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Abstract

Causal phenomena associated with rare events occur across a wide range of engineering problems,
such as risk-sensitive safety analysis, accident analysis and prevention, and extreme value theory.
However, current methods for causal discovery are often unable to uncover causal links, between
random variables in a dynamic setting, that manifest only when the variables first experience low-
probability realizations. To address this issue, we introduce a novel statistical independence test on
data collected from time-invariant dynamical systems in which rare but consequential events occur.
In particular, we exploit the time-invariance of the underlying data to construct a superimposed
dataset of the system state before rare events happen at different timesteps. We then design a con-
ditional independence test on the reorganized data. We provide non-asymptotic sample complexity
bounds for the consistency of our method, and validate its performance across various simulated
and real-world datasets, including incident data collected from the Caltrans Performance Measure-
ment System (PeMS). Code containing the datasets and experiments is publicly available here.
Keywords: Causal Discovery, Time-Series Data, Rare Events, Conditional Independence Tests,
Sample Complexity Bounds.

1. Introduction

The occurrence of rare yet consequential events during the evolution of a dynamical system is
ubiquitous in many fields of engineering and science. Examples include natural disasters, vehicular
accidents, and stock market crashes. When studying such phenomena, understanding the causal
links between the disruptive event and the underlying system dynamics is crucial for controlling the
system. In particular, if certain values of the system state increase the probability that the disruptive
event occurs, control strategies should be implemented to steer the state away from such values. This
can be accomplished, for instance, by incorporating a description of this causal relationship into the
cost function that generates these control inputs in an optimization-based control framework. In
general, it is important to consider the following question:

Main Question (Q) Given a rare event associated with the evolution of a dynamical system, does
the onset of the event become more likely when the system state assumes certain values?

Below, we present a running example, invoked throughout ensuing sections to provide context.
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Running Example Consider the task of reducing the number of vehicular accidents on a road
by identifying their causes. In particular, consider the scenario in which the amount of traffic on
a network of roads has a causal effect on the occurrence of accidents. For example, on some busy
streets, high traffic flow induces congestion and renders chain collisions more likely. In this case,
since steady-state flows in a traffic network can be controlled via tolling, regulators can adjust the
toll on each network link to redistribute flow and reduce the number of accidents that transpire
Maheshwari et al. (2022a,b). Conversely, on other roads, low traffic flow may incentivize drivers
to exceed the speed limit and create more opportunities for accidents to occur. In this case, traffic
engineers can enforce speed limits more stringently at times of low traffic flow. B

Although many well-established methods in the causal discovery literature can efficiently learn
causal relationships from data, most only apply to data generated from probability distributions
associated with static, acyclic Bayesian networks Glymour et al. (2019); Pearl (2009); Spirtes et al.
(2000). Moreover, most causal discovery algorithms developed for time series data rely on stringent
assumptions, such as linear dynamics and additive Gaussian noise models, or aggregate data along
slices of fixed time indices Glymour et al. (2019); Gnecco et al. (2021); Granger (1969); Pérez-
Ariza et al. (2012). However, rare events often occur sparsely at any fixed time and cannot be easily
modeled using linear dynamics.

To address these shortcomings, we present a novel approach for aggregating and analyzing time
series data in which consequential events of interest occur sparsely. Our method rests on the obser-
vation that, whereas a rare event may be highly unlikely to occur at any fixed time t, the probability
of the event occurring at some time along the entire horizon of interest is often much higher. Thus,
we aggregate the time series data along the times of the event’s first occurrence. This renders the
dataset more informative, by better representing the rare events of interest. Next, we present an
algorithm that uses the curated data to analyze the causal relationships governing the occurrence of
the rare event. The question of whether the system state affects the probability that the rare event
occurs is formally posed as a binary hypothesis test, with the null hypothesis Hy corresponding to
the negative answer, and the alternative hypothesis H; corresponding to the positive one. We math-
ematically prove that our proposed method is consistent against all alternatives Lehmann (1951).
In other words, if Hy were true, then as the number of data trajectories N in the dataset approaches
infinity, our approach would reject H; with probability 1. We validate the performance of our al-
gorithm on simulated and on publicly available traffic and incident data collected from the Caltrans
Performance Measurement System (PeMS).

