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Abstract— The human limb possesses a remarkable capacity
to absorb energy during physical human-robot interaction
(pHRI), which can be quantified as the biomechanical “Excess
of Passivity” (EoP) using non-linear control theory. This biome-
chanical passivity index can be used to reduce conservatism
and increase the transparency of pHRI stabilizers. Previous
work on EoP has used system identification techniques to
compute EoP offline. However, for use in real-time controllers,
an instantaneous method for EoP estimation would be desired.
This paper hypothesizes that muscle fatigue can potentially
be a complicating factor which can cumulatively affect the
ability of human biomechanics to absorb mechanical energy
over time during physical interaction with robots. In this work,
we focused on the energetic behavior of the human wrist during
pHRI, and, for the first time, we investigated the effect of
fatigue on EoP. The EoP for five participants was computed
throughout one hundred-second trials of high-frequency wrist
perturbations in four directions. Subjects maintained a stiff and
consistent grip throughout each trial, causing an accumulation
of fatigue in the forearm muscles. Muscle activity was recorded
using an array of sixteen sEMG sensors. It was found that
the EoP degraded (in a statistically significant manner) with
increased muscle fatigue in all directions, even when the level
of muscle co-contraction was controlled consistently through a
visual myofeedback mechanism. 100% of the subjects exhibited
this decline in energy absorption capacity in all directions
studied. The median drop in EoP after one-hundred seconds of
perturbation was 11% for trials in the abduction and adduction
directions and 22% in the pronation and supination directions.
These results indicate a need for more robust estimation
methods or new modalities to account for muscle fatigue in
the control architectures of physical human-robot interaction.

I. INTRODUCTION

Human-centered robotics (HCR) is a rapidly growing field,

with a wide range of applications, from HCR for manufac-

turing and maintenance to telerobotics for medicine [1]–[5].

More specifically, haptics-enabled HCR systems and physi-

cally collaborative and interactive robots open new doors for

expanding the applications, improving the user experience,
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and enhancing the capabilities of HCR systems. For example,

haptic feedback has been shown to boost the performance of

surgical robots [6], [7], and physically assistive rehabilitation,

telerehabilitation, and exoskeleton systems have shown great

potential for post-stroke therapy [8], [9].

When designing HCR systems with a physical Human-

Robot Interaction (pHRI) component, two major issues

should be addressed. First, the system must guarantee the

stability of the interaction between the human and the robot.

Second, the quality of the energy exchange between the

human and the robot (which corresponds with the fidelity

of force rendering) should be maximized. These goals for a

pHRI system have been shown to be in conflict, meaning

that a system with perfect transparency would be at the

edge of instability. Stability can further be challenged if the

communication channel is part of the loop of interaction due

to issues such as delay, jitter, and packet loss, which have

been shown to inject non-passive energy into the system

[10], [11]. Additionally, some applications (such as assistive

exoskeletons) require high forces to enable motions and

escalate the energy in task conduction, and thus non-passive

energy injections into the systems [12]. These stability issues

would render the system unsafe for physical interaction with

humans, so pHRI controllers impose stability at the expense

of transparency, performance and fidelity of interaction.

Due to this limitation, much work has been done to

improve the transparency of pHRI systems while ensuring

the stability criterion is still met. One widely used method

is the Time Domain Passivity Approach (TDPA), which

adaptively injects damping into the system only when it

detects non-passive energy exchanges [13]. In recent years,

several improvements have been proposed to reduce the

conservatism of this approach further [14]–[18].

One important but often overlooked factor that affects

such stabilizers is the ability of the human limb to absorb

energy from the robotic system during pHRI. Incorporating

this capacity for energy absorption into the controller in-

creases the energy margin of the system. This reduces the

need for damping, thus allowing for higher fidelity of the

energy exchange between the human and the robot. We have

previously shown that utilizing even a fixed, conservative

lower bound for the energy absorption capacity significantly

improves the performance and transparency of telerobotic

systems [19]–[22].

