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Abstract— Arc-based traffic assignment models (TAMs) are
a popular framework for modeling traffic network congestion
generated by self-interested travelers who sequentially select
arcs based on their perceived latency on the network. However,
existing arc-based TAMs either assign travelers to cyclic paths,
or do not extend to networks with bidirectional arcs (edges)
between nodes. To overcome these difficulties, we propose
a new modeling framework for stochastic arc-based TAMs.
Given a traffic network with bidirectional arcs, we replicate
its arcs and nodes to construct a directed acyclic graph (DAG),
which we call the Condensed DAG (CoDAG) representation.
Self-interested travelers sequentially select arcs on the CoDAG
representation to reach their destination. We show that the
associated equilibrium flow, which we call the Condensed DAG
equilibrium, exists, is unique, and can be characterized as a
strictly convex optimization problem. Moreover, we propose a
discrete-time dynamical system that captures a natural adapta-
tion rule employed by self-interested travelers to learn about the
emergent congestion on the network. We show that the arc flows
generated by this adaptation rule converges to a neighborhood
of Condensed DAG equilibrium. To our knowledge, our work
is the first to study learning and adaptation in an arc-based
TAM. Finally, we present numerical results that corroborate
our theoretical results.

I. INTRODUCTION
Traffic assignment models (TAMs) [1–7] play a central

role in congestion modeling for transportation networks, by
informing crucial decisions about infrastructure investment,
capacity management, and tolling for congestion regulation.
The central dogma behind this modeling approach is that
self-interested travelers select routes with minimal perceived
latency (i.e., the Wardrop or user equilibrium), which can
be modeled as deterministic [1, 2] or stochastic [3–7]. Em-
pirical studies confirm that stochastic TAMs achieve greater
success at interpreting congestion levels, compared to their
deterministic counterparts [8].

There exist two dominant modeling paradigms in TAM:
the route-based model [1, 5, 7, 9]—where each traveler
makes a single choice between set of available routes from
origin to destination—and the arc (or edge) based model [3,
10–13]—where the traveler sequentially makes routing deci-
sion at each node on the network, based on their perception
of arc latencies. There are two major drawbacks of route-
based models on real-world networks: route correlation and
route enumeration. Specifically, the utility generated from
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different routes is correlated due to overlapping arcs on
different routes. Moreover, exhaustive route enumeration is
prohibitive in terms of computational cost, memory storage,
and information acquisition, since the number of routes in a
traffic network can be exponential in the number of arcs.

To avoid explicit route enumeration, Akamatsu [6] pro-
posed the first arc-based stochastic TAM, which was further
generalized by Baillon and Cominetti [3]. More recently,
Fosgerau et al. and Mai et al. [4, 12] presented similar arc-
based models based on dynamic discrete choice analysis,
which are mathematically similar to the models proposed
by Akamatsu [6] and Baillon and Cominetti [3]. However,
these models suggest that travelers take cyclic routes with
positive probability. To overcome this fundamental modeling
challenge, Oyama et al. [14, 15] recently proposed various
methods to explicitly avoid routing on cyclic routes. Unfor-
tunately, these methods either do not apply beyond acyclic
graphs [15] or restrict the set of feasible routes, at the ex-
pense of modeling accuracy [14], or restrictive assumptions
on cost structure [3]. Sequential arc selection models in net-
work routing have also been studied by Calderone et al. [16,
17] where each arc selection is accompanied by stochastic
transitions to the next arc, and a deterministic transition
cost. This stands in contrast to the stochastic TAM literature,
where transitions from arc to arc are assumed deterministic
and the travel cost (latency) is assumed stochastic.

In this work, we propose an arc-based stochastic TAM
that explicitly avoids cycles by considering routing on a
directed acyclic graph derived from the original network,
henceforth referred to as the Condensed Directed Acyclic
Graph (CoDAG). The CoDAG representation duplicates an
appropriate subset of nodes and arcs in the original network,
to explicitly avoids cycles while preserving all feasible
routes. Travelers sequentially select arcs on the CoDAG
network at every intermediate node, based on perceived arc
latencies. This route choice behavior is akin to the models
prescribed by Akamatsu [6] and Baillon and Cominetti [3],
but with routing occurring over the CoDAG associated with
original network. We show that the corresponding equilib-
rium congestion pattern—which we term the Condensed
DAG equilibrium (CoDAG equilibrium)—can be character-
ized as the unique minimizer of a strictly convex optimization
problem.

Moreover, we propose a discrete-time dynamical system
that captures a natural adaptation rule used by self-interested
travelers who progressively learn towards equilibrium arc
selections. In the game theory literature, an equilibrium
notion is only considered useful if there exists an adaptive
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learning scheme that allows self interested players to con-
verge to it [18]. Despite research progress on both theoretical
and algorithmic aspects of stochastic arc-based TAMs, to
the best of our knowledge, there has been no research on
adaptive learning schemes that ensure convergence to such
equilibria. Recently, adaptive learning schemes that converge
to equilibria in route-based TAMs have been extensively
studied [19–24], by considering self-interested travelers who
repeatedly select routes by observing route latencies in past
rounds of interaction. In this work, we extend this line of
research to arc-based TAMs by proposing a discrete-time
dynamics, in which in every round, travelers update arc
selections at every node on the CoDAG network based on
previous interactions. We prove that the emergent aggregate
arc selection probabilities at every node (and the resulting
congestion levels on each arc) globally asymptotically con-
verge to a neighborhood of the CoDAG equilibrium.

To establish convergence, we appeal to the theory of
stochastic approximation [25], which requires two condi-
tions: (i) The vector field of the discrete-time dynamical
system is Lipschitz, and (ii) The trajectories of an associated
continuous-time dynamical system asymptotically converge
to the CoDAG equilibrium. To prove (i), we establish recur-
sive Lipschitz bounds for vector fields associated with every
node. For (ii), we first construct a Lyapunov function using
a strictly convex optimization objective associated with the
CoDAG representation. We then show that the value of this
Lyapunov function decreases along the trajectories of the
continuous-time dynamical system. Our contributions are:

1) We introduce a new arc-based traffic equilibrium
concept—the Condensed DAG equilibrium—which
overcomes some limitations of existing traffic equilib-
rium notions. Furthermore, we show that the Condensed
DAG equilibrium is characterized by a solution to a
strictly convex optimization problem.

2) We present, to the best of our knowledge, the first
adaptive learning scheme in the context of stochastic
arc-based TAM. Furthermore, we establish formal con-
vergence guarantees for this learning scheme.

3) We validate our theorems on a simulated traffic network.

The paper proceeds as follows. Section II introduces the
setup considered in this paper, and defines the Condensed
DAG representation. Section III defines the Condensed DAG
equilibrium, and characterize it as a solution to a strictly
convex optimization problem. Section IV presents discrete-
time dynamics that converges to the Condensed DAG equi-
librium and also provides a proof sketch. In Section V,
we numerically study the convergence of the discrete-time
dynamics on a simulated traffic network. Finally, Section VI
presents concluding remarks and future work directions.

Notation: For each positive integer n ∈ N, we denote
[n] := {1, · · · , n}. For each i ∈ [n] in an Euclidean space
Rn, we denote by ei the i-th standard unit vector.

II. CONDENSED DAG REPRESENTATION

A. Setup

Consider a traffic network represented by a directed graph
GO = (IO, AO), possibly with bidirectional arcs, where IO
and AO denote nodes and arcs, respectively. An example
is depicted in Figure 1 (top left). Let the origin nodes and
destination nodes be two disjoint subsets of nodes in GO.
Each traveler enters the network through an origin node to
travel to a destination node, by sequentially selecting arcs
at every intermediate node. This gives rise to congestion on
each arc, which in turn decides the travel times. Specifically,
each arc ã ∈ AO is associated with a strictly increasing
latency function sã : [0,∞) → [0,∞), which gives for
each arc the travel time as a function of traffic flow. To
simplify our exposition, we assume that there is only one
origin-destination tuple (o, d), although the results presented
in this paper naturally extend to settings where the traffic
network has multiple origin-destination pairs. We denote by
go the demand of (infinitesimal) travelers who travel from
the origin o to the destination d.

Remark 1: Arc selections made by travelers at different
nodes are independent of one another. Therefore, if the
underlying network has bidirectional edges, then sequential
arc selection by a traveler can result in a cyclic route. For ex-
ample, sequential arc selection in the original network shown
on the top left in Figure 1 may lead a traveler to loop between
iO2 and iO3 before reaching destination. To overcome this, we
introduce a directed acyclic graph (DAG) representation of
the original graph GO in the following subsections, called
the condensed DAG. Sequential arc selections made on this
network encodes the travel history by design and therefore
avoids cyclic routes.

B. Preliminaries on DAG: Depth and Height

Before introducing condensed DAG representation, we
first present the notions of height and depth of a DAG. These
concepts are crucial for the construction and analysis of con-
densed DAGs in the following sections. For the exposition
in this subsection, let G be a DAG with a single origin-
destination pair (o, d). Furthermore, let R be the set of all
acyclic routes in G which start at the origin node o and end
at the destination node d.

Definition 1 (Depth): For each r ∈ R and a ∈ r, let ℓa,r
denote the location of arc a in route r, i.e., a is the ℓa,r-th
arc in the route r, and with a slight abuse of notation, define:
ℓa := maxr∈R:a∈r ℓa,r, We say that a is an ℓa-th depth arc
in the Condensed DAG G. Moreover, we define the depth of
a node i ∈ I\{o} by:

ℓ̄i := max
a∈A−

i

ℓa

with ℓ̄o = 0.
Definition 2 (Height): For each r ∈ R and a ∈ r, let ma,r

denote the location of arc a in route r when enumerating
arcs in r backwards from the destination node, i.e., a is the
(|r| − ma,r)-th arc in route r, and with a slight abuse of
notation, define: ma := maxr∈R:a∈r ma,r. We say that a is



an ma-th height arc in the Condensed DAG G . Moreover,
we define the height of a node i ∈ I\{d} by:

m̄i := max
a∈A+

i

ma

with m̄d = 0.

C. Construction of Condensed DAG

For ease of description, we illustrate the construction
through an example in Figure 1. We also present a pseudo-
code to generate the condensed DAG representation.

