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Synergistic Functional Muscle Networks Reveal the
Passivity Behavior of the Upper-Limb in Physical

Human-Robot Interaction
Suzanne Oliver , Graduate Student Member, IEEE, and S. Farokh Atashzar , Senior Member, IEEE

Abstract—Utilizing the intrinsic capability of the human upper
limb to absorb energy during kinesthetic human-robot interaction
could allow for improved haptic feedback fidelity and reduce the
conservatism of control in pHRI and telerobotic systems. However,
estimating this energetic signature is complex. In this letter, we
quantify this capability using the biomechanical passivity index
(BioPI). If estimated correctly in real-time, this can be used as a
central component of a passivity-based controller during dynamic
tasks. Thus, for the first time, we investigate the power of “func-
tional muscle networks” to create a personalized computational
model for real-time BioPI estimation. These muscle networks are
generated based on magnitude-squared coherence between pairs
of surface electromyography (sEMG) sensors to detect synergistic
coupling under different co-contraction levels. Ten healthy subjects
participated in the study, holding onto a robot that perturbed their
wrist while an array of sixteen sEMG sensors scanned their forearm
muscle activity.Muscle networks were then generated at each trial
point and input to a regression to build BioPI prediction models.
Results showed a strong correlation between the BioPI predicted by
the proposed muscle network model and the true BioPI. High per-
formance was maintained using only eight-sensor subnetworks and
using a generalized network instead of a subject-specific network.
These results allow for estimating the BioPI in real-time, which
can be used in pHRI control to safely improve haptic transparency
while accounting for passivity reservoirs.

Index Terms—Physical human-robot interaction (pHRI),
human- centered robotics, haptics, passivity.

I. INTRODUCTION

HAPTICS-ENABLED robotic systems, under the general
umbrella of physical human-robot interaction, have been
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used in many areas, such as medicine, rehabilitation, industrial
environments, and augmented reality platforms [1], [2], [3],
[4], [5]. Beyond supplementing human motor capability (such
as when using exoskeletons), allowing kinesthetic haptic feed-
back in complex motor tasks can create an augmented percep-
tion that can improve outcomes compared to systems without
haptics [6]. However, there are some challenges in designing
controllers for haptics-enabled robotic systems and, in general,
when humans and robots exchange physical energy through
continuous kinesthetic contact. The trade-off between stability
and transparency is known as a central control challenge for
physical human-robot interaction (pHRI). This means that in
order to have an ideally perfectly transparent system (which
would have an ideally high resolution for rendering very low to
very high contact impedances), the closed-loop system would
be pushed toward the edge of instability. A perfectly transparent
system can become unstable in the presence of the smallest delay
and possibly noise and uncertainties [7], [8]. Thus, most pHRI
controllers adopt a conservative control solution that sacrifices
the quality of interaction to guarantee the stability of the human-
robot interaction. Stability must be met due to the close contact of
the powered robot mechanics and human biomechanics. In some
cases (such as exoskeletons or rehabilitation robots), humans are
rigidly attached to the body of the robot, and any out-of-control
instability could severely damage the engaged joints of the
involved human.

There are several established methods for guaranteeing sta-
bility, such as the widely-used Time-Domain Passivity Ap-
proach [9], [10], which works by injecting damping into the
system when non-passive energy is detected. However, the clas-
sic derivation of this method can be too conservative and hinders
haptic transparency. As a result, a wide range of extensions to this
method have been proposed in recent years that attempt to reduce
the conservatism and thus increase haptic transparency [8], [11],
[12], [13], [14]. However, many of these approaches overlook
an important aspect of human-robot interaction - the ability of
the human limb to absorb and dissipate some energy from the
system through the reactive component of the biomechanics.

We have recently shown that this capability [15], [16], [17],
[18], quantified as the Biomechanical Passivity Index (BioPI),
can be used as a passivity margin in the synthesis of passivity-
based stabilizers to allow some non-passive energy to pass
through to the user while still guaranteeing stability. This is
necessary for some pHRI scenarios, such as assistive robotic
physical therapy or assistive exoskeletons. In these situations,
non-passive energy should be delivered to the user to assist
with their desired motion [15], [19], [20]. In traditional TDPA,
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this energy would be damped out, and the user would not be
assisted [15], [16]. However, utilizing the BioPI as a stability
margin allows some non-passive energy to pass to the user,
allowing them to be assisted without risking instability. The
example control designs based on the assumption of having
access to a measure of BioPI can be found in our recent pub-
lications [15], [16]. However, to maximize the performance of
BioPI-based passivity stabilizers, a less conservative and more
accurate estimation of BioPI would be needed.

