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Abstract 
This work introduces a novel and efficient Bayesian federated 
learning algorithm, namely, the Federated Averaging stochastic 
Hamiltonian Monte Carlo (FA-HMC), for parameter estimation and 
uncertainty quantification. We establish rigorous convergence 
guarantees of FA-HMC on non-iid distributed data sets, under the 
strong convexity and Hessian smoothness assumptions. Our 
analysis investigates the effects of parameter space dimension, 
noise on gradients and momentum, and the frequency of 
communication (between the central node and local nodes) on 
the convergence and communication costs of FA-HMC. Beyond 
that, we establish the tightness of our analysis by showing that 
the convergence rate cannot be improved even for continuous 
FA-HMC process. Moreover, extensive empirical studies 
demonstrate that FA-HMC outperforms the existing Federated 
Averaging-Langevin Monte Carlo (FA-LD) algorithm. 
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1 Introduction 

Standard learning algorithms usually require centralizing the training data, in the sense 

that the learning machine can directly access all pieces of the data. Federated learning 

(FL), on the other hand, enables multiple parties to collaboratively train a consensus 

model without directly sharing confidential data (Konečnỳ et al., 2015, 2016; Bonawitz 

et al., 2019; Li et al., 2020a). The framework of FL is quite appealing to applications 

where data confidentiality is of vital importance, such as aggregating user app data from 

mobile phones to learn a shared predictive model (e.g., Tran et al., 2019; Chen 

et al., 2020a) or analyzing medical data from multiple healthcare stakeholders (e.g., 

hospitals, research centers, life science companies) (e.g., Li et al., 2020c; Rieke 

et al., 2020). 

FL shares a similar algorithmic architecture to parallel optimization. First, parallel 

algorithms are commonly based on the divide-and-combine strategy, i.e., the learning 

system assigns (usually i.i.d.) training samples to each worker node, say via simple 

random sampling. As such, the training data sets are similar in nature across worker 

nodes. But under the FL framework, the data sets of each worker node are generated or 

collected locally and are not homogeneous, which poses challenges for convergence 

analysis. Secondly, parallel computing is commonly practiced in the same physical 

location, such as a data center, where high throughput computer networking 

communications are available between worker nodes. In contrast, FL has either a vast 

number of worker nodes (e.g., mobile devices) or geographically separated worker 

nodes (e.g., hospitals), which limits the connectivity between the central nodes and 

worker nodes. Due to the unavailability of fast or frequent communication, FL needs to 

be communication-efficient. 

Federated Averaging (FedAvg, McMahan et al., 2017) is one of the most widely used 

FL optimization algorithms. It trains a global model by synchronously averaging multi-
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step local stochastic gradient descent (SGD) updated parameters of all the worker 

nodes. Various attempts have been made to enhance the robustness and efficiency of 

FedAvg (e.g., Li et al., 2020b; Wang et al., 2020). However, optimization-based 

approaches often fail to provide proper uncertainty quantification for their estimations. 

Reliable uncertainty quantification, such as interval estimations or hypothesis testing, 

provides a vital diagnostic for both developers and users of an AI system. 

The Bayesian counterpart naturally integrates an inference component, thus it provides 

a unified solution for both estimations and uncertainty quantification. This paper studies 

a Bayesian computing algorithm aiming to obtain samplers from the global posterior 

distribution by infrequently aggregating samples drawn from local posterior distributions. 

Unlike existing results that utilize stochastic gradient Langevin dynamics (Welling and 

Teh, 2011), this work considers (stochastic gradient) Hamiltonian Monte Carlo 

(HMC, Neal, 2012). While the second-order nature of HMC poses more theoretical 

difficulties, it has been demonstrated to be more computationally efficient through 

numerous empirical studies (see, e.g., Girolami and Calderhead, 2011; Chen 

et al., 2014). Readers can refer to Section A in Supplementary Material for a review of 

related literature on federated sampling and HMC. 

The contributions of the presented work are three-fold: 

(1) We propose the Federated Averaging Hamiltonian Monte Carlo (FA-HMC) algorithm 

which is effective for global posterior inferences in federated learning. It utilizes 

stochastic gradient HMC on individual local nodes and combines the local samples 

obtained infrequently to yield global samples. 

(2) Under strong log-concavity and proper smoothness assumptions, we have proven a 

non-asymptotic convergence result under the Wasserstein metric for various training 

settings. Furthermore, we demonstrate that this upper bound of the convergence rate of 

the FA-HMC sampling algorithm is tight (i.e., best achievable for certain sampling 

problems). 
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(3) We conduct simulation and real data experiments to validate our theoretical findings. 

Additionally, the numerical studies show that FA-HMC is easy to tune, improves 

communication efficiency, and can outperform FA-LD in different settings. 

Roadmap: 

The paper is organized as follows: In Section 2, we summarize the problem setup and 

provide the necessary background on HMC. In Section 3, we present the FA-HMC 

algorithm and the assumptions used for its analysis. In Section 4, we provide the key 

theoretical findings and examine the effects of SGD noise and the correlation between 

momentum. Furthermore, we prove that our analysis is tight and cannot be improved for 

certain sampling problems, even for continuous FA-HMC. In Section 5, we compare the 

FA-HMC algorithm with the FA-LD algorithm through extensive simulations and real-

data experiments. Finally, in Section 6, we conclude our work and suggest potential 

future directions. 