A straightforward way to associate GO with a DAG would
be to brute-force enumerate all acyclic (simple) routes and
construct a tree network by replicating arcs and nodes by
the number of routes passing through them (see Figure 1,
bottom). However, the resulting tree network may contain
a significantly larger number of arcs and nodes compared
with the original network. To ameliorate this, we present
the condensed DAG representation (Figure 1, top right). The
condensed DAG is formed by merging superfluous nodes
and arcs in the tree network, while ensuring that the graph
remains acyclic, and preserving the set of acyclic routes from
the original network.

TABLE I: Arc correspondences between the graphs in Figure 1:
The original network (top left), fully expanded tree (bottom), and
the CoDAG (top right).

Original Tree DAG CoDAG

aO1 aT1 , aT2 , aT3 , aT4 , aT5 aC1

aO2 aT6 , aT7 , aT8 , aT9 , aT10 aC2

aO3 aT12, a
T
13 aC4

aO4 aT18, a
T
19, a

T
20 aC7

aO5 aT14, a
T
15, a

T
23, a

T
24 aC5 , aC9

aO6 aT16, a
T
17, a

T
21, a

T
22 aC6 , aC8

aO7 aT11, a
T
25 aC3 , aC10

aO8 aT26, a
T
28, a

T
30, a

T
32 aC11

aO9 aT27, a
T
29, a

T
31, a

T
33 aC12

One can design a condensed DAG representation as fol-
lows:

(S1) Convert the original network GO to a tree structure
GT = (IT , AT ), in which every branch emanating from
the origin represents a route. Each node and arc is
replicated by the number of acyclic routes that contains
it. For every node i in GT , compute the depth ℓ̄i and
height m̄i (see Definition 1-2).

(S2) Generate a partition PT of IT such that:
(i) For each X ∈ PT , all nodes in X replicate the node

in IO that shares the same height or depth in GT .
(ii) For any X,Y ∈ PT , there exists no i, i′ ∈ X, j, j′ ∈

Y, such that m̄j > m̄i and m̄j′ < m̄i′

(S3) For each set element X of PT , merge all nodes in X
into a single node. Then, merge arcs which have the
same start and end nodes, and are replicas of the same
edge in the original network GO.

Fig. 1: Example of a single-origin single-destination original net-
work GO (top left, with superscript O), and its corresponding tree
network (bottom, with superscript T ) and condensed DAG G (top
right, with superscript C). The blocks in GT represent a partition
PT (see (S2)). The depth and height of nodes in every partition
are denoted above GT . Arc correspondences between the three
networks are given by Table I, while node correspondences are
indicated by color.

We refer to any graph generated via (S1)-(S3) as a con-
densed DAG (CoDAG) representation G = (I, A) of the
original network, where I and A are the set of nodes and arcs,
respectively. By construction, the CoDAG representation
explicitly avoids cyclic routes, and preserves all the acyclic
routes from the original network. This is because the tree
network constructed in (S1) preserves all acyclic routes from
original network. Furthermore, the merging conditions stated
in (S3) prohibit both the removal and the addition of routes.

Remark 2: A given traffic network with bidirectional arcs
may yield several distinct CoDAG representations, any of
which would be amenable to our analysis in subsequent
sections. The development of an algorithmic procedure to



compute a CoDAG with the least number of arcs or nodes
is beyond the scope of this work.

Remark 3: The Condensed DAG representation G can be
significantly smaller in size, compared to the tree network.
There exist original networks whose corresponding tree rep-
resentation GT is exponentially larger than its corresponding
CoDAG G. For example, consider a network with nodes
i1, · · · , in, with two directed arcs connecting ik to ik+1, for
each k ∈ [n−1]. Here, the corresponding tree network would
have 2n − 2 arcs, while the CoDAG representation only has
2(n− 1) arcs.

Remark 4: The arc-based TAM literature also considers
modified representations of traffic networks with bidirec-
tional arcs. For example, Oyama, Hara et al. [15, 26] consider
the Network Generalized Extreme Value (NGEV) represen-
tations, which are similar to our CoDAG representation,
but applies only to acyclic networks [15]. Thus, NGEV
models cannot capture realistic traffic networks where almost
all arcs are bidirectional. Meanwhile, Oyama, Hato et al.
[14] consider the Choice Based Prism (CBP) representation,
which prunes the available set of feasible routes to amelio-
rate computational inefficiency. While CBP explicitly avoids
cyclic routes, it also removes some acyclic routes during
the pruning process. In contrast, the CoDAG representation
avoids this issue.

To conclude this section, we introduce some notation
used throughout the rest of the paper. Recall that CoDAGs
are formed by replicating the arcs in GO. To describe this
correspondence between arcs, we define [·] : A → AO to be
a map from each CoDAG arc a ∈ A to the corresponding
arc [a] ∈ AO. For each arc a ∈ A, let ia and ja denote
the start and terminal nodes, and for each node i ∈ I , let
A−

i , A
+
i ⊂ A denote the set of incoming and outgoing arcs.

III. EQUILIBRIUM CHARACTERIZATION
In this section, we introduce the condensed DAG (CoDAG)

equilibrium (Definition 3), which is based on the CoDAG
representation of the original traffic network. Specifically,
we show that the CoDAG equilibrium exists, is unique, and
solves a strictly convex optimization problem (Theorem 1).

A. Condensed DAG Equilibrium

Below, we assume that every traveler knows GO and has
access to the same CoDAG representation of GO. To avoid
cyclic routes, we model travelers as performing sequential
arc selection over the CoDAG representation G = (I, A).
The aggregate effect of the travelers’ arc selections gives
rise to the congestion on the network. Concretely, for each
a ∈ A, let the flow or congestion level on arc a be denoted
by wa, and let the total flow on the corresponding arc in the
original network be denoted, with a slight abuse of notation,
by w[a] :=

∑
a′∈[a] wa′ . (Note that unlike existing TAMs,

the latency of arcs in G can be coupled through the map
w[·], since multiple copies of the same arc in GO may exist
in G.) Then, the perceived latency of travelers on each arc
a ∈ A is described by:

s̃[a](w[a]) := s[a](w[a]) + νa,

where νa is a zero-mean random variable. At each non-
destination node i ∈ I\{d}, travelers select among outgoing
nodes a ∈ A+

i by comparing their perceived latencies-to-go
z̃a : R|A| → R, given recursively by:

z̃a(w) := s̃[a](w[a]) + min
a′∈A+

ja

z̃a′(w), ja ̸= d, (1)

z̃a(w) := s̃[a](w[a]), ja = d.

Consequently, the fraction of travelers who arrive at i ∈
I\{d} and choose arc a ∈ A+

i is given by:

Pija := P(z̃a ≤ z̃a′ , ∀a′ ∈ A+
i ). (2)

An explicit formula for the probabilities {Pija : a ∈ A+
i }

in terms of the statistics of z̃a, is provided by the discrete-
choice theory [27]. In particular, define za(w) := E[z̃a(w)]
and ϵa := z̃a(w) − za(w), and define the latency-to-go at
each node by:

φi({za′(w) : a′ ∈ A+
i }) = E

[
min

a′∈A+
i

z̃a′(w)

]
. (3)

Then, from discrete-choice theory [27]:

Pija =
∂φi(z)

∂za
, i ∈ I\{d}, a ∈ A+

i , (4)

where, with a slight abuse of notation, we write φi(z) for
φi({za′ : a′ ∈ A+

i }). To obtain a closed form expression
of φ, this work considers the logit Markovian model [3,
6], which assumes that the zero-mean noise ϵ is Gumbel-
distributed with scale β > 0. Intuitively, β > 0 is an entropy
parameter that models the degree to which the average
traveler’s perception of network latency is suboptimal. In
this case, the corresponding latency-to-go at each node i in
G is:

φi(z) = − 1

β
ln

( ∑
a′∈A+

i

e−βza′

)
. (5)

Using (1) and (5), the expected minimum latency-to-go
za : R|A| → R, associated with traveling on each arc a ∈ A,
is given by:

za(w) = s[a]

( ∑
ā∈[a]

wā

)
− 1

β
ln

( ∑
a′∈A+

ja

e−βza′ (w)

)
. (6)

Note that (6) is well-posed, as za can be recursively com-
puted along arcs of increasing height (Definition 2) from the
destination back to the origin. For more details, please see
Appendix B [28].

Against the preceding backdrop, we formally define the
central equilibrium solution concept studied in this paper:
the Condensed DAG Equilibrium (CoDAG Equilibrium).

Definition 3 (Condensed DAG Equilibrium): Given β >
0, a vector of arc-flow w̄β ∈ R|A| is called a Condensed
DAG equilibrium if, for each i ∈ I\{d}, a ∈ A+

i :

w̄β
a =

gi +
∑

a′∈A+
i

w̄β
a′

 · exp(−βza(w̄
β))∑

a′∈A+
ia

exp(−βza′(w̄β))
,

(7)



where gi = go if i = o, gi = 0 otherwise, and w ∈ W , with:

W :=

{
w̄β ∈ R|A| :

∑
a∈A+

i

w̄β
a =

∑
a∈A−

i

w̄β
a , ∀ i ̸= o, d, (8)

∑
a∈A+

o

w̄β
a = go, w̄

β
a ≥ 0, ∀a ∈ A

}
.

For any CoDAG equilibrium w̄β , the fraction of travelers
at any node i ∈ I\{d} who selects an arc a ∈ A+

i is:

ξ̄βa :=
w̄β

a∑
a′∈A+

i
w̄β

a′

.

Remark 5: Essentially, at the CoDAG equilibrium, the
traveler population at each intermediate node i ∈ I\{d}
(with total flow gi +

∑
a′∈A wa′ ) select from outgoing arcs

by comparing their costs-to-go using the softmax function.
While the CoDAG equilibrium and Markovian Traffic Equi-
librium (MTE) share some similarities (see [3]), there also
exist two main fundamental differences. First, by design, the
CoDAG equilibrium does not yield cyclic routes with strictly
positive probability (as is the case with the MTE). Second,
unlike the MTE, congestion levels on arcs (which may be
replicas of the same arc in GO) in the CoDAG representation
are coupled to each other. Therefore, MTE analysis does not
extend straightforwardly to the CoDAG equilibrium.