In order to assess the biomechanics of the limb, an offline
identification process must take place, where the reactive dy-
namics of the user are read from the robot’s torque and velocity
sensors and used to create a model. This approach is common
across different methods of assessing biomechanics, including
linear methods [21], [22], [23], such as impedance and mass-
spring-damper modeling, and non-linear methods [16], [24],
such as passivity. The advantage of using passivity is that the
non-linear nature of the limb biomechanics can be represented.
In this work, we go beyond the offline identification process to
create a mapping between the muscle activity and BioPI that can
be used in real pHRI tasks, even when the torque and velocity
readings are superimposed with the actions of the user. Even
a conservative estimate of BioPI can significantly enhance the
transparency of a robotic system [15], [16], [25].

It has previously been shown that the BioPI varies between
users and conditions, such as the direction of interaction and
the grip strength of the user [16], [17], [18], [26]. Furthermore,
we have recently shown that there is a correlation between the
magnitude of surface electromyography (sEMG) signals from
sensors placed on the forearm of the user and their BioPI [17],
which motivates the generation of models based on this biosignal
modality. However, the relationship between BioPI and muscle
activity is more complex than can be captured by only utilizing
the magnitude of sEMG signal from individual sensors. This
is because the intricate co-contractions and co-modulations of
muscles in the upper-limb affect the viscoelasticity of the biome-
chanics and, thus, the energetic behavior. So, there is a need to
design a computational model that can look into the activation
of various muscles holistically and in one frame to capture the
effect of co-modulation and decode the corresponding change
on the passivity of the reactive dynamics of the limb. To better
capture this complexity, in this work, we propose, for the first
time, to utilize the emerging concept of a ‘functional muscle
network’ to create a model for real-time estimation of BioPI.

Muscle networks use concepts from network theory to en-
code information about the connectivity between muscles in
the body. Each sEMG sensor represents a node in a graph,
and the connectivity (which can encode the coupling) between
each sensor pair determines the weights of the graph’s edges.
In this case, magnitude-squared coherence was used as the
connectivity metric. This method has previously been used to
enhance understating of human biomechanics, such as identify-
ing biomarkers for disease and analysis of muscle coordination
during tasks [27], [28], [29].

In this work, we construct muscle networks using signals
from an array of sixteen sEMG sensors placed on the forearm
and use the edge weights to build regression models to predict
the BioPI of the user. Additionally, it is desirable to limit the
number of sensors and thus generate smaller graphs needed
for this estimation, with the goal of reducing the computational
cost and setup time. As a result, we analyze different sizes of
subnetworks to determine how the performance of the BioPI

prediction changes with the network size and if an optimal
network can be proposed to secure a high-quality prediction
with a minimal graph size. It should be highlighted that the
generalizability of any human-centric model for pHRI is always
an area of interest. Thus, we conduct a generalizability analysis
in this study to evaluate differences in performance when using
an optimal subnetwork specific to each user, compared to a
generalized subnetwork that is optimized for the best group
performance. Thus, in summary, the specific goals of this work
are:
� Determine if the functional muscle connectivity informa-

tion contained in muscle networks can be used in a regres-
sion model to accurately predict BioPI.

� Investigate the minimum subnetwork size to predict the
BioPI without compromising performance.

� Evaluate if there is a performance cost to selecting the
nodes in the subnetwork at the group-level compared to
the subject-level.

� Explore patterns in the selected nodes of the optimal sub-
networks.

II. METHODS

A. Biomechanical Passivity Index

In this work, we consider the interconnected system composed
of a human (physically interacting with the robot) and the robotic
system. It has been shown that such a system is guaranteed
to be L2 stable if it meets the requirements for an Output
Strictly Passive (OSP) system, as defined in non-linear control
theory [18], [30]. The definition of OSP is given by:

∫ T2

T1

U(t)TY (t)dt+ E(t1) ≥ ξ

∫ T2

T1

Y (t)TY (t)dt. (1)

In (1), U(t) and Y (t) are the input and output vectors of
the system at time t, respectively. E(t1) is the initial energy
in the system and T1 and T2 are the start and end times of
the interaction. ξ represents the BioPI of the system. For ξ ≥ 0
(necessary for an OSP model), this is also known as the Excess
of Passivity. OSP systems are L2 stable, with an L2 gain of 1/ξ.
In contrast, if ξ < 0, the system is Output Non-Passive, and ξ
represents the Shortage of Passivity.

