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Abstract— The human limb possesses a remarkable capacity
to absorb energy during physical human-robot interaction
(pHRI), which can be quantified as the biomechanical “Excess
of Passivity” (EoP) using non-linear control theory. This biome-
chanical passivity index can be used to reduce conservatism
and increase the transparency of pHRI stabilizers. Previous
work on EoP has used system identification techniques to
compute EoP offline. However, for use in real-time controllers,
an instantaneous method for EoP estimation would be desired.
This paper hypothesizes that muscle fatigue can potentially
be a complicating factor which can cumulatively affect the
ability of human biomechanics to absorb mechanical energy
over time during physical interaction with robots. In this work,
we focused on the energetic behavior of the human wrist during
pHRI, and, for the first time, we investigated the effect of
fatigue on EoP. The EoP for five participants was computed
throughout one hundred-second trials of high-frequency wrist
perturbations in four directions. Subjects maintained a stiff and
consistent grip throughout each trial, causing an accumulation
of fatigue in the forearm muscles. Muscle activity was recorded
using an array of sixteen SEMG sensors. It was found that
the EoP degraded (in a statistically significant manner) with
increased muscle fatigue in all directions, even when the level
of muscle co-contraction was controlled consistently through a
visual myofeedback mechanism. 100% of the subjects exhibited
this decline in energy absorption capacity in all directions
studied. The median drop in EoP after one-hundred seconds of
perturbation was 11% for trials in the abduction and adduction
directions and 22% in the pronation and supination directions.
These results indicate a need for more robust estimation
methods or new modalities to account for muscle fatigue in
the control architectures of physical human-robot interaction.

I. INTRODUCTION

Human-centered robotics (HCR) is a rapidly growing field,
with a wide range of applications, from HCR for manufac-
turing and maintenance to telerobotics for medicine [1]-[5].
More specifically, haptics-enabled HCR systems and physi-
cally collaborative and interactive robots open new doors for
expanding the applications, improving the user experience,
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and enhancing the capabilities of HCR systems. For example,
haptic feedback has been shown to boost the performance of
surgical robots [6], [7], and physically assistive rehabilitation,
telerehabilitation, and exoskeleton systems have shown great
potential for post-stroke therapy [8], [9].

When designing HCR systems with a physical Human-
Robot Interaction (pHRI) component, two major issues
should be addressed. First, the system must guarantee the
stability of the interaction between the human and the robot.
Second, the quality of the energy exchange between the
human and the robot (which corresponds with the fidelity
of force rendering) should be maximized. These goals for a
pHRI system have been shown to be in conflict, meaning
that a system with perfect transparency would be at the
edge of instability. Stability can further be challenged if the
communication channel is part of the loop of interaction due
to issues such as delay, jitter, and packet loss, which have
been shown to inject non-passive energy into the system
[10], [11]. Additionally, some applications (such as assistive
exoskeletons) require high forces to enable motions and
escalate the energy in task conduction, and thus non-passive
energy injections into the systems [12]. These stability issues
would render the system unsafe for physical interaction with
humans, so pHRI controllers impose stability at the expense
of transparency, performance and fidelity of interaction.

Due to this limitation, much work has been done to
improve the transparency of pHRI systems while ensuring
the stability criterion is still met. One widely used method
is the Time Domain Passivity Approach (TDPA), which
adaptively injects damping into the system only when it
detects non-passive energy exchanges [13]. In recent years,
several improvements have been proposed to reduce the
conservatism of this approach further [14]-[18].

One important but often overlooked factor that affects
such stabilizers is the ability of the human limb to absorb
energy from the robotic system during pHRI. Incorporating
this capacity for energy absorption into the controller in-
creases the energy margin of the system. This reduces the
need for damping, thus allowing for higher fidelity of the
energy exchange between the human and the robot. We have
previously shown that utilizing even a fixed, conservative
lower bound for the energy absorption capacity significantly
improves the performance and transparency of telerobotic
systems [19]-[22].