2 Preiminary 

2.1 Problem Setup 

Let 
,1ci cz i n 

 be the available data of the c-th node and 
( ; )ciz

 be a user-specified 

negative log-likelihood function. Define 
, /c c cn n w n n  , and 

( )

1

( ) : ( ; ) /
cn

c c

i c

i

f n z n 


 
 

is the local loss function of parameter 
d   accessible to the c-th local node (e.g., the 

normalized negative log-likelihood function based on the data set available at c-th local 

node) for 1 c N  . The goal is to simulate the global target distribution 

( ) exp( ( ))f    , where 

( )

1

( ) ( ), 0
N

c

c c

c

f w f w 


 
 and 

1c

c

w 
. 
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2.2 Hamilton’s Equations and HMC 

Hamiltonian (Hybrid) Monte Carlo (HMC) was first proposed by Duane et al. (1987) for 

simulations of quantum chromodynamics and was then extended to molecular dynamics 

and neural networks Neal (2012). To alleviate the random-walk behavior in the vanilla 

Langevin dynamics, HMC simulates the trajectory of a particle according to Hamiltonian 

dynamics and obtains a much faster convergence rate than Langevin dynamics 

Mangoubi and Vishnoi (2018). In specific, HMC introduces a set of auxiliary momentum 

variables 
dp  to capture second-order information, whereas Langevin Monte Carlo is 

only a first-order method. In this way, HMC generates samples from the following joint 

distribution 

11
( , ) exp( ( ) ),

2
p f p p        

where 
1( ) / 2f p p    is the Hamiltonian function and quantifies the total energy of a 

physical system. To further generate more efficient proposals, HMC simulates 

according to the following Hamilton’s equations 

1/2 1/2( ) ( )
( ), ( ( )),

d t dp t
p t f t

dt dt



      (1) 

which satisfy the conservation law and are time reversible. Such properties leave the 

distribution invariant and the nature of Hamiltonian conservation always makes the 

proposal accepted ideally. Note that commonly, one chooses d 
 such that the 

momentum follows the standard multivariate normal distribution. 

To numerically implement the continuous HMC process, a popular numerical integrator 

is the “leapfrog” approximation, see Algorithm 1. Here, to enhance the computational 

efficiency, 
( , )k kf  

 and 1 1/2( , )k kf   
 are the stochastic versions of 

( )kf 
 and 

1( )kf  
, respectively. The arguments ξk and 1/2k   denote random variables that control 

the randomness of the stochastic gradients. For example, given 1

( ) ( ; )
n

i

i

f z 



 with 
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data 1{ }ni iz  , we let ( )

( , ) ( ; )/ | ( ) | ( )
k

k i k k

i S

f n z S Z


    


   
 where 

( )kS 
 is a random 

index subset, 
( )kZ 

 is an injected Gaussian noise, and ξk is the random seed. When the 

exact gradients are used, it holds that 
( , ) ( )k k kf f    

 and 1 1/2 1( , ) ( )k k kf f      
. 

Note that throughout this paper, when the exact gradient is used instead of a stochastic 

gradient, the algorithm is referred to as the vanilla version, e.g., vanilla FA-HMC. 

Algorithm 1 Stochastic gradient leapfrog approximation LFh  

Input: Energy function (·)f ; Initial parameters θ0, momentum p0; learning rate η; 

leapfrog step K; k = 0 

while k K : do 
2

1 ( , )
2

k k k k kp f


        
 

1 1 1

2

( , ) ( , )
2 2

k k k k k
k

p p f f
 

    


    

 

1;k k   

Output: LF 0 0( , , , , ) Kh f p K  
 

 

For convenience in analysis, the leapfrog method without Metropolis correction (see 

Algorithm 2), is commonly studied in the literature (Mangoubi and Vishnoi, 2018; Chen 

and Vempala, 2022; Zou and Gu, 2021). One may also add an additional accept/reject 

step according to the Metropolis ratio (Chen et al., 2020b). 

Algorithm 2 HMC algorithm (without Metropolis correction) 

Input: Energy function (·)f ; Initial point θ0; Stepsize function 
( )t t 

; Leapfrog step K; 

t = 0; 

while the stopping rule is not satisfied do 

sample momentum 
~ (0, )t dp N
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update 1 LF( , , , , ), 1t t t th f p K t t     
; 

Output: 1{ }ti i   

Note that in the literature, Chen et al. (2014) proposed a different HMC algorithm, based 

on Euler integrator of Hamilton dynamics. Their implementation includes variance 

adjustment to counteract the noise of the stochastic gradient, which can negatively 

impact the stationary distribution. This adjustment eventually leads to an underdamped 

Langevin Monte Carlo algorithm with stochastic gradient (see also e.g., Ma 

et al., 2015; Zou et al., 2019; Chau and Rasonyi, 2022; Akyildiz and 

Sabanis, 2020; Nemeth and Fearnhead, 2021). 

3 FA-HMC Algorithm and Assumptions 

Ensuring the confidentiality of the data utilized for training a model is a vital concern in 

federated learning. To safeguard against potential gradient leakage (Zhu et al., 2019) 

and breaches of local data privacy, it is preferable to use noisy gradients and less-

correlated momentum among local nodes (see Deng et al., 2021; Vono et al., 2022). 