B. Existence and Uniqueness of the CoDAG equilibrium

In this subsection, we show the existence and uniqueness
of the CoDAG equilibrium, by characterizing it as the unique
minimizer of a strictly convex optimization problem over a
compact set. First, for each [a] ∈ AO, define:

f[a](w) :=

∫ w[a]

0

s[a](u)du, (9)

and for each i ∈ I\{d}, set:

χi(wA+
i
) :=

∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)
.

(10)

Finally, define F : W → R by:

F (w) =
∑

[a]∈AO

f[a](w) +
1

β

∑
i̸=d

χi(wA+
i
), (11)

where wA+
i

∈ R|A+
i | denotes the components of w corre-

sponding to arcs in A+
i .

Theorem 1: The CoDAG equilibrium w̄β ∈ W exists, is
unique, and is the unique minimizer of F over W .

To prove Theorem 1, we first show that F (·) is strictly
convex over W (Lemma 1), so F has a unique minimizer
in W . It then suffices to show that the CoDAG equilibrium
definition (Definition 3) matches the Karush-Kuhn-Tucker
(KKT) conditions for the optimization problem (11).

Lemma 1: The map F : W → R is strictly convex.
Proof: (Proof Sketch) It suffices to show that f[a]

and χi are convex for each [a] ∈ AO, i ∈ I\{d}. Each

f[a] is convex, since it is the composition of a convex
function (w 7→

∑
a∈AO

∫ wa

0
sa(u)du) with a linear function

(w[a] :=
∑

a′∈[a] wa′ ). Furthermore, we establish that for any
i ∈ I\{d}, yi ∈ R|A+

i |:

y⊤i ∇2
wχi(w)yi ≥ 0,

where the equality holds if and only if yi and wA+
i

are scalar
multiples of one another. Strict convexity then follows by a
contradiction argument showing that there exists at least one
node i ∈ I\{d} such that y⊤i ∇2

wχi(w)yi > 0.

IV. LEARNING DYNAMICS

In this section, we propose a discrete-time dynamical
system (PBR) which captures travelers’ preferences for
minimizing total travel time, as well as their perception un-
certainties, while simultaneously learning about the emergent
congestion on the network.

We leverage the constant step-size stochastic approxi-
mation theory to prove that these discrete-time dynamics
converge to a neighborhood of the CoDAG equilibrium
(Theorem 2). To this end, we first prove that the continuous-
time counterpart to (PBR) globally asymptotically converges
to the CoDAG equilibrium (Lemma 2). We then conclude the
proof by verifying technical assumptions required to invoke
results in stochastic approximation theory [25] (Lemma 3).

A. Discrete-time Dynamics

In this subsection, we present a discrete-time dynamical
equation that captures the evolution of flows on the network
as a result of learning and adaptation by self-interested
travelers. More formally, at each discrete time step n ≥ 0,
go units of travelers arrive at the origin node o. At time step
n, every traveler who reaches node i ∈ I\{d} selects some
arc a ∈ A+

i . For any i ∈ I\{d}, a ∈ A+
i , let ξa[n] be the

aggregate arc selection probability: the fraction of travelers
at node i choosing arc a at time n. As a result of the arc
selections made by every traveler, a flow of W [n] is induced
on the arcs as given below. For every a ∈ A:

Wa[n] =

(
gia +

∑
a′∈A−

ia

Wa′ [n]

)
· ξa[n], (12)

where, as given in Definition 3, gia = go if ia = o, and
gia = 0 otherwise.

At the end of each time step, every traveler reaches the
destination and observes a noisy estimate of the latency-
to-go, independent across travelers, on every arc in the
network (including ones they did not visit in that time step).
Note that the latency-to-go for any arc is dependent on
the congestion W [n], which in turn depends on aggregate
decisions taken by travelers (please refer to (12)). Based
on the observed latencies, at time n + 1, at every non-
destination node i ∈ I\{d}, a ηi[n + 1] · Ki fraction of
travelers at node i switches to an arc with the minimum
observed latency-to-go. Meanwhile, a 1 − ηi[n + 1] · Ki

fraction of travelers selects the same arc they selected at time
step n. We assume that {ηi[n + 1] ∈ R : i ∈ I, n ≥ 0} are



independent bounded random variables in [µ, µ], independent
of travelers’ perception stochasticities, with 0 < µ < µ <
µ < 1/max{Ki : i ∈ I\{d}} and E[ηia [n+1]] = µ for each
node index i ∈ I and discrete time index n ≥ 0. Meanwhile,
the constants Ki represent node-dependent update rates.
To summarize, the dynamic evolution of arc selections by
infinitesimal travelers is captured by the following evolution
of ξ[n]. For every i ∈ I\{d}, a ∈ A+

i :

ξa[n+ 1] = ξa[n] + ηia [n+ 1] ·Kia (−ξa[n] + Pija) ,

where Pija is defined in (2). Using (4) and (5), the previous
equation can be rewritten as:

ξa[n+ 1] (PBR)
= ξa[n] + ηia [n+ 1] ·Kia

·

(
− ξa[n] +

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

)
,

The dynamics (PBR) bears close resemblance to perturbed
best response dynamics in routing games [23], so we shall
refer to (PBR) as perturbed best response dynamics.

We assume ξa[0] > 0 for each a ∈ A, i.e., each arc has
some strictly positive initial traffic flow. This is reasonable,
since the stochasticity in travelers’ perception of network
congestion ensures that each arc has a nonzero probability
of being selected.

B. Convergence Results

Our main theorem establishes that the discrete-time dy-
namics (PBR) asymptotically converges to a neighborhood
of the CoDAG equilibrium w̄β .

Theorem 2: Under the discrete-time flow dynamics
(PBR), for each δ > 0:

lim sup
n→∞

E
[
∥ξ[n]− ξ̄β∥22

]
≤ O(µ),

lim sup
n→∞

P
(
∥ξ[n]− ξ̄β∥22 ≥ δ

)
≤ O

(µ
δ

)
.

To prove Theorem 2, we leverage the theory of constant
step-size stochastic approximation [25]. This requires prov-
ing that the continuous-time dynamics corresponding to the
discrete-time update (PBR), presented below, converges to
the CoDAG equilibrium. For each arc a ∈ A:

ξ̇a(t) = −Ki

(
ξa(t) +

exp(−β · za(w(t)))∑
a′∈A+

ia

exp(−β · za′(w(t)))

)
,

(13)

where w(t) is the resulting arc flow associated with the arc
selection probability ξ(t), similar to (12):

wa(t) = ξa(t) ·

(
gia +

∑
a′∈A−

ia

wa′(t)

)
. (14)

Lemma 2 (Informal): Suppose w(0) ∈ W , i.e., the initial
flow satisfies flow continuity. Under the continuous-time flow
dynamics (14) and (13), if Ki ≪ Ki′ whenever ℓi < ℓi′ , the

traffic flow w(t) globally asymptotically converges to the
CoDAG equilibrium w̄β .

Proof: (Proof Sketch) Recall that w̄β is the unique
minimizer of the map F : W → R, defined by (11). We
show that F is a Lyapunov function for the continuous-time
flow dynamics (20) induced by the arc selection dynamics
(13). To this end, we first unwind the dynamics (13) and (14)
to obtain the recursive relation:

ẇa(t) = −Kia

(
1− 1

Kia

·

∑
a′∈A−

ia

ẇa′(t)∑
â∈A+

ia

wâ(t)

)
wa(t)

+Kia ·
∑

a′∈A−
ia

wa′(t) · exp(−βza(w(t)))∑
a′∈A+

ia

exp(−βza′(w(t)))
.

Then, we establish that along any trajectory starting on W
and following the dynamics given by (13), we have for each
t ≥ 0:

Ḟ (t) = ẇ(t)⊤∇wF (w(t)) ≤ 0.

The proof then follows from LaSalle’s Theorem (see [29,
Proposition 5.22]). For a precise characterization and detailed
proof of Lemma 2, please see Appendix C [28].

Remark 6: On a technical level, the statement and proof
technique of Theorem 2 share similarities with methods used
to establish the convergence of best-response dynamics in
potential games [23]. However, there exist crucial distinc-
tions between the two approaches which render our problem
more difficult. First, since the map F defined by (11) is not a
potential function, the mathematical machinery of potential
games cannot be directly applied. Moreover, the continuous-
time flow dynamics (13) and (14) allow couplings between
arbitrary arcs in the CoDAG. For more details, please see
Appendix C [28].

Remark 7: The assumption that Ki ≪ Ki′ whenever the
depth of node i ∈ I\{d} is less than the depth of node i′ ∈
I\{d} conforms to the intuition that travelers farther away
from the destination node face more complex route selection
decisions based on more information regarding traffic flow
throughout the rest of the network, and thus perform slower
updates.

Having established the global asymptotic convergence of
the continuous-time dynamics (13) and (14) to the CoDAG
equilibrium w̄β , it remains to verify the remaining technical
conditions necessary to prove Theorem 2 via stochastic
approximation theory. To this end, we rewrite the discrete
ξ-dynamics (PBR) as a Markov process with a martingale
difference term:

ξa[n+ 1] = ξa[n] + µ
(
ρa(ξ[n]) +Ma[n+ 1]

)
,

where ρa : R|A| × R|AO| → R|A| is given by:

ρa(ξ) := Kia

(
−ξa +

exp(−β · za(w))∑
a′∈A+

ia

exp(−β · za′(w))

)
, (15)

with w ∈ R|A| defined arc-wise by wa = (gia +∑
â∈A−

ia

wa′) · ξa, and:

Ma[n+ 1] :=

(
1

µ
ηia [n+ 1]− 1

)
· ρa(ξ[n]). (16)



TABLE II: Parameters for simulation.

Notation Default value

k0 0, 1, 0, 1, 1, 0, 1, 1, 1 (ordered by edge index)
k1 2, 1, 1, 1, 1, 1, 2, 2, 2 (ordered by edge index)
g1 1
β 10
ηia [n] Uniform(0, 0.1), ∀a ∈ A, i ∈ I\{d}

Here, Wa[n] =
(
gia +

∑
a′∈A−

ia

Wa′ [n]
)
, as given by (12).

The following lemma bounds the magnitude of the
discrete-time flow W [n] ∈ R|A| and the martingale differ-
ence terms M [n] ∈ R|A|.

