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Abstract— Tolling in traffic networks offers a popular mea-
sure to minimize overall congestion. Existing toll designs pri-
marily focus on congestion in route-based traffic assignment
models (TAMs), in which travelers make a single route selection
from source to destination. However, these models do not reflect
real-world traveler decisions because they preclude deviations
from a chosen route, and because the enumeration of all routes
is computationally expensive. To address these limitations, our
work focuses on arc-based TAMs, in which travelers sequentially
select individual arcs (or edges) on the network to reach
their destination. We first demonstrate that marginal pricing,
a tolling scheme commonly used in route-based TAMs, also
achieves socially optimal congestion levels in our arc-based
formulation. Then, we use perturbed best response dynamics
to model the evolution of travelers’ arc selection preferences
over time, and a marginal pricing scheme to capture the social
planner’s adaptive toll updates in response. We prove that our
adaptive learning and marginal pricing dynamics converge to
a neighborhood of the socially optimal loads and tolls. We then
present empirical results that verify our theoretical claims.

I. INTRODUCTION

Mitigating congestion on transportation networks is a
key concern in urban planning, since the selfish behavior
of individual drivers often significantly increases driving
time and pollution levels. Congestion pricing (tolling) is
an increasingly popular tool for regulating traffic flows ([1,
2]). The design of tolls that can effectually induce socially
optimal traffic loads requires a realistic traffic assignment
model (TAM) that captures travelers’ routing preferences.

The classical literature on congestion pricing [3–5] often
considers route-based TAMs, in which travelers make a
single route selection at the origin node of the network,
and do not deviate from their selected route until they reach
the destination node. However, route-based modeling often
requires enumerating all routes in a network, which may be
computationally impractical, and do not capture correlations
between the total costs of routes that share arcs. To address
these issues, this work uses an arc-based TAM [6–11] to cap-
ture travelers’ routing decisions. In this framework, travelers
navigate through a traffic network by sequentially selecting
among outgoing edges at each intermediate node. Designing
tolls for arc-based TAMs is relatively under-studied, with the
only exception of [11] where the authors show that, similar
to route based TAMs, marginal tolling also achieves social
optimality in arc-based TAMs.
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The basic philosophy of toll design is to steer the equilib-
rium behavior of agents towards social optimality by adding
external incentives to their utility functions. However, a key
assumption in this setting is that agents always adopt the
equilibrium behavior, regardless of the incentives applied.
This is not realistic, as real-world agents typically update
their strategies from their initial strategies based on repeated
interactions, only eventually converging to an equilibrium
outcome [12]. While there exist learning rules for route-
based TAMs which provably converge to the equilibrium
strategies [13, 14], the development of analogous learning
mechanisms for arc-based TAMs is relatively recent, e.g.,
in [10], which introduces a perturbed best response based
dynamics. Consequently, it is necessary to study tolling in
the presence of such dynamic adaptation rules by travelers.

Many prior works design tolls in dynamic environments by
using reinforcement learning to iteratively update the toll on
each arc. Chen et al. formulated the toll design problem as
a Markov Decision Process (MDP) with high-dimensional
state and action spaces, and apply a novel policy gradient
algorithm to dynamically design tolls [15]. Mirzaei et al.
used policy gradient methods to design incremental tolls on
each link based on the difference between the observed and
free-flow travel times [16]. Qiu et al. cast dynamic tolling
into the framework of cooperative multi-agent reinforcement
learning, and then applies graph convolutional networks to
tractably solve the problem [17]. Likewise, Wang et al.
use a cooperative actor-critic algorithm to tractably update
a dynamic tolling scheme [18]. However, these methods
operate on high-dimensional spaces, and are thus often
computationally expensive. Moreover, they typically lack
theoretical guarantees of convergence. The work most closely
related to ours is [13] which studies dynamic tolling on
parallel-link networks.

In this work, we study tolling in the arc-based TAM
detailed in [10]. We show that there exists a unique toll that
induces socially optimal congestion levels. Furthermore, we
propose an adaptive tolling dynamics that steers the travel-
ers’ routing preferences towards socially optimal congestion
levels on the network. Specifically, we implement marginal
cost tolling, via a discrete-time dynamic tolling scheme that
adjusts tolls on arcs, with the following key features:

1) Tolls are adjusted at each time step towards the direction
of the current marginal cost of travel latency.

2) Tolls are updated at a much slower rate compared to
the rate at which travelers update arc selections at each
non-destination node (timescale separation).

3) The toll update of each arc only depends on “local
information” (in particular, the flow on each arc), and
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does not require the traffic authority to access the
demands of travelers elsewhere on the network.

This form of adaptive tolling was first introduced in [13] to
study dynamic tolling scheme for parallel-link networks. This
work extends the scope of that tolling scheme to bidirectional
traffic networks, in the context of arc-based TAMs.

We show that the tolling dynamics converges to a neigh-
borhood of a fixed toll vector, the corresponding equilibrium
flows of which we prove to be socially optimal. We also show
that the travelers’ arc selections converge to a neighborhood
of this socially optimal equilibrium flow. Our proof is based
on the constant step-size two-timescale stochastic approx-
imation theory [19], which allows us to decouple the toll
and arc selection dynamics, and establish their convergence
via two separate Lyapunov-based proofs. Although marginal
tolling provably leads to socially efficient traffic allocation
in a route-based TAM framework [5], to the best of our
knowledge, this work presents the first marginal tolling
scheme that induces socially optimal traffic flows in an arc-
based setting.

The rest of the paper is outlined as follows: In Section II
we present the transportation network model we consider in
this work and summarize the required preliminaries from
[10] on arc-based TAM. Furthermore, we also introduce
the equilibrium concept we consider in this work, along
with the notion of social optimality. In Section III, we
present properties of the optimal tolls which induce social
optimality in this setup. In Section IV, we introduce the
tolling dynamics and present the convergence results. In
Section V, we present a numerical study which corroborate
the theoretical findings of this paper. Finally we conclude this
paper in VI and present some directions of future research.

Notation: For each positive integer n ∈ N, we denote
[n] := {1, · · · , n}. For each i ∈ [n] in an Euclidean space
Rn, we denote by ei the i-th standard unit vector. Finally,
let 1{·} denote the indicator function, which returns 1 if the
input is true and 0 otherwise.

II. SETUP

Consider a traffic network described by a directed graph
GO = (IO, AO), where IO and AO denote nodes and arcs,
respectively. An example is shown in Figure 1 (top left);
note that GO can contain bidirectional arcs. Let the origin
nodes and destination nodes be two disjoint subsets of IO.
To simplify our exposition, we assume that IO contains only
one origin o ∈ I and one destination d ∈ I , although
the results presented below straightforwardly extend to the
multiple origin-destination-pair scenario. Travelers navigate
through the network, from origin o to destination d, by
sequentially selecting arcs at every intermediate node. This
process produces congestion on each arc, which in turn
determines travel times. The cost on each arc is then obtained
by summing the travel time and toll. Specifically, each arc
a ∈ AO is associated with a toll pa ∈ R|AO|, and a positive,
strictly increasing latency function sa : [0,∞) → [0,∞),
which gives travel time as a function of traffic flow. The

Fig. 1: Example of a single-origin single-destination original net-
work GO (top left, with superscript O), and its corresponding
condensed DAG, or CoDAG, representation G (top right, with
superscript C). Arc correspondences between the two networks are
given by Table I, while node correspondences are indicated by color.

cost on arc a ∈ AO is then given by:

ca(wa, pa) = sã(wa) + pa.

Finally, let the demand of (infinitesimal) travelers entering
from origin node o be denoted by go.

Note that sequential arc selection on networks with bidi-
rectional arcs can result in a cyclic route. For example,
a traveler navigating the left traffic network in Figure 1
using sequential arc selection may cycle between nodes iO2
and iO3 . To resolve this issue, we consider arc selection on
the condensed DAG (CoDAG) representation of the original
network GO, a directed acyclic graph (DAG) representation,
as proposed in [10]. The Condensed DAG representation
preserves all acyclic routes from origin o to destination d in
GO, but precludes cyclic routes by design. Details regarding
the construction and properties of CoDAG representations
are provided in [10], Section II.

TABLE I: Arc correspondences between the graphs in Figure 1:
The original network (top left) and the CoDAG (top right).

Original aO1 aO2 aO3 aO4 aO5 aO6 aO7 aO8 aO9

CoDAG aT1 aT2 aT4 aT7 aT5 aT6 aT3 aT11 aT12

aT9 aT8 aT10

We define [·] : A → AO to be a map from each CoDAG
arc a ∈ A to the corresponding arc in the original graph,
[a] ∈ AO (as shown in Table I). For each arc a ∈ A, let
ia and ja denote the start and terminal nodes, and for each
node i ∈ I , let A−

i , A
+
i ⊂ A denote the set of incoming and

outgoing arcs.