In order to model the intrinsic absorption capacity of the
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limb, we have previously proposed the use of “Excess of

Passivity” (EoP) from non-linear control theory. In prior

works, the EoP was calculated using offline methods, which

require system identification and convergence over time

[19]–[22]. These offline methods utilize force and motion

sensors to calculate the EoP. To compute the EoP in real-time

during pHRI, we cannot rely on the sensor measurements, as

the force input from the human for task conduction (and the

resulting velocity profile of the task) will be superimposed

with the reactive forces and velocities of the user’s biome-

chanics, rendering the problem unsolvable. Additionally, for

real-time implementation, an instantaneous estimate for the

EoP is preferable to waiting for the convergence of a system

identification process from the sensor measurements. Thus,

to achieve a real-time approximation of energy absorption

capacity during a pHRI task, we look to other modalities to

estimate the EoP.

One candidate modality for EoP estimation is muscle ac-

tivation, measured using surface electromyography (sEMG).

As a user’s muscle activity increases, so does the viscoelas-

ticity of the limb, which increases the damping effect on the

system and, thus, the EoP [20], [23]. This increased muscle

activity is also reflected in the sEMG signal, so sEMG can

be seen as a candidate for EoP prediction. However, other

factors, such as muscle fatigue, may also impact the EoP,

and a method for real-time EoP estimation should be able to

account for these changes.

This work is the first attempt to analyze the effect of

muscle fatigue on the energetic behavior of the upper limb.

To evaluate this change during muscle fatigue, a robust

experiment was performed in this paper on five subjects.

Each subject wore sixteen sEMG sensors on their forearm

while holding tightly onto a robot handle and maintaining

consistent sEMG (i.e., co-contraction) levels, using real-time

visual myofeedback. The robot perturbed the participants’

wrists at high frequencies in four directions (abduction,

adduction, pronation, and supination) for one hundred sec-

onds. Due to the subjects’ stiff grip on the robot, their

forearm muscles were fatigued during the task. The EoP

was calculated using the system identification method, as

described in [19]–[22] and the change in EoP as the sub-

jects’ fatigue increased was analyzed. It was found that the

accumulation of fatigue consistently degraded the EoP for

all subjects and all directions, even when the muscle co-

contraction was controlled consistently through the visual

myofeedback mechanism. This degradation in the energetic

capacity of human biomechanics in pHRI was especially pro-

nounced during perturbations in the pronation and supination

directions. These findings, supported by a comprehensive

statistical analysis given in the Results section, are reported

here for the first time and indicate the need for more robust

measures or new modalities for real-time EoP estimation

using muscle activity information from sEMG sensors.

The rest of this paper is organized as follows. In Section

II, we explain the mathematical bases for the identification

of the EoP, the experimental setup, and data analysis. In

Section III, the results of the paper are provided, and

relevant discussions on the observations made are presented.

Concluding remarks are given under Section IV.

II. METHODS

A. Biomechanical Excess of Passivity

The mechanical coupling between the human wrist and

robot handle during upper-limb pHRI can be viewed as a

compounded dynamic system, including the human biome-

chanics, which are capable of absorbing interactional energy.

For this, the output strictly passive (OSP) condition is used

to define the margin of energy absorption:

∫ t

0

U(t)TY (t)dt+ E(0) ≥ ξ

∫ t

0

Y (t)TY (t)dt, (1)

where U(t) is the input vector and Y (t) is the output vector

of the system. In robotics, the E(0) term is typically assumed

to be zero. When the coefficient ξ is non-negative, the system

is output strictly passive, and ξ represents the excess of

passivity. Such a system is L2 stable with a finite L2 gain

equal to 1/ξ [24]. This numerical quantity provides the

energy absorption margin of the human wrist during pHRI

in the context of this paper. When ξ is negative, the system

is output non-passive, and the ξ represents the shortage of

passivity.

Using the OSP condition and an admittance framework,

the EoP of the wrist can be quantified in an offline procedure

using system identification. In this procedure, a pre-designed

perturbation torque τ(t) is applied to the wrist, while the

resulting angular velocity ω(t) is measured in different direc-

tions (e.g., pronation, supination, abduction, and adduction).