Lemma 3: Given initial flows W [0] and arc selection
probabilities ξ[0]:

1) For each a ∈ A: {Ma[n + 1] : n ≥ 0} is a martingale
difference sequence with respect to the filtration Fn :=
σ
(
∪a∈A (Wa[1], ξ[1], · · · ,Wa[n], ξ[n])

)
.

2) There exist Cw, Cm > 0 such that, for each a ∈ A,
n ≥ 0, we have Wa[n] ∈ [Cw, go] and |Ma[n]| ≤ Cm.

3) For each a ∈ A, the map ρa, given by (15), is Lipschitz
continuous over the range of realizable flow and arc
selection probability trajectories {W [n] : n ≥ 0} and
{ξ[n] : n ≥ 0}.
Proof: (Proof Sketch) The first part of Lemma 3

follows because, with respect to Fn, the only stochasticity in
Ma[n+1] originates from the i.i.d. input flows ηia [n+1]. The
second part follows by invoking the flow continuity equations
in (12) to recursively upper bound each Wa[n] and za(W [n]),
in increasing order of depth and height, respectively (flows
are propagated from origin to destination, and latency-to-go
values are computed in the opposite direction). These bounds
are then used to recursively establish upper and lower bounds
for each ξa[n], and consequently each W [n], in order of
increasing depth. Finally, the Lipschitz continuity of each
ρa can be proved by establishing that ρa is continuously
differentiable, with bounded derivatives over the compact
domain defined by the bounds on W [n] established in the
second part of the lemma. For details, please see the proofs
of Lemmas 5 and 6 in Appendix C [28].

V. EXPERIMENT RESULTS

In this section, we conduct numerical experiments to
validate the theoretical analysis presented in Section IV. We
show in simulation that, under (PBR), the traffic flows con-
verge to a neighborhood of the condensed DAG equilibrium,
as claimed by Theorem 2.

Consider the network presented in Figure 1, with affine
edge-latency functions s[a](w[a]) = k0 + k1w[a] for each arc
a ∈ A, where k0, k1 > 0 are simulation parameters provided
in Table II. To validate Theorem 2, we evaluate and plot the
traffic flow values Wa[n] on each arc a ∈ A and discrete time
n ≥ 0. Figure 2 presents traffic flow values at the condensed
DAG equilibrium (i.e., wβ) for the original network and
condensed DAG. While travelers generally prefer routes of
lower latency, each route has a nonzero level of traffic
flow at equilibrium. The reason is that under the perturbed
best response dynamics, users do not allocate all the traffic

Fig. 2: Steady state traffic flow on each arc for an original network
and condensed DAG. Flows on arcs emerging from same node are
represented in same color.

Fig. 3: Traffic flow W [n] for the network in Fig. 2.

flow to the minimum-cost route, but instead distribute their
traffic allocation more evenly. Meanwhile, Figure 3 illustrates
that w converges to the condensed DAG equilibrium in
approximately 100 iterations with some initial fluctuations.
The fluctuations are due to the magnitude of the average step-
size µ. If µ is small, the discrete-time update is close to the
continuous-time dynamics, and the resulting evolution of the
traffic flow follows a smoother trend. Note that in practice,
flow convergence to the CoDAG equilibrium occurs even
when the effects of the constants {Ki : i ∈ I} are ignored,
i.e., when each Ki is set to unity.

VI. CONCLUSION AND FUTURE WORK

We present a new equilibrium concept for stochastic arc-
based TAMs in which travelers are guaranteed to be routed
on acyclic routes. Specifically, we construct a condensed
DAG representation of the original network, by replicating
arcs and nodes to avoid cyclic routes, while preserving
the set of feasible routes from the original network. We



characterize the proposed equilibrium as the optimal solution
of a strictly convex optimization problem. Furthermore, we
propose adaptive learning dynamics for arc-based TAM that
characterizes the evolution of flow generated by the simul-
taneous learning and adaptation of self-interested travelers.
Additionally, we prove that the learning dynamics converges
to the corresponding equilibrium flow allocation.

Interesting avenues of future research include: (i) Devel-
oping an equilibrium notion and corresponding convergent
learning dynamics, for the case in which travelers can only
access latency-to-go values on the routes they choose; and (ii)
Developing dynamic tolling mechanisms to properly allocate
equilibrium flows to induce socially optimal loads.
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Below, we present proofs omitted in the main paper due
to space limitations.

A. Properties of Depth and Height

In the main text, we recursively defined some dynamical
quantities, such as the time evolution of the traffic flows
w ∈ R|A| and the latency-to-go z ∈ R|A|, in a component-
wise fashion, either from the origin of the Condensed DAG
G towards the destination, or from the destination to the
origin. To facilitate these recursive definitions, we require the
following characterizations regarding the depths and heights
of arcs in a Condensed DAG G.

1) Depth: First, we define the concept of depth of a
directed acyclic graph (DAG), which will be crucial for the
remaining exposition.

Definition 4 (Depth of a DAG): Given a DAG G =
(I, A) describing a single-origin single-destination traffic
network, the depth of G, denoted ℓ(G), is defined by:

ℓ(G) := max
a∈A

ℓa.

In this work, we consider only acyclic routes in traffic
networks with finitely many edges, so we have ℓ(G) < ∞.
Moreover, the case ℓ(G) = 1 corresponds to a parallel link
network, for which the results of the following proposition
have already been analyzed in [22]. Therefore, we assume
below that ℓ(G) ≥ 2.

Proposition 1: Given a Condensed DAG G = (I, A) with
the route set R:

1) For any a ∈ A, we have ℓa = 1 if and only if ia = o.
Similarly, if ℓa = ℓ(G), then ja = d.

2) For any fixed r ∈ R, and any a, a′ ∈ r with ℓa,r < ℓa′,r,
we have ℓa < ℓa′ i.e., arcs along a route have strictly
increasing depth from the origin to the destination.

3) Fix any a ∈ A, and any r ∈ R containing a such that
ℓa,r = ℓa. Then, for any a′ ∈ R preceding a in r, we
have ℓa′,r = ℓa′ .

4) For each depth k ∈ [ℓ(G)] := {1, · · · , ℓ(G)}, there
exists some a ∈ A such that ℓa = k.
Proof:

1) If ℓa ̸= 1, then ℓa ≥ 2, so there exists at least one
route r ∈ R containing a ∈ A such that ℓa,r ≥ 2. Thus,
ia ̸= o (otherwise the first ℓa,r−1 arcs of r would form
a cycle). Conversely, if ia ̸= o, then no route r ∈ R
contains a ∈ A as its first arc, i.e., ℓa,r ≥ 2 for each
r ∈ R containing a. Thus, ℓa = maxr∈R:a∈r ℓa,r ≥ 2;
in particular, ℓa ̸= 1. This establishes that ℓa = 1 if and
only if ia = o.

Now, suppose by contradiction that there exists
some a ∈ A such that ℓa = ℓ(G) but ja ̸= d. Fix any
r ∈ R such that a ∈ r and ℓa,r = ℓa. Then a cannot be
at the end of R, since by definition, routes must end at
d. Let a′ ∈ r be the arc immediately after a in r. Then
ℓa′ ≥ ℓa′,r = ℓa,r + 1 = ℓ(G) + 1, a contradiction to
the definition of ℓ(G).

2) Fix r ∈ R, a, a′ ∈ r such that ℓa,r < ℓa′,r. If ℓa = 1,
then ℓa′ ≥ ℓa′,r > ℓa,r = 1 = ℓa, and we are done.

Suppose ℓa ≥ 2. By definition of ℓa, there exists some
route r2 such that ℓa,r2 = ℓa. Construct a new route
r3 ∈ R by replacing the first ℓa,r arcs of r with the first
ℓa,r2 arcs of r2. Then ℓa′ ≥ ℓa′,r3 = ℓa′,r−ℓa,r+ℓa,r2 >
ℓa,r2 = ℓa.

3) Fix any a ∈ A, and any r ∈ R containing a such that
ℓa,r = ℓa. Suppose by contradiction that there exists
some a′ ∈ R, preceding a in r, for which ℓa′ ≥ ℓa′,r+1.
Then, by applying the second part of this lemma along
the (ℓa,r−ℓa′,r) arcs of R from a′ to a, we find that ℓa ≥
ℓa′ +(ℓa,r − ℓa′,r) ≥ ℓa,r +1 = ℓa+1, a contradiction.

4) Fix any arc a ∈ A with ℓa = ℓ(G). Then there exists
some r ∈ R containing a such that ℓa,r = ℓa = ℓ(G).
It follows from the third part of this proposition that,
for each k ∈ [ℓ(G)], the k-th arc in R is of depth k.

2) Height: Next, we define the concept of height of a
directed acyclic graph (DAG), which will be crucial for the
remaining exposition.

Definition 5 (Height of a DAG): Given a DAG G =
(I, A) describing a single-origin single-destination traffic
network, the height of G, denoted m(G), is defined by:

m(G) := max
a∈A

ma.

Since the traffic network under study is finite, and we
consider only acyclic routes, we have m(G) < ∞. Moreover,
the case m(G) = 1 corresponds to a parallel link network,
for which the results of the following proposition have
already been extensively analyzed in [22]. We will henceforth
assume that m(G) ≥ 2.

Proposition 2: Given an Condensed DAG G = (I, A)
with the route set R:

1) For any a ∈ A, we have ma = 1 if and only if ja = d.
Similarly, if ma = m(G), then ia = o.

2) For any fixed r ∈ R, and any a, a′ ∈ r with ma,r <
ma′,r, we have ma < ma′ i.e., arcs along a route from
the origin to the destination have strictly decreasing
depth.

3) Fix any a ∈ A, and any r ∈ R containing a such that
ma,r = ma. Then, for any a′ ∈ R following a in r, we
have ma′,r = ma′ .

4) For each height k ∈ [m(G)] := {1, · · · ,m(G)}, there
exists an arc a ∈ A such that ma = k.

The proof of Proposition 2 parallels that of Proposition 1,
and is omitted for brevity.

B. Proofs of results in Section III

1) Proof of Lemma 1: Here, we establish Lemma 1,
restated as follow: The map F : W → R, as given below, is
strictly convex.

F (w) :=
∑

[a]∈AO

∫ w[a]

0

s[a](u)du+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa

−

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]
.