A. Cost Model

Below, we assume that every traveler has access to GO,
and to the same CoDAG representation G = (I, A) of GO;
in particular, G is used to perform sequential arc selection
to generate acyclic routes. The travelers’ aggregative arc



selections generate network congestion. Specifically, for each
a ∈ A, let the flow or congestion level on arc a be denoted
by wa, and let the total flow on the corresponding arc in the
original network be denoted, with a slight abuse of notation,
by w[a] :=

∑
a′∈[a] wa′1. Travelers perceive the cost on each

arc a ∈ A as:

c̃[a](w[a], p[a]) := c[a](w[a], p[a]) + νa

= s[a](w[a]) + p[a] + νa,

where νa is a zero-mean random variable. At each non-
destination node i ∈ I\{d}, travelers select among outgoing
nodes a ∈ A+

i by comparing their perceived cost-to-go
z̃a : R|A| × R|AO| → R, given recursively by:

z̃a(w, p) := s̃[a](w[a]) + p[a] + min
a′∈A+

ja

z̃a′(w, p), ja ̸= d,

(1)
z̃a(w, p) := s̃[a](w[a]) + p[a], ja = d.

Consequently, the fraction of travelers who arrives at i ∈
I\{d} and choose arc a ∈ A+

i is given by:

Pija := P(z̃a ≤ z̃a′ , ∀a′ ∈ A+
i ). (2)

An explicit formula for the probabilities {Pija : a ∈ A+
i },

in terms of the statistics of z̃a, is provided by the discrete-
choice theory [20]. In particular, define za(w) := E[z̃a(w)]
and ϵa := z̃a(w) − za(w), and define the latency-to-go at
each node by:

φi({za′(w, p) : a′ ∈ A+
i }) = E

[
min

a′∈A+
i

z̃a′(w, p)

]
. (3)

Then, from discrete-choice theory [20]:

Pija =
∂φi

∂za
(z), i ∈ I\{d}, a ∈ A+

i , (4)

where, with a slight abuse of notation, we write φi(z) for
φi({za′ : a′ ∈ A+

i }).
To obtain a closed-form expression of φ, we employ

the logit Markovian model [6, 7], under which the noise
terms ϵa are described by the Gumbel distribution with scale
parameter β. As a result, the expected minimum cost-to-go
za : R|A| × R|AO| → R, associated with traveling on each
arc a ∈ A, assumes the following form:

za(w, p) (5)

= s[a]

( ∑
ā∈[a]

wā

)
+ p[a] −

1

β
ln

( ∑
a′∈A+

ja

e−βza′ (w,p)

)
.

Note that (5) is well-posed, as za can be recursively
computed from the destination back to the origin ([10],
Section III).

1Unlike existing TAMs, in our model, the latency of arcs in G can be
coupled, since multiple copies of the same arc in GO may exist in G.

B. CoDAG Equilibrium

Here, we define the condensed DAG (CoDAG) equilib-
rium (Definition 1), based on the CoDAG representation of
the original traffic network. Specifically, we show that the
CoDAG equilibrium exists, is unique, and solves a strictly
convex optimization problem (Theorem 1).

Definition 1 (Condensed DAG Equilibrium): Fix a toll
vector p ∈ R|AO|, and fix β > 0. We call an arc-flow vector
w̄β(p) ∈ R|A| a Condensed DAG (CoDAG) equilibrium at p
if, for each i ∈ I\{d}, a ∈ A+

i :

w̄β
a (p) (6)

=

gi + ∑
a′∈A+

i

w̄β
a′(p)

 exp(−βza(w̄β(p), p))∑
a′∈A+

ia

exp(−βza′(w̄β(p), p))
,

(7)

where gi = g0 · 1(i = o), and w ∈ W , where:

W :=

{
w ∈ R|A| :

∑
a∈A+

i

wa =
∑

a∈A−
i

wa, ∀ i ̸= o, d, (8)

∑
a∈A+

o

wa = go, wa ≥ 0, ∀a ∈ A

}

characterizes the conservation of flow in the CoDAG G. Note
that W is convex and compact.

At a CoDAG equilibrium w̄β(p), the fraction of travelers at
any intermediate node i ∈ I\{d} who selects an arc a ∈ A+

i

is given by ξ̄βa (p), as defined below:

ξ̄βa (p) :=
w̄β

a (p)∑
a′∈A+

i
w̄β

a′(p)
.

The CoDAG equilibrium bears some resemblance to the
Markovian Traffic Equilibrium (MTE) introduced in Baillon
and Cominetti [7]. However, the CoDAG formulation by
design precludes the possibility of assigning cyclic routes,
and is capable of capturing couplings between arcs in the
CoDAG G that correspond to the same arc in the original
network GO (see [10], Remark 6).

Below, we show that, given any CoDAG representation
G of an original network GO and any fixed toll vector
p ∈ R|AO|, the CoDAG equilibrium exists and is unique.
Specifically, the CoDAG equilibrium is the unique minimizer
of a strictly convex optimization problem over a compact
set. This characterization provides powerful insight into the
mathematical properties of the CoDAG equilibrium flow, and
its dependence on the toll vector. These properties will be
used in our work to establish the existence of an optimal toll
(Theorem 2) and the convergence of our discrete-time toll
dynamics to the optimal toll (Theorem 3).

For each [a] ∈ AO, define F : W × R|AO| → R by:

F (w, p)

=
∑

[a]∈AO

∫ w[a]

0

[
s[a](u) + p[a]

]
du



+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]
.

(9)

Theorem 1: For each fixed toll vector p ∈ R|AO|, the
corresponding CoDAG equilibrium w̄β(p) ∈ W exists, is
unique, and is the unique minimizer of F (·, p) over W .

Proof: (Proof Sketch) The proof parallels that of [10],
Theorem 1 and Lemma 1. For details, please see [10],
Section III and Appendix B.

C. Social Optimality

We now describe the socially optimal flow which would
lead to the most efficient use of the transportation network.
More specifically, we define below the notion of perturbed
social optimality considered in our work.

Definition 2 (Perturbed Socially Optimal Flow): We de-
fine a perturbed socially optimal flow with regularization
parameter β > 0 to be a minimizer of the following convex
optimization problem:

min
w∈W

∑
[a]∈AO

w[a] · s[a](w[a])

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]
,

with W given by (8), and w[a] :=
∑

a′∈[a] wa′ , as defined
above.

In words, perturbed social optimality is characterized as
the total latency experienced by travelers on each arc of the
CoDAG G, augmented by an entropy term with regulariza-
tion parameter β which captures stochasticity in the travelers’
arc selections.

III. OPTIMAL TOLL: EXISTENCE AND
UNIQUENESS

Below, we characterize the optimal toll p̄ ∈ R|AO| for
which the corresponding CoDAG equilibrium w̄β(p̄) is per-
turbed socially optimal (see Definition 2). Throughout the
rest of the paper, we call p̄ the optimal toll.

Theorem 2: There exists a unique toll vector p̄ ∈ R|A0|

that satisfies the following fixed-point equation:

p̄[a] = w̄β
[a](p̄) ·

ds[a]

dw
w̄β

[a](p̄), ∀a ∈ A. (10)

Moreover, w̄β(p̄), the CoDAG equilibrium flow distribution
corresponding to p̄, is the perturbed socially optimal flow
with regularization β.

To prove Theorem 2, we first show that w̄β(p) is con-
tinuous and monotonic in the toll p (Lemmas 1 and 2).
Then, we use these properties to establish the existence and
uniqueness of a toll vector p̄ ∈ R|AO| satisfying the fixed-
point equation (10) (Lemma 3). Finally, we prove that the
CoDAG equilibrium flow allocation w̄β(p̄) corresponding to
p̄ is perturbed socially optimal (Lemma 4).

Below, we begin by establishing that the CoDAG equilib-
rium w̄β(p) is a continuously differentiable and monotonic
function of the toll p ∈ R|AO|.

Lemma 1: w̄β(p) is continuously differentiable in p.
Proof: (Proof Sketch) For each fixed toll vector

p ∈ R|AO|, the corresponding CoDAG equilibrium w̄β(p)
uniquely solves the KKT conditions of the optimization
problem of minimizing F (·, p) over W (Theorem 1). We
write these KKT conditions as an implicit function J :
R|A| × R|AO| → R|A| of the flow and tolls (w, p):

J(w, p) = 0,

where 0 denotes the |A|-dimensional zero vector. We can
then derive an explicit expression for dw̄β

dp (p) at each p ∈
R|AO| by proving that:

∂J

∂w

(
w̄β(p), p

)
∈ R|A|×|A|

is non-singular for each fixed p, and invoking the Implicit
Function Theorem. For details, please see Appendix A.1
[21].

Lemma 2: For any p, p′ ∈ R|A0|:∑
a∈A

(
w̄β

a (p
′)− w̄β

a (p)
)
(p′[a] − p[a]) ≤ 0.