This could make it more difficult to recover local data information through accumulated 

communication. 

With these considerations, we propose Federated Averaging via HMC algorithm that 

utilizes general stochastic gradients and non-necessarily identical momentum across 

nodes. We let all local devices run HMC (Algorithm 1), and synchronize their model 

parameters every T iteration. All devices may use stochastic gradients and share part of 

the initial momentum of leapfrog approximation. Note that in practice, correlated 

momentum between devices can be easily achieved by sending a common random 

seed to all devices for momentum generation. This FA-HMC algorithm is formalized in 

Algorithm 3. 
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Algorithm 3 FA-HMC algorithm 

Input: 
( )

0 0

c 
, t = 0; stepsize function 

( )t t 
; Local update step T; leapfrog update 

step K; 

while the stopping rule is not satisfied do 

sample momentum 
( )c

tp  

if 0(mod )t T  then 

Broadcast 

( )

1

:
N

c

t c t

c

w 



 and set 

( )

1,0

c

t t  
 

else 

( ) ( )

1,0

c c

t t  
 

update 
( ) ( ) ( ) ( )

1 LF 1,0( , , , , )c c c c

t t t th f p K   
 in parallel for all devices, 1t t   

It is worth mentioning that when leapfrog step K = 1, the leapfrog approximation of the 

unadjusted HMC algorithm (i.e., Algorithm 1) reduces to 

2

1 ( / 2) ( , ) (0, )t t t t t t df N         
, which is exactly the unadjusted Langevin Monte 

Carlo with dynamic learning rate 
2 / 2t . And the FA-HMC reduces to FA-LD Deng 

et al. (2021). 

3.1 Assumptions 

To establish the convergence performance of the aggregated model with respect to θt, 

we adopted the following assumptions. 

Assumption 3.1 (μ-Strongly Convex). For each 
( )1,2, , , cc N f   is μ-strongly convex for 

some 0  , i.e., , dx y  , 

( ) ( ) ( ) 2

2( ) ( ) ( ), || || .
2

c c cf y f x f x y x y x


      
 

Assumption 3.2 (L-Smoothness). For each 
( )1,2, , , cc N f   is L-smooth for some L > 0, 

i.e., 
( ) ( ), , || ( ) ( ) || || || .d c cx y f y f x L x y       
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Assumption 3.3 (LH-Hessian Smoothness). For each 
( )1,2, , , cc N f   is LH Hessian 

smoothness, i.e., for any 1 2, , dp  
, 

2 ( ) 2 ( ) 2 2 2 2

1 2 1 2|| ( ) ( ) || || || || || .( )c c

Hf f p L p       
 

Assumptions 3.1-3.2 are commonly used for the convergence analysis of gradient-

based MCMC algorithms (e.g., Dalalyan, 2017; Mangoubi and Vishnoi, 2018; Dalalyan 

and Karagulyan, 2019; Erdogdu and Hosseinzadeh, 2021, and references therein). The 

strong convexity condition, in some theoretical literature of stochastic Langevin Monte 

Carlo, has also been relaxed to the dissipativity condition (e.g., Raginsky 

et al., 2017; Zou et al., 2021) for non-log-concave target distributions. But such an 

extension is beyond the scope of this paper and will be investigated in future works. 

Assumption 3.3 ensures second-order smoothness of energy functions beyond gradient 

Lipchitzness. Similar Hessian smoothness conditions are used in the literature. For 

example, Dalalyan and Karagulyan (2019); Chen et al. (2020b); Zou et al. (2021) 

required the Hessian matrix of energy function to be Lipchitz under 2  operator norm. In 

comparison, Assumption 3.3 is a stronger requirement since   norm appears on the 

RHS. Our assumption is somewhat comparable to Assumption 1 of Mangoubi and 

Vishnoi (2018) which defines a semi-norm with respect to a set of pre-specified unit 

vectors. 

We require an additional assumption to model stochastic gradients. Denote 
( )

,

c

t k
 as the 

position parameter of the c-th local node at iteration t and leapfrog step k, and 
( )

,

c

t x
 (

1/ 2,x k k  ) as the corresponding variable that controls the randomness of gradient. 

Assumption 3.4 (σg-Bounded Variance). For local device 1,2, ,c N  , and leapfrog step 

1,2, , , 1,2,k K t   , we have 
( ) ( ) ( ) ( ) 2

1/2, , , ,max tr(Var( ( , ) | ))c c c c

x k k t k t x t k gf Ld      
, for some 

0g 
. 

This is a common assumption in the literature (see Gürbüzbalaban et al., 2021; Vono 

et al., 2022; Deng et al., 2021). It is worth noting that in practice, the stochastic gradient 
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is computed based on a random subsample of the whole dataset, thus the variability of 

the stochastic gradient can be naturally controlled by adjusting the batch sizes. 

Under our framework, we can also relax the above assumption to 

( ) ( ) ( ) ( ) 2 ( )

, , , ,
1/2,

max tr(Var( ( , ) | )) ( ),c c c c c

t k t x t k g t k
x k k

f G d   
 

    

without significant changes to our proof, where 
( )

,

c

t kG  denote 
( ) ( ) 2

,|| ( ) ||c c

t kf 
. The 

extension of the proof to accommodate this assumption is discussed in Section K in the 

appendix. 

