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Abstract— In the context of physical human-(tele)robot inter-
action, passivity-based stabilizers have been used to guarantee
the physical or (tele)physical stability. In most of these examples,
human biomechanics is considered an inherently passive system
that dissipates energy. This assumption may not hold true when
the interaction is implemented in the force-position domain,
even though such a setting would be needed to boost positional
accuracy and avoid the common kinematic drifts in the force-
velocity domains. The aforementioned topic is examined in this
paper using the concept of shortage versus excess of passivity
index for human biomechanics in the force-position domain.
We also investigate the compounding effect of the frequency of
interaction. The outcomes of this paper will be imperative for
the design of force-position domain pHRI stabilizers when the
classical assumption of passivity of human biomechanics can
lead to serious safety issues. In this work, for the first time, we
quantitatively present the passivity margin and, thus, the ener-
getic behavior of the human arm’s biomechanics under various
interaction scenarios in the Force-Position domain. The outcome
of this work includes a three-dimensional passivity index map
(3DPiM) that is validated on five healthy participants. The goal
is to illustrate the passivity margin of the human upper limb
biomechanics for two distinct levels of muscle co-contractions,
as indicated by the Electromyography (EMG) signal, across
four interaction frequencies and eight geometric directions.
This outcome enables the future development of biomechanics-
aware stabilizers in the force-position domain, quantifying the
passivity margin in real-time and thus significantly reducing the
stabilizer’s conservatism while ensuring the safety of human-
robot interactions.

I. INTRODUCTION

In the last decade, topics related to haptics-enabled ex-

tended reality and tele-physical presence under human-

centered robotics (HcR) have undergone rapid development,

especially with the arrival of the next generation ultra-

fast and reliable mobile communication, besides artificial

intelligence and dexterous robotics [1]–[3]. By facilitating
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the transmission of haptic sensations from remote/virtual

environments, users are provided with an intuitive and bidi-

rectional interface that improves their overall experience and

enhances the performance in remote/cloud-based tasks [4].

Thus, haptics-enabled extended reality systems can change

the future of our smart and connected society when remote

and tele-physical interaction can be realized with virtual

renderings of real and augmented physics. In general, for

haptics-enabled HcR, two crucial criteria must always be

considered: (a) the overall interconnection between human

biomechanics and the powerful robotic system (i.e., the

haptic display) must remain stable; (b) the fidelity of the

energy exchange and haptics rendering during the interaction

must be maximized. However, obtaining high fidelity can

often challenge stability for HcR.

Besides traditional issues such as sensor reading errors or

actuator failures [5], or communication delays/jitters/packet-

losses, any physical rendering that injects energy into the

system (which can come from an active virtual/augmented

interaction) can pose a challenge to system stability as they

inject nonpassive energy into the interconnected systems [6].

Therefore, numerous approaches have been proposed to

address this stability issues [7]–[11]. One state-of-the-art

method is the Time Domain Passivity Approach (TDPA)

[8], which ensures system stability by adaptively injecting

damping into the system to guarantee a positive overall en-

ergy level, thereby enforcing passivity. Most passivity-based

stabilizers, including TDPA, assume the passivity of human

biomechanics, and there have been experiments supporting

this concept, all in the force-velocity domain. However, the

passivity of the system can be changed and challenged when

the input or output of the system is redefined.

It should be noted that even though stabilizing the systems

in force-velocity domains has been extensively studied in the

literature, there is always concern regarding the kinematics

error and position drifts due to the modification of velocity

profile by the classic stabilizers for imposing the passivity.

Even though there are variations of TDPA designed for

reducing position drift [6], [12], this phenomenon would be

inevitable and can challenge several applications that require

high positional accuracy (such as surgery). To address this

issue, the next generation of stabilizers can be implemented

directly in the force-position domain (without any need

for integration over velocity tracking errors). Even though
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there are efforts in this regard, there is an issue in most

of the relevant literature, i.e., human biomechanics cannot

be considered passive in the force-position domain. This

claim is indeed intuitive since it can be mathematically

shown that even the passivity of a simple linear mass-spring-

damper system (which is a dissipative system in the force-

velocity domain) can be challenged at higher frequencies

in the force-position domain. In other words, while it is

typically acceptable and intuitive to assume that the human

arm is passive in the force-velocity domain, it has been

demonstrated that it can become nonpassive in the force-

position domain [13], posing a challenge to the stability of

the system when implementing the stabilizer built under this

assumption.