Proof: (Proof Sketch) By Theorem 1, the CoDAG
equilibrium w̄β(p) is the unique minimizer of the strictly
convex function F (·, p) : W → R defined by (9). Thus,
w̄β(p) can be characterized by the first-order optimality
conditions of this optimization problem. This in turn allows
us to establish monotonicity. For details, please see Appendix
A.2 [21].

We then use the above lemmas to prove that the fixed-point
equation (10) yields a unique solution.

Lemma 3: There exists a unique p̄ ∈ R|AO| satisfying
(10):

p̄[a] = w̄β
[a](p̄) ·

ds[a]

dw

(
w̄β

[a](p̄)
)
, ∀ [a] ∈ AO.

Proof: (Proof Sketch) Existence follows from the
Brouwer fixed point theorem, since w̄β(p) is continuous
in p (Lemma 1). Uniqueness follows via a contradiction
argument; we show that the existence of two distinct fixed
points of (10) would violate the monotonicity established by
Lemma 2. For details, please see Appendix A.3 [21].

Finally, we prove that the CoDAG equilibrium flow cor-
responding to p̄ ∈ R|AO| is perturbed socially optimal.

Lemma 4: w̄β(p̄) is perturbed socially optimal.
Proof: (Proof Sketch) This follows by comparing the

KKT conditions satisfied by w̄β(p̄) (Theorem 1) with the
KKT conditions of the optimization problem that defines the
perturbed socially optimal flow in Definition 2. For details,
please see Appendix A.4 [21].

Together, Lemmas 1, 2, 3, and 4 prove Theorem 2.

IV. DYNAMICS AND CONVERGENCE

A. Discrete-time Dynamics

Here, we present discrete-time stochastic dynamics that
describes the evolution of the traffic flow and tolls on the
network. Formally, go units of traveler flow enter the network



at the origin node o at each time step n ≥ 0. At each non-
destination node i ∈ I\{d}, a ξa[n] fraction of travelers
chooses an outgoing arc a ∈ A+

i . We shall refer to ξa[n]
as the aggregate arc selection probability. Consequently, the
flow induced on any arc a ∈ A satisfies:

Wa[n] =

(
gia +

∑
a′∈A+

ia

Wa′ [n]

)
· ξa[n]. (11)

At the conclusion of every time step n, travelers reach the
destination node d and observe a noisy estimate of the cost-
to-go values and tolls on all arcs in the network (including
arcs not traversed during that time step). Let Ki > 0 denote
node-dependent constants, and let {ηi[n+1] ∈ R : i ∈ I, n ≥
0} be independent bounded random variables2 in [µ, µ], with
0 < µ < µ < µ < 1/max{Ki : i ∈ I\{d}} and E[ηia [n +
1]] = µ at each node i ∈ I and discrete time index n ≥
0. At the next time n + 1 and non-destination node i ∈
I\{d}, a ηi[n + 1] · Ki fraction of travelers at node i ∈ I
observes the latencies on each arc, and decides to switch
to the outgoing arc that minimizes the (stochastic) observed
cost-to-go. Meanwhile, 1−ηi[n+1] ·Ki fraction of travelers
selects the same arc they used at time step n. Thus, the
arc selection probabilities evolve according to the following
perturbed best-response dynamics:

ξa[n+ 1] (12)
= ξa[n] + ηia [n+ 1] ·Kia

·

(
− ξa[n] +

exp(−β
[
za(W [n], P [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n], P [n])

]
)

)
.

We assume that ξa[0] > 0 for each a ∈ A, i.e., each arc has
some strictly positive initial traffic flow. This captures the
stochasticity in travelers’ perception of network congestion
that causes each arc to be assigned a nonzero probability of
being selected.

At each time step n+1 ≥ 0, the tolls P[a][n] ∈ R|AO| on
each arc [a] ∈ AO are updated by interpolating between the
tolls implemented at time step n, and the marginal latency
of that arc given the flow at time step n. That is:

P[a][n+ 1] (13)

=P[a][n] + γ

(
−P[a][n] +W[a][n] ·

ds[a]

dw
(W[a][n])

)
,

with γ ∈ (0, 1)3, where with a slight abuse of notation, we
denote W[a] :=

∑
a′∈[a]Wa′ . Note that the update (13) is

distributed, i.e., for each arc in the original network, the
updated toll depends only on the flow of that arc, and not
on the flow of any other arc. Moreover, we assume that
γ ≪ µ, i.e., the toll updates (13) occur at a slower timescale
compared to the arc selection probability updates (12).

To simplify our study of the convergence of the dynamics
(12) and (13), we assume that the arc latency functions are
affine in the congestion on the link.

2The random variables {ηa[n] : a ∈ A,n ≥ 0} are assumed to be
independent of travelers’ perception uncertainties.

3Our result also holds if γ is a random variable with bounded support.

Assumption 1: Each arc latency function s[a] is affine,
i.e.,:

s[a](w[a]) = θã,1w[a] + θ[a],0, (14)

for some θ[a],1, θ[a],0 > 0.
Under Assumption 1, the toll dynamics (13) can be

alternatively written as follows

P[a][n+ 1] = P[a][n] + γ
(
−P[a][n] +W[a][n] · θ[a],1

)
.

(15)

B. Convergence Results

In this subsection, we show that the arc selection probabil-
ity and toll updates (12)-(15) converge in the neighborhood
of the socially optimal flow w̄β(p̄) and the corresponding
toll p̄ respectively.

Theorem 3: The joint evolution of arc selection probabil-
ity and toll updates (12)-(15) satisfies

lim sup
n→∞

E
[
∥ξ[n]− ξ̄β(p̄)∥22 + ∥P [n]− p̄∥22

]
=O

(
µ+

γ

µ

)
.

Consequently, for each δ > 0:

lim sup
n→∞

P
(
∥ξ[n]− ξ̄β(p̄)∥22 + ∥P [n]− p̄∥22 ≥ δ

)
=O

(
µ

δ
+

γ

δµ

)
.

To prove Theorem 3, we employ the theory of two-
timescale stochastic approximation [22]. Consequently, the
asymptotic behavior of (12)-(15) can be characterized by
studying the convergence properties of the corresponding
continuous-time dynamical system. Since the tolls are up-
dated at a slower rate compared to the traffic flows (γ ≪ µ),
we consider the evolution of continuous-time flows w(t)
under a fixed toll p ∈ R|AO|, and continuous-time tolls
p(t) with flow converged at the corresponding CoDAG
equilibrium w̄β(p(t)) at each time. Specifically, for any fixed
toll p ∈ R|AO|, on each arc a ∈ A, the arc selection
probabilities evolve as follows:

wa(t) = ξa(t) ·

(
gia +

∑
a′∈A−

ia

wa′(t)

)
, (16)

ξ̇a(t) = Kia ·

(
−ξa(t) +

exp(−β · za(w(t), p))∑
a′∈A+

ia

exp(−β · za′(w(t), p))

)
.

(17)

Meanwhile, on each arc [a] ∈ AO in the original network,
we consider the following continuous-time toll dynamics:

ṗ[a](t) = −p[a](t) + w̄β
[a](p(t)) · θ[a],1. (18)

We prove that, for each fixed toll p ∈ R|AO|, the corre-
sponding continuous-time ξ-dynamics (17) globally asymp-
totically converges to the corresponding CoDAG equilibrium
w̄β(p) ∈ R|A|. Moreover, the continuous-time toll dynamics
(18) globally converges to the optimal toll p̄ ∈ R|AO|.

Lemma 5 (Informal): Suppose w(0) ∈ W , i.e., the initial
flow satisfies flow continuity. Under the continuous-time flow



dynamics (17) and (16), if Ki ≪ Ki′ whenever ℓi < ℓi′ ,
the continuous-time traffic allocation w(t) globally asymp-
totically converges to the corresponding CoDAG equilibrium
w̄β(p).

Proof: (Proof Sketch) The following proof sketch paral-
lels that of [10], Lemma 2, and is included for completeness.
Recall that Theorem 1 establishes w̄β(p) as the unique
minimizer of the map F (·, p) : W → R, defined by (9). We
show that F (·, p) is a Lyapunov function for the continuous-
time flow dynamics induced by (17). To this end, we first
unroll the dynamics (17) using (16), as follows:

ẇa(t)

= −Kia ·

(
1− 1

Kia

·

∑
a′∈A−

ia

ẇa′(t)∑
â∈A+

ia

wâ(t)

)
wa(t)

+Kia ·
∑

a′∈A−
ia

wa′(t) · exp(−βza(w(t), p))∑
a′∈A+

ia

exp(−βza′(w(t), p))
.

Next, we establish that if w(0) ∈ W , then for each t ≥ 0:

Ḟ (t) = ẇ(t)⊤∇wF (w(t)) ≤ 0.

