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Abstract @b

This work introduces a novel a jctent Bayesian federated

erated Averaging stochastic
C), for parameter estimation and

learning algorithm, namely,
Hamiltonian Monte Carlo (F,

guarantees of FA-H n-iid distributed data sets, under the
strong convexity a
analysis investiga e effects of parameter space dimension,

momentum, and the frequency of

the conve c) and communication costs of FA-HMC. Beyond
that, we €? ish the tightness of our analysis by showing that
the nce rate cannot be improved even for continuous
FA-H process. Moreover, extensive empirical studies
demormstrate that FA-HMC outperforms the existing Federated
Averaging-Langevin Monte Carlo (FA-LD) algorithm.
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1 Introduction

Standard learning algorithms usually require centralizing the training data, in the sense
that the learning machine can directly access all pieces of the data. Federated learning
(FL), on the other hand, enables multiple parties to collaboratively train a con&/s

\

model without directly sharing confidential data (KonecCny et al., 2015, 30a itz

et al., 2019; Li et al., 2020a). The framework of FL is quite appealing IOQlions

where data confidentiality is of vital importance, such as aggregati app data from
mobile phones to learn a shared predictive model (e.g., Tran
akeholders (e.g.,

et al., 2020a) or analyzing medical data from multiple healgc
8§ et al., 2020c; Rieke

hospitals, research centers, life science companies) (

et al., 2020). 0

FL shares a similar algorithmic architectur: aftel optimization. First, parallel
algorithms are commonly based on theNdivide-®nd-combine strategy, i.e., the learning
system assigns (usually i.i.d.) trainin Ies to each worker node, say via simple
random sampling. As such, t r@ data sets are similar in nature across worker
nodes. But under the FL fr K the data sets of each worker node are generated or
collected locally and ar ogeneous, which poses challenges for convergence
analysis. Secondly omputing is commonly practiced in the same physical
location, such C)center, where high throughput computer networking

communi &g aQ)available between worker nodes. In contrast, FL has either a vast
number of Wbrker nodes (e.g., mobile devices) or geographically separated worker
nodes (e.g., hospitals), which limits the connectivity between the central nodes and

worker nodes. Due to the unavailability of fast or frequent communication, FL needs to

be communication-efficient.

Federated Averaging (FedAvg, McMahan et al., 2017) is one of the most widely used

FL optimization algorithms. It trains a global model by synchronously averaging multi-



step local stochastic gradient descent (SGD) updated parameters of all the worker
nodes. Various attempts have been made to enhance the robustness and efficiency of
FedAvg (e.g., Li et al., 2020b; Wang et al., 2020). However, optimization-based
approaches often fail to provide proper uncertainty quantification for their estimations.
Reliable uncertainty quantification, such as interval estimations or hypothesis testing,

provides a vital diagnostic for both developers and users of an Al system.

i yovides

Q@ studies

a Bayesian computing algorithm aiming to obtain samplers from the al o

The Bayesian counterpart naturally integrates an inference component, thu
a unified solution for both estimations and uncertainty quantification. T
erior

distribution by infrequently aggregating samples drawn from loc stgyior distributions.

Teh, 2011), this work considers (stochastic gradient) Ham Monte Carlo

Unlike existing results that utilize stochastic gradient Langevj ics (Welling and
S

(HMC, Neal, 2012). While the second-order nature of oses more theoretical

difficulties, it has been demonstrated to be m tionally efficient through

numerous empirical studies (see, e.g., Gir [ alderhead, 2011; Chen

et al., 2014). Readers can refer to Seqjon A pplementary Material for a review of

related literature on federated sampli H

MC.
The contributions of the prese@& are three-fold:

(1) We propose the Fe veraging Hamiltonian Monte Carlo (FA-HMC) algorithm
which is effective fcﬁl2 osterior inferences in federated learning. It utilizes
stochastic gradm on individual local nodes and combines the local samples

obtained # to yield global samples.

(2) Under st®ng log-concavity and proper smoothness assumptions, we have proven a
non-asymptotic convergence result under the Wasserstein metric for various training
settings. Furthermore, we demonstrate that this upper bound of the convergence rate of
the FA-HMC sampling algorithm is tight (i.e., best achievable for certain sampling

problems).