For convenience, we define f[a] : W → R, χi : R|A+
i | →

R, F : W → R for each [a] ∈ AO, i ∈ I\{d} by:

f[a](w) :=

∫ w[a]

0

s[a](u)du, ∀ [a] ∈ AO,

χi(wA+
i
) :=

∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)
,

∀ i ̸= I\{d},

where wA+
i

∈ R|A+
i | denotes the components of w corre-

sponding to arcs in A+
i . Then:

F (w) =
∑

[a]∈A0

f[a](w) +
1

β

∑
i∈I\{d}

χβ
i (w).

Also, for convenience, define:

Ws :=

{
w ∈ R|A| :

∑
a∈A+

i

wa =
∑

a∈A−
i

wa, ∀ i ̸= o, d, (17)

∑
a∈A+

o

wa = 0.

}
.

Essentially, Ws is the tangent space of the linear manifold
with boundary W . Note that, using the notation described at
the end of Section I, we can rewrite (17) as:

Ws =
{
eA−

i
− eA+

i
: i ̸= o, d

}⊥ ∩
{
eA+

o

}⊥
.

We can now establish the strict convexity of F .
We first establish the convexity of F . It suffices to show

that f[a] and χi are convex for each [a] ∈ AO, i ∈ I\{d}.
Note that each f[a] is convex since it is the composition of a
convex function (g(w) =

∑
a∈A0

∫ wa

0
sa(u)du) with a linear

function (w[a] :=
∑

a′∈[a] wa′ ). We show below that χi is
convex, for each i ∈ I\{d}.

Fix i ∈ I\{d}. For any a, a′ ∈ A+
i and each w ∈ W:

∂2χi

∂wa∂wa′
(w) =

1

wa
1{a′ = a} − 1∑

ā∈A+
i
wā

.

Thus, for any y ∈ R|A+
i |:

y⊤∇2
wχi(w)y

=
∑

a,a′∈A+
i

yaya′
∂2χi

∂wa∂wa′
(w)

=
∑
a∈A+

i

y2a
wa

− 1∑
ā∈A+

i
wā

·
∑

a,a′∈A+
i

yaya′

=
1∑

ā∈A+
i
wā

∑
ā∈A+

i

wā ·
∑
a∈A+

i

y2a
wa

−

 ∑
a′∈A+

i

ya′

2


=
1∑

ā∈A+
i
wā

( ∑
ā∈A+

i

(√
wā

)2 · ∑
a∈A+

i

(
ya√
wa

)2

−

 ∑
a′∈A+

i

√
wa′ · ya′

√
wa′

2)
≥ 0, (18)

where the final inequality follows from the Cauchy-Schwarz
inequality. Cauchy-Schwarz also implies that equality holds
in (18) if and only if the vectors (

√
wa)a∈A+

i
∈ R|A+

i | and

(ya/
√
wa)a∈A+

i
∈ R|A+

i | are parallel, i.e., if (ya)a∈A+
i

and
(wa)a∈A+

i
are scalar multiples of each other. This shows that

χi is convex, and dim(N(∇2
wχi)) = 1.

Second, suppose by contradiction that F is not strictly
convex on W . Then there exists some w̄ ∈ W , z ∈ Ws\{0}
such that:

z⊤∇2
wF (w̄)z = 0.

Since ∇2
wF (w̄) is symmetric positive semidefinite, this is

equivalent to stating that z is in N(∇2
wF (w̄)), the null space

of ∇2
wF (w̄). Let Az denote the set of arc indices for which

z has a nonzero component, i.e.:

Az := {a′ ∈ A : za′ ̸= 0}.

Since z is not the zero vector, Az is non-empty. Since there
are a discrete and finite number of levels of G, there exists
some a ∈ Az such that ℓa ≤ ℓa′ for all a′ ∈ Ay , i.e.,
ℓa = min{ℓa′ : a′ ∈ Ay}. Without loss of generality, we
consider the case za > 0 (if not, then replace z with −z,
which would also be a nonzero vector in N(∇2

wF (w̄))). We
claim that wa ̸= 0, and that for all a′ ∈ A+

ia
:

za′ = za ·
wa′

wa
≥ 0.

To see this, note that otherwise, the vectors (za)a∈A+
i

∈
R|A+

i | and (wa)a∈A+
i

are not parallel, and so equality cannot
be obtained in (18), i.e.,:

z⊤∇2
wχi(w̄)z > 0,

where, with a slight abuse of notation, we have defined
χi(w) = χi(A

+
i ). As a result:

z⊤∇2
wF (w̄)z

=
∑
[a]∈A

z⊤∇2
wf[a](w̄)z +

1

β

∑
i′ ̸=d

z⊤∇2
wχi′(w̄)z

≥ 1

β
z⊤∇2

wχi(w̄)z

> 0,

a contradiction. Thus, za > 0, and za′ ≥ 0 for each a′ ∈ A+
ia

,
so: ∑

a′∈A+
ia

za′ > 0.

If ℓa = 1, i.e., ia = o, we arrive at a contradiction, since
the fact that z ∈ Ws implies

∑
a′∈A+

ia

za′ = 0. If ℓa > 1,



we also arrive at a contradiction, since the fact that z ∈ Ws

implies: ∑
â∈A−

ia

zâ =
∑

a′∈A+
ia

za′ > 0,

so there exists at least one ℓâ ∈ A−
ia

with zâ > 0. Then,
by definition of a ∈ A, we have ℓa ≤ ℓâ; this contradicts
Proposition 1, Part 2, which implies that since â ∈ A−

ia
,

there exists at least one arc containing â immediately before
a ∈ A, and thus ℓâ ≤ ℓa − 1. These contradictions complete
the proof of the strict convexity of F on W .

2) Proof of Theo rem 1: We present the proof of Theorem
1, restated as follows: The Condensed DAG Equilibrium
w̄β ∈ W exists, is unique, and is the unique optimal solution
to the following convex optimization problem:

min
w∈W

∑
[a]∈A0

∫ w[a]

0

s[a](u)dz

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa

−

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]
.

Proof: (Proof of Theorem 1) The following proof
parallels that of Baillon, Cominetti [3, Theorem 2]. Recall
that N denotes the set of nodes of the corresponding DAG.
The Lagrangian L : W ×R|N |−1 ∈ R|A| → R corresponding
to the above optimization problem is:

L(w, µ, λ)

:=
∑

[a]∈A0

∫ w[a]

0

s[a](u)dz

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]

+
∑
i̸=d

µi

(
gi +

∑
a′∈A−

i

wa′ −
∑

a′∈A+
i

wa′

)
+
∑
a∈A

λawa,

with gi = go · 1{i = o}, where 1{·} is the indicator function
that returns 1 if the input argument is true, and 0 otherwise.
At optimum (w⋆, µ⋆) ∈ W × R|N |−1, the KKT conditions
give, for each a ∈ A:

0 =
∂L
∂wa

(w⋆, µ⋆)

= s[a](w
⋆
[a]) +

1

β
ln

(
w⋆

a∑
a′∈A+

ia

w⋆
a′

)
+ µ⋆

ja − µ⋆
ia + λa,

0 = λawa, ∀a ∈ A.

We claim that (ŵ, µ̂) ∈ W × R|N |−1, as given by the
Condensed DAG equilibrium definition: For each a ∈ A,
i ∈ N :

ŵa =

(
gia +

∑
a′∈A−

ia

ŵa′

)
· exp(−βza(ŵ))∑

a′∈A+
ia

exp(−βza′(ŵ))
,

∀a ∈ A,

µ̂i = φi(z(ŵ)) = − 1

β
ln

( ∑
a′∈A+

i

e−βza′ (ŵ)

)
,

∀ i ∈ N,

λ̂a = 0, ∀a ∈ A,

satisfies the KKT conditions stated above. Indeed, we have
ŵa ≥ 0 for each a ∈ A, and:

∂L
∂wa

(ŵ, µ̂, λ̂)

= s[a](ŵ[a]) +
1

β
ln

(
ŵa∑

a′∈A+
ia

ŵa′

)
+ µ̂ja − µ̂ia +

∑
a∈A

λa

= s[a](ŵ[a]) +
1

β
ln

(
exp(−βza(w))∑

a′∈A+
ia

exp(−βza′(w))

)
+ φja(z)− φia(z)

= s[a](ŵ[a])− za(w) + φia(z) + φja(z)− φia(z)

= s[a](ŵ[a]) + φja(z)− za(w)

=0,

where the final equality follows from the definition of
(za)a∈A.

C. Proofs for Section IV

1) Proof of Lemma 2: We present the proof of Lemma 2,
stated formally as follows: Suppose w(0) ∈ W , and:

Ki >
go
Cw

max{Kiâ : â ∈ A−
i }

for each i ∈ I\{d}, with Cw given by Lemma 3. Then, the
continuous-time dynamical system (20) for the traffic flow
w(t) globally asymptotically converges to the corresponding
Condensed DAG Equilibrium w̄β ∈ W .

Proof: (Proof of Lemma 2) We recursively write the
continuous-time evolution of the arc flows w(·) as follows,
from (13) and (14). Recall that for any fixed w ∈ W , at each
non-destination node i ∈ I\{d}, we have

∑
a′∈A+

ia

wa′ =∑
â∈A−

ia

wâ. Thus, for each a ̸∈ A+
o :

ẇa(t)

= ξ̇a(t) ·

(
gia +

∑
â∈A−

ia

wâ(t)

)
+ ξa(t) ·

∑
â∈A−

ia

ẇa(t)

=Kia

(
− ξa(t) +

exp(−βza(w(t)))∑
a′∈A+

ia

exp(−βza′(w(t)))

)

·

(
gia +

∑
â∈A−

ia

wâ(t)

)

+ ξa(t) ·
∑

â∈A−
ia

ẇâ(t)



= −Kiawa(t)

+Kia ·

(
gia +

∑
â∈A−

ia

wâ(t)

)

· exp(−βza(w(t)))∑
a′∈A+

ia

exp(−βza′(w(t)))

+
wa(t)∑

a′∈A+
ia

wa′(t)
·
∑

â∈A−
ia

ẇâ(t)

= −Kia

(
1− 1

Kia

·

∑
â∈A−

ia

ẇâ∑
a′∈A+

ia

wa′

)
wa (19)

+Kia ·

(
gia +

∑
â∈A−

ia

wâ(t)

)

· exp(−βza(w(t)))∑
a′∈A+

ia

exp(−βza′(w(t)))
,

for each a ∈ A. More formally, we define each component
h : W → R|A| recursively as follows. First, for each a ∈ A+

o ,
we set:

ha(w) := Ko

(
−wa + go ·

exp(−βza(w))∑
a′∈A+

o
exp(−βza′(w))

)
.