2. Related Work

Causal Discovery for Static and Time Series Data Causal discovery algorithms identify causal
links among a collection of random variables from a dataset of their realizations. Common ap-
proaches include constraint-based methods, which use statistical independence tests, score-based
methods, which pose causal discovery as an optimization problem, and hybrid methods Glymour
et al. (2019); Pearl (2009); Peters et al. (2017). However, most of these approaches apply only to
non-temporal settings. For time series data, Granger causality uses vector autoregression to study
whether one time series can be used to predict another Granger (1969). Other methods aggregate
different data trajectories by matching time indices Pérez-Ariza et al. (2012); Entner and Hoyer
(2010), or directly solve a time-varying causal graph Malinsky and Spirtes (2018). However, these
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methods do not address the problem of inferring causal links between rare events and dynamical
systems, across sample trajectories on which the rare event can often occur at different times.

Extreme Value Theory and Analysis of Rare Events Extreme value theory characterizes de-
pendences between random variables that exist only when a low-probability event occurs, e.g., rare
meteorological events, or financial crises Engelke and Volgushev (2022); Asadi et al. (2018). Most
closely related to our work are Gnecco et al. (2021), which studies causal links between heavy-tailed
random variables, and Jana et al. (2021), which explores causal relationships between characteris-
tics of London bicycle lanes, such as density, length, and collision rate, and abnormal congestion.
However, Gnecco et al. (2021) imposes restrictive assumptions, such as linear models, while the
discussion in Jana et al. (2021) on accidents’ occurrences is restricted to empirical studies. In con-
trast, our proposed algorithm applies a nonparametric conditional independence test that is capable
of inferring relationships between a general dynamical system, and the onset of a rare event.

Traffic Network Analysis Traffic network theory aims to mathematically describe and control
traffic flow in urban networks of roads, bridges, and highways Baillon and Cominetti (2008); Krich-
ene et al. (2014); Ahipasaoglu et al. (2019). Recent literature has proposed the design of tolling
mechanisms that drive a traffic network to the socially optimal steady state Maheshwari et al.
(2022b); Como and Maggistro (2022). However, these methods do not model or predict the oc-
currence of sudden yet consequential events, such as extreme weather events, car accidents, and
other causes of unexpected congestion. In contrast, our paper uses the occurrence of rare but conse-
quential car accidents in traffic networks as a running example, to illustrate the applicability of our
method on analyzing causal links between dynamical systems and associated rare events.

3. Preliminaries

Consider a stochastic, discrete-time dynamical system with state variable X; € R"™, event variable
A; € {0,1} with P(4; = 1) € [p1, pe] for some p1,p2 € (0,1) for all ¢, with p; < po, and
dynamics X1 = f(Xy, Ay, Wy) for each t > 0, where W; € R" denotes i.i.d. noise, and [ :
R™ x {0,1} x R” — R™ denotes the nonlinear dynamics of the system state. Let 7" denote the
time at which the rare event first occurs, and, with a slight abuse of notation,let A;.; = 0 denote the
event that A; = --- = A; = 0. Moreover, we assume that the first occurrence of the rare event is
governed by a time-invariant probability distribution, i.e.,:

P(A =1/ X 22, A1 =0) =P(Ap g1 = 1| Xy 22, Ay =0), Vi t' >0, (1)

where, for each x,y € R", the notation x < y represents x; < y; for each i € [n] := {1,--- ,n},
and for each z € R", there exists some constant ratio o(x) > 0 such that P(X;_; < z|A; =
1,A14-1 =0) = a(z) - P(X—1 <X z|A1.4-1 = 0). Moreover, we assume that for each z € R",
there exists some a(z) > 0 such that:

P(Xi—1 22|Ay =1,A141 =0) = a(z) - P(Xy—1 2 2|A14-1 =0). ()

In words, we assume that the flow distribution is related to the first occurrence of the rare event
in a time-invariant manner. Given this setup, we restate Q, first defined in the introduction, as the
following hypothesis testing problem:
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Definition 1 The binary hypothesis test, with null hypothesis Hy defined below, is a mathematically
rigorous characterization of Q:

Hy : P(AtJr]. = 1|Xt <z, A1y = O) = P(At+1 = 1|A1:t = 0), Vr eR.