(3) We conduct simulation and real data experiments to validate our theoretical findings.
Additionally, the numerical studies show that FA-HMC is easy to tune, improves

communication efficiency, and can outperform FA-LD in different settings.
Roadmap:

The paper is organized as follows: In Section 2, we summarize the problem setup and
provide the necessary background on HMC. In Section 3, we present the FA-&
algorithm and the assumptions used for its analysis. In Section 4, we pwv ey

theoretical findings and examine the effects of SGD noise and the cor; N ctween
momentum. Furthermore, we prove that our analysis is tight and c@x

, we compare the

improved for
certain sampling problems, even for continuous FA-HMC. In S€cl
FA-HMC algorithm with the FA-LD algorithm through extegsiv ulations and real-
data experiments. Finally, in Section 6, we conclude (@ nd suggest potential

future directions. 0

2 Preiminary

2.1 Problem Setup 6

Let Z-1 SIS e the availabk the c-th node and (%) be a user-specified
_ _ IGET WG

negative log-likelihood @ Define "= 2 W =1/ ong =

is the local loss fur@ parameter 0 €R’ accessible to the c-th local node (e.g., the

normalized negtivgi0g-likelihood function based on the data set available at ¢th local

node) for . The goal is to simulate the global target distribution

Q) = 3 @), w >0 =1
”(H)Ocexp(—f(@),where 70 ;WJ (O and ZC:WC



2.2 Hamilton’s Equations and HMC

Hamiltonian (Hybrid) Monte Carlo (HMC) was first proposed by Duane et al. (1987) for
simulations of quantum chromodynamics and was then extended to molecular dynamics
and neural networks Neal (2012). To alleviate the random-walk behavior in the vanilla
Langevin dynamics, HMC simulates the trajectory of a particle according to Hamiltonian
dynamics and obtains a much faster convergence rate than Langevin dynamics

Mangoubi and Vishnoi (2018). In specific, HMC introduces a set of auxiliary entum

d
variables 7 €R" o capture second-order information, whereas Lange\M\ Carlo is
only a first-order method. In this way, HMC generates samples from flﬁ) g joint

distribution

70, p) o= exp(=(0) > p'E ' p),

%

r5 -1
where /(O +P'Z"P/2 i5 the Hamiltonian funggio Qantifies the total energy of a

physical system. To further generate morggg{fic roposals, HMC simulates

according to the following Hamilton’s gguati

do(r) ~1/2 dp(t) 12
—=3 ), —==-2"°V X
i p(?) dr 0 ) )

distribution invariant a

which satisfy the conserv w and are time reversible. Such properties leave the
ure of Hamiltonian conservation always makes the

proposal accepted @y. Note that commonly, one chooses =1l such that the

momentum foll@vs e standard multivariate normal distribution.

To numericq}lly implement the continuous HMC process, a popular numerical integrator

is the “leapfrog” approximation, see Algorithm 1. Here, to enhance the computational
efficiency, V(06 and Y OrasGiar) are the stochastic versions of ¥/ (%) and

\Z (Hkﬂ), respectively. The arguments & and T denote random variables that control

FO)=3 1(6:2)

the randomness of the stochastic gradients. For example, given i=1 with



VIO,E)=n Y VUGz) |S(E)|+Z(E)

data ) we let ieS(g) where 3(5) is a random
index subset, Z(s) is an injected Gaussian noise, and & is the random seed. When the
exact gradients are used, it holds that VI (0060 = V10 ang Y Ocisbi) =V (Gr)

Note that throughout this paper, when the exact gradient is used instead of a stochastic

gradient, the algorithm is referred to as the vanilla version, e.g., vanilla FA-HMC.

S

Input: Energy function f('); Initial parameters &, momentum p; le Xe ;

b‘l
Ll

Algorithm 1 Stochastic gradient leapfrog approximation
L 2

leapfrog step K, k=0
while <K do

Pis =PV (0.6) =]V (0 )

9k+l =9k+77pk_%vf(0ka§k) QQ

k=k+1,

Output: };LF(fa 490,]90, n.K)= 01( E

For convenience in analysQleapfrog method without Metropolis correction (see
Algorithm 2), is comm d in the literature (Mangoubi and Vishnoi, 2018; Chen
and Vempala, ZOZQ and Gu, 2021). One may also add an additional accept/reject
step according @ tropolis ratio (Chen et al., 2020b).

A|gOI'It 2 HMC algorithm (without Metropolis correction)

Input: Energy function f('); Initial point &; Stepsize function 7 = 77(1); Leapfrog step K
t=0;
while the stopping rule is not satisfied do

sample momentum 2 ~ V(0.1



update gt+l :};LF(fagtapt, nt’K):t:t+1;

Output: 03

Note that in the literature, Chen et al. (2014) proposed a different HMC algorithm, based
on Euler integrator of Hamilton dynamics. Their implementation includes variance
adjustment to counteract the noise of the stochastic gradient, which can negatively
impact the stationary distribution. This adjustment eventually leads to an und@ped
Langevin Monte Carlo algorithm with stochastic gradient (see also e.g.,’MQ

et al., 2015; Zou et al., 2019; Chau and Rasonyi, 2022; Akyildiz and \

Sabanis, 2020; Nemeth and Fearnhead, 2021). &

3 FA-HMC Algorithm and Assumption %

Ensuring the confidentiality of the data utilized for trair@nodel is a vital concern in
federated learning. To safeguard against pote tialw t leakage (Zhu et al., 2019)

and breaches of local data privacy, it is prefera Se noisy gradients and less-

correlated momentum among local nodes ( ng et al., 2021; Vono et al., 2022).