In order to model the intrinsic absorption capacity of the
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limb, we have previously proposed the use of “Excess of
Passivity” (EoP) from non-linear control theory. In prior
works, the EoP was calculated using offline methods, which
require system identification and convergence over time
[19]-[22]. These offline methods utilize force and motion
sensors to calculate the EoP. To compute the EoP in real-time
during pHRI, we cannot rely on the sensor measurements, as
the force input from the human for task conduction (and the
resulting velocity profile of the task) will be superimposed
with the reactive forces and velocities of the user’s biome-
chanics, rendering the problem unsolvable. Additionally, for
real-time implementation, an instantaneous estimate for the
EoP is preferable to waiting for the convergence of a system
identification process from the sensor measurements. Thus,
to achieve a real-time approximation of energy absorption
capacity during a pHRI task, we look to other modalities to
estimate the EoP.

One candidate modality for EoP estimation is muscle ac-
tivation, measured using surface electromyography (SEMG).
As a user’s muscle activity increases, so does the viscoelas-
ticity of the limb, which increases the damping effect on the
system and, thus, the EoP [20], [23]. This increased muscle
activity is also reflected in the SEMG signal, so sSEMG can
be seen as a candidate for EoP prediction. However, other
factors, such as muscle fatigue, may also impact the EoP,
and a method for real-time EoP estimation should be able to
account for these changes.

This work is the first attempt to analyze the effect of
muscle fatigue on the energetic behavior of the upper limb.
To evaluate this change during muscle fatigue, a robust
experiment was performed in this paper on five subjects.
Each subject wore sixteen SEMG sensors on their forearm
while holding tightly onto a robot handle and maintaining
consistent SEMG (i.e., co-contraction) levels, using real-time
visual myofeedback. The robot perturbed the participants’
wrists at high frequencies in four directions (abduction,
adduction, pronation, and supination) for one hundred sec-
onds. Due to the subjects’ stiff grip on the robot, their
forearm muscles were fatigued during the task. The EoP
was calculated using the system identification method, as
described in [19]-[22] and the change in EoP as the sub-
jects’ fatigue increased was analyzed. It was found that the
accumulation of fatigue consistently degraded the EoP for
all subjects and all directions, even when the muscle co-
contraction was controlled consistently through the visual
myofeedback mechanism. This degradation in the energetic
capacity of human biomechanics in pHRI was especially pro-
nounced during perturbations in the pronation and supination
directions. These findings, supported by a comprehensive
statistical analysis given in the Results section, are reported
here for the first time and indicate the need for more robust
measures or new modalities for real-time EoP estimation
using muscle activity information from sEMG sensors.

The rest of this paper is organized as follows. In Section
II, we explain the mathematical bases for the identification
of the EoP, the experimental setup, and data analysis. In
Section III, the results of the paper are provided, and

relevant discussions on the observations made are presented.
Concluding remarks are given under Section IV.

II. METHODS
A. Biomechanical Excess of Passivity

The mechanical coupling between the human wrist and
robot handle during upper-limb pHRI can be viewed as a
compounded dynamic system, including the human biome-
chanics, which are capable of absorbing interactional energy.
For this, the output strictly passive (OSP) condition is used
to define the margin of energy absorption:

/tU(t)TY(t)dtJrE(O) ZE/tY(t)TY(t)dt, (1)
0 0

where U (t) is the input vector and Y (¢) is the output vector
of the system. In robotics, the £(0) term is typically assumed
to be zero. When the coefficient £ is non-negative, the system
is output strictly passive, and & represents the excess of
passivity. Such a system is L2 stable with a finite L2 gain
equal to 1/¢ [24]. This numerical quantity provides the
energy absorption margin of the human wrist during pHRI
in the context of this paper. When ¢ is negative, the system
is output non-passive, and the £ represents the shortage of
passivity.

Using the OSP condition and an admittance framework,
the EoP of the wrist can be quantified in an offline procedure
using system identification. In this procedure, a pre-designed
perturbation torque 7(¢) is applied to the wrist, while the
resulting angular velocity w(t) is measured in different direc-
tions (e.g., pronation, supination, abduction, and adduction).
In this context, the EoP is calculated by:

é — M7 )
fTif w(t)Tw(t)dt

where T; is the starting time and 7 is the finishing time
of the perturbation window. Access to é during human-robot
interaction can be exploited in the design of stabilizers used
in pHRI as an additional information piece regarding the
“margin of passivity” or an “embedded biomechanical energy
tank” in the closed-loop passivity condition. Thus f can be
used in reducing the conservatism of pHRI and enhancing
haptic communication. As mentioned before, access to this
information in real time is not feasible through the mea-
surement of velocity and force signals as those inputs are
occupied by the “task under conduction”, and any additional
perturbation (even an impulse) can be destructive and result
in task conduction deficits. So it is indeed imperative to find
other new modalities that can be used to predict this energetic
characteristic instantaneously. Considering the function of
the human musculoskeletal system, SEMG can be seen as
a candidate, but as said before, it can be degraded due to
fatigue. In this paper, through a novel experimental evalua-
tion, we investigate the effect of fatigue on the changes in
EoP when sEMG is kept consistent.
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B. Experimental Setup

Five healthy subjects (three males and two females, mean
age 26.6 £ 3.6 years) participated in this study. The study
was approved by the Institutional Review Board of New York
University. Each subject signed a written consent form prior
to participating in the experiment and denied any history of
musculoskeletal injury. Demographic information about the
subjects is shown in Table 1.

TABLE I
DEMOGRAPHIC DATA

Subject Height (m) Weight (kg) Age Sex

1 1.70 59 25 If
2 1.72 58 33 F
3 1.76 60 26 M
4 1.77 64 25 M
3 1.62 58 24 M

The experiment was designed to investigate the effect of
muscle fatigue on EoP while maintaining consistent levels
of muscle activation. Fig. 1 shows the design of the exper-
iment. A Quansar High Definition Haptic Device (Quansar,
Markham ON, Canada) robot was used to perturb the sub-
ject’s hand and compute their EoP. Each trial consisted of
perturbations in one of four directions: abduction, adduction,
pronation, or supination, and lasted one hundred seconds.
The perturbation signal was a mixed-frequency sinusoidal
wave, with frequencies ranging from one to five Hertz. The
perturbations were centered at fifteen degrees from neutral
and oscillated from zero to thirty degrees in the given
direction.The maximum magnitude of applied torque was 0.5
Newton-meters. The order of directions was randomized for
each participant. Between trials, subjects were instructed to
rest for fifteen minutes to recover from the muscle fatigue
experienced during the trial.

Additionally, an array of sixteen wireless Bipolar Delsys
Trignosystem (Delsys, Natick, MA, USA) sEMG sensors
were placed on the forearm muscles of the subject, recording
with a sampling rate of 1778 Hertz. Before beginning the
experiment, the Maximum Voluntary Contraction (MVC) of
the participant was recorded for two of the sensors. This
information was used for visual myofeedback during the
task. Sensors 11 and 15 (placed on the Extensor Carpi
Ulnaris and Extensor Digitorum muscles, respectively) were
chosen for this feedback due to their sensitivity to muscle
contraction. The participants were shown real-time visual
feedback of their SEMG levels for these two sensors as a
percent of their MVC during the trial and were instructed to
maintain thirty percent of the MVC throughout the task.

The posture and grip of the subject were also controlled.
Participants were instructed to stand with their upper arm
against their torso and bend their elbows at a ninety-degree
angle. The robot was placed on a height-adjustable table to
ensure the correct posture was feasible for all subjects. The
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Fig. 1.  (a) Experimental Setup, (b) Example of torque and angular
velocity profiles, for use in EoP calculation, (c) Example of real-time visual
myofeedback, and (d) Example of resulting EoP and SEMG RMS plots for
Subject 2 in the pronation direction.

myofeedback was placed directly in front of the user to avoid
twisting in the torso. Subjects were asked to grip the robot
handle with their palm and all fingers in contact with the
handle. During each trial, subjects were instructed to avoid
voluntary motion, and the location of the handle was held
constant. Fig. 2 shows the experimental setup.

Myoelectric
Feedback

Abduction/A

n)
< Supination/Pronation
N\
(@[ ;
Wireless
: '))) EMG Data
i T
EMG

Receiver

)

90°

Fig. 2. Experimental setup showing the posture of the subject, high
definition haptic robot, myofeedback bars, and Delsys wireless system and
receiver.