Before presenting our main result, we emphasize that this paper examines the 

convergence of the FA-HMC sampling algorithm, specifically in regard to dimension d 

and error ϵ. It also explores ways to adjust the algorithm to maintain its effectiveness 

when considering variations in gradient and momentum noise. Adapting the FA-HMC 

algorithm to more general settings like non-convexity will be our future study. 

4 Theoretical Results 

In Section 4.1, we describe the general convergence rate of FA-HMC on different 

settings and point out the setting where FA-HMC achieves the fastest speed and least 

communication cost. In Section C of the supplementary material, we argue that that the 

upper bound on the nearly ideal case is tight by giving a matching lower bound result. In 

Section 4.2, we present a detailed result of the convergence behavior of the FA-HMC 

algorithm. 

4.1 Main Results 

Define 
* : argmin ( )f 

 and denote the marginal distribution of θt by πt. Given two 

probability measures μ and ν, the 2-Wasserstein distance is 
2 1/2

2
~ , ~

( , ) inf ( || || )
X Y

X Y
 

   
. The following theorem describes the general 

convergence rate of FA-HMC. 
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Theorem 4.1. Assume 3.1-3.4, and 
2 1

2 0( , ) ( )O d  
 and 

( ) * 2

1

|| ( ) || ( )
N

c

c

c

w f O d


 
. For 

a given local iteration step T, there exists some constant C depending on 
2 3, / , /HL L L L

 

such that if we choose ( )t   and (denote 
2( )K  ) 

2 2
2

2 2 2 22
2 2

1

1
min , , ,

(1 )
{ }

N

c g

c

C
K K L K dT NK dT

Kd w









 



 

then 2( , )t  
 for any 0 , with iteration number 

2 2

2
1 2 1

2

log( / )
(1 )( ( ) )

N

c g

c

w
d d

t O T N
K



     


 

and corresponding communication times 

2 2

2

1

2

log( / )
(1 ) .( ( ) )

N

c g

c

w
t d d

O T N
T KT



     


 

When one uses small batch stochastic gradients (i.e., large σg) or less correlated 

momentum (i.e, small ρ) to improve computational feasibility and protect privacy, the 

proposed γ is negligible. Under this scenario, the required number of iterations is of rate 

2( / )O d  with respect to the dimension d and precision level ϵ. 

Remark 4.2. Regarding the stopping rule of algorithms 2 and 3, Theorem 4.1 does 

provide a nonasymptotic choice of 
t

 to achieve an ϵ-W2 error in theory. But this bound 

is impractical, as it relies on the unknown distributional properties of the target 

distribution. For more practical rules, various suggestions have been made in the 

literature (e.g., Gelman et al., 1995). For example, (i) From a visual inspection 

perspective, we can randomly pick some dimensions and visually compare the trace 

plots between two parts of a single chain (by splitting one chain in half) or between two 

chains. We keep running the chains until they become “approximately” stationary; (ii) 
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From a quantitative perspective, we can compute the between- and within-sequence 

variances following the potential scale reduction factor R̂  defined in Eq.(11.4) of 

Gelman et al. (1995), the stopping rule can be triggered when ˆ 1R  . Note that it is 

beyond the scope of this paper to design a stopping rule with statistical guarantees. 

The result of Theorem 4.1 also shows that for a fixed ϵ, under proper tuning, the 

communication cost 
/t T

 may initially decrease and then increase as the number of 

local HMC iteration steps T increases (i.e., a ‘U’ curve w.r.t, T). Therefore, there is a 

trade-off between communication and divergence, and an optimal choice for local 

iteration can be made. Similar discoveries were also argued by Deng et al. (2021) for 

Bayesian Federated Averaging Langevin system. The above results provide a certain 

level of direction for optimizing the performance of FA-HMC algorithms, considering any 

well-defined federated learning loss that accounts for total running time, overall 

communication cost, and divergence. 

For instance, by reducing the noise of the stochastic gradients and improving correlation 

between momentum to a certain level, we can achieve significant improvement on the 

convergence speed from 
2( / )O d  to ( / )O d , which is argued by the following 

proposition. 

Proposition 4.3. With the assumptions as stated in Theorem 4.1, if we choose ( )t   

and (denote 
2( )K  ) 

21
min , , 1 ( ), ( ){ } gC O O K

L NT d


        (2) 

then it achieves that 2( , )t  
, where πt denotes the marginal distribution of θt, with 

iteration t and corresponding communication times 
/t T

 as 

2 2log( / ) log( / )
( ), .( )td d d d

t O T O
T

   
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Under the setting (2), referred to as vanilla FA-HMC, the obtained convergence rate 

matches that of the underdamped Langevin Monte Carlo algorithm on a single device in 

Cheng et al. (2018) and is superior to that of Federated Averaging of underdamped 

Langevin Monte Carlo algorithm under decentralized setting (i.e., rate 2( / )O d  in 

Gürbüzbalaban et al., 2021). It also matches existing results about Federated Langevin 

algorithm tackling heterogeneity under the federated learning framework Plassier 

et al. (2023) and is better than those without hessian smoothness assumption Deng 

et al. (2021). 