Utilizing this definition of OSP, the BioPI of the human
biomechanics can be computed via system identification. For
this measurement, the user holds onto the robot while it pertur-
bates the limb. By recording the interactional torques and angular
velocities, the true BioPI (ξ̂) of the user can be calculated as
follows:

ξ̂ =

∫ T2

T1
τ(t)Tω(t)dt∫ T2

T1
ω(t)Tω(t)dt

, (2)

where τ is the applied torque (input to the system) and ω is
the angular velocity (output of the system). More details on this
approach can be found in [15], [16], [17].

As previously noted, knowledge of the real-time value of
the BioPI during a robotic task can be used to improve the
performance of a robotic controller and allow for enhanced
haptic feedback [15], [16], [25]. However, this system identi-
fication method of computing BioPI is only feasible when the
user is not actively moving the robot. In active pHRI tasks,
the motions and forces of the user would be superimposed on the
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Fig. 1. Block diagram showing the proposed use case for the BioPI in a
modified TDPA setup. The solid lines indicate elements present in traditional
TDPA, while the dashed lines represent the new proposed system in this work.

Fig. 2. In the top left, the experimental setup is shown. The torque and velocity
signals used to calculate the BioPI are shown in the top right. The bottom left
shows two example muscle networks from the sEMG signals. Finally, the bottom
right shows an example model of BioPI estimation from the muscle network.

information needed to identify the BioPI. Thus, there is a need
for an additional source of information. In this work, for the first
time, we proposed the use of a muscle network model (based
on multichannel sEMG recordings) to estimate the BioPI. Fig. 1
shows a proposed use case for this information. The dashed
lines represent the new contributions from this work compared
to traditional TDPA, where the BioPI estimate is assumed to be
zero.

B. Experimental Setup

This study includes ten human subjects (five male, five female,
mean age 27.7± 6.8 years). The Institutional Review Board of
New York University approved this study. All subjects signed
a written consent prior to participating in the study. Subjects
denied any history of musculoskeletal injury.

An overview of the setup and procedure is shown in Fig. 2.
During the experiment, each subject gripped onto the handle
of a High-Definition Haptic Device (Quansar, Markham ON,
Canada) robot while it perturbed their wrist by rotating in one of
four directions: abduction, adduction, pronation, and supination.
All subjects were right-handed and held the robot handle in their
right hand. The perturbation signal was a mixed-harmonic sine
wave with frequencies ranging from one to five Hertz (cover-
ing the typical range of voluntary human interaction frequen-
cies [31], [32]). The perturbation angle was centered at fifteen
degrees from vertical and varied from zero to thirty degrees.
Each trial was one hundred seconds in length. This length was
chosen as subjects had difficulty maintaining a consistent, stiff

grip for longer periods of time. Of the ten subjects, four were
experienced users of the robot, and the remaining six completed
two to four practice trials to acclimatize to the robot.

Subjects wore sixteen Bipolar Delsys Trigno sEMG sensors
(Delsys, Natick, MA, USA) on their forearm throughout the
experiment. The sensors were placed at four distances from
the wrist, along the Brachioradialis (Sensors 1-4), Flexor Carpi
Radialis (5-8), Extensor Carpi Ulnaris (9-12), and Extensor Dig-
itorum (13-16) muscles [33]. Bipolar sEMG sensors scanning
the arm were chosen over high-density sEMG scanning a smaller
area because the focus of this work is on the interconnectivity
between muscles. Prior to starting the experiment, the Maximum
Voluntary Contraction (MVC) of the subject was recorded for
two sensors (Sensors 8 and 16). During each task, subjects
were shown live visual myofeedback of their muscle activity
from these two sensors. Two grip conditions were tested in this
experiment: a stiff grip and a relaxed grip. For the stiff trials,
subjects were instructed to maintain thirty percent of their MVC,
and for the relaxed trials, subjects were instructed to maintain
five percent of their MVC while keeping all their fingers and
their palm in contact with the robot handle. These grip conditions
were chosen to investigate the change in BioPI under different
grip strengths. Thirty percent MVC was found to be the highest
value that subjects could maintain consistently over time, while
five percent MVC was the minimum to maintain contact with the
robot handle. In all trials, the goal for the subject was to maintain
a steady grip on the robot handle without exerting additional
force on the robot by moving it (other than the natural response
of their biomechanics).