This could make it more difficult to re local data information through accumulated

communication. @
With these considerations, xse Federated Averaging via HMC algorithm that

utilizes general stocha nts and non-necessarily identical momentum across
nodes. We let all lo mes run HMC (Algorithm 1), and synchronize their model
parameters ev gtion. All devices may use stochastic gradients and share part of
the initial m of leapfrog approximation. Note that in practice, correlated
momentumQetween devices can be easily achieved by sending a common random
seed to all devices for momentum generation. This FA-HMC algorithm is formalized in

Algorithm 3.



Algorithm 3 FA-HMC algorithm

) _ _
o' = 90, t= 0; stepsize function = 77(1); Local update step 7; leapfrog update

Input:
step K;

while the stopping rule is not satisfied do
sample momentum 7r

if 1=0mod7) hen

et = chet(C) 9(0) — 9 ’
Broadcast =l and set "0 &\

else
O _ o
Gl =6

t+1,0

o) _ 1 (c) ) (c) 9
update ' e (f, 60027511, K) in parallel for all devi% +1
It is worth mentioning that when leapfrog step K=$%)frog approximation of the

unadjusted HMC algorithm (i.e., Algorithm 1)
— O (7 7
01 =007 1DV, f(0,c)+nNO.1,) , Whi actly the unadjusted Langevin Monte

2
Carlo with dynamic learning rate h /® the FA-HMC reduces to FA-LD Deng

et al. (2021). @

3.1 Assumptions Q
To establish the conve@e rformance of the aggregated model with respect to &,

we adopted the follgwir§y assumptions.

— (c)
Assumpti Strongly Convex). For each € =L2--N. f

(c) (c) () . ﬁ B )
. vx,yeRd,f ()= [+ (x),y x>+2Hy x|?.

is u-strongly convex for

some #>0 7

_ (©
Assumption 3.2 (L-Smoothness). For each €~ L2,...N. f

vy RV O0) - VO @< Ll|x- vl

/s L-smooth for some L > 0,

Le.



Ch C:1,2,...,N, f(c)

Assumption 3.3 (L+Hessian Smoothness). For ea /s Ln Hessian

smoothness, e, for any 0 €R' (V5 O@) =V 1 @)pIF< L, 16,-6, Pl plL. -

Assumptions 3.1-3.2 are commonly used for the convergence analysis of gradient-
based MCMC algorithms (e.g., Dalalyan, 2017; Mangoubi and Vishnoi, 2018; Dalalyan
and Karagulyan, 2019; Erdogdu and Hosseinzadeh, 2021, and references therein). The
strong convexity condition, in some theoretical literature of stochastic Langev%]te
Carlo, has also been relaxed to the dissipativity condition (e.g., Raginsky

et al., 2017; Zou et al., 2021) for non-log-concave target distributions. an
extension is beyond the scope of this paper and will be investigate re works.
Assumption 3.3 ensures second-order smoothness of energy f%q)beyond gradient

Lipchitzness. Similar Hessian smoothness conditions are us e literature. For

example, Dalalyan and Karagulyan (2019); Chen et al.
required the Hessian matrix of energy function to %
s

Zou et al. (2021)

itz under ly operator norm. In

comparison, Assumption 3.3 is a stronger requ ince L. norm appears on the
RHS. Our assumption is somewhat compa Assumption 1 of Mangoubi and
Vishnoi (2018) which defines a semi- with respect to a set of pre-specified unit

vectors. @

We require an additional EQ n to model stochastic gradients. Denote O as the
©)
position parameter of t al node at iteration fand leapfrog step 4, and ‘i (

xX= k_l/z’k) as th@esponding variable that controls the randomness of gradient.

¥Bounded Variance). For local device €~ L2,...N , and leapfrog step

=1,2,.. max.__ik tr(Var(Vf(")(Q(;{), ,;)) | er(ck) )< GZng

Assumpti

k=12,...,

., we have , for some

O'g>O'

This is a common assumption in the literature (see Gulrbtizbalaban et al., 2021; Vono

et al., 2022; Deng et al., 2021). It is worth noting that in practice, the stochastic gradient



is computed based on a random subsample of the whole dataset, thus the variability of

the stochastic gradient can be naturally controlled by adjusting the batch sizes.
Under our framework, we can also relax the above assumption to

max (Var(V7 < (6,4 | 69) < 52 (G +d),
©) © (GO |12
without significant changes to our proof, where G denote Vs (‘9’(”‘)H .Th&
extension of the proof to accommodate this assumption is discussed inoS In the

appendix. &\

Before presenting our main result, we emphasize that this pap es the
convergence of the FA-HMC sampling algorithm, specific% rd to dimension d

and error €. It also explores ways to adjust the algorith
when considering variations in gradient and mome% ise. Adapting the FA-HMC
i

algorithm to more general settings like non-co ill be our future study.