Furthermore, in Section C of the supplementary material, we establish a lower bound for 

( log( / ) / )t dT d 
 for some log-concave target distribution. In other words, our 

result in Proposition 4.3 is tight w.r.t. dimension d and local iteration T. This tight result 

implies that (1) Unlike the “U” curve with respect to T discovered in Theorem 4.1, when 

there are small stochastic gradients and large correlations between momentum, 

communication times have limited variations in T. Therefore, the tradeoff between 

communication and divergence will not exist for vanilla FA-HMC and it suggests a small 

local iteration T to minimize unnecessary computation; and (2)In terms of rate 

dependency w.r.t. the dimension, under similar conditions on the Hessian matrix, the 

rate of single-device HMC is as low as 
1/4( )O d  Mangoubi and Vishnoi (2018), which is 

strictly better than our rate 
1/2( )O d  under the federated learning setting. This intrinsic 

gap is caused by (i) FA algorithm design and (ii) the use of stochastic gradient. 

4.2 Convergence Behaviour for FA-HMC Algorithm 

For correlated momentum, for simplicity of analysis, we consider the following setting 

( ) ( )1 / , for all [ ], 1,c c

t t t cp w c N t       

where 
( ), c

t t 
 are independent standard Gaussian and the ξt are the shared across all 

local nodes and 
( )c

t ’s are private to each local node c. 
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Here the factor 
1/ cw  on 

( )c

t  is a scaling treatment such that the average momentum 

is a standard Gaussian. To see this, note that the average momentum 

( )

1

N
c

t c t

c

p w p



 has 

a smaller variance due to the correlation between 
( ){ }ct cp

. By direct calculations, we 

have 

( ) 2 21
|| || ( ) , || || .c

t t

c

p d p d
w





    

Note that for FA-HMC, the momentum of each local device is not standard Gaussian. 

This is to ensure that the center momentum (i.e., 

( )

1

N
c

t c t

c

p w p



 aggregated from local 

momentum) is close to the standard Gaussian. This is a special setting induced by 

distributed sampling and the goal of privacy preservation. 

We define the aggregated global model 

( )

1

:
N

c

t t

c

 



 for all 1t  . Note that θt, in practice, 

is not accessible unless 0(mod )t T . For 0t  , we also define 1t

   as the parameter 

resulting from the evolution over tK
 time following dynamic (1) with initial position t


 

and momentum pt. With the above preparations, to intuitively understand the 

convergence of the distribution of θt, we take the vanilla FA-HMC as an example. We 

can decompose 
( )

1 1

c

t t

  
 as follow: 

1
( ) 2

1 1 1 2 3

1

(I ) ( )(I ) (I ),
K

c

t t k

k

K k  


 



      
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2 3 3
( ) ( ) ( ) 2 ( ) ( )

1 ,0 ,0 ,0

2 3
2

( ) ( ) ( ) ( ) 2 ( ) ( )

2 , ,0 ,0

2

3
0 0

( ) ( )
(I ) ( ) ( )

2 6

( ) ( )
· ( ) ( ) ;

2 6

(I ) ( ) ( ) ( )

(I ) ( ( )) ( ) ( )

( )

c c c c c

t t t

t t t t t

c c c c c c

k t k t t t

K s

t t t t

K K K
f f

K K
p f f p

f f f p k

f u f f p ududs

  


  

 
  

 
  

   

  


    

    

   

     .

 

Here 1(I )
 represents second-order random approximation of 

( )

1 1

c

t t

  
 through 

( )c

t  and 

t


, and we expect that 

2 2 2

1

1

|| (I ) || || || ,
N

c t t t t

c

w    


    

where the contraction factor 
(0,1)t 

 and one-iteration divergence error 
0t 

. 

On the other hand, 2|| (I ) ||k  and 3|| (I ) ||
 represent second-order approximation error and 

are expected to be 
2(( ) )tO K d

. 

By utilizing Lemma D.1, the overall behavior is summarized in the following theorem. 

Theorem 4.4 (Convergence). Under Assumptions 3.1-3.4, if we set 
1/ ( )t t K L   

 

for any t t    in Algorithm 3, then 
{ }t t

 satisfies 

2
2 2 2

1 1 0 0

( )
|| || (1 ) || ||

4

tt
t t t t

K  
            

where there exist constants 1 2, 0C C 
 depending on 

2 3, / , /HL L L L
 and 

2log ( )dc d
, 

such that 

( )
2 2 2 2 2

1 2

1 1

Bias Correlation Stoc. Grad.

1
( )( )

cN N

c

t t c g

c c

w B
CT K K d C K w d

L L


 

 


      

with 

( ) ( ) ( ) 2

,0: sup || ( ) ||c c c

t
t

B f   
. 
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The proof is postponed to Section G in the supplementary material. The divergence 

error is made up of three main components: error resulting from bias across local nodes 

(which includes heterogeneity and sampling cost), momentum noise, and gradient 

noise. In the absence of stochastic gradients and when momentum is identical across 

nodes, the only errors present are lower-order biases. Similar intermediate contraction 

results have been derived in the literature on gradient-based sampling algorithms 

(e.g., Deng et al., 2021; Plassier et al., 2023). 