For each perturbation direction and grip condition, two trials
were completed, and these were randomly split into either the
Test or Train data sets. The order of the trials was randomized,
and a fifteen-minute break was taken after each stiff trial to
prevent an accumulation of fatigue from affecting future trials.

The posture and positioning of the subjects were instructed
to minimize variation between trials. Participants stood with the
upper arm against their torso and elbow bent at a right angle,
with their forearm extending directly ahead of them. The robot
was placed on a height-adjustable table to allow all subjects to
achieve this position. The subjects gripped the handle naturally,
with the thumb on one side and fingers wrapping around the
other side, to mimic the conditions in a pHRI task. Subjects
were asked to remain still throughout the trial, and the position
of the robot handle was held constant.

C. Data Processing and Muscle Networks

The data was processed in MATLAB (Mathworks, Natick,
MA, USA). The BioPI data was epoched into one-second seg-
ments and averaged over each segment. The first five seconds
of each trial were discarded due to transient artifacts in the
computation when beginning the trials.

For each sensor and trial, the sEMG signals were filtered
using a 4th Order Butterworth bandpass filter between 20 Hz
and 500 Hz. Subsequently, 4th Order Butterworth bandstop
filters of width 4 Hz were applied at integer multiples of 60 Hz
to remove powerline noise. The sEMG signals were divided
into one-second segments to match the BioPI data. The first
five seconds of data were discarded for each trial. For each
segment, the magnitude-squared coherence (MSC) between
each pair of sensors was computed using MATLAB’s mscohere
function, with an epoch length of 64 points (approximately 32
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milliseconds) and a 50% overlap. MSC is a metric of similarity
between two signals in the frequency domain, which, in this con-
text, is used to quantify the connectivity between two muscles.
For two signals, X and Y, it is computed as:

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
, (3)

where Pxy is the cross-spectral density between signals X and
Y, and Pxx and Pxx are the power spectral density of signals
X and Y, respectively [29]. The mean MSC was taken over the
range of 20 to 50 Hz for each sensor pair.

For each subject and trial, muscle networks were created at
each time point using the sensors as the nodes and the MSC
between each sensor pair as the weights of the edges in the
graph. That is, the input to each muscle network was the sixteen
sEMG signals, and the output was a graph of sixteen nodes with
a weighted edge between each pair of nodes corresponding to the
connectivity of the muscles at those sEMG locations. These edge
weights were then used to predict the BioPI throughout the trials.
We have recently shown that there are large differences in the
BioPI in the abduction and adduction (A/A) directions compared
to those in the pronation and supination (P/S) directions [17].
As a result, the analysis of the BioPI was conducted separately
for A/A versus P/S.

D. Optimal Subnetworks

The optimal subnetworks of each size, from two to six-
teen nodes per network, were investigated. To find the best-
performing subnetwork with n vertices, every combination of n
out of sixteen sensors was considered for each subject.

Using only the data from the Train data set, the edges of each
resulting subnetwork were fed as the input into a regression
model to predict the BioPI. Though more complex machine
learning algorithms could also be employed here, this is outside
of the scope of this work. The regression model was trained to
find the best fit between the inputted edges and the true BioPI.
This is done by minimizing the sum of the squared error between
the estimated BioPI and the true BioPI. For each of these subnet-
work models, the R2 correlation between the predicted and true
BioPI values was computed. The subnetwork that resulted in the
highestR2 value was selected as the optimal subnetwork for that
network size and subject. It should be noted that this analysis
is at the subject level; thus, the optimal subnetwork for subject
i may have a different combination of sensors when compared
to the optimal subnetwork for subject j. The resultant trained
models were then evaluated using the Test data set for each user.
The R2 values between the predicted and true BioPI for each
subject were used to assess the models and compare the impact
of network size.

As the next phase of the study, instead of conducting the
investigation at the subject level, we select the generalizable
network that produces the highest mean R2 value across all sub-
jects. In other words, this subnetwork’s composition performs
the best among all subnetworks when the goal is to select the
same network composition (sensor location and number) for all
subjects.