In this work, for the first time, we quantitatively evaluate

the passivity index (i.e., energetic behavior) of the human

arm’s biomechanics when encountering various interaction

scenarios in the force-position domain. The outcome of this

paper is presented as a three-dimensional passivity index map

(3DPiM), which demonstrates the passivity margin/index of

the human upper limb biomechanics for two distinct levels

of muscle co-contractions, as indicated by the Electromyog-

raphy (EMG) signal across four interaction frequencies and

eight geometric directions.

To generate the biomechanical passivity index map, we

conducted a series of systematic experiments with five

healthy subjects. Our results show that the combination of in-

teraction direction, frequency, and muscle co-contraction sig-

nificantly affects the passivity level of human biomechanics

in the force-position domain. This outcome enables the future

development of biomechanics-aware stabilizers in the force-

position domain, quantifying the passivity margin in real time

and thus significantly reducing the stabilizer’s conservatism

while ensuring the safety of human-robot interactions. The

rest of this paper is structured as follows. Section II provides

the preliminary foundation of the paper. In Section III, we

present the experimental methodology, and the results and

discussion about the proposed 3DPiM are shown in Section

IV. We concluded the paper in Section V .

II. PRELIMINARIES

To gain a deeper comprehension of the performance of the

human upper limb’s biomechanics, it is common to assume

that the dynamics of the limb can be represented by a linear

second-order mass-spring-damper system model [14]–[17].

The linearity assumption is relaxed later in this paper. This

model (given here as an example) can be denoted as:

Mẍ(t) +Bẋ(t) +Kx(t) = f(t), (1)

where x(t) is the displacement of the human hand and

f(t) is the applied force on the hand. M , B, and K are

all positive semi-definite matrices that relate to the limb’s

inertial, damping, and stiffness coefficients. This model can

provide a basic understanding of the human upper limb

regarding the corresponding energetic behavior, which is

later expanded in this paper. The linear model expressed in

(1) can be analyzed for passivity in both the force-velocity

domain, where the velocity is the output, and the force-

position domain, where the position is the output.

Force-Velocity Domain: The human upper limb’s biome-

chanics has been extensively studied in the force-velocity

domain by the authors and others and has been proven

to be passive using positive realness of the corresponding

transfer function (details on the related conditions can be

found in [13], [18]–[21]). Deriving the admittance model of

the human limb from (1) in the Laplace domain, we have:

H(s) =
V (s)

F (s)
=

1

(Ms+B +K/s)
(2)

Since H(jω) + H(−jω) ≥ 0 holds for ∀ω, the linear

representation of the human upper limb is categorized as

positively real and thus passive [22] in the force-velocity

domain. Therefore, the human upper limb is considered a

passive system in the force-velocity domain interactions.

Force-Position Domain: In the force-position domain, the

linear classic model of the human limb is given as

H(s) =
X(s)

F (s)
=

1

(Ms2 +Bs+K)
(3)

In this case, however, it can be found that the condition

H(jω) + H(−jω) ≥ 0 is not fulfilled when ω ≥ √
K/M

(see [13] for more details). Consequently, the positive

realness, and thus the passivity of the human upper limb,

is not always guaranteed in the force-position domain. This

can be seen by the fact that the passivity relies on the

interactional frequency. In the rest of this paper, we will

discuss the passivity of human biomechanics without the

need for the assumption on linearity. Some definitions based

on input-output relationship are given below.

Definition 1 (System’s Passivity): Relaxing the assumption

of linearity and without relying on the transfer function of

the system (even if available), a system is passive if we have∫ ∞

0

U(t)TY (t)dt ≥ −β, (4)

where the input vector is denoted by U(t) and the output

vector is denoted by Y (t). Also β is the initial energy which

is often considered zero in robotics. The system’s passivity

is an input-output condition that examines the energy flow

into a system. If the net energy is positive, the system is

considered passive (i.e., dissipates energy).

Capitalizing on the definition above and to quantify the

mathematical margin of passivity of the human upper limb

biomechanics, the output strictly passive (OSP) condition is

investigated through a series of experiments in this paper as

given below.

Definition 2 (Output Strictly Passive System): A system

is output strictly passive if we have

∫ ∞

0

U(t)TY (t)dt ≥ ξ

∫ ∞

0

Y (t)TY (t)dt− β. (5)
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Fig. 1. Experimental set-up showing: (A) Quanser Rehabilitation Robot,
(B) height-adjustable table, (C) User Interface, (D) Delsys Sensors, and (E)
Electromyographic Bar Feedback.