4 Theoretical Results E
In Section 4.1, we describe the g vergence rate of FA-HMC on different

settings and point out the settl FA-HMC achieves the fastest speed and least

communication cost. In Se of the supplementary material, we argue that that the
upper bound on the ne c

tain its effectiveness

ase is tight by giving a matching lower bound result. In
Section 4.2, we pr@a etailed result of the convergence behavior of the FA-HMC

algorithm.

4.1 Main esults

Define 0 = argmin, f(6) and denote the marginal distribution of &by 7. Given two
probability measures pand v, the 2-Wasserstein distance is

W(uv)= inf (B|X-Y[")"
XopY~v . The following theorem describes the general

convergence rate of FA-HMC.



3w, || V@)= 0(d)

and c= . For
LL/ L, /D

2 _ 1
Theorem 4.1. Assume 3.1-3.4, and V%4 (%o:7)" =0 (d)

a given local iteration step T, there exists some constant C depending on

_ _ 2
such that if we choose T =1 ang (denote 7 = (K1) )

2 2

1 € € € }
27 2 2 s 2 201 s N
K*L’ K>JdT’ K*dT*(1- p)N KdY wo

h \
c=1
2
then Yo (F <€ o an y €> 0 with jteration number &\
W O
dlog(d/€*) —~ e Te %
¢ =—g£2 ) o'(r2 (7 +(1-p)N) + 2 . ) 0

4 :
7 :P:Cmm{

and corresponding communication times 00

N
2
1 2y ZWC g
%‘:%0(]‘(7/4_(1_%))]\])4_ c=1 )

When one uses small batch stoc 3‘ adients (i.e., large oy) or less correlated
momentum (i.e, small p) to IR ETomputational feasibility and protect privacy, the

proposed yis negligible. is scenario, the required number of iterations is of rate

A 2
O(d/€) with respe dimension d and precision level €.

Remark 4,2. R@ng the stopping rule of algorithms 2 and 3, Theorem 4.1 does

provide a ptotic choice of e to achieve an €-Ws error in theory. But this bound
is impractica?, as it relies on the unknown distributional properties of the target
distribution. For more practical rules, various suggestions have been made in the
literature (e.g., Gelman et al., 1995). For example, (i) From a visual inspection
perspective, we can randomly pick some dimensions and visually compare the trace
plots between two parts of a single chain (by splitting one chain in half) or between two

chains. We keep running the chains until they become “approximately” stationary; (ii)



From a quantitative perspective, we can compute the between- and within-sequence
variances following the potential scale reduction factor R defined in Eq.(11.4) of
Gelman et al. (1995), the stopping rule can be triggered when R~1_Note that it is

beyond the scope of this paper to design a stopping rule with statistical guarantees.

The result of Theorem 4.1 also shows that for a fixed €, under proper tuning, the

communication cost % /T may initially decrease and then increase as the nur’%(?c

local HMC iteration steps 7 increases (i.e., a ‘U’ curve w.r.t, 7). Therefore,
4

I
021) for

vide a certain

trade-off between communication and divergence, and an optimal choi

iteration can be made. Similar discoveries were also argued by De
Bayesian Federated Averaging Langevin system. The above r%ﬂ

level of direction for optimizing the performance of FA-HMC s, considering any

well-defined federated learning loss that accounts for t g time, overall

communication cost, and divergence.
For instance, by reducing the noise of the goc \ éradients and improving correlation
between momentum to a certain IeveIEwe cagyachieve significant improvement on the

~ 5 ),
convergence speed from 0Wd/¢€) o /€) , Which is argued by the following

proposition. \Q

Proposition 4.3. With the a@of/ons as stated in Theorem 4.1, if we choose m=mn
2
and (denote ¥ = (K1)

y = C'min l,ﬁ}) pzl—O(%), o> = O(Ky) (2)

W(r, ) <e

then it achieYes that , Where 11 denotes the marginal distribution of 6;, with

iteration t and corresponding communication times t/T as

[é

t :\/glog(d/ez)é(],)’ t?:é(«/d_log(d/ez)).