A statistical analysis was performed to compare the individual
and generalized subnetwork results. The Kolmogorov–Smirnov
test rejected the null hypothesis that the data was normally
distributed. Following this test, Wilcoxon signed-rank tests were
completed to assess the performance differences between the

Fig. 3. Scatter plots showing the True BioPI value on the x-axis and the
Predicted BioPI on the y-axis. The results for Subject 4 in the A/A case are
shown in the top plots, and the results for Subject 1 in the P/S case are shown in
the bottom plots. From left to right, the results are shown for the models built
from the optimal subnetworks of sizes two, four, eight, and sixteen. Each dot
represents a one-second time window during one of the trials, color-coded by
the direction of interaction. The solid line represents a perfect fit, and the R2

value between the True and Predicted values for each model is shown.

individual and general subnetworks at each network size with a
significance level of p < 0.05.

III. RESULTS

A. Model Performance

Following the steps in Section II-D, BioPI prediction models
were produced for each subject and network size. The output
of the models evaluated on the Test data sets are shown for the
subjects with the median R2 values between the Predicted and
True BioPI in both direction sets in Fig. 3 (Subject 4 for A/A and
Subject 1 for P/S). For both the directions shown, we see that
the median participant has a high R2 value for all the network
sizes shown, with a modest improvement as the network size
increases. For the full sixteen-sensor network, the median R2 is
0.88 for A/A and 0.90 for P/S. This indicates that there is a high
correlation between the muscle network edges and the BioPI.

In all the plots in Fig. 3, there is a clear separation between the
True BioPI for the relaxed condition (low BioPI) and the stiff
condition (high BioPI). In some cases, there is also separation
in the True BioPI based on the direction of interaction. This can
be seen in the A/A scatter plots, where there are two clusters
of points in the high BioPI region, representing the Abduction
and Adduction trials individually. In general, there is little vari-
ation in the True BioPI throughout a given trial. However, the
Predicted BioPI can have greater variation, which results in the
‘columns’ of data points visible in the plots.

B. Effect of Subnetwork Size

To analyze the effect of the subnetwork size on the model
performance, consider Fig. 4. The purple boxes represent the
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Fig. 4. R2 values for the fit between predicted and true BioPI values at different
network sizes. Dots indicate the results from individual subjects. The results
using the individual subnetworks are shown in purple, and the results using the
general subnetworks are shown in orange. Statistically significant differences
(p < 0.05) between distributions of the same network size are indicated with
an asterisk. Results from the A/A directions are shown in the top plot and from
the P/S directions in the bottom plot.

R2 values for each subject using the subnetworks individually
optimized for each subject. The top plot shows the results for the
A/A case, and the bottom plot shows the results for the P/S case.
In both plots, the performance tends to improve as the number of
sensors in the network increases. These performance increases
are larger for the smaller network models (e.g., moving from a
two-sensor network to a three-sensor network) and then level out
for the larger network models. This indicates that the information
gained from adding another sensor to a smaller network is larger
than that from adding another sensor to a larger network. This is
logical since a larger network may already contain much of the
information included in the new node. We see in the boxplots
that the performance levels out at approximately eight sensors
in the A/A case and six sensors in the P/S case. Reducing the
number of sensors helps with the practicality of this approach
for real-world pHRI tasks by lowering the time and complexity
of the setup.

Another relevant consideration here is that as the number
of sensors in the network increases, so does the number of
regressors in the model. With more regressors, a better fit can
be obtained, but there is a risk of overfitting. Since the model is
built using the Train data set and then applied to the Test data set,
any overfitting is accounted for in this analysis. This explains
why, in the A/A case, the median R2 actually decreases from the
thirteen-sensor model to the sixteen-sensor model. This result
can also be seen in the P/S model, where the ten-sensor model
outperforms the sixteen-sensor model.

C. Comparison of Individualized and Generalized Models

We also compared the results of the individual subnetwork
models to those of the general subnetwork models, as shown in
Fig. 4. The individualized results are shown in purple, and the
generalized results are shown in orange.