The proof then follows from LaSalle’s Theorem (see [23,
Proposition 5.22]). For a precise statement of Lemma 5,
please see Appendix B.1 [21]; for the proof of the analogous
theorem in [10], please see [10] Appendix C.1.

Lemma 6: The continuous-time toll dynamics (18) glob-
ally exponentially converges to the CoDAG equilibrium
w̄β(p̄) corresponding to the optimal toll p̄.

Proof: Define D ∈ R|AO|×|AO| to be the diagonal
and symmetric positive definite matrix whose [a]-th diagonal
element is given by:

ds[a]

dw

(
w̄β

[a](p̄)
)
= θ[a],1 > 0,

for each [a] ∈ AO. Note that D is independent of the toll
p. Now, consider the Lyapunov function V : R|AO| → R,
defined by:

V (p) :=
1

2
(p− p̄)⊤D−1(p− p̄).

The trajectory of the continuous-time toll dynamics (18),
starting at p(0), satisfies:

V̇ (p(t))

= (p(t)− p̄)⊤D−1ṗ(t)

=
∑

[a]∈AO

(p[a](t)− p̄[a])

θ[a],1
·
(
−p[a](t) + θ[a],1w̄

β
[a](p(t))

)
=

∑
[a]∈AO

(p[a](t)− p̄[a])

θ[a],1

·
(
−p[a](t) + p̄[a] − p̄[a] + θ[a],1w̄

β
[a](p(t))

)
= −2V (p(t))

+
∑

[a]∈AO

(p[a](t)− p̄[a])
(
w̄β

[a](p(t))− w̄β
[a](p̄)

)
≤ −2V (p(t)),

where the final inequality follows due to the monotonicity
of the map w̄β(·) (Lemma 2).

To conclude the proof of Theorem 3, it remains to
check that the discrete-time dynamics (12)-(15), and the
continuous-time dynamics (17)-(18), satisfy the technical
conditions in Lemmas 7 and 8. In particular, Lemma 7
establishes that flows and tolls are uniformly bounded across
the arc and time indices, while Lemma 8 asserts that the
continuous-time flow and toll dynamics maps are Lipschitz
continuous.

Lemma 7: The continuous-time flow and toll dynamics
induced by (12)-(15) satisfy:

1) For each a ∈ A: {Ma[n + 1] : n ≥ 0} is a martingale
difference sequence with respect to the filtration Fn :=
σ
(
∪a∈A (Wa[1], ξ[1], p[1], · · · ,Wa[n], ξ[n], p[n])

)
.

2) There exist Cw, Cm, Cp > 0, independent of the node-
dependent values {Ki : i ∈ I}, such that, for each
a ∈ A and each n ≥ 0, we have Wa[n] ∈ [Cw, go],
Pa[n] ∈ [0, Cp], and |Ma[n]| ≤ Cm.

Likewise, the continuous-time flow and toll dynamics in-
duced by (17) and (18) satisfy:

3) For each a ∈ A, t ≥ 0, we have wa(t) ∈ [Cw, go] and
pa(t) ∈ [0, Cp].
Proof: Please see Appendix B.2 [21].

Lemma 8: The continuous-time flow dynamics (16) and
toll dynamics (18) satisfy:

1) The map ξ̄β : R|AO| → R|A| is Lipschitz continuous.
2) For each a ∈ A, the restriction of the cost-to-go map

za : W ×R|AO| → R to the set of realizable flows and
tolls, i.e., W ′ × [0, Cp]

|AO|, is Lipschitz continuous.
3) The map from the probability transitions ξ ∈∏

i∈I\{d} ∆(A+
i ) and the traffic flows w ∈ W is

Lipschitz continuous.
4) For each a ∈ A, the restriction of the continuous

dynamics transition map ρa : R|A| × R|AO| → R|A|,
defined recursively as follows for each a ∈ A:

ρa(ξ, p) := −ξa +
exp(−βza(w, p))∑

a′∈A+
ia

exp(−βza′(w, p))

to the set of realizable flows and tolls, i.e., W ′ ×
[0, Cp]

|AO|, is Lipschitz continuous.
5) For each a ∈ A, the map r[a] : R|AO| × R|AO|, defined

as follows for each a ∈ A:

r[a](p) := −p[a] + w̄β
[a](p) ·

ds[a]

dw
(w̄β

[a](p)),

is Lipschitz continuous.
Proof: Please see Appendix B.3 [21].

V. EXPERIMENT RESULTS

This section presents experiments that validate the theoret-
ical convergence results of Section IV. We present simulation
results illustrating that, under (12)-(15), the traffic flows and
tolls converge to a neighborhood of the socially optimal
values, as claimed by Theorem 3.

Consider the network presented in Figure 1, following
affine latency functions (14) with parameters given in Table



TABLE II: Parameters for simulation.

Notation Default value

θã,0 0, 1, 0, 1, 1, 0, 1, 1, 1 (ordered by edge index)
θã,1 2, 1, 1, 1, 1, 1, 2, 2, 2 (ordered by edge index)
g1 1
β 10
γ 0.02
ηia [n] Uniform(0, 0.1), ∀a ∈ A, i ∈ I\{d}

Fig. 2: Steady state traffic flow on each arc for the original network
before (left) and after (right) tolls. Flows on arcs emerging from
the same node are represented in the same color.

II. To validate Theorem 3, we evaluate and plot the traffic
flow values Wa[n] and toll values Pa[n] on each arc a ∈ A
with respect to discrete time index n ≥ 0. Figure 2 presents
traffic flow values at the condensed DAG equilibrium (i.e.,
wβ) for the original network before and after tolls. Mean-
while, Figure 3 and 4 illustrate that w and p converge to the
condensed DAG equilibrium in approximately 300 iterations.
As in [10], flow convergence to the optimal allocation occurs
even when the constants {Ki : i ∈ I} are simply all set to
1. While the original traffic distribution is more concentrated
on a few routes, tolls can distribute the traffic more evenly.
This shows that tolls can improve overall social welfare by
reducing congestion in over-utilized routes.

VI. CONCLUSION AND FUTURE WORK

This work introduces a discrete-time adaptive tolling
scheme to minimize the total travel latency in a general
traffic network with bidirectional edges. Our model assumes
that, at each time, players near-instantaneously react via
perturbed best response to the announced tolls. Accordingly,
we formulate a two-timescale stochastic dynamical system
that describes the joint evolution of traffic flow and tolls.
We prove that the fixed point of these dynamics is unique
and corresponds to the optimal traffic flow allocation from
the perspective of minimizing the total travel time. More-
over, we prove that the stochastic dynamics converges to a
neighborhood of the unique fixed point with high probability.
Finally, we present simulation results that corroborate our
theoretical findings.

Interesting avenues of future research include: (1) Extend-
ing our theoretical analysis to the setting where the latency
function of each arc is not necessarily affine, (2) Developing

Fig. 3: Traffic flow W vs. time index n for the condensed DAG in
Figure 1.

Fig. 4: Toll P vs. time index n for the condensed DAG in Figure
1.

tolling dynamics for the setting in which the central authority
must learn the network latency functions and entropy regular-
ization parameter β > 0 while simultaneously implementing
an adaptive tolling scheme that converges to the optimal
toll, and (3) Designing robust tolls for traffic networks in
which some fraction of the population behaves unexpectedly
or adversarially.
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Below, we present proofs omitted in the main paper due
to space limitations.

A. Proofs for Section III

Here, we provide the proofs of Lemmas 1, 2, 3, and 4.
1) Proof of Lemma 1: Define F : W × R|AO| → R by:

F (w, p)

:=
∑

[a]∈AO

∫ w[a]

0

[
s[a](z) + p[a]

]
dz (19)

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]
.

(20)

The theory of constrained optimization implies that, for each
p, the unique minimizer of F (·, p) : W → R is completely
characterized via a set of equality constraints, which we
describe below. First, recall that since W is a subset of an
affine subspace of R|A| characterized by |I\{d}| equality
constraints, there exist M ∈ R|A|×|I\{d}|, of full column
rank, and b ∈ R|I\{d}| such that:

W = {w ∈ R|A| :M⊤w + b = 0, wa ≥ 0, ∀a ∈ A}.

Moreover, by using QR decomposition, we can assume
that the columns of M are orthonormal. Next, let B ∈
R|A|×(|A|−|I\{d}|) be given such that the columns of B have
unit norm, are pair-wise orthogonal, and are each orthogonal
to the subspace of R|A| spanned by the columns of M ,
i.e., B⊤ maps each vector in R|A| to the coefficients of its
projection onto the linear subspace orthogonal to W , with
respect to an ordered, orthonormal basis of that subspace.
Then the theory of constrained optimization, and the strict
convexity of F (·, p), imply that w̄β(p), the unique minimizer
of F (·, p), is completely characterized by the equations:

M⊤w + b = 0,

B⊤∇wF (w, p) = 0.