In this context, the EoP is calculated by:

ξ̂ =

∫ Tf

Ti
τ(t)Tω(t)dt∫ Tf

Ti
ω(t)Tω(t)dt

, (2)

where Ti is the starting time and Tf is the finishing time

of the perturbation window. Access to ξ̂ during human-robot

interaction can be exploited in the design of stabilizers used

in pHRI as an additional information piece regarding the

“margin of passivity” or an “embedded biomechanical energy

tank” in the closed-loop passivity condition. Thus ξ̂ can be

used in reducing the conservatism of pHRI and enhancing

haptic communication. As mentioned before, access to this

information in real time is not feasible through the mea-

surement of velocity and force signals as those inputs are

occupied by the “task under conduction”, and any additional

perturbation (even an impulse) can be destructive and result

in task conduction deficits. So it is indeed imperative to find

other new modalities that can be used to predict this energetic

characteristic instantaneously. Considering the function of

the human musculoskeletal system, sEMG can be seen as

a candidate, but as said before, it can be degraded due to

fatigue. In this paper, through a novel experimental evalua-

tion, we investigate the effect of fatigue on the changes in

EoP when sEMG is kept consistent.
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B. Experimental Setup

Five healthy subjects (three males and two females, mean

age 26.6 ± 3.6 years) participated in this study. The study

was approved by the Institutional Review Board of New York

University. Each subject signed a written consent form prior

to participating in the experiment and denied any history of

musculoskeletal injury. Demographic information about the

subjects is shown in Table 1.

TABLE I

DEMOGRAPHIC DATA

Subject Height (m) Weight (kg) Age Sex
1 1.70 59 25 F

2 1.72 58 33 F

3 1.76 60 26 M

4 1.77 64 25 M

3 1.62 58 24 M

The experiment was designed to investigate the effect of

muscle fatigue on EoP while maintaining consistent levels

of muscle activation. Fig. 1 shows the design of the exper-

iment. A Quansar High Definition Haptic Device (Quansar,

Markham ON, Canada) robot was used to perturb the sub-

ject’s hand and compute their EoP. Each trial consisted of

perturbations in one of four directions: abduction, adduction,

pronation, or supination, and lasted one hundred seconds.

The perturbation signal was a mixed-frequency sinusoidal

wave, with frequencies ranging from one to five Hertz. The

perturbations were centered at fifteen degrees from neutral

and oscillated from zero to thirty degrees in the given

direction.The maximum magnitude of applied torque was 0.5

Newton-meters. The order of directions was randomized for

each participant. Between trials, subjects were instructed to

rest for fifteen minutes to recover from the muscle fatigue

experienced during the trial.

Additionally, an array of sixteen wireless Bipolar Delsys

Trignosystem (Delsys, Natick, MA, USA) sEMG sensors

were placed on the forearm muscles of the subject, recording

with a sampling rate of 1778 Hertz. Before beginning the

experiment, the Maximum Voluntary Contraction (MVC) of

the participant was recorded for two of the sensors. This

information was used for visual myofeedback during the

task. Sensors 11 and 15 (placed on the Extensor Carpi

Ulnaris and Extensor Digitorum muscles, respectively) were

chosen for this feedback due to their sensitivity to muscle

contraction. The participants were shown real-time visual

feedback of their sEMG levels for these two sensors as a

percent of their MVC during the trial and were instructed to

maintain thirty percent of the MVC throughout the task.

The posture and grip of the subject were also controlled.

Participants were instructed to stand with their upper arm

against their torso and bend their elbows at a ninety-degree

angle. The robot was placed on a height-adjustable table to

ensure the correct posture was feasible for all subjects. The

Fig. 1. (a) Experimental Setup, (b) Example of torque and angular
velocity profiles, for use in EoP calculation, (c) Example of real-time visual
myofeedback, and (d) Example of resulting EoP and sEMG RMS plots for
Subject 2 in the pronation direction.

myofeedback was placed directly in front of the user to avoid

twisting in the torso. Subjects were asked to grip the robot

handle with their palm and all fingers in contact with the

handle. During each trial, subjects were instructed to avoid

voluntary motion, and the location of the handle was held

constant. Fig. 2 shows the experimental setup.

Fig. 2. Experimental setup showing the posture of the subject, high
definition haptic robot, myofeedback bars, and Delsys wireless system and
receiver.