Suppose now that, for some arc a ∈ A, the component ha :
W → R of h has been defined for each â ∈ A−

ia
. Then, we

set:

ha(w) := −Kia

(
1− 1

Kia

·

∑
â∈A−

ia

hâ(w)∑
a′∈A+

ia

wa′

)
wa

+Kia ·
∑

a′∈A−
ia

wa′ · exp(−βza(w))∑
a′∈A+

o
exp(−βza′(w))

.

By iterating through the above definition forward through
the Condensed DAG G from origin to destination, we can
completely specify each ha in a well-posed manner (For a
more rigorous characterization of this iterative procedure, see
Appendix A, Proposition 1). We then define the w-dynamics
corresponding to the ξ-dynamics (13) by:

ẇ = h(w). (20)

Now, recall the objective F : W × R|AO| → R of the
optimization problem that characterizes w̄β , first stated in
Theorem 1 as Equation (11), reproduced below:

F (w)

:=
∑

[a]∈A0

∫ w[a]

0

s[a](z)dz

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]
.

Roughly speaking, our main approach is to show that F is
a Lyapunov function for the best-response dynamics in (20).
Let Ws denote the tangent space to W , and let ΠWs denote

the orthogonal projection onto the linear subspace Ws. Under
the continuous-time flow dynamics (13) and (14), if w ̸= w̄β :

d

dt
(F ◦ w)(t)

= ẇ(t)⊤∇wF (w(t)) (21)

= ẇ(t)⊤ΠWs∇wF (w(t)) (22)

= ẇ(t)⊤ΠWs

(
∇wf(w(t)) +∇χβ(w(t))

)
= ẇ(t)⊤ΠWs

((
s[a](w[a](t))

)
a∈A

+∇χβ(w(t))
)

(23)

= ẇ(t)⊤ΠWs

[
−∇χβ

(((
gia +

∑
a′∈A−

ia

wa′(t)

)
(24)

· exp(−βza(w(t)))∑
ā∈A+

i
exp(−βzā(w(t)))

)
a∈A

)
+∇χβ(w(t))

]

= ẇ(t)⊤ΠWs

[
−∇χβ

(((
gia +

∑
a′∈A−

ia

wa′(t)

)
(25)

· exp(−βza(w(t)))∑
ā∈A+

i
exp(−βzā(w(t)))

)
a∈A

)

+∇χβ

((1−
∑

a′∈A−
ia

ha′(w(t))

Kia ·
∑

â∈A+
ia

wâ(t)

)
· wa(t)

)
a∈A

]

=

[(
−Kia

(
1−

∑
a′∈A−

ia

ha′(w(t))

Kia ·
∑

â∈A+
ia

wâ(t)

)
wa(t) (26)

+Kia

(
gia +

∑
a′∈A+

ia

wa′(t)

)

· exp(−βza(w(t)))∑
ā∈A+

ia

exp(−βzā(w(t)))

)
a∈A

]⊤
[
−∇χβ

(((
gia +

∑
a′∈A−

ia

wa′(t)

)

· exp(−βza(w(t)))∑
ā∈A+

i
exp(−βzā(w(t)))

)
a∈A

)

+∇χβ

((1−
∑

a′∈A−
ia

ha′(w(t))

Kia ·
∑

â∈A+
ia

wâ(t)

)
· wa(t)

)
a∈A

]
< 0. (27)

We explain the equalities (21) = (22), (23) = (24), (24) =
(25), and (26) < (27) below.

a) Verifying (21) = (22): From the equations leading
up to (19), we have, for each w ∈ W:

wa =

(
gia +

∑
â∈A−

ia

wa′

)
· ξa,

and so:

ẇa(t)

=

(
gia +

∑
â∈A−

ia

wâ(t)

)
· ξ̇a +

∑
â∈A−

ia

ẇa′ · ξa



=

(
gia +

∑
â∈A−

ia

wâ(t)

)

·Kia

(
−ξa +

exp(−βza(w(t)))∑
a′∈A+

ia

exp(−βza′(w(t)))

)
+
∑

â∈A−
ia

ẇa′ · ξa

Fix any node i ∈ I in the Condensed DAG, and consider the
sum of the above equation over the arc subset A+

i :∑
a′∈A+

i

ẇa′(t) =
∑

â∈A−
i

ẇâ(t).

Since w(0) ∈ W by assumption, we have the initial condition
(
∑

â∈A+
i
wâ−

∑
a′∈A−

ia

wa′−gi)(0) = 0 for the above linear
time-invariant differential equation. We thus conclude that,
for each t ≥ 0:∑

â∈A+
i

wâ(t)−
∑

a′∈A−
ia

wa′(t)− gi = 0.

Since this holds for any arbitrary node i ∈ I , we have w(t) ∈
W for all t ≥ 0.

b) Verifying (23) = (24): We will show that:

ΠWs

[(
s[a](w[a](t))

)
a∈A

+∇χβ

(((
gia +

∑
a′∈A−

ia

wa′(t)

)
(28)

· exp(−βza(w(t)))∑
ā∈A+

i
exp(−βzā(w(t)))

)
a∈A

)]
= 0,

which would a fortiori establish the desired claim (23) =
(24). To do so, first note that, for each i ̸= d, a ∈ A+

i :

∂χβ

∂wa
(w) =

1

β
·

[
lnwa + 1− ln

∑
a∈A+

i

wa

− 1

]
(29)

=
1

β
ln

(
wa∑

a∈A+
i
wa

)
.

Thus, we have:

∂χβ

∂wa

(((
gia +

∑
a′∈A−

ia

wa′

)

· exp(−βza(w))∑
ā∈A+

ia

exp(−βzā(w))

)
a∈A

)

=
1

β
ln

(
exp(−βza(w))∑

ā∈A+
i
exp(−βzā(w))

)

= − za(w)−
1

β
ln

 ∑
ā∈A+

ia

exp(−βzā(w))


= − za(w) + φia(w).

Concatenating these partial derivatives to form the gradient,
we can now verify (28) by observing that:

ΠWs

[(
s[a](w[a])

)
a∈A

+∇χβ

(((
gia +

∑
a′∈A−

ia

wa′

)

· exp(−βzâ(w))∑
ā∈A+

i
exp(−βzā(w))

)
â∈A

)
a∈A

]
=ΠWs

(
s[a](w[a])− za(w) + φia(w)

)
a∈A

=ΠWs

(
φia(w)− φja(w)

)
a∈A

=ΠWs

[∑
a∈A

φia(w)ea −
∑
a∈A

φja(w)ea

]

=ΠWs

[
−
∑

â∈A−
d

φjâ(w)eâ +
∑

a′∈A+
o

φia′ (w)ea′

+
∑

i̸={o,d}

( ∑
a′∈A+

i

φi(w)ea′ −
∑

â∈A−
i

φi(w)eâ

)]

=ΠWs

[
0 + φo(w)eA+

o
+

∑
i̸={o,d}

φi(w)
(
eA−

i
− eA+

i

)]
=0,

where the last equality follows by definition of ΠWs .
c) Verifying (24) = (25): We will show that:

∇χβ(w) = ∇χβ

((1− ∑
a′∈A−

ia

ẇa′

Kia ·
∑

â∈A+
ia

wâ

)
· wa

)
a∈A

 ,

which is equivalent to showing that (24) = (25). From (29),
we have for each a ∈ A:

∂χβ

∂wa

((1− ∑
a′∈A−

ia

ha′(w)

Kia ·
∑

â∈A+
ia

wâ

)
· wa

)
a∈A



=
1

β
ln


(
1−

∑
a′∈A

−
ia

ha′ (w)

Kia ·
∑

â∈A
+
ia

wâ

)
wa

∑
ā∈A+

ia

(
1−

∑
a′∈A

−
iā

ha′ (w)

Kia ·
∑

â∈A
+
iā

wâ

)
wā



=
1

β
ln


(
1−

∑
a′∈A

−
ia

ha′ (w)

Kia ·
∑

â∈A
+
ia

wâ

)
wa(

1−
∑

a′∈A
−
ia

ha′ (w)

Kia ·
∑

â∈A
+
ia

wâ

)
·
∑

ā∈A+
ia

wā


=

1

β
ln

(
wa∑

ā∈A+
ia

wā

)

=
∂χβ

∂wa
(w).

The second equality above follows because, for each ā ∈
A+

ia
, we have iā = ia. This verifies that (24) = (25).



d) Verifying (26) < (27), ∀w ̸= w̄β: Suppose d
dt (F ◦

w) = 0 at some w̃ ∈ W . From (26), and by the definition
of the convex function χ:

0

=
d

dt
(F ◦ w)

=
∑

i∈I\{d}

([
−

(
1−

∑
â∈A−

ia

hâ(w)

Kia ·
∑

a′∈A+
ia

w̃a′

)
w̃a

+

(
gia +

∑
a′∈A+

ia

w̃a′

)
exp(−β · za(w̃))∑

a′∈A+
ia

exp(−β · za′(w̃))

]
a∈A

)⊤

· 1
β

(
∇χβ

i

([(
1−

∑
â∈A−

ia

hâ(w̃)

Kia ·
∑

a′∈A+
ia

w̃a′

)
w̃a

]
a∈A

)

−∇χβ
i

([(
gia +

∑
a′∈A+

ia

w̃a′

)

· exp(−β · za(w̃))∑
a′∈A+

ia

exp(−β · za′(w̃))

]
a∈A

)
,

where, for each i ∈ I\{d}, the convex map χβ
i : R|A+

i | → R
is defined by:

χβ
i ({wa : a ∈ A+

i })

=
∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)
.