Under the setting (2), referred to as vanilla FA-HMC, the obtained convergence rate
matches that of the underdamped Langevin Monte Carlo algorithm on a single device in
Cheng et al. (2018) and is superior to that of Federated Averaging of underdamped
Langevin Monte Carlo algorithm under decentralized setting (i.e., rate O(d/€*) in
Gurbuzbalaban et al., 2021). It also matches existing results about Federated Langevin
algorithm tackling heterogeneity under the federated learning framework Plassier

et al. (2023) and is better than those without hessian smoothness assumptior&ng

et al. (2021). .

Furthermore, in Section C of the supplementary material, we establi Ber ound for

I =Q(‘/d_T1°g(d/e)/e) for some log-concave target distributio words, our
result in Proposition 4.3 is tight w.r.t. dimension dand local i ’% 7. This tight result
implies that (1) Unlike the “U” curve with respect to 7di Qin Theorem 4.1, when
there are small stochastic gradients and large corre Qtween momentum,
communication times have limited variations i ore, the tradeoff between
communication and divergence will not e amMilla FA-HMC and it suggests a small
local iteration 7to minimize unnecess& co tation; and (2)In terms of rate

dependency w.r.t. the dimension, un ilar conditions on the Hessian matrix, the

1/4
rate of single-device HMC is &% d) Mangoubi and Vishnoi (2018), which is

1
strictly better than our rate nder the federated learning setting. This intrinsic
gap is caused by (i) F design and (ii) the use of stochastic gradient.

4.2 Conver e Behaviour for FA-HMC Algorithm

entum, for simplicity of analysis, we consider the following setting

p :ﬁé +«fl—p§f") /VWC, for all c €[ N],t>1,

0)
where 58 are independent standard Gaussian and the & are the shared across all

c)
local nodes and 5 ’s are private to each local node c.



[ o)
Here the factor 1y, on & is a scaling treatment such that the average momentum

N
p.=2w.p
is a standard Gaussian. To see this, note that the average momentum e=l has

(©)
a smaller variance due to the correlation between 2 }c. By direct calculations, we

have

c 1-
El|pl” |P=(p+—F)d. Bl p,|'=d. \
L 4
Note that for FA-HMC, the momentum of each local device is not stanﬂ& sian.

N
pt = zwcpt(C)
This is to ensure that the center momentum (i.e., e=l1 ated from local
momentum) is close to the standard Gaussian. This is a sgec ting induced by

distributed sampling and the goal of privacy preservatigh.

0 = .

We define the aggregated global model orall 21 Note that 8 in practice,

t=0(mod T') Wer 1> e also define ¥+ as the parameter

resulting from the evolution over K ollowing dynamic (1) with initial position g

and momentum p:. With the a& arations, to intuitively understand the

convergence of the distrib . we take the vanilla FA-HMC as an example. We
can decompose '+l ONOW:

is not accessible unless

) _

0 -0, =0 @%—k)(lz)k -1
where E



_ c)_(Kﬂ)z (©) ¢ ple) _(K3_K)773 2 £(e) ¢ o)
1) =6 =6 - LV e
(0 - vr ) - E v o)

(1), = V@) =1 @)~V (G k
1) =[" [ V10 )~ Vf (67~ V* 107 pududs.

g() c)

Here (L) represents second-order random approximation of "1~ "= througf¥§ and

’ Q
N &\
BI S w0 P<aB |60 | +4, O

where the contraction factor % €(0.1) and one-iterati% ce error &~ 0.

T

0 , and we expect that

On the other hand, I | and 1) | represggt
2
are expected to be O((Km,) ‘jd_).

rder approximation error and

By utilizing Lemma D.1, the overall b@r is summarized in the following theorem.

Theorem 4.4 (Convergence). @sumpfions 3.1-3.4, if we set "I sn. <l (K‘/Z)

forany ' <t" jn Algorith n Ok satisfies

2
El 6 <(1- VE[[6, -6 I +m A,

+1 Y ||

C, LL/ uL, /D =log’(d)

where the constants ¢G>0 depending on and €

such that

w,BY 1- -
‘TV(Knt)Z +Tpd)+c21<2w§o§d

, c=1
Bias Correlation Stoc. Grad.

A, =CTK? ZN:(
c=1

BY = supE|| V(@) |
with t .



The proof is postponed to Section G in the supplementary material. The divergence
error is made up of three main components: error resulting from bias across local nodes
(which includes heterogeneity and sampling cost), momentum noise, and gradient
noise. In the absence of stochastic gradients and when momentum is identical across
nodes, the only errors present are lower-order biases. Similar intermediate contraction

results have been derived in the literature on gradient-based sampling algorithms

(e.g., Deng et al., 2021; Plassier et al., 2023). \

By the definition of Wasserstein metric, Theorem 4.4 immediately estamx
convergence result of the marginal distribution of &; denoted by 7, rdSe77 ®nder
Wasserstein-2 distance. The convergence result involves a terE

N
D w.sup B[ VI O@N | /L
e=l1 ! . In Lemma D.7 in the appendiqyvePhows that uniformly,

N
B VG = 0w IV @) P +LE[ 6, - 6] |,
e=l mitting its dependency on

L.L/ 1t gng L,/r

constants , and in con e olving the two inequalities

(- u(Kn) /4 K| 6,- 6 |P<e /2, 6362/2,
we obtain Theorem 4.1. \@

On the other hand, in lit eople design settings for converging learning rate such
that the extra logarit or%n the convergence result can be removed. We also

obtain a similar o) a learning rate design as stated in the following proposition.