To this end, define J : R|AO| × R|A| → R|A| by:

J(w, p) :=

 M⊤w + b

B⊤∇wF (w, p)

 .
Note that J is continuously differentiable almost every-

where, with:

∂J

∂w
(w, p) =

 M⊤

B⊤∇2
wF (w, p)

 ∈ R|A|×|A|.

Suppose by contradiction that ∂J
∂w (w, p) ∈ R|A|×|A| is

singular at some (w, p). Then ∂J
∂w (w, p)⊤ ∈ R|A|×|A| lacks

full column rank, i.e.:

dim(R(M) +R(∇2
wF (w, p)B) =rank(

[
M ∇2

wF (w, p)B
]
)

≤|A| − 1.

By the Boolean formula for sums of vector spaces:

dim(R(M) ∩R(∇2
wF (w, p)B)

=dim(R(M)) + dim(R(∇2
wF (w, p)B)

− dim(R(M) +R(∇2
wF (w, p)B)

=dim(R(M)) + dim(R(B))

− dim(R(M) +R(∇2
wF (w, p)B)

≥|A| − (|A| − 1)

=1.

Thus, there exists some nonzero vector v ∈ R(M) ∩
R(∇2

wF (w, p)B). Since v ∈ R(M), and the columns of B
are orthogonal to R(M), we have B⊤v = 0. Meanwhile,
since v ∈ R(∇2

wF (w, p)B), there exists some nonzero
w ∈ R|A|−d such that u = ∇2

wF (w, p)Bw. Thus, we have:

0 = B⊤u = B⊤∇2
wF (w, p)Bu,

a contradiction, since the fact that B⊤ has full row rank
and ∇2

wF (w, p) is symmetric positive definite implies that
B⊤∇2

wF (w, p)B is symmetric positive definite, and u ̸= 0
by construction. This establishes that ∂J

∂w (w, p) ∈ R|A|×|A|

is non-singular at each (w, p) ∈ R|AO|×R|A|. The existence
and continuity of dw̄β

dp (p) at each p ∈ R|AO| now follows
from the Implicit Function Theorem.

2) Proof of Lemma 2: In this subsection, we show that
for any p, p′ ∈ R|AO|:∑

a∈A

(
w̄β

a (p
′)− w̄β

a (p)
)
(p′[a] − p[a]) ≤ 0.

By Theorem 1, w̄β(p) is the unique minimizer, in W , of
the following strictly convex function of w:∑

[a]∈AO

∫ w[a]

0

[
s[a](z) + p[a]

]
dz

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]
.

Applying first-order conditions for optimality in con-
strained convex optimization, we obtain that, for each w1 ∈
W:

∑
a∈A

[
s[a]
(
w̄β

[a](p)
)
+ p[a] +

1

β
ln

 w̄β
a (p)∑

a′∈A+
ia

w̄β
a′(p)

]
· (w1

a − w̄β
a (p)) ≥ 0.

Similarly, for w̄[a](p
′), we obtain that for each w2 ∈ W:

∑
a∈A

[
s[a]
(
w̄β

[a](p
′)
)
+ p′[a] +

1

β
ln

 w̄β
a (p

′)∑
a′∈A+

ia

w̄β
a′(p′)

]
· (w2

a − w̄β
a (p

′)) ≥ 0.

Taking w1 := w̄β
a (p

′), w2 := w̄β
a (p), and adding the above

two inequalities, we have:

0 ≤
∑
a∈A

(
w̄β

a (p
′)− w̄β

a (p)
)

·

[
s[a](w̄

β
[a](p))− s[a](w̄

β
[a](p

′)) + p[a] − p′[a]



+
1

β
ln

(
w̄β

a (p)∑
a′∈A+

ia

w̄β
a′(p)

)
− 1

β
ln

(
w̄β

a (p
′)∑

a′∈A+
ia

w̄β
a′(p′)

)]
.

Since the maps wa 7→ s[a](w[a]) and wa 7→
ln
(
wa/

∑
a′∈A+

ia

wa′
)

are non-decreasing, by rearranging
terms, we obtain:∑

a∈A

(
w̄β

a (p
′)− w̄β

a (p)
)
(p′[a] − p[a]) ≤ 0,

as desired. Additionally, it also holds that∑
[a]∈AO

(
w̄β

[a](p
′)− w̄β

[a](p)
)
(p[a] − p[a]) ≤ 0.

3) Proof of Lemma 3: In this subsection, we show that
there exists a unique p̄ ∈ R|AO| satisfying (10):

p̄[a] = w̄β
[a](p̄) ·

ds[a]

dw

(
w̄β

[a](p̄)
)
, ∀ [a] ∈ AO.

Define ψ : R|AO| → R as:

ψ[a](p) := w[a](p) ·
ds[a]

dw

(
w[a](p)

)
, ∀ [a] ∈ AO.

Since w[a](·) is continuous (Lemma 1), and s[a] is contin-
uously differentiable, the map ψ is continuous. Define the
set:

K :=

{
y ∈ R|AO| : y ⪰ 0, ∥y∥1 ≤ |AO|go max

[a]∈AO

ds[a]

dw
(go)

}
.

Observe that K is a compact and convex subset of R|AO|, and
ψ maps K to K, since for any p ∈ K, we have ψa(p) ≥ 0
for each a ∈ A, and:

∥ψ(p)∥1 =
∑

a∈AO

ψa(p)

=
∑

a∈AO

w̄[a](p) ·
ds[a]

dw
(w̄[a](p))

≤ max
a∈AO

ds[a]

dw
(go) ·

∑
a∈AO

w̄[a](p)

≤ |AO|go · max
a∈AO

ds[a]

dw
(go).

. Thus, by the Brouwer’s fixed point theorem, there exists a
fixed point p̄ ∈ K ⊂ R|AO| of ψ, i.e., there exists p̄ ∈ R|AO|

satisfying (10), i.e.,:

p̄[a] = w̄β
[a](p̄)

ds[a]

dw
(w̄β

[a](p̄)), ∀ [a] ∈ AO.

Next, we show that p̄ is unique up to Markovian Traffic
Equilibrium on the original traffic network, i.e., any p′ ∈
R|AO| satisfies (10) if and only if w̄β

[a](p
′) = w̄β

[a](p̄) for
each a ∈ A. To show this, suppose by contradiction that there
exists some p′ ∈ R|AO| satisfying (10), such that w̄β

[a](p
′) ̸=

w̄β
[a](p̄) for some [a] ∈ AO. Then:

p̄[a] − p′[a]

= w̄β
[a](p̄) ·

ds[a]

dw

(
w̄β

[a](p̄)
)
− w̄β

[a](p
′) ·

ds[a]

dw

(
w̄β

[a](p
′)
)

=
[
w̄β

[a](p̄)− w̄β
[a](p

′)
]
·
ds[a]

dw

(
w̄β

[a](p̄)
)

+ w̄β
[a](p

′) ·
[ds[a]
dw

(
w̄β

[a](p̄)
)
−
ds[a]

dw

(
w̄β

[a](p
′)
)]
.

Rearranging terms, and invoking the strict convexity and
increasing nature of each s[a], and the fact that w̄β

[a](p̄) ̸=
w̄β

[a](p
′) for some [a] ∈ AO, we obtain:∑

a∈A

[
w̄β

a (p̄)− w̄β
a (p

′)
]
(p̄[a] − p′[a])

=
∑

[a]∈AO

[
w̄β

[a](p̄)− w̄β
[a](p

′)
]
(p̄[a] − p′[a])

=
∑

[a]∈AO

[
w̄β

[a](p̄)− w̄β
[a](p

′)
]2

·
ds[a]

dw

(
w̄β

[a](p̄)
)

+
∑

[a]∈AO

w̄β
[a](p

′)
[
w̄β

[a](p̄)− w̄β
[a](p

′)
]2

·

[
ds[a]

dw

(
w̄β

[a](p̄)
)
−
ds[a]

dw

(
w̄β

[a](p
′)
)]

>0,

which contradicts Theorem 1 .
The above arguments establish that if p′ ∈ R|AO| satisfies

(10), then w̄β
[a](p

′) = w̄β
[a](p̄) for each [a] ∈ AO. Through

(10), we then have, for each [a] ∈ AO:

p̄[a] = w̄β
[a](p̄) ·

ds[a]

dw

(
w̄β

[a](p̄)
)

= w̄β
[a](p

′) ·
ds[a]

dw

(
w̄β

[a](p
′)
)

= p′[a],

so p′ = p̄. This concludes the proof.
4) Proof of Lemma 4: In this subsection, we show that

w̄β(p̄) is perturbed socially optimal. Let w⋆ ∈ R|A| denote
the perturbed socially optimal load. Recall that, by Theorem
1 and the definition of the perturbed socially optimal load:

w̄β(p̄)

= arg min
w∈W

{ ∑
[a]∈AO

∫ w[a]

0

[
s[a](z) + p[a]

]
dz

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]}
,

w⋆

= arg min
w∈W

{ ∑
[a]∈AO

w[a] lnw[a]

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]}
.