The convexity of each χβ
i implies that each of the

above summands must be non-positive; since they sum to
0, each summand must be 0. (By assumption, Kia >
(go/Cw)max{Kiâ : â ∈ A−

ia
}, so the input arguments to

th ∇χi(·) maps are all strictly positive.)
Now, for each i ∈ I\{d} and each w ∈ RA+

i , we have
N(∇2χβ

i (w)) = span{w}. In words, χβ
i increases linearly

only along rays emanating from the origin. In the context of
the above summands, this implies that, for each i ∈ I\{d},
there exists constants Qi ∈ R such that, for each a ∈ A+

i :

Qi

(
1−

∑
â∈A−

ia

hâ(w)

Kia ·
∑

a′∈A+
ia

wa′

)
wa

=

(
gia +

∑
a′∈A+

ia

wa′

)
· exp(−β · za(w))∑

a′∈A+
ia

exp(−β · za′(w))
.

By definition of h : W → R|A|, for each a ∈ A+
o :

ha(w) = −w̃a + go ·
exp(−βza(w))∑

a′∈A+
o
exp(−βza′(w))

= (Qo − 1)wa

and for each a ∈ A+
i with i ̸= o:

ha(w) := −

(
1−

∑
â∈A−

ia

hâ(w)∑
a′∈A+

ia

wa′

)
wa

+
∑

a′∈A−
ia

wa′ · exp(−βza(w))∑
a′∈A+

o
exp(−βza′(w))

= (Qo − 1)

(
1−

∑
â∈A−

ia

hâ(w)∑
a′∈A+

ia

wa′

)
wa.

By the flow continuity equations:

0 =
∑

a′∈A+
o

ha′(w) = (Qo − 1) ·
∑

a′∈A+
i

wa′ = (Qo − 1)go,

so Qo = 1, and thus ha(w) = 0 for each a ∈ A+
o . Now,

suppose there exists some depth ℓ ∈ [ℓ(G) − 1] such that
ℓa(w) = 0 for each a ∈ A such that ℓa ≤ ℓ. Then, for each
a ∈ A such that ℓa = ℓ + 1, the flow continuity equations
give:

0 =
∑

a′∈A+
i

ha′(w)−
∑

â∈A−
i

hâ(w)

=
∑

a′∈A+
i

ha′(w)

= (Qia − 1) ·
∑

a′∈A+
ia

wa′ .

Thus, Qia = 1, so ha(w) = 0. This completes the recursion
step, and shows that h(w) = 0, i.e., w = w̄β .

In summary, we established that the map F strictly de-
creases along any trajectory that starts in W\{w̄β} and
follows the best-response dynamics (20). The convergence
of the dynamics (20) to the Condensed DAG equilibrium (3)
now follows by invoking either Sandholm, Corollary 7.B.6
[23], or Sastry, Proposition 5.22 and Theorem 5.23 (LaSalle’s
Principle and its corollaries) [29].

2) Proof of Lemma 3: To prove Lemma 3, we require the
following results. We first establish bounds on the trajectory
of discrete-time and continuous-time traffic flow dynamics.

Lemma 4:

1) Consider the discrete-time dynamics:

Y [n+ 1] = (1− δ[n])Y [n] + δ[n]F [n],

where, for each n ≥ 0, we have δ[n] ∈ (0, 1) and
Y [0], F [n] ∈ [a, b] for some a, b ∈ R satisfying a < b.
Then Y [n] ∈ [a, b] for each n ≥ 0.

2) Consider the continuous-time dynamics:

ẏ(t) = K(−y(t) + f(t)),

where K > 0 and, for each t ≥ 0, we have y(0), f(t) ∈
[a, b] for some a, b ∈ R satisfying a < b. Then y(t) ∈
[a, b] for each t ≥ 0.
Proof:

1) Suppose there exists some N ≥ 0 such that Y [n] ∈
[a, b] for each n ≤ N . (Since Y [0] ∈ [a, b] by
assumption, this is certainly true for n = 0). Then:

Y [n+ 1] = (1− δ[n])Y [n] + δ[n]F [n]

∈ [(1− δ[n]) · a+ δ[n] · a, (1− δ[n]) · b
+ δ[n] · b]

= [a, b].



This completes the induction step, and thus the proof
of this part of the lemma.

2) We compute:

d

dt
(eKty(t)) = eKt

(
ẏ(t) + ay(t)

)
= aeKtf(t).

Integrating from time 0 to time t, we have, for each
t ≥ 0:

eKty(t)− y(0) =

∫ t

0

aeKτf(τ)dτ.

Rearranging terms, we obtain, for each t ≥ 0:

y(t) = e−Kty(0) + e−Kt

∫ t

0

aeaτf(τ)dτ

∈
[
e−Kta+ (1− e−Kt)a, e−Ktb+ (1− e−Kt)b

]
= [a, b].

Before proceeding, we rewrite the discrete ξ-dynamics
(PBR) as a Markov process with a martingale difference
term:

ξa[n+ 1]

= ξa[n]

+ µ

(
Kia

(
− ξa[n] +

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

)

+Ma[n+ 1]

)
,

with:

Ma[n+ 1]

:=

(
1

µ
ηia [n+ 1]− 1

)
·Kia

(
− ξa[n] +

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

)
.

The following lemma bounds the magnitude of the discrete-
time flow W [n] ∈ R|w| and the martingale difference terms
M [n] ∈ R|w|.

Lemma 5: The discrete-time dynamics (PBR) and (12)
satisfy:

1) For each a ∈ A: {Ma[n + 1] : n ≥ 0} is a martingale
difference sequence with respect to the filtration Fn :=
σ
(
∪a∈A (Wa[1], ξ[1], · · · ,Wa[n], ξ[n])

)
.

2) There exist Cw, Cm > 0 such that, for each a ∈ A and
each n ≥ 0, we have:

Wa[n] ∈ [Cw, go],

|Ma[n]| ≤ Cm.

The continuous-time dynamics (13) and (14) satisfy:
3) For each a ∈ A, n ≥ 0:

wa(t) ∈ [Cw, go].
Proof:

1) We have:

E[Ma[n+ 1]|Fn]

=

(
1

µ
E[ηia [n+ 1]]− 1

)
·Kia

(
−ξa[n] +

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

)
=0.

2) We separate the proof of this part of the lemma into the
following steps.
• First, we show that for each a ∈ A, n ≥ 0, we have
ξa[n] ∈ (0, 1].

Fix a ∈ A arbitrarily. Then ξa[0] ∈ (0, 1] by
assumption, and for each n ≥ 0:

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)
∈ (0, 1],

since the exponential function takes values in (0,∞).
Thus, by Lemma 4, we have ξa[n] ∈ (0, 1] for each
n ≥ 0.

• Second, we show that for each a ∈ A, n ≥ 0, we
have Wa[n] ∈ (0, go].

Note that (12), together with the assumption that
W [0] ∈ W , implies that W [n] ∈ W for each n ≥ 0.
Now, fix a ∈ A, n ≥ 0 arbitrarily. Let R(a) ⊆ R
denote the set of all routes passing through a, and
for each r ∈ R(a), let ar,k denote the k-th arc in r.
Then, by the conservation of flow encoded in R:

Wa[n] = go ·
∑

r∈R(a)

|r|∏
k=1

ξar,k

≤ go ·
∑
r∈R

|r|∏
k=1

ξar,k

= go.

Similarly, since ξa[n] ∈ (0, 1] for each a ∈ A, n ≥ 0,
we have:

Wa[n] = go ·
∑

r∈R(a)

|r|∏
k=1

ξar,k
> 0.

• Third, we show that there exists Cz > 0 such that
|za(W [n])| ≤ Cz for each a ∈ A, n ≥ 0. Fix a ∈
A−

d = {a ∈ A : ma = 1} arbitrarily. Then, from (6):

za(w) = s[a](w[a]) ∈ [0, s[a](go)],

⇒|za(w)| ≤ s[a](go) := Cz,1.

Now, suppose that at some height k ∈ [m(G) − 1],
there exists some Cz,k > 0 such that, for each n ≥ 0,
and each a ∈ A satisfying ma ≤ k and each n ≥ 0,
we have |za(w)| ≤ Cz,k. Then, for each n ≥ 0, and



each a ∈ A satisfying ma = k+1 (at least one such
a ∈ A must exist, by Proposition 2, Part 4):

za(w) = s[a](w[a])−
1

β
ln

( ∑
a′∈A+

ja

e−β·za′ (w)

)

≤ s[a](go)−
1

β
ln
(
|A+

ja
|e−β·Cz

)
= s[a](go) + Cz,

and:

za(w) = s[a](w[a])−
1

β
ln

( ∑
a′∈A+

ja

e−β·za′ (w)

)

≥ 0 + 0− 1

β
ln
(
|A+

ja
|eβ·Cz

)
= − 1

β
ln |A| − Cz,

from which we conclude that:

|za(w)| ≤ max

{
s[a](go) + Cz,

1

β
ln |A|+ Cz

}
:= Cz,k+1,

with Cz+1 ≥ Cz . This completes the induction step,
and the proof is completed by taking Cz := Cz,m(G).

• Fourth, we show that there exists some Cξ > 0 such
that ξa[n] ≥ Cξ for each a ∈ A, n ≥ 0.

Define:

Cξ := min

{
min
a′∈A

ξa′ [0],
1

|A|
e−2βCz

}
∈ (0, 1).

By definition of Cξ, we have ξa[0] ≥ Cξ. Moreover,
for each n ≥ 0, we have:

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

≥ e−βCz

|A+
ia
| · eβCz

≥ 1

|A|
e−2βCz

≥Cξ.

Thus, by Lemma 4, ξa[n] ≥ Cξ for each n ≥ 0.
• Fifth, we show that there exists Cw > 0 such that,

for each a ∈ A, n ≥ 0, we have Wa[n] ≥ Cw.
Fix a ∈ A, n ≥ 0. Let R(a) denote the set of

all routes in the Condensed DAG containing a, and
let r ∈ R(a) be arbitrarily given. By unwinding the
recursive definition of Wa[n] from the flow dispersion
probability values {ξa[n] : a ∈ A,n ≥ 0}, we have:

Wa[n] = go ·
∑
r′∈R
a∈r′

∏
a′∈r′

ξa′ [n]

≥ go ·
∏
a′∈r

ξa′ [n]

≥ go · (Cξ)
|r|

≥ go · (Cξ)
ℓ(G)

:= Cw.