C. Data Analysis

The data was processed in MATLAB. The sEMG data
was first filtered using a 4th Order Butterworth bandpass
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filter between 20 and 100 Hertz. Additionally, line noise
was filtered out with a 4th Order Butterworth bandstop filter
between 58 and 62 Hertz. For each hundred-second trial, the
first five seconds were disregarded due to an artifact in the
EoP during rapid changes in direction.

The remaining data was segmented into five-second sec-
tions to analyze the changes over time. The Root-Mean-
Square (RMS) of the SEMG data was calculated for each
segment and each sEMG sensor. The RMS was computed

1/% Zf\;l Xf, where N is the number of points in

using
the segment and X is the i*" point. This method was chosen
to provide a metric of the signal magnitude of the sEMG,
while reducing the sensitivity to noise by averaging over the
segment. The mean of the RMS values over each sensor
was taken for each segment to get a measure of the overall
forearm muscle activity at each time step.

The EoP was calculated using the system identification
approach based on the OSP formulation, as explained in
Section II-A. The average over each five-second period was
taken to monitor the changes over time. Since subjects could
not perfectly control their muscle co-contraction using visual
feedback, some variability around the targeted value of MVC
percentage is expected even with the visual myofeedback
provided during the task. To account for small fluctuations
around the targeted co-contraction, the EoP was normalized
at each time step with the corresponding sSEMG RMS. This
accounts for any fluctuations in muscle activity throughout
the task. Secondly, in order to put the results of all subjects
in a distribution and evaluate the changes, the %
values were normalized by the initial value for each subject-
direction pair in order to track the changes over time and
standardize across subjects.

Lastly, the distributions of % values were com-
pared after five seconds, thirty seconds, and one hundred
seconds of perturbations to observe the effect of fatigue. Due
to similarities in the values and the physical directionality,

the abduction and adduction directions were paired for
analysis, as were the pronation and supination directions.
A Kolmogorov-Smirnov normality test was performed on
the data, which rejected the null hypothesis (that the data
is normally distributed) at a significance level of 0.05. As
a result, the Wilcoxon signed-rank test was used to assess
the significance of differences in the distributions at the time
points, again with a significance level of 0.05.

IIT. RESULTS

Fig. 3 shows the results of the % trend over

time for each subject. Each solid line represents a trial, and
the corresponding dotted line shows the line of best fit of
that trial. Notably, the slope of the line is negative for all
subjects and in all directions. This result indicates that the
% value degrades as the muscles are fatigued and
that this relationship exists for all four measured directions
of perturbation.

It can also be seen that the values for abduction and
adduction (A/A) are much larger than for pronation and
supination (P/S) for all subjects, which is an interesting
observation. Due to this disparity, the analysis of these pairs
of perturbations was split for the remainder of this work.

The magnitude of the initial % value depends
on the biomechanics of the subject and the direction of
perturbation. To more clearly visualize the trend over time,
each % value was normalized to the value at
the first time segment for the given direction and subject.
The results of this normalization are shown in Fig. 4 for
A/A perturbations and Fig. 5 for P/S perturbations. The
dashed lines indicate the trends for an individual subject and
direction, while the solid line indicates the median value at
each time point. The shaded region shows the area within
one standard deviation of the median.

Both figures show a decrease in the median normalized

EoP < over time. For the A/A case, the median nor-

sEMG RM ’ )
malized value after one hundred seconds of perturbations is

4138

Authorized licensed use limited to: New York University. Downloaded on September 08,2024 at 15:00:10 UTC from IEEE Xplore. Restrictions apply.



=
L=

A - = =Abduction
===== Adduction

EoP
sEMG RMS
o
() =

Normalized
°©
o0

0.7

Time (s)

Fig.. 4. ) Trend linesiof normalized % over time dl_JringA pertur-
bations in the abduction and adduction directions. The dashed lines indicate
individual subject trends and the solid line is the median value at each time
point. The shaded region indicates the standard deviation of the values, as
a distance from the median.

*\
Bl i
/ &8 0 = Pronation
. H i
1k ") AN = = =Supination
g
% e
w2
u 0.8 N
o : ]
qN) '\_\'\{~.__ == ~ I~ S
N SRA A
T L2 .\‘ S SOCT T S -,
g 0.6 Ty el
= TTe. _\:~. S
= o
0.4 ' ' ' ' '
20 40 60 80 100
Time (s)

. . . EoP . .
Fig. 5. Trend lines of normalized m over time during perturba-

tions in the pronation and supination directions. The dashed lines indicate
individual subject trends and the solid line is the median value at each
time point. The shaded area indicates the region plus or minus one standard
deviation from the median.