In words, Hy holds if and only if the first occurrence of the rare event transpires independently
of the system state at that time. For convenience, we define the left and right hand sides of Hy by:

aj(z) :==P(A1 = 1| Xy 2, A1y = 0), 3)
as = ]P)(At+1 = 1|A1;t = 0) (4)

Running Example Consider a parallel link traffic network of R links that connect a single source
and a single destination. Let X;; € R denote the traffic flow on every link i € [R] := {1,--- , R}
at time ¢, and define X; := (X1, -+ ,Xy,) € RE. (In general, one can define X € R? to
encapsulate other observed quantities relevant to link ¢ at time ¢, e.g., vehicle speed and pavement
quality). The event variable A; = 1 corresponds to the occurrence of an accident in the network at
time ¢.

In this context, Definition 1 corresponds to checking whether the first occurrence of an accident
on the R-link network at time ¢ is affected by the flow level at time ¢ — 1. This question may be
of interest to traffic authorities, since if the occurrences of costly accidents becomes more likely
at certain levels of traffic flow X, then the flow should be monitored to decrease the chance that
such accidents occur. Flow management can be applied by dynamically tolling the links, as in
Maheshwari et al. (2022a). As accidents are relatively rare in most traffic datasets, it can be difficult
to construct accurate estimates of accident probabilities and flows before accidents at any given time
t. Instead, below, we propose a novel method of data aggregation that allows the use of information
on accident occurrences across all times. l

Since X; is a continuous random variable, a direct comparison of (3) and (4) would necessitate
computing (3) for uncountably many values of x € R™. Instead, we use the laws of conditional
and total probability to reformulate the problem. In the spirit of Bayes’ rule, we compare the
state distribution immediately before the rare event occurred, instead of the rare event probabilities
under different state values. Formally, we observe that under either hypothesis, the state distribution
immediately before the first accident can be decomposed as the following infinite sum; for each
zeR™

NE

P(XT_l = 1‘) = ]P)(Xt_l = a:,T = t)

ﬁ
Il
i

o

P(X¢—1 22, A =1,A141 =0)
1

~+~
I

o

P(X¢—1 22,4141 =0) - P(A, = 1| X1 22, A14-1 =0).

#
Il
—

Intuitively, if Hy were true, then the condition X;_; < zintheterm P(A; = 1| X1 <z, A14—1 =
0) can be dropped. This observation is rigorously formulated as Proposition 2, stated below.
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Proposition 2 The null hypothesis Hy in Definition 1 holds if and only if, for each x € R":

oo
P(Xr_1 2x) = ZP(XtA =r, A1y =0) P(A; = 1[A141 = 0). &)
t=1
Proof Please see Appendix A in the ArXiV version of the paper (link). |

For convenience, we define, foreacht € Nand x € R:

bi(z) :=P(Xp_q1 2 ),
Bi(x) :=P(X¢—1 22, A1 =0),
Yt ——PT/% ——1L41t 1 —»0)

o0 o0

= Zﬁt(ﬂﬁ) Y = ZP(Xt—1 <z, A14—1 =0)-P(4; = 1]A14-1 = 0)
—t =1

= P(X; 1 X @A 1 =0)-P(T =1t).
t=1

The test statistic that we use to distinguish between the distributions b; (x) and by () is the maximum
CDF gap between the distributions, i.e.,:

sup |1 () — bz ()|
rER™

Intuitively, a large gap indicates a higher likelihood that a component-wise larger or smaller state
would change the probability of an event occurring. We formalize this notion in Algorithm 1, and

provide finite sample guarantees for empirical estimates of b1 (x) and by (z) that can be constructed
efficiently from data and used to compute the test statistic.