The proof follows by verifying that the variational inequal-
ities corresponding to the above two optimization problems
are the same. These two variational inequalities in question
are respectively given by:∑
[a]∈AO

[
s[a]
(
w̄β

[a](p̄)
)
+ w̄β

[a](p̄)
ds[a]

dw

(
w̄β

[a](p̄)
)



+
1

β
ln

(
w̄β

[a](p̄)∑
a′∈A+

ia

w̄β
[a′](p̄)

)](
wa − w̄β

[a](p̄)
)
> 0,

∀w ∈ W , w ̸= w̄β
[a](p̄),∑

[a]∈AO

[
s[a]
(
w⋆

[a]

)
+ w⋆

[a]

ds[a]

dw

(
w⋆

[a]

)
+

1

β
ln

(
w̄⋆

[a]∑
a′∈A+

ia

w⋆
[a′]

)](
wa − w⋆

a

)
> 0,

∀w ∈ W , w ̸= w⋆,

and are thus, indeed, identical. This confirms that w̄β(p̄) =
w⋆, and concludes the proof.

B. Proofs for Section IV

1) Statement of Lemma 5: The complete, rigorous state-
ment of Lemma 2, is as follows—Suppose w(0) ∈ W , i.e.,
the initial flow satisfies flow continuity, and:

Ki >
go
Cw

max{Kiâ : â ∈ A−
i }

for each i ∈ I\{d}, with Cw given by Lemma 7. Then
under the continuous-time flow dynamics (16) and (17), the
continuous-time traffic allocation w(t) globally asymptoti-
cally converges to the corresponding CoDAG equilibrium
w̄β(p).

The proof of Lemma 5 follows by applying the proof of
the analogous theorem in [10] (Appendix C.1), and replacing
the latencies s[a](w[a]) with the total cost s[a](w[a]) + p[a].

2) Proof of Lemma 7: First, we rewrite the discrete
ξ-dynamics (12) as a Markov process with a martingale
difference term:

ξa[n+ 1] = ξa[n] + µ
(
ρa(ξ[n], P [n]) +Ma[n+ 1]

)
,

where ρa : R|A| × R|AO| → R|A| is given by:

ρa(ξ, p) := Kia

(
− ξa +

exp(−β · za(w, p))∑
a′∈A+

ia

exp(−β · za′(w, p))

)
,

(21)

with w ∈ R|A| defined arc-wise by wa = (gia +∑
â∈A−

ia

wa′) · ξa, and:

Ma[n+ 1] :=

(
1

µ
ηia [n+ 1]− 1

)
· ρa(ξ[n], P [n]). (22)

Here, Wa[n] =
(
gia +

∑
a′∈A−

ia

Wa′ [n]
)
, as given by (11).

Below, we state and prove Lemma 7.
Proof:

1) We have:

E[Ma[n+ 1]|Fn]

=

(
1

µ
E[ηia [n+ 1]]− 1

)
·Kia

·

(
−ξa[n] +

exp(−β
[
za(W [n], P [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n], P [n])

]
)

)
=0.

2) We separate the proof of this part of the lemma into the
following steps.
• First, we show that for each a ∈ A, n ≥ 0, we have
ξa[n] ∈ (0, 1].

Fix a ∈ A arbitrarily. Then ξa[0] ∈ (0, 1] by
assumption, and for each n ≥ 0:

exp(−β
[
za(W [n], P [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n], P [n])

]
)
∈ (0, 1],

since the exponential function takes values in (0,∞).
Thus, by Lemma 7, we have ξa[n] ∈ (0, 1] for each
n ≥ 0.

• Second, we show that for each a ∈ A, n ≥ 0, we
have Wa[n] ∈ (0, go].

Note that (11), together with the assumption that
W [0] ∈ W , implies that W [n] ∈ W for each n ≥ 0.
Now, fix a ∈ A, n ≥ 0 arbitrarily. Let R(a) ⊆ R
denote the set of all routes passing through a, and
for each r ∈ R(a), let ar,k denote the k-th arc in r.
Then, by the conservation of flow encoded in R:

Wa[n] = go ·
∑

r∈R(a)

|r|∏
k=1

ξar,k

≤ go ·
∑
r∈R

|r|∏
k=1

ξar,k

= go.

Similarly, since ξa[n] ∈ (0, 1] for each a ∈ A, n ≥ 0,
we have:

Wa[n] = go ·
∑

r∈R(a)

|r|∏
k=1

ξar,k
> 0.

• Third, we show that there exists Cp > 0 such that
Pa[n] ∈ [0, Cp] for each a ∈ A, n ≥ 0.

Above, we have established that Wa[n] ∈ (0, go]
for each a ∈ A, n ≥ 0. Moreover, by assumption,
s[a](·) is non-negative, continuously differentiable,
strictly increasing, and strictly convex. Thus, taking
Cds := (ds[a]/dw)(go), we obtain:

ds[a]

dw
(W[a][n]) ∈ [0, Cds].

Now, take Cp := max{maxa∈A Pa[0], goCds}. By
the definition of Cp, we have Pa[0] ∈ [0, Cp] for
each a ∈ A. Moreover, for each n ≥ 0:

W[a][n] ·
ds[a]

dw

(
W[a][n]

)
∈ [0, goCds] ⊆ [0, Cp].

Thus, by Lemma 7, we conclude that Pa[n] ∈ [0, Cp]
for each n ≥ 0.

• Fourth, we show that there exists Cz > 0 such that
|za(W [n], P [n])| ≤ Cz for each a ∈ A, n ≥ 0. Fix
a ∈ A−

d = {a ∈ A : ma = 1} arbitrarily. Then, from
(5):

za(w, p) = s[a](w[a]) + p[a] ∈ [0, s[a](go) + Cp],



⇒|za(w, p)| ≤ s[a](go) + Cp := Cz,1.

Now, suppose that at some height k ∈ [m(G) − 1],
there exists some Cz,k > 0 such that, for each n ≥ 0,
and each a ∈ A satisfying ma ≤ k and each n ≥ 0,
we have |za(w, p)| ≤ Cz,k. Then, for each n ≥ 0,
and each a ∈ A satisfying ma = k + 1 (at least one
such a ∈ A must exist, by [10], Proposition 2):

za(w, p)

= s[a](w[a]) + p[a] −
1

β
ln

 ∑
a′∈A+

ja

e−β·za′ (w,p)


≤ s[a](go) + Cp −

1

β
ln
(
|A+

ja
|e−β·Cz

)
= s[a](go) + Cp + Cz,

and:

za(w, p)

= s[a](w[a]) + p[a] −
1

β
ln

 ∑
a′∈A+

ja

e−β·za′ (w,p)


≥ 0 + 0− 1

β
ln
(
|A+

ja
|eβ·Cz

)
= − 1

β
ln |A| − Cz,

from which we conclude that:

|za(w, p)|

≤ max

{
s[a](go) + Cp + Cz,

1

β
ln |A|+ Cz

}
:= Cz,k+1,

with Cz+1 ≥ Cz . This completes the induction step,
and the proof is completed by taking Cz := Cz,m(G).

• Fifth, we show that there exists some Cξ > 0 such
that ξa[n] ≥ Cξ for each a ∈ A, n ≥ 0.

Define:

Cξ := min

{
min{ξa′ [0] : a′ ∈ A}, 1

|A|
e−2βCz

}
> 0.

By definition of Cξ, we have ξa[0] ≥ Cξ. Moreover,
for each n ≥ 0, we have:

exp(−β
[
za(W [n], P [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n], P [n])

]
)

≥ e−βCz

|A+
ia
| · eβCz

≥ 1

|A|
e−2βCz

≥Cξ.

Thus, by Lemma 7, we have ξa[n] ≥ Cξ for each
n ≥ 0.

• Sixth, we show that there exists Cw > 0 such that,
for each a ∈ A, n ≥ 0, we have Wa[n] ≥ Cw.

Fix a ∈ A, n ≥ 0. Let r ∈ R be any route
in the corresponding DAG containing a ∈ A. By
unwinding the recursive definition of Wa[n] from the
flow allocation probability values {ξa[n] : a ∈ A,n ≥
0}, we have:

Wa[n] = go ·
∑
r′∈R
a∈r′

∏
a′∈r′

ξa′ [n]

≥ go ·
∏
a′∈r

ξa′ [n]

≥ go · (Cξ)
|r|

≥ go · (Cξ)
ℓ(G)

:= Cw.

• Seventh, we show that there exists Cm > 0 such that,
for each a ∈ A, n ≥ 0, we have Ma[n] ≥ Cm.