For both the A/A and P/S cases, there is a large perfor-
mance drop between the individual and general models for the
smaller subnetworks. However, for the larger subnetworks, the
performance is more similar, and, in many cases, there is no
statistically significant difference between the two models for
larger subnetwork sizes. For the A/A case, performance evens
out for subnetworks with at least seven sensors, and for the
P/S case, performance evens for subnetworks with at least ten
sensors. One explanation for this phenomenon is that there is
more variation between subnetworks at smaller network sizes.
For example, for the two-sensor subnetworks, there could be
very little overlap between the optimal sensor selections across
subjects. However, in larger networks, where more sensors must
be selected, there is necessarily more overlap in the sensors
selected by the two models. Hence, the general model is closer
to the individual model. In the sixteen-sensor case, there is only
one possible subject (selecting all sensors), so the results are
identical. Thus, while there is a performance cost to using a
general network, particularly for cases with low numbers of
sensors in the network, that cost is minimal (and, in many cases,
not statistically significant) for subnetworks containing larger
numbers of sensors. This insight is useful for practical applica-
tions in pHRI. Using a generalized network reduces the need for
recalibration, reducing the setup time and computational cost
for a new participant to use the system.

D. Muscle Network Composition

Figs. 5 and 6 show visualizations of optimal subnetworks with
four, six, and eight sensors. For Fig. 5, the results are shown from
the Abduction Test trial at the 10-second time step. Similarly,
in Fig. 6, the results are shown from the Pronation Test trial at
the 10-second time step. For each figure, the results are shown
for the subject with the median performance (as described in
Section III-A). For the A/A case, this was Subject 4; for the P/S
case, this was Subject 1. The thickness of each line indicates the
MSC between the given sensor pair, with thicker lines denoting
higher MSC; thus, higher coherence between the node activities
(the sEMG signals).

Considering the four-sensor network in the A/A case, we
can see that the MSC between the selected sensors (for this
subject, Sensors 4, 8, 15, and 16) increases noticeably for the
stiff grip compared to the relaxed grip. This trend is seen in all
the connections for the four-sensor network and is particularly
prominent in the connection between Sensors 4 and 8.

Next, considering the six-sensor subnetwork, it is notable that
all of the sensors that were selected in the optimal four-sensor
subnetwork are selected again in this subnetwork, with the addi-
tion of Sensors 9 and 11. This pattern of larger optimal networks
containing the previously found smaller optimal networks was
consistent across all subjects and in both the A/A and P/S cases.
Comparing the edges of the six-sensor network for the different
grip conditions, there is a similar trend here as in the four-sensor
network. For example, for the edge between Sensors 4 and 11,
MSC tends to increase for the stiff grip compared to the relaxed
grip. However, some of the sensor pairs do not show much
difference between the relaxed and stiff grip, such as the edge
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Fig. 5. Visualization of the optimal muscle subnetwork for Subject 4 for
perturbations in the A/A directions. Subnetworks of size four (top), six (middle),
and eight (bottom) are shown. Results are shown separately for relaxed (left)
and stiff (right) trials. The thickness of the lines indicates the weight of the edges
(the magnitude-squared coherence between each sensor in the network). Sensors
in the network are marked in red. All networks shown are from the 10-second
mark of the Test trial in the Abduction direction.

between Sensors 9 and 11, which has similar weight in both
cases. This indicates that while some useful information has
been added by increasing the size of the network, some of the
other edges that were added may be less useful in distinguishing
between grip conditions (and, thus, the BioPI).

We see a similar phenomenon when comparing the six-sensor
subnetwork to the eight-sensor subnetwork. While some of the
new edges show a large difference between the relaxed and stiff
conditions (such as the edge between Sensors 5 and 16), other
edges are very similar between the two conditions (such as the
edge between Sensors 5 and 9). Thus, as the subnetworks get
larger, they encompass more information about the biomechan-
ics, which can be used to predict the BioPI. However, these
larger networks also incorporate edges that may not contain
information relevant to the BioPI prediction, which could cause
the regression to overfit. These observations track with the
results discussed in Section III-B. The marginal gain in model
accuracy for adding a new node decreases in larger subnetworks,
as most of the information is already captured in the network.

There is a similar trend in Fig. 6, where all the edges in the
four-sensor network respond to the change in grip condition
(with a particularly strong response for the edge connecting
Sensors 3 and 15) while the larger networks have more diversity
in response to the change in condition. Additionally, in the
six-sensor case, we can see an example of the edge weight
decreasing between the Relaxed and Stiff conditions in the edge
connecting Sensors 4 and 8. Although it may seem unintuitive

Fig. 6. Visualization of the optimal muscle subnetwork for Subject 1 for
perturbations in the P/S directions. Subnetworks of size four (top), six (middle),
and eight (bottom) are shown. Results are shown separately for relaxed (left)
and stiff (right) trials. The thickness of the lines indicates the weight of the edges
(the magnitude-squared coherence between each sensor in the network). Sensors
in the network are marked in red. All networks shown are from the 10-second
mark of the Test trial in the Pronation direction.

that the coherence would be lower while the muscle activation
is increased, this situation highlights the lack of synchronicity
between the two signals. This underscores the importance of
using coherence and the holistic concept of muscle network
rather than just looking into the absolute activation of each node
in predicting the BioPI.

