weighted
complete graphs of the type shown in (a). (b) N = 4. (c) N = 10. (d) N = 150. In (b)–(d), the
dotted lines represent r = 1.
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Figure 4: Fixation probability of weighted complete graphs with two larger groups of nodes. (a)
An example network with N1 = 4 and N2 = 3. The edges with weight 1, w1, and w2 are shown
in solid, dashed, and dotted lines, respectively. (b) and (c): Fixation probability relative to that
of the Moran process for the weighted complete graphs of the type shown in (a); the dotted lines
represent r = 1. We set N1 = N2 = 5 in (b) and N1 = N2 = 25 in (c). (d) and (e): Fixation
probability of the same type of weighted complete graphs with N1 = N2 = 50 and varying w1 and
w2. (d) r = 0.9. (e) r = 1.3.
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Figure 5: Fixation probability of weighted star graphs. (a) A weighted star graph with N1 = 2
and N2 = 4. The edges with weight w are shown in thick lines. (b) Fixation probability relative
to that of the Moran process for the weighted star graphs with N = 4 and N1 = 1 as w varies. (c)
Same for N = 12 and N1 = 3. (d) Same for N = 40 and N1 = 10. (e) Fixation probability relative
to that of the Moran process for various weighted star graphs on 20 nodes. In (b)–(e), the dotted
lines represent r = 1. (f) and (g): Fixation probability of weighted star graphs with N = 40 and
various N1 and w values. (f) r = 0.9. (g) r = 1.3. Note that 1 ≤ N1 ≤ N − 2 = 38. In (f) and (g),
the black horizontal lines and the green arrows pointing to them in the color bar show the values
for the unweighted star graph.
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Figure 6: Fixation probability of the empirical networks. (a) Raccoons. (b) Primates. (c) Ants.
(d) Sparrows. (e) Kilifi. (f) Hospital. The dotted lines represent r = 1.
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