C. Data Analysis

The data was processed in MATLAB. The sEMG data

was first filtered using a 4th Order Butterworth bandpass

4137

Authorized licensed use limited to: New York University. Downloaded on September 08,2024 at 15:00:10 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. The graphs represent
EoP

sEMGRMS
trends over time for each subject and direction. The solid lines indicate the results at each time step and

the corresponding dashed lines indicate the line of best fit in for each trial. The colors indicate the direction of perturbation.

filter between 20 and 100 Hertz. Additionally, line noise

was filtered out with a 4th Order Butterworth bandstop filter

between 58 and 62 Hertz. For each hundred-second trial, the

first five seconds were disregarded due to an artifact in the

EoP during rapid changes in direction.

The remaining data was segmented into five-second sec-

tions to analyze the changes over time. The Root-Mean-

Square (RMS) of the sEMG data was calculated for each

segment and each sEMG sensor. The RMS was computed

using

√
1
N

∑N
i=1 X

2
i , where N is the number of points in

the segment and Xi is the ith point. This method was chosen

to provide a metric of the signal magnitude of the sEMG,

while reducing the sensitivity to noise by averaging over the

segment. The mean of the RMS values over each sensor

was taken for each segment to get a measure of the overall

forearm muscle activity at each time step.

The EoP was calculated using the system identification

approach based on the OSP formulation, as explained in

Section II-A. The average over each five-second period was

taken to monitor the changes over time. Since subjects could

not perfectly control their muscle co-contraction using visual

feedback, some variability around the targeted value of MVC

percentage is expected even with the visual myofeedback

provided during the task. To account for small fluctuations

around the targeted co-contraction, the EoP was normalized

at each time step with the corresponding sEMG RMS. This

accounts for any fluctuations in muscle activity throughout

the task. Secondly, in order to put the results of all subjects

in a distribution and evaluate the changes, the EoP
sEMGRMS

values were normalized by the initial value for each subject-

direction pair in order to track the changes over time and

standardize across subjects.

Lastly, the distributions of EoP
sEMGRMS values were com-

pared after five seconds, thirty seconds, and one hundred

seconds of perturbations to observe the effect of fatigue. Due

to similarities in the values and the physical directionality,

the abduction and adduction directions were paired for

analysis, as were the pronation and supination directions.

A Kolmogorov-Smirnov normality test was performed on

the data, which rejected the null hypothesis (that the data

is normally distributed) at a significance level of 0.05. As

a result, the Wilcoxon signed-rank test was used to assess

the significance of differences in the distributions at the time

points, again with a significance level of 0.05.

III. RESULTS

Fig. 3 shows the results of the EoP
sEMGRMS trend over

time for each subject. Each solid line represents a trial, and

the corresponding dotted line shows the line of best fit of

that trial. Notably, the slope of the line is negative for all

subjects and in all directions. This result indicates that the
EoP

sEMGRMS value degrades as the muscles are fatigued and

that this relationship exists for all four measured directions

of perturbation.

It can also be seen that the values for abduction and

adduction (A/A) are much larger than for pronation and

supination (P/S) for all subjects, which is an interesting

observation. Due to this disparity, the analysis of these pairs

of perturbations was split for the remainder of this work.

The magnitude of the initial EoP
sEMGRMS value depends

on the biomechanics of the subject and the direction of

perturbation. To more clearly visualize the trend over time,

each EoP
sEMGRMS value was normalized to the value at

the first time segment for the given direction and subject.

The results of this normalization are shown in Fig. 4 for

A/A perturbations and Fig. 5 for P/S perturbations. The

dashed lines indicate the trends for an individual subject and

direction, while the solid line indicates the median value at

each time point. The shaded region shows the area within

one standard deviation of the median.

Both figures show a decrease in the median normalized
EoP

sEMGRMS over time. For the A/A case, the median nor-

malized value after one hundred seconds of perturbations is
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Fig. 4. Trend lines of normalized EoP
sEMGRMS

over time during pertur-
bations in the abduction and adduction directions. The dashed lines indicate
individual subject trends and the solid line is the median value at each time
point. The shaded region indicates the standard deviation of the values, as
a distance from the median.

Fig. 5. Trend lines of normalized EoP
sEMGRMS

over time during perturba-
tions in the pronation and supination directions. The dashed lines indicate
individual subject trends and the solid line is the median value at each
time point. The shaded area indicates the region plus or minus one standard
deviation from the median.