Where ξ is the passivity index, a mathematical margin that

represents the quantifiable extent of passivity which can be

also considered for human biomechanics. When ξ > 0, we

consider the human upper limb as an output strictly passive

system that can absorb additional energy; thus, in this case,

ξ is called the Excess of Passivity (EoP). Also, when ξ < 0,

the human upper limb is considered an output nonpassive

system that acts as an energy-generating element, and ξ is

considered the Shortage of Passivity (SoP).

III. METHODOLOGY

A. Experimental Set-up

An offline identification experiment was conducted to

evaluate the human upper limb’s passivity margin. The

experimental apparatus and corresponding experimental set-

up are depicted in Fig. 1. During the identification process,

the subjects were instructed to grasp the robot handle firmly,

ensuring that all fingers and the palm were attached to the

handle surface. Then the robot starts perturbing the subject’s

limb under different preset conditions, including two muscle

co-contractions levels, eight directions, and four perturbation

frequencies. This enabled a thorough evaluation of the pas-

sivity margin of the human limb biomechanics in various

interaction scenarios. Throughout the perturbation, all the

necessary force, and corresponding motion are recorded for

analysis.

To ensure consistency, a standardized protocol and appa-

ratus were developed and utilized (as depicted in Fig. 1). The

experimental set-up comprised of the following components:

1) A robotic system that delivered perturbations, 2) An

EMG system that measured muscle co-contraction level,

3) A visual myo-feedback guidance GUI that supplied the

user with real-time information on the level of muscle co-

contraction during data collection, and 4) A height-adjustable

table to regulate the user’s posture during the experiment.

Specifically, we utilized a 2 Degree of Freedom (DoF)

rehabilitation robot (Quanser, Markham, ON, Canada) to per-

turb the subject’s upper limb. This device provides powerful

force in the X-Y plane and record force, velocity, and motion

information concurrently. For measuring the EMG signal,

we used a sixteen-channel wireless Bipolar Delsys Trigno

system (Delsys, Natick, MA, USA). We placed bipolar

EMG electrodes on the subject’s skin over the muscles

of interest, which enabled us to measure real-time muscle

activation data during physical movements. In this study, we

attached EMG electrodes to the subject’s dominant forearm,

placing four electrodes along each of the muscles: extensor

digitorum, extensor carpi ulnaris, brachioradialis, and flexor

carpi radialis to capture muscle activity while grasping the

robot handle.

Furthermore, we used real-time EMG data to provide

visual myo-feedback to indicate the muscle co-contraction

level. At the same time, the user performed the task pre-

scribed by the protocol (explained later). To regulate the

subject’s posture during the identification process, we used

a height-adjustable table, which ensured that the subject’s

upper arm and forearm were perpendicular when reaching

the central position. This posture was maintained consistently

for all subjects throughout the experiment.

During the experiment, the subjects were provided with

graphical visual feedback consisting of two components. The

first component was the user interface, which demonstrated

the robot’s end-effector motion and the perturbation’s di-

rection. The white dot in the GUI indicated the current

position of the end-effector, while the purple/green dots indi-

cated the desired/current perturbation directions. The second

component was the myo-feedback, which was presented in

a bar form and represented the percentage of maximum

voluntary contraction (%MVC) of two selective sensors that

were the most sensitive sensors through our observation

in this experiment. Throughout the experiment, subjects

were instructed to hold the handle at the prescribed muscle

coactivation illustrated by the real-time myo-feedback bar

while minimizing any voluntary motion to the handle in

response to the robot’s perturbations.

B. Experimental Procedure

The overall experiment can be categorized into two stages:

1) estimate the MVC, which was then used for real-time

muscle-contraction myo-feedback 2) conduct the identifica-

tion process in random order (including two muscle co-

contraction conditions, four perturbation frequencies, and

eight geometric perturbation directions).

In the first stage, the subjects were instructed to grasp the

robot handle as hard as possible for three seconds, followed

by the same amount of time for resting and repeating the

same process. Therefore, the MVC of the subjects is acquired

and used for myo-feedback guidance. The myo-feedback was

provided in the format of a percentage of MVC, which was

calculated based on the RMS value of the real-time EMG

data recording, normalized to their corresponding recorded

MVC values.