By the definition of Wasserstein metric, Theorem 4.4 immediately establishes a 

convergence result of the marginal distribution of θt, denoted by πt, towards π under 

Wasserstein-2 distance. The convergence result involves a term 

( ) ( ) 2

,0

1

sup || ( ) || /
N

c c

c t
tc

w f L



. In Lemma D.7 in the appendix, we shows that uniformly, 

( ) ( ) 2 ( ) * 2 2

,0 0 0

1

|| ( ) || ( || ( ) || || || )
N

c c c

t c

c

f O w f L d   


     
 omitting its dependency on 

constants , /L L   and 
2 3/HL L

, and in consequence, solving the two inequalities 

2 2 2 2 2

0 0(1 ( ) / 4) || || / 2, / 2,t

t t tK           

we obtain Theorem 4.1. 

On the other hand, in literature, people design settings for converging learning rate such 

that the extra logarithmic factor in the convergence result can be removed. We also 

obtain a similar result on a learning rate design as stated in the following proposition. 

Proposition 4.5 (Dynamic stepsize). Under Assumptions 3.1-3.4, there is a setting of 

{ }t t
 for Algorithm 3 such that 

2 2|| ||t t

  
 at some 

2 2 2 2 2

1

log ( ) ( (1 ) / /( ) )
N

c g

c

t C d d T N w K  


   
, with 

2 2 2 2 2

1

min{1/ , / , / ( (1 ) ), / ( )}
N

c g

c

L dT dT N K d w  


  
. 
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By this proposition, we see that the 
2log( / )d  factors are removed in the convergent 

iteration compared to Theorem 4.1. One setting of ηt that satisfies the claims in 

Proposition 4.6 is specified in the proof (i.e., Section H in the supplement file). 

5 Experiments 

In this section, we first compare the empirical performance of FA-HMC and FA-LD on 

simulated data. Then we examine the relationship between dimension and 

communication round in our theoretical suggested setting of the learning rate. Last we 

present the performance of FA-HMC on the real datasets. We apply FA-HMC with 

constant stepsize η and the same momentum initialization across devices. We conduct 

the synchronization of the model parameters every T local leapfrog step in the 

implementation of FA-HMC. Due to the significant computational costs involved in 

evaluating performance at each cohort level, some results in this section are obtained 

from a single run and others are obtained by averaging multiple runs. We defer part of 

the results with error bars to Section L in the supplementary materials. 

5.1 Simulation: FA-HMC vs FA-LD 

We first sample from the posterior of a Bayesian logistic regression on a simulated 

dataset of dimension d = 1000 (Mangoubi and Vishnoi, 2018). Specifically, we split the 

dataset of size 1000 equally into 20 local nodes; we run the experiments using both 

exact gradients (i.e., vanilla version) and stochastic gradients, where the later ones are 

simulated by adding an independent zero-mean Gaussian noise of variance 
2 100   to 

each coordinate of the true gradients. Note that simulating the randomness of the 

stochastic gradient by a normal variable is consistent with the experiment setting in 

Mangoubi and Vishnoi (2018). We argue that Gaussian noise is a reasonable 

approximation when invoking the central limit theorem with a large enough batch size. 

As the benchmark, we run Metropolis-adjusted HMC (MHMC) for a sufficient number of 

iterations. To evaluate the performance of FA-HMC, we use the computable metric 
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1

1

1
( , )

d

i i

id
 




 as a measure of marginal error (ME) of two sets of samples, as proposed 

by Mangoubi and Vishnoi (2018); Faes et al. (2011). This metric compares the empirical 

distributions of the i-th coordinate of the two sets of samples, represented by μi and νi, 

respectively. 

We first compare FA-HMC with FA-LD (i.e., FA-HMC with K = 1). Noticing that the 

communication limit is a major bottleneck for federated learning, we suppose the local 

computation cost is negligible compared with the communication cost. Therefore, the 

comparison between FA-HMC and FA-LD is based on the same number of 

communications, or equivalently, the same number of steps t. Fixing local step T = 10, 

we try different stepsizes η and leapfrog steps K. For FA-HMC, we set 
/ (3 )K       

following Mangoubi and Vishnoi (2018) when 0.01   and tune K (such that the 

performance is optimal w.r.t the choice of K) when 0.02  . Each run consists of 
72 10  

steps and we collect the same number of samples from the last 107 steps. We plot the 

curves of the calculated MEs against η in Figure 1(a) (exact gradients, G) and 1(b) 

(stochastic gradients, SG). We observe that in this task, where FA-LD is already a 

competitive baseline, FA-HMC still significantly outperforms FA-LD with around 5% 

improvement on the performance. Moreover, we realize that a wide range of stepsizes 

for FA-HMC yields pretty decent performance. As such, FA-HMC appears to be more 

robust w.r.t. its hyperparameters around the optimal choices, suggesting that FA-HMC 

is easier to tune than FA-LD, and a small stepsize usually leads to a good performance. 

Next, we study the impact of local steps T on communication efficiency in FA-HMC with 

SG. Fixing leapfrog step K = 100 and stepsize 0.01  , we run FA-HMC with T ranging 

from 1 to 100. For each run, we collect one sample after a fixed number of 

communication rounds and calculate the MEs in an online manner. Then, we report the 

required rounds 
R

 to achieve ME   under different settings and present the results in 

Figure 1(c). As we can see, the optimal local step T is 70; setting T too large or too 

small leads to more communication costs. We also notice that under the optimal local 

step, a smaller ϵ leads to more improvement on the communication cost 
R

 compared 
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with the result of T = 100. Moreover, compared with the communication efficiency of T = 

1, the optimal communication efficiency improves by more than 65 times when ϵ is 

around 0.101. 