Define, for convenience, Cµ := max{µ−µ, µ−
µ}. Since ηia [n] ∈ [µ, µ], we have from (22) that for
each a ∈ A, n ≥ 0:

Ma[n+ 1]

=

(
1

µ
ηia [n+ 1]− 1

)
·Kia

·

−ξa[n] +
exp(−β

[
za(W [n], P [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n], P [n])

]
)

 .

Applying the triangle inequality, we obtain:

|Ma[n+ 1]| ≤ 1

µ
KiaCµ · (1 + 1)

=
2

µ
Cµ · max

i∈I\{d}
Ki

:= Cm.

3) We separate the proof of this part of the lemma into the
following steps.
• First, we show that for each a ∈ A, t ≥ 0, we have
ξa(t) ∈ (0, 1].

Fix a ∈ A. By assumption, ξa(0) ∈ (0, 1], and at
each t ≥ 0:

exp(−βza(w, p))∑
a′∈A+

ia

exp(−βza′(w, p))
∈ (0, 1].

Thus, by Lemma 7, we conclude that ξa(t) ∈ (0, 1]
for each t ≥ 0.

• Second, we show that wa(t) ∈ [0, go] for each t ≥ 0.
The proof here is nearly identical to the proof

that Wa[n] ∈ (0, go) in the second bullet point of the
second part of this Proposition, and is omitted for
brevity.

• Third, we show that pa(t) ∈ [0, Cp] for each t ≥ 0.
Above, we have established that wa(t) ∈ (0, go]

for each a ∈ A, t ≥ 0. Let Cp > 0 be as defined in the
third bullet point of the second part of this Proposi-
tion, i.e., Cp = max

{
maxa∈A Pa[0], go ·

ds[a]

dw (go)
}

.
Then, for each a ∈ A, t ≥ 0, we have:

wa(t) ·
ds[a]

dw
(wa(t)) ∈ [0, Cp].



Note also that Pa[0] ≤ Cp for each a ∈ A, by
definition of Cp. Thus, Lemma 7 implies that pa(t) ∈
[0, Cp] for each t ≥ 0.

• Fourth, we show that |za(wa(t), pa(t))| ≤ Cz for
each t ≥ 0.

The proof here is nearly identical to the proof that
|za(Wa[n], Pa[n])| ≤ Cz in the fourth bullet point of
the second part of this Proposition, and is omitted for
brevity.

• Fifth, we show that there exists some Cξ > 0 such
that ξa(t) ≥ Cξ for each a ∈ A, t ≥ 0.

Define:

Cξ := min

{
min{ξa′(0) : a′ ∈ A}, 1

|A|
e−2βCz

}
> 0.

By definition of Cξ, we have ξa(0) ≥ Cξ. Moreover,
for each n ≥ 0, we have:

exp(−β
[
za(W [n], P [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n], P [n])

]
)

≥ e−βCz

|A+
ia
| · eβCz

≥ 1

|A|
e−2βCz

≥ Cξ.

Thus, by Lemma 7, we have ξa(t) ≥ Cξ for each
t ≥ 0.

• Sixth, we show that there exists Cw > 0 such that,
for each a ∈ A, t ≥ 0, we have wa(t) ≥ Cw.

The proof here is nearly identical to the proof
that Wa[n] ≥ Cw in the fourth bullet point of the
second part of this Proposition, and is omitted for
brevity.

Below, we state and prove Lemma 8, which together with
Lemma A.1 supplies all the technical conditions necessary
for Borkar’s stochastic approximation theory to be applied.

3) Proof of Lemma 8:
Proof:

1) Since ξ̄β(p) can be derived component-wise from w̄β ,
we first show that w̄β : R|AO| → R|A| is Lipschitz
continuous. We do so by showing that wβ is contin-
uously differentiable with bounded derivative. To this
end, recall from the proofs of Lemma 1 and Lemma
6, the matrix M ∈ R|A|×d, b ∈ Rd, with d ∈ [|A|]
describing the dimension of W (as a manifold with
boundary), and the matrices B ∈ R|A|×(|A|−d), C ∈
R|A|×|AO|.

As established in the proof of Proposition 1, there
exists a continuously differentiable function J : R|AO|×
R|A| → R|A|, and matrices M ∈ R|A|×d and B ∈
R|A|×(|A|−d), such that J(p, wβ(p)) = 0 for each p ∈
R|AO|, the columns of B and the columns of M are
orthonormal, R(M) and R(B) are orthogonal subspaces

whose direct sum is R|A|, and:

∂J

∂w
(w, p) =

 M⊤

B⊤∇2
wF (w, p)

 ∈ R|A|×|A|,

where, as in the proof of Proposition 1, F : W ×
R|AO| → R is given by (9), reproduced below:

F (w, p)

:=
∑

[a]∈A0

∫ w[a]

0

[
s[a](z) + p[a]

]
dz

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]
.

Thus, the Implicit Function Theorem implies that:

dw̄β

dp
(p)

= −

[
∂J

∂w
(w̄β(p), p)

]−1
∂J

∂p
(w̄β(p), p)

= −

 M⊤

B⊤∇2
wF (w̄

β(p), p)

−1  O

B⊤ d
dp∇wF (w̄

β(p), p)

 ,
(23)

where ∇wF (w, p) ∈ R|A|, and ∂
∂p∇wF (w, p) ∈

R|A|×|AO|. To study (23) further, we wish to rewrite
the B⊤∇2

wF (w, p) term. To this end, note that since[
M B

]
∈ R|A|×|A| is an orthogonal matrix, and

∇2
wF (w, p) is symmetric positive definite (since F (p, ·)

is strictly convex for each p ∈ R|AO|), the matrix:

Q :=

M⊤

B⊤

∇2
wF (w̄

β(p), p)
[
M B

]
∈ R|A|×|A|

is symmetric positive definite as well. Now, let
Q11 := M⊤∇2

wF (w, p)M ∈ Rd×d, Q12 :=
M⊤∇2

wF (w, p)B ∈ Rd×(|A|−d), and Q22 :=
B⊤∇2

wF (w, p)B ∈ R(|A|−d)×(|A|−d) denote the vari-
ous block matrices of Q, as shown below:

Q =

Q11 Q12

Q⊤
12 Q22

 .
We then have:

B⊤∇2
wF (w, p) =

[
O I

]M⊤

B⊤

∇2
wF (w, p)

=
[
O I

]
Q

M⊤

B⊤


= Q⊤

12M
⊤ +Q22B

⊤,

where the matrices O and i ∈ I above are the zero
matrix of dimension (|A|−d)×d and identity matrix of



dimension (|A|−d)×(|A|−d), respectively. Substituting
back into (23), we obtain:

dw̄β

dp
(p)

= −

 M⊤

B⊤∇2
wF (w, p)

−1  O

B⊤ d
dp∇wF (w, p)

 (24)

= −

 M⊤

Q⊤
12M

⊤ +Q22B
⊤

−1  O

B⊤ d
dp∇wF (w, p)


= −

( I O

Q⊤
12 Q22

M⊤

B⊤

)−1
 O

B⊤

 d

dp
∇wF (w, p)

= −
[
M B

] I O

−Q−1
22 Q

⊤
12 Q−1

22

 O

B⊤

 d

dp
∇wF (w, p)

(25)

= −BQ−1
22 B

⊤C (26)

= −B(B⊤∇2
wF (w, p)B)−1B⊤C.

Below, to establish the Lipschitz continuity of w̄β(·),
we provide a uniform bound for dw̄β

dp (p) over all values
of p ∈ R|AO|, by providing a uniform upper bound for
the minimum eigenvalue of ∇2

wF (w̄
β(p) over all values

of p ∈ R|AO|.
From Lemma 7, w̄β

a (p) ∈ [Cw, go] for each
p ∈ R|AO| and a ∈ A. Thus, all the second partial
derivatives of F , as given by:

∂2

∂wa∂wa′
F (w̄β(p), p)

=

(
ds[a]

dw
(w̄β(p)) +

1

w̄β
a (p)

)
· 1{a = a′}

− 1∑
a′∈A+

ia

w̄β
a′(p)

· 1{ia′ = ia}

are well-defined and continuous. Next, consider the
continuous map from each p ∈ R|AO| to the minimum
eigenvalue of ∇2

wF (w̄
β(p), p), officially stated as:

p 7→ min
v∈R|A|

∥v∥2=1

v⊤∇2
wF (w̄

β(p), p)v.