Propositio ynamic stepsize). Under Assumptions 3.1-3.4, there is a setting of

Bl6 -6 |P<é

e for AigWvithm 3 such that at some

N
1< Clog(d)d(T*(y +(1-p)N) + > wia> I K)/ €
e=l , with

N
y=min{l/L,e/dT,e /(dT*(1- p)N),E’K / (d D wc?)}
c=1 ;



2
By this proposition, we see that the log(d /€%) tactors are removed in the convergent
iteration compared to Theorem 4.1. One setting of 7; that satisfies the claims in

Proposition 4.6 is specified in the proof (i.e., Section H in the supplement file).

5 Experiments

In this section, we first compare the empirical performance of FA-HMC and FA-LD on
simulated data. Then we examine the relationship between dimension and
communication round in our theoretical suggested setting of the learnirg re @ pst we
present the performance of FA-HMC on the real datasets. We apply F& \ ith
constant stepsize 77 and the same momentum initialization across @evicgS. We conduct
the synchronization of the model parameters every 7local le tep in the

implementation of FA-HMC. Due to the significant computgior costs involved in

evaluating performance at each cohort level, some re is section are obtained

from a single run and others are obtained by gyer Itiple runs. We defer part of

the results with error bars to Section L in te s ntary materials.

5.1 Simulation: FA-HMC vs FA:LD

We first sample from the posterio yesian logistic regression on a simulated
dataset of dimension d= 10 ammgoubi and Vishnoi, 2018). Specifically, we split the
dataset of size 1000 equa 20 local nodes; we run the experiments using both
exact gradients (i.e., vag#fagyeMion) and stochastic gradients, where the later ones are
simulated by addinQan)ndependent zero-mean Gaussian noise of variance o’ =100 o
each coor, 'nat@e true gradients. Note that simulating the randomness of the
stochastic t by a normal variable is consistent with the experiment setting in
Mangoubi ad Vishnoi (2018). We argue that Gaussian noise is a reasonable

approximation when invoking the central limit theorem with a large enough batch size.

As the benchmark, we run Metropolis-adjusted HMC (MHMC) for a sufficient number of

iterations. To evaluate the performance of FA-HMC, we use the computable metric



1 d

as a measure of marginal error (ME) of two sets of samples, as proposed
by Mangoubi and Vishnoi (2018); Faes et al. (2011). This metric compares the empirical
distributions of the £th coordinate of the two sets of samples, represented by yand v;

respectively.

We first compare FA-HMC with FA-LD (i.e., FA-HMC with K= 1). Noticing that the
local
b, the

communication limit is a major bottleneck for federated learning, we suppose

computation cost is negligible compared with the communication cost. Y
comparison between FA-HMC and FA-LD is based on the same num&)

communications, or equivalently, the same number of steps . FIXI step 7=10,

we try different stepsizes 7 and leapfrog steps K. For FA- H K \-”/(377”
following Mangoubi and Vishnoi (2018) when 17<0.01 %E (such that the

performance is optimal w.r.t the choice of K) when ach run consists of 2x10’
steps and we collect the same number of sam he last 107 steps. We plot the
curves of the calculated MEs against 77in ) (exact gradients, G) and 1(b)
(stochastic gradients, SG). We obse hat irhis task, where FA-LD is already a
competitive baseline, FA-HMC still 3/ f/y outperforms FA-LD with around 5%
improvement on the perform over, we realize that a wide range of stepsizes
for FA-HMC yields pretty d K‘T

robust w.r.t. its hyperpa around the optimal choices, suggesting that FA-HMC

ormance. As such, FA-HMC appears to be more

is easier to tune th , and a small stepsize usually leads to a good performance.

Next, we tudy@pact of local steps 7 on communication efficiency in FA-HMC with
SG. Fixing g step K= 100 and stepsize 7= 0'01, we run FA-HMC with 7ranging
from 1 to 108. For each run, we collect one sample after a fixed number of
communication rounds and calculate the MEs in an online manner. Then, we report the
required rounds R, to achieve ME =€ ynder different settings and present the results in
Figure 1(c). As we can see, the optimal local step 7is 70; setting 7 too large or too

small leads to more communication costs. We also notice that under the optimal local

step, a smaller € leads to more improvement on the communication cost R, compared



with the result of 7= 100. Moreover, compared with the communication efficiency of 7=
1, the optimal communication efficiency improves by more than 65 times when € is
around 0.101.