89% of the value after five seconds. The P/S case shows a
larger drop, with a median of the normalized values at 78%
of the five-second value after one hundred seconds. These
results indicate an average decrease in energy absorption
capacity of 11% for A/A and 22% for P/S. Interestingly, for
both direction pairs, 100% of the participants conform to the
median trend. In both plots, there is a steep decrease during
the first thirty seconds of perturbation (with a median drop
of 6% and 13% for A/A and P/S, respectively, after thirty
seconds), then a less steep decline for the remainder of the
time. The difference in the percentage drop between the P/S
and A/A direction pairs may be due to the arm biomechanics,
which are inherently less compliant in the A/A directions
compared to the P/S directions.
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Fig. 6. Violin plots of % distribution for perturbations in ad-

duction and abduction directions after five seconds, thirty seconds and one-
hundred seconds. The white circles indicate the median of each distribution
and the dashed lines show the change in median value between distributions.
Asterisks indicate a significant difference between the distributions for a
0.05 significance level.
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Fig. 7. Violin plots of ——=F=——"= distribution for perturbations in prona-
tion and supination directions after five seconds, thirty seconds and one-
hundred seconds. The white circles indicate the median of each distribution
and the dashed lines show the change in median value between distributions.
Asterisks indicate a significant difference between the distributions for a
0.05 significance level.

Figs. 6 and 7 show the statistical analyses of the
% distributions, with Fig. 6 displaying the A/A
directions and Fig. 7 showing the P/S directions. Both figures
show violin plots of the % values after five seconds,
thirty seconds, and one-hundred seconds. As noted in the
previous figures, the median values decrease as time elapses
(and, therefore, as muscle fatigue increases). The differences
are statistically significant between each distribution at the
0.05 significance level, per the Wilcoxon signed-rank test.
This finding demonstrates, for the first time, that the energy
absorption capability of the human upper-limb biomechanics,
decoded using the passivity index (Excess of Passivity),

degrades significantly as muscle fatigue accumulates. The
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observation holds even when accounting for fluctuations of
muscle co-contractions around that targeted activation line.
In other words, even when the subjects hold the muscle
contraction around the same level of activation, the capacity
of human biomechanics in the absorption of physical energy
during pHRI would be reduced by fatigue accumulation. The
results highlight the importance of detecting and tracking
fatigue during pHRI and promote the design of new con-
trollers that can track the effect of fatigue on the passivity
of biomechanics when implementing the stability and safety
of pHRL

IV. CONCLUSION

In this study, the effect of muscle fatigue on the EoP of
the human upper-limb was investigated for the first time.
The goal of this work is to determine if fatigue degrades the
inherent energy absorption capability of the limb. Incorporat-
ing EoP into a real-time controller could potentially reduce
the conservatism necessary and allow for more transparent
interactions during pHRI. However, in order to include EoP
in real-time control, an instantaneous method of estimating
it is required, which should be robust to muscle fatigue. In
this work, we explore the effect of muscle fatigue on EoP
normalized by the muscle activity recorded on an array of
sixteen SEMG sensors.

Five healthy subjects participated in the experiment by
completing four one-hundred-second trials of high-frequency
wrist perturbations while fatiguing their forearm muscles
by maintaining a stiff and consistent grip on the robot,
measured via SEMG. It was found that the energy absorption
capability of the limb declined for all perturbation directions
in 100% of the subjects. Over a one-hundred-second period,
the median decline was over 10% for perturbations in the
A/A direction and over 20% for the P/S direction. Statistical
analysis showed that the differences between the %
distributions at five seconds, thirty seconds, and one-hundred
seconds were significantly different for both direction pairs.
This result indicates that the SEMG RMS alone is not suffi-
cient to predict the EoP of the limb when muscle fatigue can
be a factor. More sophisticated metrics or other modalities for
EoP estimation are called for to account for fatigue. Future
work on this topic will include investigating the robustness
of other modalities to fatigue and incorporating the findings
of this study into a controller for pHRI .
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