Running Example In the traffic network example, b;(z) corresponds to the probability that
X7_1, the network flows before the first accident, is component-wise less than or equal to z. Mean-
while, bo(x) describes the weighted average of traffic flows at each time ¢, conditioned on the first
accident occurring after ¢, with the distribution of the first accident time 7' as weights. Section 4
describes sample-efficient methods for constructing empirical estimates of by (x) and by (z) from a
dataset of independent traffic flows. B

4. Methods
4.1. Main Algorithm

We present Algorithm 1, which solves the hypothesis testing problem in Definition 1 from a dataset
of N independent trajectories, by constructing and comparing finite-sample empirical cumulative
distribution functions (CDFs) b (z) and b () for the expressions by (z) and by(x), respectively,
and verifying whether or not (5) holds (in accordance with Proposition 2).
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Algorithm 1: Hypothesis Testing with Reorganized Dataset
Data: Dataset of system state and rare event variables: {(X},AY) :t>0,ie€[N]}
Result: Distribution gap: sup,cp |03 (z) — b3 ()|

T « Realization of T for data trajectory i, Vi € [N]

7 N

ij(f’?) < % Ziﬁl I{Xfi = 37}

B (z) % >oicn HX{ 2w, A7, 4 =0}

S, {Al,=0} if N 1{ Al -0
e —— i 41 =0} >0,
AN { T AL, =0} i HALe } )
0, else.
b () + 352, B (@) - 4.
Return sup, g |0 () — b)Y (z)).

Note on the baseline method The common baseline method for resolving the problem in Defi-
nition 1 is to fix ¢ > 1, and compare the CDF values P(X;_; < z|T = t) and P(X;_; =< x), for
each z € R" at the fixed ¢. This is effectively a “static variant” of Algorithm 1 that only utilizes
dynamical state values immediately before accidents that occur at time ¢. It is generally difficult
to estimate P(X;—1 < z|T = t) from data, since P(T" = ¢) can be very small for any given ¢.
Our algorithm (Algorithm 1) instead aggregates data across times when the rare event has occurred,
allowing the event to be better represented.

4.2. Theoretical Guarantees:

Theorem 3 below illustrates that, if Hy holds, then as the number of sample trajectories N ap-
proaches infinity, the empirical distributions of (6) and (7), as constructed in Algorithm 1 converge
at an exponential rate to their true values. This establishes a finite sample bound that controls the
error of the statistical independence test presented in Algorithm 1. The proof follows by care-
fully applying concentration bounds for light-tailed random variables, and invoking the Dvoretsky-
Kiefer-Wolfowitz inequality, which prescribes explicit convergence rates for empirical CDFs.

Theorem 3 (Exponential Convergence to Consistency Against all Alternatives) Suppose the null
hypothesis Hy holds, i.e., by (x) = ba(x).

1. Ifn =1, i.e, X; € R foreacht > 0, then for each € > 0, there exist continuous, positive
functions C1(¢), Ca(€) > 0 such that:

P <sup {‘lev(x) - Bév(x)’} > e) < Cy(e) - e N2l

z€R

2. If n > 1, then there exist continuous, positive functions C3(€), C(€) > 0 such that:

v (fél@ {\E{V () — b3’ (rr>\} ~ 6) = [03<6)(N +1)n+ Cyle)| - e NV,

Moreover, for sufficiently large N, the factor N + 1 can be replaced by the constant 2.

Proof Please see Appendix B in the ArXiV version of the paper (link). |
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5. Results

In this section, we illustrate the numerical performance of our proposed method on simulated and
real-world traffic data, and its efficacy over baseline aggregation methods of concatenating data
points along a single, fixed time ¢.