In the second stage, we considered four different perturba-

tion frequencies to test: 0.5Hz, 1Hz, 1.5Hz, and 2Hz, which

are the representative frequency ranges of most activities

of daily living. Besides, we also investigated the result in
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TABLE I

DEMOGRAPHIC DATA

Subject Height (m) Weight (kg) Age Sex
1 1.62 58 24 M

2 1.70 57 24 F

3 1.77 64 25 M

4 1.73 62 33 F

5 1.80 75 23 M

two grasp conditions: relax condition, where the subjects

are asked to hold the robot handle with minimal voluntary

muscle activation. Stiff condition, where the subjects are

instructed to maintain 25%MVC through each perturbation

period. The perturbation movement of the robot handle

follows a sinusoidal oscillation at the preset frequencies in

one of the eight different geometric directions, as shown in

the GUI.

C. Participants

The study involved five healthy participants, comprising

three males and two females, with ages ranging from 27±5.

The institutional review board of New York University ap-

proved the study, and all subjects were provided with a com-

prehensive study description and gave written consent. None

of the participants reported a history of diagnosed/known

neurological injury. All the subjects are right-hand dominant.

Detailed demographic information is provided in Table I.

D. Data Analysis and EoP Calculation

By applying the OSP condition derived from the nonlinear

control theory, we can assess the passivity margin of the

human biomechanics during the interaction. In this regard,

a perturbation force ‘f ’ is applied to the human’s arm,

resulting in the relevant position ‘p’ of the arm during the

interaction. The passivity margin (i.e. EoP) under the muscle

activation level ‘m’, interaction frequency ‘ω’, and geometric

direction ‘i’, can be expressed as follows:

ξm,ω,i =

∫ Te

Ts
fm,ω,i(t)

T pm,ω,i(t)dt∫ Te

Ts
pm,ω,i(t)T pm,ω,i(t)dt

, (6)

In (6), ξ is the resulting passivity margin of the limb

during the interaction. Ts and Te represented the start and

end times of the last five-second calculation window for

each perturbation direction to avoid the artifacts related to

directional changes. The perturbation time at each direction

was around 10 seconds. A positive value of ξ represents

the EoP of the human biomechanics, and the higher value

of the ξ represents that human biomechanics has stronger

energy absorption capability during pHRI in force-position

domain. Conversely, a negative value of ξ represents SoP,

indicating the energy-generating capability during pHRI in

force-position domain. The more negative the ξ, the greater

stability challenges it would pose when connected to the

network teleoperation system.

IV. RESULTS

The three-dimensional passivity index maps (3DPiMs) of

each subject for relaxed muscle co-contraction are shown in

Fig. 2. Likewise, the 3DPiMs of each subject for the stiff

muscle co-contraction are shown in Fig. 3. The 3DPiMs

shows the corresponding ξ value given a perturbation di-

rection and perturbation frequency. The eight perturbation

directions are indicated on the 3DPiMs of subject 1, showing

the directions labelled from 0° to 315°. The perturbation

frequencies increase as they go further from the origin, and

their levels are related by squares shown on the 3DPiM.

The ξ values are color-coded according to a set color bar

range. For the relaxed 3DPiMs, the range is from -100 to

100 Ns/m. For the stiff 3DPiMs, the range is from -200

to 200 Ns/m. In addition, the 3DPiMs are shown in two-

dimensions using these color values next to the 3DPiMs.

Based on a visual inspection, the ξ values generally

decrease as the frequency increases. This phenomenon can

be observed for each subject, direction, and relaxed and

stiff muscle co-contractions. This is expected based on the

definition of positive realness in the force-position domain

derived in Section II, where the passivity of the system is

lost when ω ≥ √
K/M .

V. DISCUSSION

Besides the visual inspection, in order to have a better

understanding of how the ξ values change under different

frequency groups and frequencies, violin plots with statistical

test results are provided as follows.

In Fig. 4(a), changes in the ξ values between frequency

groups are investigated for the relaxed muscle co-contraction.

The ξ values of all subjects are combined and separated into

four frequency groups: 0.5 Hz, 1 Hz, 1.5 Hz, and 2 Hz. Their

violin plot distributions are shown in Fig. 4(a). Through the

Kolmogorov-Smirnov normality test, the distributions were

found to be non-normal [23]. Therefore, Wilcoxon signed-

rank test was used to evaluate the statistical significance

between distributions with a threshold of p < 0.05 [24].

The results show that there is no significant difference in

the ξ values between 0.5 Hz and 1 Hz. However, there is

a significant decrease in the ξ values when the frequency

increases beyond 1 Hz. This follows the observed trend in

the 3DPiMs, where the ξ values increase in some directions

between 0.5 Hz and 1 Hz but decrease beyond 1 Hz. This

is also verified by condition of positive realness described

above, where the human dynamics can still be passive below

a certain frequency. Thus, this threshold may exist between

1 and 1.5 Hz in certain directions during relaxed muscle co-

contraction levels.