Since F is strictly convex, ∇2
wF (w̄

β(p), p) is symmetric
positive definite for each p ∈ R|AO|, meaning that the
output of the above map is strictly positive for each p ∈
R|AO|. Moreover, note that the entries of F (wβ(p), p)
only depend on p through the value of wβ(p), which is
bounded in [Cw, go]

|A|. Thus, for each p ∈ R|AO|:

min
v∈R|A|

∥v∥2=1

v⊤∇2
wF (w̄

β(p), p)v

≥ min
w∈[Cw,go]|A|

v⊤∇2
wF (w, p)v

:= CF > 0,

where CF := minw∈[Cw,go]|A| v⊤∇2
wF (w, p)v is inde-

pendent of p, and is strictly positive, since the minimum
of a strictly positive-valued function over a compact set
is strictly positive. We thus have a uniform bound on
the derivative of w̄β over all values of p ∈ R|AO| at
which it is evaluated:∥∥∥∥dw̄β

dp
(p)

∥∥∥∥
2

≤ ∥B∥22∥C∥2 · ∥(B⊤∇2
wF (w̄

β(p), p)B)−1∥2

= ∥B∥22∥C∥2 ·
1

min
v̂∈R|A|−d

∥v̂∥2=1

v̂⊤B⊤∇2
wF (w̄

β(p), p)Bv̂

≤ ∥B∥22∥C∥2 ·
1

min
v∈R|A|

∥v∥2=1

v⊤∇2
wF (w̄

β(p), p)v

≤ ∥B∥22∥C∥2 ·
1

CF
.

2) We shall establish the Lipschitz continuity of (the re-
striction of) za, for each a ∈ A, by providing uniform
bounds on its partial derivatives across all values of its
arguments (w, p) ∈ W ′ × [0, Cp]

|AO|.
The proof follows by induction on the height index

k ∈ [m(G)]. For each a ∈ A, let z̃a : R|A| → R be the
continuous extension of za : W → R to the Euclidean
space R|A| containing W . By definition of Lipschitz
continuity, if z̃a is Lipschitz for some a ∈ A, then so
is za. For each a ∈ A−

d = {a ∈ A : ma = 1} and any
w ∈ R|A|:

z̃a(w) = s[a](w[a]) + p[a′].

Thus, for any â ∈ A, and any w ∈ R|A|, p ∈ R|AO|:

∂z̃a
∂wâ

(w, p) =
ds[a]

dw
(w[a]) · 1{â ∈ [a]} ∈ [0, Cds],

∂z̃a
∂p[â]

(w, p) = 1{â ∈ [a]} ∈ [0, 1].

We set Cz,1 := max{Cds, 1}.
Now, suppose that there exists some depth k ∈

[m(G)− 1] and some constant Cz,k > 0 such that, for
any a ∈ A satisfying ma ≤ k, and any w ∈ W , n ≥ 0,
the map z̃a : R|A| → R is continuously differentiable,
with: ∣∣∣∣ ∂z̃a∂wâ

(w)

∣∣∣∣ ≤ Cz,k,

∣∣∣∣ ∂z̃a∂p[â]
(w)

∣∣∣∣ ≤ Cz,k.

Continuing with the induction step, fix a ∈ A such that
ma = k + 1 (there exists at least one such link, by
[10], Proposition 1, Part 4). From [10], Proposition 1,
Part 2, we have ma′ ≤ k for each a′ ∈ A+

ia
. Thus, the

induction hypothesis implies that, for any â ∈ A:

z̃a(w, p) = s[a](w[a]) + p[a] −
1

β

∑
a′∈A+

ia

e−βza′ (w,p).



Computing partial derivatives with respect to each com-
ponent of w, we obtain:

∂z̃a
∂wâ

(w, p) =
ds[a]

dw
(w[a]) · 1{â ∈ [a]}

+
∑

a′∈A+
ja

e−βz̃a′ (w,p) · ∂z̃a
′

∂wâ
(w, p),

⇒
∣∣∣∣ ∂z̃a∂wâ

(w)

∣∣∣∣ ≤ Cds + |A| · Cz,k.

Computing partial derivatives with respect to each com-
ponent of p, we obtain:

∂z̃a
∂p[â]

(w, p) = 1{â ∈ [a]}

+
∑

a′∈A+
ja

e−βz̃a′ (w,p) · ∂z̃a
′

∂pâ
(w, p),

⇒
∣∣∣∣ ∂z̃a∂wâ

(w)

∣∣∣∣ ≤ 1 + |A| · Cz,k.

We can complete the induction step by taking Cz,k+1 :=
max{Cds, 1}+ |A| · Cz,k.

This establishes that, for each a ∈ A, the map za is
continuously differentiable, with partial derivatives uni-
formly bounded by a uniform constant, Cz := Cz,m(G).
This establishes the Lipschitz continuity of the map
za for each a ∈ A, and thus proves this part of the
proposition.

3) Recall that the map from traffic allocation probabilities
(ξ) to traffic flows (w) is given as follows, for each
a ∈ A:

wa =

gia +
∑

â∈A−
i

wa

 · ξa = go ·
∑
r∈R
a∈r

|r|∏
k=1

ξar,k
,

where ar,k denotes the k-th arc along a given route
r ∈ R, for each k ∈ |r|. It is there clear that the map
from ξ to w is continuously differentiable. Moreover,
the domain of this map is compact; indeed, for each
a ∈ A, we have ξa ∈ [0, 1], and for each non-destination
node i ̸= d, we have

∑
a∈A+

i
ξa = 1. Thus, the map

ξ 7→ w has continuously differentiable derivatives with
magnitude bounded above by some constant uniform in
the compact set of realizable probability allocations ξ.
This is equivalent to stating that the map ξ 7→ w is
Lipschitz continuous.

4) Above, we have established that the maps za and
ξ 7→ w are Lipschitz continuous. Since the addition and
composition of Lipschitz maps is Lipschitz, it suffices to
verify that the map ρ̂ : R|A| → R|A|, defined element-
wise by:

ρ̂a(z) :=
e−βza∑

a′∈A+
ia

e−βza′
, ∀a ∈ A

is Lipschitz continuous. We do so below by computing,
and establishing a uniform bound for, its partial deriva-

tives. For each â ∈ A:
∂ρ̂a
∂zā

=
1

(
∑

a′∈A+
ia

e−βza′ )2

·

( ∑
a′∈A+

ia

e−βza′ · (−β)e−βza · ∂za
∂zā

− e−βza ·
∑

a′∈A+
ia

(−β)e−βza′ ∂za′

∂zā

)
,

=
e−βza∑

a′∈A+
ia

e−βza′
· β · ∂za

∂zâ

+
βe−βza

(
∑

a′∈A+
ia

e−βza′ )2
·
∑

a′∈A+
ia

e−βza′ ∂za′

∂zā
,

where we have used the fact that:∑
a′∈A+

ia

e−βza′ ∂za′

∂zā
=

∑
a′∈A+

ia

e−βza′ · 1{a′ = â}

≤ max
a′∈A+

ia

e−βza′ .

Thus, applying the triangle inequality, we obtain:∣∣∣∣∂ρ̂a∂zā

∣∣∣∣ = β + β = 2β.

This concludes the proof for this part of the proposition.
5) For each a, a′ ∈ A:

r[a]
p[a′]

(p)

= −
∂p[a]
∂p[a′]

+

(
ds[a]
dw

(
w̄β

[a](p)
)
+ w̄β

[a](p)
d2s[a]
dw2

(
w̄β

[a](p)
))

·
∂w̄β

[a]

∂p[a′]
(p).

Define:

Cdds := max
x∈[0,go]

{
d2s[a]

dw2
(x)

}
.

Meanwhile, by the first part of this proposition, and the
Cauchy-Schwarz inequality:∣∣∣∣∣∂w̄

β
[a]

∂p[a′]
(p)

∣∣∣∣∣ =
∣∣∣∣e⊤[a] dw̄β

dp
(p)e[a′]

∣∣∣∣
≤
∥∥∥∥dw̄β

dp
(p)

∥∥∥∥
2

≤ ∥B∥22∥C∥22 ·
1

CF
.

Thus, we have:∣∣∣∣ r[a]p[a′]
(p)

∣∣∣∣ ≤ 1 + (Cds + goCdds) · ∥B∥22∥C∥22 ·
1

CF

:= Cr.

Thus, Cr > 0 uniformly upper bounds the partial
derivatives of r[a] over all of its components p[a′] and
all arguments p ∈ R|AO|. This establishes the Lipschitz
continuity of each r[a], and thus concludes the proof.



4) Proof of Theorem 3: We complete the proof of Theo-
rem 3, restated below: There exists some ϵ > 0 such that, if
∥P [0]− p̄∥2 ≤ ϵ, then (a):

lim sup
n→∞

E
[
∥ξ[n]− ξ̄β(p̄)∥22 + ∥P [n]− p̄∥22

]
=O

(
µ+

a

µ

)
,

and (b) for each δ > 0:

lim sup
n→∞

P
[
∥ξ[n]− ξ̄β(p̄)∥22 + ∥P [n]− p̄∥22 ≥ δ

]
=O

(
µ

δ
+

a

δµ

)
.

The result follows by applying the global convergence of the
continuous-time toll dynamics 18 under the affine latency
assumption, as provided by Lemma 6. Theorem 3 now fol-
lows by applying the two-timescale stochastic approximation
results in Borkar [22], Chapters 2 and 9.
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