Furthermore, we reduce the dimension d to 10 in the simulated data and run FA-HMC 

as well as FA-LD with different stepsizes η on this new dataset fixing local step T = 10. 

Apart from the dimension d, the other settings are the same as those in the experiments 

for Figure 1(b). To list a few, stochastic gradients are adopted, and we choose the 

leapfrog step 
/ (3 )K       when 0.01   and tune K > 1 when 0.02   for FA-HMC. 

The curves of the MEs against η are plotted in Figure 1(d). We observe that the general 

pattern in Figure 1(d) is similar to Figure 1(b). The optimal performance of FA-HMC is 

better than that of FA-LD, and the performance gap is larger for smaller step sizes. 

Comparing Figure 1(d) with Figure 1(b), we comment that FA-HMC is more 

advantageous under high-dimensional settings. This observation is consistent with our 

theoretical results that FA-HMC has a better convergence rate in terms of the 

dimension. 

5.2 Simulation: Dimension vs Communication for FA-HMC 

In this experiment, under the suggested setting of learning rate in Proposition 4.3, we 

examine the relationship between communication rounds 
/t T

 required to achieve a 
2

2( , ) 0.1t

  
 and dimension d. 

To obtain an accurate computation of the 2 ( , )t

 
, we consider a distributed 

heterogeneous Gaussian model where the 2 ( , )t

 
 can be explicitly calculated in 

terms of the population mean and variance of the parameter. Specifically, we assume 

that the posterior distribution of half of the local nodes’ parameters is 
(20 , )d dN 1

, and 

for the other half, it is 
( ,2 )d dN 1

. One can check that the overall posterior distribution of 

parameters is 
(16.2 ,1.6 )d dN 1

. We use leapfrog steps K = 5, local steps T = 10, and a 

learning rate 
1/40.02 / d  . For different dimensions 2,50,100,150,...,950,1000d  , we 
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repeat the experiment 200· ( 1) / 2d d   times and sample the parameter θt at the last 

iteration t for each time. The sampled parameters allow us to estimate the population 

mean and variance on the calculation of 2 ( , )t

 
. 

The simulation results in Figure 2 suggest that the square of communication round 
2( / )t T
 is approximately proportional to dimension d. This aligns well with our 

theoretical discovery in Proposition 4.3, where under the suggested learning rate setting 

2/ ( log( / ) / )t T O d d
. 

5.3 Application: Logistic Regression Model for FMNIST 

In this section, we apply FA-HMC to train a logistic regression on the Fashion-MNIST 

dataset. The data points are randomly split into 10 subsets of equal size for N = 10 

clients. We run FA-HMC under different settings of local step T and leapfrog step K with 

stochastic gradients that are calculated using a batch size of 1000 in each local device. 

In each run, one parameter sample is collected after a fixed number of communication 

rounds, and the predicted probabilities made by all the previously collected parameter 

samples are averaged to calculate four test statistics: prediction accuracy, Brier Score 

(BS) (Brier et al., 1950), Expected Calibration Error (ECE) (Guo et al., 2017), and 

Negative Log Likelihood (NLL) on the test dataset. We tune the step size η in each 

setting for the best test statistic. We conduct 5 independent runs in each setting and 

report the average results of those chains. The standard deviations of the results across 

multiple runs are displayed in Section L in the supplementary materials. 

Specifically, to study the impact of leapfrog step K on the performance of FA-HMC, we 

fix local step T = 50, run FA-HMC with K = 1, 10, 50, and 100, and plot the curves of the 

calculated test statistics (accuracy, BS, ECE, and NLL) against communication rounds 

in Figure 3. As we can see, under the same budgets of communication and 

computation, FA-LD (K = 1) performs the worst in terms of BS, ECE, and NLL and the 

second worst in terms of accuracy, which shows the superiority of FA-HMC with K > 1 

over FA-LD. Moreover, FA-HMC with K = 50 performs the best in terms of accuracy, 
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BS, and NLL and achieves a small ECE. In particular, the improvement on ECE and 

NLL over K = 1 can be as large as 26% and 2% respectively, indicating that the optimal 

choice of leapfrog step is around 50 in this setting. 

To study the impact of local step T on the performance of FA-HMC, we fix leapfrog step 

K = 10, run FA-HMC with T = 1, 10, 20, 50, and 100, and plot the curves of the 

calculated test statistics (accuracy, BS, ECE, and NLL) against communication rounds 

in Figure 4. According to the figure, FA-HMC with T = 1 performs the worst in terms of 

all four statistics, which shows the necessity of multiple local updates in this setting. 

Besides, the optimal local step T differs with testing evaluation metrics; e.g., the optimal 

T is 50 in terms of BS, while the optimal T is 20 in terms of NLL. 