In Fig. 4(b), changes in the ξ values between frequency

groups are investigated for the stiff muscle co-contraction.

The data is distributed into four groups in the same way.

Again, the distributions were found to be non-normal, and the

Wilcoxon signed-rank test was used. The same observances

can be made between frequency groups for stiff muscle co-

contractions. However, the ξ values appear to vary more
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Fig. 2. Resulting Three-Dimensional Passivity Index Maps for each
subject during a relaxed muscle co-contraction. The two-dimensional map
equivalent is shown to the right of the 3DPiM. The ξ color bar values range
from -100 to 100 Ns/m.

for stiff muscle co-contraction than for relaxed muscle co-

contractions.

To analyze the trend of how the passivity index decreases

as the frequency increases, a plot of the mean ξ at each

frequency for all directions is created and shown in Fig. 5.

In Fig. 5(a), the change in the ξ values between different

directions as the frequency increases are visualized for the

relaxed muscle co-contraction. In this regard, we take the ξ
values between all 5 subjects for each perturbation direction

and frequency and calculate the mean (32 resulting mean ξ
values; 4 ξ values in each direction where each value pertains

to the mean ξ value of a given frequency). A line is plotted

for each direction where the y-axis represents the mean ξ
value and the x-axis represents the frequency. The mean and

standard deviation of all eight directions are plotted as a

black line and shaded region respectively. As can be seen,

the ξ values decrease in all eight directions. In addition, the

standard deviation decreases as the frequency increases. This

Fig. 3. Resulting Three-Dimensional Passivity Index Maps for each subject
during a stiff muscle co-contraction. The two-dimensional map equivalent
is shown to the right of the 3DPiM. The ξ color bar values range from -200
to 200 Ns/m.

result shows there is less variance in the ξ values between

subjects as the frequency of interaction increases.

The corresponding plot for the stiff muscle co-contraction

is presented in Fig. 5(b). A similar trend is observed where

the ξ values decrease as the frequency increases. However,

this trend is broken in some directions (225° and 270°). This

may indicate that there is a change in the overall dynamics of

the human limb in those directions. Unsurprisingly, these are

the directions when the robot handle is perturbating in the

direction of the human torso.In addition, compared to the

standard deviation seen in the relaxed slopes, the standard

deviation is larger for the stiff slopes. This shows that there

is a larger variance in the ξ values between subjects during

stiff muscle co-contraction than during to relaxed muscle co-

contraction. This validates the observances seen in both the

3DPiMs and the violin plots.
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Fig. 4. Violin Plots comparing ξ values between different frequency groups
for the relaxed muscle co-contraction (a) and stiff muscle co-contraction (b).
For a given frequency group, the ξ value of all 5 subject in all 8 directions
are combined to form one distribution (n = 40). Between all groups, except
the 0.5Hz and 1Hz groups, there was a statistical significance (Wilcoxon
Signed-rank: p < 0.001 (‘**’) and p < 0.05 (‘*’)).

Fig. 5. Plot showing mean ξ value progression as the frequency increases
in each direction for relaxed muscle co-contraction (a) and stiff muscle co-
contraction (b). The mean and standard deviation of all the directions are
shown as a solid black line and shaded region.

VI. CONCLUSION

In this paper, a three-dimensional passivity index map

(3DPiMs) was introduced, which quantitatively illustrated

the energetic behavior of the human upper limb during Force-

Position domain interactions while considering the interac-

tion frequencies, geometric directions, and muscle activity

level. The 3DPiM design relaxes the classic assumption of

the linearity and passivity of human biomechanics and can

be directly used to develop a biomechanics-aware passivity-

based stabilizer in the Force-Position with the goal of max-

imizing the utilization of the encoded energetic capacity

of human biomechanics to reduce the conservatism of the

stabilizers and enhance the fidelity of force rendering. The

study involved five participants, and the results demonstrated

that the passivity margin of the human biomechanics in

the force-position domain is a compound factor influenced

by the interactional frequencies, geometric directionality,

and muscle co-contraction activity level. Specifically, as the

interactional frequencies increase, there is a clear trend that

the passivity margin transitions from positive to negative, and

the transition frequencies vary among subjects. The statistical

evaluation was performed using the Wilcoxon signed-rank

test.
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