Furthermore, we reduce the dimension dto 10 in the simulated data and run FA-HMC

as well as FA-LD with different stepsizes 77 on this new dataset fixing local step 7= 10.

Apart from the dimension @, the other settings are the same as those in the experiments
for Figure 1(b). To list a few, stochastic gradients are adopted, and we choo &

leapfrog step K=[7/(3n)] when 7=901 and tune K> 1 when ’720'02% MC.
The curves of the MEs against 7 are plotted in Figure 1(d). We obsz atthe general

pattern in Figure 1(d) is similar to Figure 1(b). The optimal perf of FA-HMC is
better than that of FA-LD, and the performance gap is larger ller step sizes.
Comparing Figure 1(d) with Figure 1(b), we comment t -VIC is more
advantageous under high-dimensional settings. Thiggo®gervation is consistent with our
theoretical results that FA-HMC has a better cfgyer, @ e rate in terms of the
dimension.

5.2 Simulation: Dimension v@mmunication for FA-HMC

In this experiment, under the & tgyl setting of learning rate in Proposition 4.3, we

examine the relationship b ommunication rounds /T required to achieve a

2
Wa(6,,07) <01 4ng d'@i J

To obtain an aq€ur. omputation of the W(0,.0°)

, we consider a distributed

Wi(6,.6")

heterogen ussian model where the can be explicitly calculated in

terms of thepopulation mean and variance of the parameter. Specifically, we assume

that the posterior distribution of half of the local nodes’ parameters is N(201,,1,)

N(@,,2I

, and

for the other half, it is d). One can check that the overall posterior distribution of

parameters is N(l6‘21d’1‘6]1d). We use leapfrog steps K= 5, local steps 7= 10, and a

e N1= 0.02/d" d =2,50,100,150,...,950,1000

learning rat . For different dimensions we



repeat the experiment 200d(d =1)/2 times and sample the parameter 6; at the last

iteration ffor each time. The sampled parameters allow us to estimate the population

mean and variance on the calculation of V\é(@,‘ ’9”).

The simulation results in Figure 2 suggest that the square of communication round

2
(t./T) is approximately proportional to dimension d. This aligns well with our

theoretical discovery in Proposition 4.3, where under the suggested learning Qatting

(. /T=0(Wdlog(d/€)/e) . Q

5.3 Application: Logistic Regression Model for F

al size for N=10

In this section, we apply FA-HMC to train a logistic regressio @ Fashion-MNIST
dataset. The data points are randomly split into 10 subseté.l

clients. We run FA-HMC under different settings of Io@ 7 and leapfrog step K'with
stochastic gradients that are calculated using ba% of 1000 in each local device.
In each run, one parameter sample is collggte fixed number of communication
rounds, and the predicted probabilitiegmad | the previously collected parameter
samples are averaged to calculate fo t statistics: prediction accuracy, Brier Score

(BS) (Brier et al., 1950), Expecte ion Error (ECE) (Guo et al., 2017), and
Negative Log Likelihood (NLL)"&g est dataset. We tune the step size 77in each

setting for the best test stat % We conduct 5 independent runs in each setting and

report the average res tMyse chains. The standard deviations of the results across

multiple runs are d@a)ed in Section L in the supplementary materials.

Specifica the impact of leapfrog step K'on the performance of FA-HMC, we
fix local ste®Q 7 = 50, run FA-HMC with K= 1, 10, 50, and 100, and plot the curves of the
calculated test statistics (accuracy, BS, ECE, and NLL) against communication rounds
in Figure 3. As we can see, under the same budgets of communication and
computation, FA-LD (K= 1) performs the worst in terms of BS, ECE, and NLL and the
second worst in terms of accuracy, which shows the superiority of FA-HMC with K> 1

over FA-LD. Moreover, FA-HMC with K= 50 performs the best in terms of accuracy,



BS, and NLL and achieves a small ECE. In particular, the improvement on ECE and
NLL over K= 1 can be as large as 26% and 2% respectively, indicating that the optimal

choice of leapfrog step is around 50 in this setting.

To study the impact of local step 7 on the performance of FA-HMC, we fix leapfrog step
K= 10, run FA-HMC with 7= 1, 10, 20, 50, and 100, and plot the curves of the

calculated test statistics (accuracy, BS, ECE, and NLL) against communicatign rounds

all four statistics, which shows the necessity of multiple local updates i?

Besides, the optimal local step 7 differs with testing evaluation metriéag. optimal

Tis 50 in terms of BS, while the optimal 7is 20 in terms of NLL.