89% of the value after five seconds. The P/S case shows a

larger drop, with a median of the normalized values at 78%

of the five-second value after one hundred seconds. These

results indicate an average decrease in energy absorption

capacity of 11% for A/A and 22% for P/S. Interestingly, for

both direction pairs, 100% of the participants conform to the

median trend. In both plots, there is a steep decrease during

the first thirty seconds of perturbation (with a median drop

of 6% and 13% for A/A and P/S, respectively, after thirty

seconds), then a less steep decline for the remainder of the

time. The difference in the percentage drop between the P/S

and A/A direction pairs may be due to the arm biomechanics,

which are inherently less compliant in the A/A directions

compared to the P/S directions.

Fig. 6. Violin plots of EoP
sEMGRMS

distribution for perturbations in ad-
duction and abduction directions after five seconds, thirty seconds and one-
hundred seconds. The white circles indicate the median of each distribution
and the dashed lines show the change in median value between distributions.
Asterisks indicate a significant difference between the distributions for a
0.05 significance level.

Fig. 7. Violin plots of EoP
sEMGRMS

distribution for perturbations in prona-
tion and supination directions after five seconds, thirty seconds and one-
hundred seconds. The white circles indicate the median of each distribution
and the dashed lines show the change in median value between distributions.
Asterisks indicate a significant difference between the distributions for a
0.05 significance level.

Figs. 6 and 7 show the statistical analyses of the
EoP

sEMGRMS distributions, with Fig. 6 displaying the A/A

directions and Fig. 7 showing the P/S directions. Both figures

show violin plots of the EoP
sEMGRMS values after five seconds,

thirty seconds, and one-hundred seconds. As noted in the

previous figures, the median values decrease as time elapses

(and, therefore, as muscle fatigue increases). The differences

are statistically significant between each distribution at the

0.05 significance level, per the Wilcoxon signed-rank test.

This finding demonstrates, for the first time, that the energy

absorption capability of the human upper-limb biomechanics,

decoded using the passivity index (Excess of Passivity),

degrades significantly as muscle fatigue accumulates. The
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observation holds even when accounting for fluctuations of

muscle co-contractions around that targeted activation line.

In other words, even when the subjects hold the muscle

contraction around the same level of activation, the capacity

of human biomechanics in the absorption of physical energy

during pHRI would be reduced by fatigue accumulation. The

results highlight the importance of detecting and tracking

fatigue during pHRI and promote the design of new con-

trollers that can track the effect of fatigue on the passivity

of biomechanics when implementing the stability and safety

of pHRI.

IV. CONCLUSION

In this study, the effect of muscle fatigue on the EoP of

the human upper-limb was investigated for the first time.

The goal of this work is to determine if fatigue degrades the

inherent energy absorption capability of the limb. Incorporat-

ing EoP into a real-time controller could potentially reduce

the conservatism necessary and allow for more transparent

interactions during pHRI. However, in order to include EoP

in real-time control, an instantaneous method of estimating

it is required, which should be robust to muscle fatigue. In

this work, we explore the effect of muscle fatigue on EoP

normalized by the muscle activity recorded on an array of

sixteen sEMG sensors.

Five healthy subjects participated in the experiment by

completing four one-hundred-second trials of high-frequency

wrist perturbations while fatiguing their forearm muscles

by maintaining a stiff and consistent grip on the robot,

measured via sEMG. It was found that the energy absorption

capability of the limb declined for all perturbation directions

in 100% of the subjects. Over a one-hundred-second period,

the median decline was over 10% for perturbations in the

A/A direction and over 20% for the P/S direction. Statistical

analysis showed that the differences between the EoP
sEMGRMS

distributions at five seconds, thirty seconds, and one-hundred

seconds were significantly different for both direction pairs.

This result indicates that the sEMG RMS alone is not suffi-

cient to predict the EoP of the limb when muscle fatigue can

be a factor. More sophisticated metrics or other modalities for

EoP estimation are called for to account for fatigue. Future

work on this topic will include investigating the robustness

of other modalities to fatigue and incorporating the findings

of this study into a controller for pHRI .
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