• Sixth, we show that there exists Cm > 0 such that,
for each a ∈ A, n ≥ 0, we have Ma[n] ≥ Cm.

Define, for convenience, Cµ := max{µ−µ, µ−
µ}. Since ηia [n] ∈ [µ, µ], we have from (16) that for
each a ∈ A, n ≥ 0:

Ma[n+ 1]

:=

(
1

µ
ηia [n+ 1]− 1

)
·Kia

(
− ξa[n] +

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

)
.

Thus, by the triangle inequality:

|Ma[n+ 1]| ≤ 1

µ
CµKia · (1 + 1)

≤ 2

µ
Cµ · max

i∈I\{d}
Ki

:= Cm.

3) We separate the proof of this part of the lemma into the
following steps.
• First, we show that for each a ∈ A, t ≥ 0, we have
ξa(t) ∈ (0, 1].

Fix a ∈ A. By assumption, ξa(0) ∈ (0, 1], and at
each t ≥ 0:

exp(−βza(w))∑
a′∈A+

ia

exp(−βza′(w))
∈ (0, 1].

Thus, by Lemma 4, we conclude that ξa(t) ∈ (0, 1]
for each t ≥ 0.

• Second, we show that wa(t) ∈ [0, go] for each t ≥ 0.
The proof here is nearly identical to the proof

that Wa[n] ∈ (0, go) in the second bullet point of the
second part of this lemma, and is omitted for brevity.

• Third, we show that |za(wa(t))| ≤ Cz for each t ≥ 0.
The proof here is nearly identical to the proof

that |za(Wa[n])| ≤ Cz in the fourth bullet point of
the second part of this lemma, and is omitted for
brevity.

• Fourth, we show that there exists some Cξ > 0 such
that ξa(t) ≥ Cξ for each a ∈ A, t ≥ 0.

Define:

Cξ := min

{
min{ξa′(0) : a′ ∈ A}, 1

|A|
e−2βCz

}
∈ (0, 1).

By definition of Cξ, we have ξa(0) ≥ Cξ. Moreover,
for each n ≥ 0, we have:

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

≥ e−βCz

|A+
ia
| · eβCz



≥ 1

|A|
e−2βCz

≥Cξ.

Thus, by Lemma 4, we have ξa(t) ≥ Cξ for each
t ≥ 0.

• Fifth, we show that there exists Cw > 0 such that,
for each a ∈ A, t ≥ 0, we have wa(t) ≥ Cw.

The proof here is nearly identical to the proof
that Wa[n] ≥ Cw in the fourth bullet point of the
second part of this lemma, and is omitted for brevity.

Remark 8: Crucially, the constants introduced and used
in the above proof, i.e., Cw, Cm, Cξ (and naturally, go), do
not depend on the node-dependent update rates Ki. This is
a critical observation, since each Ki must be chosen to be
large enough such that the term:

1−

∑
a′∈A−

ia

ha′(w(t))

Kia ·
∑

â∈A+
ia

wâ(t)

which appears in (26), is always strictly positive, i.e., that:

Kia >

∑
â∈A+

ia

wâ(t)∑
a′∈A−

ia

ha′(w(t))
(30)

for all t ≥ 0, regardless of the initial value of w(0) ∈ W .
The numerator in the right-hand-side expression of (30) can
be straightforwardly (if loosely) upper bounded by |A|go.
However, the denominator in the right-hand-side expression
of (30) must be lower-bounded recursively in increasing
order of depth, which requires Kia to depend on {Ki : i ∈
I, ℓi < ℓia}, as well as on the constants Cw, Cm, Cξ, and
go. Thus, the fact that Cw, Cm, Cξ, and go are established
independently of the values of Ki allows circular reasoning
to be avoided.

The lemma below establishes the final part of Lemma 3.
Below, we restrict the domains of the maps ξ̄β and za to
reflect the bounds of the traffic flow trajectory w established
in the above lemma, i.e., ξ̄β , za : W ′ → R, with the flow
restricted to:

W ′ := W ∩ [Cw, go]
|A|

and the toll restricted to [0, Cp]
|AO|.

Lemma 6: The continuous-time dynamics (20) satisfies:
1) For each a ∈ A, the restriction of the latency-to-go map

za : W → R|AO| → R to W ′ is Lipschitz continuous.
2) The map from the probability transitions ξ ∈∏

i∈I\{d} ∆(A+
i ) and the traffic flows w ∈ W is

Lipschitz continuous.
3) For each a ∈ A, the restriction of the continuous

dynamics transition map ρa : R|A| × R|AO| → R|A|,
defined recursively by:

ρa(ξ) := Kia

(
−ξa +

exp(−βza(w))∑
a′∈A+

ia

exp(−βza′(w))

)
to W ′ is Lipschitz continuous.
Proof:

1) We shall establish the Lipschitz continuity of za, for
each a ∈ A, by providing uniform bounds on its partial
derivatives across all values of its arguments w ∈ W ′.

The proof follows by induction on the height index
k ∈ [m(G)]. For each a ∈ A, let z̃a : R|A| → R be the
continuous extension of za : W → R to the Euclidean
space R|A| containing W . By definition of Lipschitz
continuity, if z̃a is Lipschitz for some a ∈ A, then so
is za. For each a ∈ A−

d = {a ∈ A : ma = 1} and any
w ∈ R|A|:

z̃a(w) = s[a](w[a]).

Thus, for any â ∈ A, and any w ∈ R|A|, p ∈ R|AO|:
∂z̃a
∂wâ

(w) =
ds[a]

dw
(w[a]) · 1{â ∈ [a]} ∈ [0, Cds].

We set Cz,1 := Cds.
Now, suppose that there exists some depth k ∈

[m(G)− 1] and some constant Cz,k > 0 such that, for
any a ∈ A satisfying ma ≤ k, and any w ∈ W , n ≥ 0,
the map z̃a : R|A| → R is continuously differentiable,
with: ∣∣∣∣ ∂z̃a∂wâ

(w)

∣∣∣∣ ≤ Cz,k.

Continuing with the induction step, fix a ∈ A such that
ma = k + 1 (there exists at least one such link, by
Proposition 1, Part 4). From Proposition 1, Part 2, we
have ma′ ≤ k for each a′ ∈ A+

ia
. Thus, the induction

hypothesis implies that, for any â ∈ A:

z̃a(w) = s[a](w[a])−
1

β

∑
a′∈A+

ja

e−βza′ (w).

Computing partial derivatives with respect to each com-
ponent of w, we obtain:

∂z̃a
∂wâ

(w) =
ds[a]

dw
(w[a]) · 1{â ∈ [a]}

+
∑

a′∈A+
ja

e−βz̃a′ (w) · ∂z̃a
′

∂wâ
(w),

⇒
∣∣∣∣ ∂z̃a∂wâ

(w)

∣∣∣∣ ≤ Cds + |A| · Cz,k.

We can complete the induction step by taking Cz,k+1 :=
Cds + |A| · Cz,k.

This establishes that, for each a ∈ A, the map za is
continuously differentiable, with partial derivatives uni-
formly bounded by a uniform constant, Cz := Cz,m(G).
This establishes the Lipschitz continuity of the map
za for each a ∈ A, and thus proves this part of the
proposition.

2) Recall that the map from traffic distributions probabili-
ties (ξ) to traffic flows (w) is given as follows, for each
a ∈ A. Recall that R(a) denotes the set of all routes in
the Condensed DAG that contain the arc a:

wa =

gia +
∑

â∈A−
i

wa

 · ξa = go ·
∑

r∈R(a)

|r|∏
k=1

ξar,k
,



where ar,k denotes the k-th arc along a given route
r ∈ R, for each k ∈ |r|. Thus, the map from ξ to
w is continuously differentiable. Moreover, the domain
of this map is compact; indeed, for each a ∈ A, we
have ξa ∈ [0, 1], and for each non-destination node
i ̸= d, we have

∑
a∈A+

i
ξa = 1. Therefore, the map

ξ 7→ w has continuously differentiable derivatives with
magnitude bounded above by some constant uniform in
the compact set of realizable probability distributions
ξ. This is equivalent to stating that the map ξ 7→ w is
Lipschitz continuous.

3) Above, we have established that the maps za and
ξ 7→ w are Lipschitz continuous. Since the addition and
composition of Lipschitz maps is Lipschitz, it suffices to
verify that the map ρ̂ : R|A| → R|A|, defined element-
wise by:

ρ̂a(z) :=
e−βza∑

a′∈A+
ia

e−βza′
, ∀a ∈ A

is Lipschitz continuous. We do so below by computing,
and establishing a uniform bound for, its partial deriva-
tives. For each â ∈ A:

∂ρ̂a
∂zā

=
1

(
∑

a′∈A+
ia

e−βza′ )2

·

( ∑
a′∈A+

ia

e−βza′ · (−β)e−βza · ∂za
∂zā

− e−βza ·
∑

a′∈A+
ia

(−β)e−βza′ ∂za′

∂zā

)

= − e−βza∑
a′∈A+

ia

e−βza′
· β · ∂za

∂zâ

+
βe−βza

(
∑

a′∈A+
ia

e−βza′ )2
·
∑

a′∈A+
ia

e−βza′ ∂za′

∂zā
.

Observe that:∑
a′∈A+

ia

e−βza′ ∂za′

∂zā
=

∑
a′∈A+

ia

e−βza′ · 1{a′ = â}

≤ max
a′∈A+

ia

e−βza′ .

This, together with triangle inequality, then gives:∣∣∣∣∂ρ̂a∂zā

∣∣∣∣ = β + β = 2β.

This concludes the proof for this part of the proposition.

We present the proof of Theorem 2, restated as follows:
For any δ > 0:

lim sup
n→∞

E
[
∥ξ[n]− ξ̄β∥22

]
≤ O(µ),

lim sup
n→∞

P
(
∥ξ[n]− ξ̄β∥22 ≥ δ

)
≤ O

(µ
δ

)
.

3) Proof of Theorem 2: Here, we conclude the proof of
Theorem 2.

Proof: (Proof of Theorem 2) Lemma 5 asserts that
M [n] is bounded (uniformly in n ≥ 0), while Lemma 6
establishes that ρ : R|A| → R is Lipschitz continuous. The
proof of Theorem 2 now follows by applying the stochastic
approximation results in Borkar [25], Chapters 2 and 9.
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