5.1. Simulated Data

In our first set of experiments, we construct synthetic data for single-link and multi-link traffic
networks. For the single-link network, we use the dynamics:

[t + 1] = (1 = p(A])) - 2[t] + p(Aft]) - ult] + wlt], Vi € [Th],
Alt + 1] ~ P(x[t])

where z[t] € R denotes the traffic flow at time ¢, A[t] € {0, 1} is the Boolean random variable that
indicates whether or not an accident has occurred at time ¢, (A[t]) > 0 describes the fraction of
traffic flow departing the link, u[t] € R denotes the total input traffic flow, w[t] € R is a zero-mean
noise term, and T}, is the finite time horizon. In our experiments, we set T, = 500, ©(0) = 0.3,
(1) = 0.2, u(t) = 100 for each ¢t € [T}], and draw w(¢) i.i.d. from the continuous uniform
distribution on (—10, 10). We create datasets corresponding to the null and alternative hypothesis.
For the null hypothesis dataset, we fix P(z[t]) = Bernoulli(0.01), regardless of the value of z[t].
This simulates a scenario where the likelihood of an accident occurring has no dependence on traffic
flow. For the alternative hypothesis dataset, we set P(z[t]) = Bernoulli(0.01) when x[t] < 109 and
P(z[t]) = Bernoulli(0.10) when z[t] > 109. This represents a scenario where higher traffic loads
increase the likelihood that an accident occurs.

To contrast the performance of our algorithm with the baseline, we compute the following quan-
tities from datasets of independent trajectories corresponding to Hy and Hi, in accordance with
Proposition 2 and Theorem 3:

« For our method—We compute the empirical estimates b () and b () of the functions
by (z) and by(z) as functions of = (Figure 1), and the maximum CDF gap sup, g |b) (z) —
by ()| as functions of N (Figure 2).

* For the baseline method—We compute the empirical estimates of the CDFs of X;_1|T =t
and X;_ i, with ¢ fixed at 1, as functions of = (Figure 1), and the corresponding maximum
CDF gap as functions of NV (Figure 2). Note that for N < 500, it is difficult to obtain the
CDF of X;_1|T = t, due to rarity of the event at any given time.

Figures 1 and 2 demonstrate that, compared to the baseline method, our approach is able to distin-
guish between the null and alternative hypotheses from a far smaller dataset. This illustrates that
our method, compared to the baseline, distinguishes the dependence between the occurrence of a
rare event and the state values immediately preceding the event more efficiently.

Appendix C contains further empirical results on synthetic datasets for multi-link networks.

5.2. Caltrans PeMS Dataset

We now demonstrate the efficacy of our algorithm by conducting the hypothesis test in Proposition
2 on real traffic flow and incident data collected from the publicly available Caltrans Performance
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Figure 1: (Top) From left to right, by (x) and ba(x) vs. x plots for (Ho, N = 500), (Ho, N = 2000),
(Hy, N =500), and (Hy, N = 2000). (Bottom) From left to right, empirical CDFs for X; 1|T =
t and X;_1 with t = 1, in the same order of hypothesis and N values.
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Measurement System (PeMS) dataset Varaiya (2001). PeMS uses loop detectors placed on freeways
to collect flow, speed, and other data about traffic conditions, and overlays this with incident reports.
We consider traffic flow data (# vehicles / time) collected from January to August 2022 from 6 A.M.
to 2 P.M. daily, at 5-minute intervals, on a selection of bridges: the San Mateo-Hayward Bridge,
the San Francisco—Oakland Bay Bridge, and the Richmond-San Rafael Bridge, in the San Francisco
Bay Area. That is, we consider single link networks connecting a source and destination with the
continuous variables X; € R, corresponding to average flows on the link. Correspondingly, we
use incident data collected on these bridges by PeMS in the same time interval from the California
Highway Patrol (CHP).