5.4 Application: Neural Network Model for FMNIST 

To further assess the performance of FA-HMC on non-convex problems, we apply FA-

HMC and FA-LD to train a fully connected neural network with two hidden layers2 and 

the ReLU activation function on the Fashion-MNIST dataset. Other settings of the 

experiments are the same as the logistic regression experiments in Section 5.3 except 

that only one chain is simulated in each case. We also calculate prediction accuracy, 

Brier Score (BS), and Expected Calibration Error (ECE) on the test dataset. The step 

size η is tuned in each setting for the best test statistic. Fixing local step T = 50 and 

choosing leapfrog step K = 1, 10, 50, and 100, the curves of the calculated test statistics 

against communication rounds are plotted in Figure 5(a), 5(b), and 5(c). As is shown in 

the figures, the optimal leapfrog step differs among different test statistics. For accuracy 

and ECE, the optimal K = 10 (i.e., FA-HMC notably outperforms FA-LD), while the 

optimal K = 1 for BS (i.e., FA-LD sightly outperforms FA-HMC). Fixing K = 10 and 

choosing T = 1, 10, and 50, the curves of the calculated test statistics against 

communication rounds are plotted in Figure 5(d), 5(e), and 5(f). We can see that the 

best local step is T = 50 and the worst local step is T = 1, indicating that the 

communication cost can be greatly reduced. 
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5.5 Application: Logistic Regression Model on KMNIST/CIFAR2 

We also apply FA-HMC to train logistic regression on the Kuzushiji-MNIST (KM) 

(Clanuwat et al., 2018) and CIFAR10 dataset (Krizhevsky et al., 2009). Specifically, we 

only use the first two classes (airplane and automobile) of the CIFAR10 dataset in the 

experiments to simplify the problem and denote it by CF2. The data points in each 

dataset are randomly split into 10 subsets of equal size for N = 10 clients. We run FA-

HMC under different settings of local step T and leapfrog step K with stochastic 

gradients that are calculated using a batch size of 1000 in each local device. As usual, 

we tune the step size η in each setting and report the best statistics: prediction accuracy 

(AC), Brier Score (BS), and Expected Calibration Error (ECE) on the test dataset. The 

choices of local step T and leapfrog step K are the same as those in Section 5.4. 

The performance of FA-HMC using different leapfrog steps K is shown in Figure 6. We 

see that the optimal leapfrog step K varies with different test statistics and datasets, for 

example, the best K is 10 for AC and BS and the best K is larger than 10 for ECE on the 

CF2 dataset, and none of the experiments support K = 1 (i.e., FA-LD) as the optimal 

leapfrog step, showcasing the advantage of FA-HMC (i.e., K > 1) over FA-LD. We also 

study the impact of different local steps T as shown in Figure 7. We observe that except 

for the AC metric on CF2, federated learning with T > 1 outperforms the standard 

baseline T = 1 on the rest of the metrics on both the CF2 and KM datasets. 

6 Conclusions and Future Work 

In this paper, we develop a tight theoretical guarantee for FA-HMC and provide 

suggestions to speed up FA-HMC. Through experimentation, we demonstrate that FA-

HMC outperforms FA-LD. We believe that FA-HMC potentially captures the similarities 

between local nodes, giving it an advantage over FA-LD. For future directions, it would 

be interesting to explore if further improvements can be achieved by addressing 

heterogeneity in local leapfrog steps. Note that for second-order methods, one would 

need to tackle heterogeneity both on local positions and local momentum parameters. 

For example, motivated by Karimireddy et al. (2020), suppose at t0-th iteration 
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(communication round), each local device obtain 0t T   and 
0 0

( )

1

( ) : ( )
N

c

t c t

c

f w f 


  
. 

Then each local device with local loss function 
( )cf  is going to perform the following 

update for 0 00,1, , 1, 1, , 2k K t t T t T       
 

0 0

0 0

2
( ) ( ) ( ) ( ) ( ) ( )

, 1 , , ,

( ) ( ) ( ) ( ) ( ) ( ) ( )

, 1 , , , 1

( ) ( ) ( ) ,
2

( ) ( ) 2 ( ) 2 ( ) .
2

( )

( )

c c c c c ct
t k t k t t k t k t t

c c c c c c ct
t k t k t k t k t t

p f f f

p p f f f f


     


   



 

     

       

 

The complete version is deferred to Algorithm B.2 in the Supplementary Material. 

Another direction we are working on is to consider the privacy guarantee of the 

sampling algorithms and compare them with optimization algorithms. 

It would also be interesting to examine the above directions and the application of 

underdamped Langevin Monte Carlo algorithm to federated learning as future research. 
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Notes 

1 As d , we say ( )f O g iff Cg   for some constant C , and say ( )f O g forC  

being a polynomial of log( )d . 

2 The widths of two layers are 512 times input dimension and 512 times the number of 

classification labels respectively. 
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Fig. 1 Experimental results of FA-HMC and FA-LD on the simulated dataset using 

exact gradients (G) and stochastic gradients (SG). Dimension d = 1000 in Figure (a)-(c) 

and d = 10 in Figure (d). 

 

Fig. 2 Experimental results of FA-HMC to achieve 2 0.1
 at different dimensions d. 
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Fig. 3 The impact of leapfrog steps K on FA-HMC applied on the Fashion-MNIST 

dataset. 

 

Fig. 4 The impact of local steps T on FA-HMC applied on the Fashion-MNIST 

dataset. 

 

Fig. 5 The impact of leapfrog step K and local step T on FA-HMC applied to train a 

two-hidden-layer neural network on the Fashion-MNIST datasets. 
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Fig. 6 The impact of leapfrog step K on FA-HMC applied on the CIFAR2 and KMNIST 

datasets. 

 

Fig. 7 The impact of local step T on FA-HMC applied on the CIFAR2 and KMNIST 

datasets. 
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