5.4 Application: Neural Network Model for F@

HMC and FA-LD to train a fully connected ne

the RelLU activation function on the Fashi dataset. Other settings of the

To further assess the performance of FA-HMC on nvex problems, we apply FA-
@k with two hidden layers2 and
experiments are the same as the logisfg regrdgsion experiments in Section 5.3 except
that only one chain is simulated in ea e. We also calculate prediction accuracy,
Brier Score (BS), and Expect%jNe tion Error (ECE) on the test dataset. The step

size nis tuned in each setti best test statistic. Fixing local step 7= 50 and

choosing leapfrog step 4ag , 50, and 100, the curves of the calculated test statistics
against communical ds are plotted in Figure 5(a), 5(b), and 5(c). As is shown in
the figures, the g apfrog step differs among different test statistics. For accuracy
and ECE, O®| K=10 (i.e., FA-HMC notably outperforms FA-LD), while the
optimal K or BS (i.e., FA-LD sightly outperforms FA-HMC). Fixing K= 10 and
choosing 7=1, 10, and 50, the curves of the calculated test statistics against
communication rounds are plotted in Figure 5(d), 5(e), and 5(f). We can see that the

best local step is 7= 50 and the worst local step is 7= 1, indicating that the

communication cost can be greatly reduced.



5.5 Application: Logistic Regression Model on KMNIST/CIFAR2

We also apply FA-HMC to train logistic regression on the Kuzushiji-MNIST (KM)
(Clanuwat et al., 2018) and CIFAR10 dataset (Krizhevsky et al., 2009). Specifically, we
only use the first two classes (airplane and automobile) of the CIFAR10 dataset in the
experiments to simplify the problem and denote it by CF2. The data points in each
dataset are randomly split into 10 subsets of equal size for N= 10 clients. We run FA-
HMC under different settings of local step 7 and leapfrog step A'with stochas

gradients that are calculated using a batch size of 1000 in each local devid & usual,
we tune the step size 77in each setting and report the best statistics: pﬁj&) accuracy
(AC), Brier Score (BS), and Expected Calibration Error (ECE) on t?%t ataset. The

choices of local step 7and leapfrog step K'are the same as Section 5.4.

The performance of FA-HMC using different leapfrog g ¥ shown in Figure 6. We
see that the optimal leapfrog step K'varies with di st statistics and datasets, for
example, the best K'is 10 for AC and BS and t

CF2 dataset, and none of the experiments K=1 (i.e., FA-LD) as the optimal

is larger than 10 for ECE on the

leapfrog step, showcasing the advant of FA-HMC (i.e., K> 1) over FA-LD. We also
study the impact of different local shown in Figure 7. We observe that except
for the AC metric on CF2, fed8gat&g Ighrning with 7> 1 outperforms the standard
baseline 7= 1 on the rest Q trics on both the CF2 and KM datasets.

6 Conclusio uture Work

In this paper, w@e op a tight theoretical guarantee for FA-HMC and provide
suggestio ed up FA-HMC. Through experimentation, we demonstrate that FA-
HMC outper§orms FA-LD. We believe that FA-HMC potentially captures the similarities
between local nodes, giving it an advantage over FA-LD. For future directions, it would
be interesting to explore if further improvements can be achieved by addressing
heterogeneity in local leapfrog steps. Note that for second-order methods, one would
need to tackle heterogeneity both on local positions and local momentum parameters.

For example, motivated by Karimireddy et al. (2020), suppose at %-th iteration



VA6,)= 3wV,

(communication round), each local device obtain "%*7 and

(©
Then each local device with local loss function / is going to perform the following

update for k=0,1,. . K-Lt=t,+T+1,...,t,+2T

2
5 = 0 + npld = (V1 (05) -V 6, + V1 (6,)).
P = Pl = (VO + V(O 297 (6,)+ 2V 6,)) Q’S
L 2
The complete version is deferred to Algorithm B.2 in the Supplemen::&me l.
S

Another direction we are working on is to consider the privacy ee of the

sampling algorithms and compare them with optimization @go

It would also be interesting to examine the above %@and the application of

underdamped Langevin Monte Carlo algorith ted learning as future research.

Acknowledgement

Dr. Lin gratefully acknowledges t t of the National Science Foundation (DMS-
2053746, DMS-2134209, EC& 41, and OAC-2311848), and U.S. Department of
Energy (DOE) Office of Sci Advanced Scientific Computing Research program DE-

SC0023161, and DOE®| Energy Science, under grant number: DE-SC0024583.
Conflict est statement

The autho%s paper report that there are no competing interests to declare.



Notes

1As d >© we say =0 <C¢ tor some constant €, and say f=0(g)forC

being a polynomial of 108(@)_

2The widths of two layers are 512 times input dimension and 512 times the number of

classification labels respectively. \
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