Data Collection We treat each day as an independent trajectory of the traffic flows on every
bridge. The PeMS dataset contains flows collected from dual loop detectors placed along the
bridges. For each time between 6 A.M. and 2 PM., we average the flow data recorded by loop
detectors on each bridge to obtain the state variable X; for time ¢. Mathematically, we define
Xi = ﬁ Zyz‘l X¢, where I denotes the set of loop detectors on a single link, and X} denotes the
flow measured by detector 7 € I at time ¢. We exclude from our analysis any trajectory on which
there was no incident for the entire day, since such trajectories do not contain data relevant to our
problem of interest.
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Results In Table 1, we enumerate the sample size N and test statistic sup, g [0 (x) — b ()]
for the six traffic links (three bridges, each with two directions of traffic flow). Note the substantial
difference in the CDF gap (of nearly 0.178) for the Richmond-San Rafael Bridge, East, compared to
all other links, indicating that the flows on this link are particularly causally linked to the first time
of incident formation. Further, the San Francisco-Oakland Bay Bridge, East, also has a higher CDF
gap (0.081) relative to the West direction, and relative to the other bridges. These gaps are visible
in the CDF plots in Figures 3(e) and 3(c), respectively.

Link N [ sup,cp [0} (x) — 0 ()]
San Mateo-Hayward Bridge, East (SR92-E) 85 0.053
San Mateo-Hayward Bridge, West (SR92-W) 116 0.039
San Francisco—Oakland Bay Bridge, East (I80-E) | 116 0.081
San Francisco-Oakland Bay Bridge, West (I80-W) | 112 0.042
Richmond-San Rafael Bridge, East (I580-E) 45 0.178
Richmond-San Rafael Bridge, West (I580-W) 94 0.048

Table 1: CDF gap, sup,cp |bN (&) — bY ()] for the six links in the San Francisco Bay Area.
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Figure 3: Empirical CDFs bY () and bY () for six bridges in the San Francisco Bay Area.

6. Conclusion

We present a novel method for identifying causal links between the state evolution of a dynami-
cal system and the onset of an associated rare event. Crucially, we leverage the time-invariance
of frequently encountered dynamical models to reorganize data in a manner that better represents
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occurences of the rare event. We then formulate a nonparametric statistical independence test to
infer causal dependencies between the states of the dynamical system and the rare event. Empirical
results on simulated and real-world time-series data indicate that our method outperforms a base-
line approach that conducts independence tests only a single time slice of the original dataset, in
which rare events occur sparsely. Further, when applied to real-world traffic flow and incident data
collected from the Caltrans PeMS system, our method indicates that there are indeed bridges in the
San Francisco Bay Area on which accident occurrences are causally linked to traffic flow.

As future work, the causal discovery algorithm presented here may be used to more effectively
control the evolution of a dynamical system associated with a rare but consequential event. By
establishing causal links between the dynamical state and the rare event, control strategies can be
redesigned to maneuver the state away from regions of the state space where the event occurs more
frequently. Important engineering applications include incentive design and flow control methods
in the network traffic systems literature, such as dynamic tolling and rerouting. In addition, it is of
interest to develop more flexible formulations of our method to study more complicated models of
rare events, such as continuous and multivariate variables that account for the severity of the event,
including the severity of accidents on a traffic network.

The appendix can be found on ArXiV (link), per L4DC submission instructions. The authors
will ensure that the ArXiV link stays active.
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Appendix A. Preliminaries

Proof (Proof of Proposition 2) First, for each x € R™:

P(A; =1|X4—1 <2, A14-1 =0)

P(X;—1 2 z|A=1,A14-1=0)
P(Xi—1 2 x|A14-1 =0)

=P(A; = 1|A14-1 = 0) - ().

=P(A; = 1|A14—1 =0) -

Thus, P(A; = 1|A;—1 = 0) is time-invariant. Next, observe that:

P

—~

Xr—1 2 x) (6)

o

P(Xi—1 22T =1t) - P(T'=1)

i
A

o

P(}(b,ljj x,]’::t)

N
Il
—

ot

P(Xi1 22,4141 =04 =1)

o~
Il
—

o

P(A =1|X; 22,4141 =0) - P(Xy—1 22,4141 =0)

o~
Il
—

=ar(@) - Y P(Xiy <@, Aryog = 0).
t=1

and:

Y P(Xp1 2w, Ay =0) - P(A = 1|A1y = 0) ()
t=1

=as - ZP(Xt—l <z, A14-1 =0).
=1

Thus, the null hypothesis Hy in Definition 1 holds if and only if (6) and (7) are equal, as claimed. B

Appendix B. Methods

Proposition 4 (Corollary to the Dvoretzky-Kiefer-Wolfowitz Inequality) Ler X € R" be a ran-
dom variable defined on the probability space (2, 3, P), and let E € ¥.. Fixe > 0and N € N, and
let X1,--- , XN bei.id. copies of X. Then, for each N > N and each ¢ > 0:

P | sup
z€eR™

N
1
P(X <2, E) - > X 2 x, E}‘) < 9¢-2N€E,
=1

12



TowAaRDS DYNAMIC CAUSAL DISCOVERY WITH RARE EVENTS

Proof Let Gy,--- ,Gy be drawn i.i.d. from the continuous uniform (0, 1) distribution. Then:
1 N
P (feuﬂgl P(X <z,F)— NZHX" = a:,E}) > e)
=1
=P <sup P(X 2 2,E) — Gp(P(X = l‘,E))‘ > 6)
reR™
<P|( sup ‘t — Gn(t)’ > €
te(0,1]
<9 2N€

— i

where the final inequality follows by applying the Dvoretzky-Kiefer-Wolfowitz Inequality to the
continuous uniform (0, 1) distribution. [ |

Proof Fix ¢ > 0, and take:

Te(e) = [111(1 . " <1€é)§2>1 '

First, to show that b () — by (x) at an exponential rate in N, we invoke the Dvoretzky-Kiefer-
Wolfowitz inequality:

- 1
P (sup ‘b{v(x) = bi(z)| > 26) < 2. 2l¢

zeR

Next, to show that b} () — by () at an exponential rate in N, we have:
sup {Bév(x) — bg(x)}‘

—sup 3 [A @) — Bl

z€R |,
Te
=2 [ {18 ) = B 50"+ sup {142 — vl et
+ sup { > 1B @AY+ 1Byl }
z€R =T+ 1
< > s 1Y) = B+ 3 sup {14~ wl} - B(Ars =0)
t=17% t=17%
N 00 00
+%Z STyt zag+ S BT,
n=1t=T.+1 t=T.+1

Below, we upper bound each of the four terms in the final expression above.
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* First, by the Dvoretzky-Kiefer-Wolfowitz inequality, we have, foreach ¢ € [T,] := {1, -+ ,Tc}:
T. 1
P (Z sup {3 () ~ Bi()] } > 8€>

=1 e
1
€
8T,

Te
<307 (sun {1 @) - Autoll} >
=1 xTE

2
<2T.exp <_32€T2 ~N) .
(&

* Let N; € [N] denote the number of trajectories with A;.,—; = 0. We first show that, with
high probability, N; > N - P(A;; 1 = 0)2. We then show that, under this condition on N;
taking a sufficiently large value, 4} (z) — 7;(x) exponentially in N.

First, by the Hoeffding bound for general bounded random variables (Vershynin Ver-
shynin (2018), Theorem 2.2.6), we have:

1
P —N; <P(Ay4_1 = 0)>
(N t <P(Arne— 0))

1

<P <'NNt —P(Ay—1 = 0)‘ >P(Apt1=0) —P(Ap 1 = 0)2>

512
< exp _Q{P(Alztfl =0) - P(A14-1=0) } -N
Then, if Ny > N -P(A14—1 = 0):

P (!%N(w) — @) > g7 P(Ajzt_l = 0))

2
02 €
< exp (—2 ‘P(A1:4-1=0)"-N- 6472 - P(Ary = 0)2>

« To bound the third term, - 25:1 DTt 1{T™ > t}, define:

Br, = i HT >t} = i il{T:T}
T=Te+1 T=Tc+1 7=t
=S Syr=n= Y Y 1r=n
T=T.+1 7=t T=Tc+1t=T.+1
= Y -T)HT=r1}=) 7- YT =7+T.}.
T=Tc+1 =1

Thus, we have:

[e.e] oo
E[Br,] = ZT P(T=74+T¢) < ZT (1 =py) e,
T=1 T=1
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b1

o
S(l—pl)Tc-@ Z (1-p)" 'm

_a —p1)Te - py

2 )
p1

and:

1
P(Bp, <t)<(1 —pl)t+k_1p2 < 2exp (— In <1 > t) .
— D1

Thus, By, — E[Br,] is sub-exponential, with: (see Vershynin Vershynin (2018), Proposition
2.7.1)

e 6 —1
Br. — E[B =6y — (14— ) ———.
H Tc [ Tc]H'wl 1n2 < + 1n2> ln(l _pl)

Applying the Bernstein inequality for zero-mean sub-exponential variables (Vershynin, Ver-
shynin (2018)), we obtain:

n=1
1 N
—Pp <NZBJTVC E[Br.] > e—]E[BTC]>
n=1
1 1
<P|=> BN —E[B —

1 /In2 In2
exp( mln{ 96“ - <6—|—ln2> n(l —p1)Ci - ¢,

In2 In2 2[1 (1 )]QC 9 N
9216e \ 6 +Inz /) LT PUL 2e ’

where:
Vam
Cl = m ~ 0.00489,
1
02 = m ~ 0.0765.
* Finally, note that by definition of € > 0:
YOPTzt)< Y A-p) Tt =—1-p) < Z1-p)e = e
b1 pi 8
t=Te+1 t=Te+1

For the multivariate version (i.e., n > 1), the same proof follows, albeit with the multivariate
version of the Dvoretzky-Kiefer-Wolfowitz-Massart inequality. For more details, see Naaman, 2021
Naaman (2021). |
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Figure 4: CDF Gap between vs. N, for the 2-link traf-
fic network example. Here, red and blue corre-
spond to the baseline and our method, respec-
tively, while thick and thin lines correspond to the
null and alternative hypotheses, respectively. Our
approach correctly identifies the null hypothesis
dataset with a relatively small number of samples,
while the naive aggregation method fails to do so
(thin blue curve).

CDF Gap

o A Figure 5: CDF Gap between vs. N, for the 3-link traf-
fic network example. The color and thickness
schemes are identical to those of the single-link
and 2-link plots in Figures 2 and 4.

Appendix C. Experiment Results
C.1. Multi-link Traffic Networks

For the multi-link traffic network, we use the dynamics: (Maheshwari et al. (2022a))

) . e—Bxilt]
R e =T

Alt] ~ P(x[t]), )

-uft] + wlt], Vte [T],ie[R], (8)

where x;[t] denotes the traffic flow on each link ¢ € [R], u[t] € R and w[t] € R, and T}, are the
input, zero-mean noise terms, and time horizon, as before. Here, we set 7" = 250, ©(0) = 0.3,
w(l) = 0.2, u(t) = 100R for each t € [T], and we again draw w[t] i.i.d. from the continuous
uniform distribution on (—10, 10). As with the single-link case, we created two datasets for the null
and alternative hypotheses. For the null hypothesis, we fix P(x[t]) to be Bernoulli(0.02); for the
alternative hypothesis, we set P(x[t]) to be Bernoulli(0.02) when z[t] < 105, and Bernoulli(0.30)
when z[t] > 105. Again, this setting encodes the situation where higher traffic loads cause higher
accident probabilities.

Similar to the single-link case, we compute the maximum CDF gap sup, g [0 (z) — by (z)| as
functions of NV (thin lines), and the empirical CDFs of X;_1|T = t and X;_1 (thick lines) for both
the null and alternative hypotheses. We again observe that our method distinguishes between the
two hypotheses at a smaller sample number N compared to the baseline method.

Analogous results hold for a 3-link system with dynamics as given by (8) and are presented in
Figure 5.
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