In comparing the results in Figs. 5 and 6, one can also note the
differences in the networks between the subjects and directions.
While the edge between Sensors 4 and 8 shows a large increase
between the relaxed and stiff conditions in Subject 4 for the A/A
direction, there is instead a decrease in the connectivity between
those sensors for Subject 1 in the P/S case. This example high-
lights the usefulness of a subject-specific and direction-specific
model for the BioPI prediction since the biomechanical response
can vary across users and perturbation conditions.

E. Sensor Selection Frequency

Zooming out, we can also consider which sensors were se-
lected most often across all subjects for subnetworks of different
sizes. Fig. 7 shows the selection frequency for each sensor for
the optimal subnetworks with four, six, and eight sensors. The
results are shown separately for the A/A and P/S cases. It can be
mentioned that, in general, there are variations between subjects
regarding which sensors are selected. However, there are some
important trends to be highlighted, which can indicate that some
sensors are generally more useful than others. First, it should be
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Fig. 7. Each bar represents the frequency of selection of the sensors in the
optimal subnetworks across subjects. The x-axis indicates the sensor number,
and the y-axis indicates the number of subjects for which the given sensor was
included in their optimal subnetwork, divided by the total number of subjects.
The results are shown for networks of size four (top), six (middle), and eight
(bottom). The A/A results are shown in orange, and the P/S results are shown in
purple.

noted that for the four-sensor subnetworks in the A/A case, five
of the sensors are selected for only one subject, and in the P/S
case, four of the sensors are selected for at most one subject.
For both directions, the most frequently selected sensor in the
four-sensor networks was Sensor 8, which was selected for six of
the ten subjects. Considering the six-sensor networks, we see that
over half of the subjects selected Sensors 3, 8, and 15 in the A/A
case. Similarly, over half the subjects selected Sensors 1, 8, and
10 in the P/S case. In the eight-sensor networks, at least seventy
percent of the subjects selected Sensor 3, 8, 9, and 13 in the
A/A case, and at least eighty percent selected Sensors 1, 5, and
8 in the P/S case. The presence of these highly selected sensors
helps explains the high performance of the larger generalized
subnetworks, as shown in Section III-C. Since many of the
same sensors are being selected for the majority of subjects, the
generalized subnetwork is similar to the individually selected
subnetworks.

Since the models are built using connectivity between sensors
instead of the sensors themselves, it is also interesting to consider
which pairs of sensors are selected together most often. In Fig. 8,
the frequency that sensor pairs are selected across subjects both
the A/A and P/S cases. As previously, the results are shown
for the optimal networks with four, six, and eight nodes. These
heatmaps highlight the variations in the frequency of selections
across sensor pairs.

Considering the four-sensor subnetwork results in both direc-
tions, we see that most sensor pairs (edges) are never selected
together. There are some sensor pairs that appear in the optimal
network for multiple subjects, but never more than three out of
ten subjects. However, in the six-sensor networks, some sensor
pairs are selected more frequently. In the A/A case, half of the
subjects have edges (3, 15) and (4, 15) selected. In the P/S
case, edge (1,8) is selected in half of the subjects. Since only
an eighth of all edges can be selected in a six-sensor network, it
is notable that some edges are found in the optimal networks for
so many subjects. Considering the eight-sensor networks, sixty
percent of the optimal subnetworks in the A/A direction include

Fig. 8. These heatmaps show the frequency at which each sensor pair was
selected for the optimal subnetwork across all subjects for network sizes of four
(top), six (middle), and eight (bottom) sensors for the A/A model on the left and
P/S model on the right.

edges (8, 13) and (8, 9). In the P/S direction, there is even more
coordination, with eighty percent of the optimal subnetworks
including edges (1, 8) and (5, 8) and seventy percent including
edge (1, 5).

Again, these commonalities between the optimal subnet-
works, especially for the larger subnetworks, explain the high
performance of the generalized networks. The overlap between
the subjects means that the nodes selected for the generalized
subnetwork can closely match the individually selected subnet-
works.

IV. DISCUSSION AND CONCLUSION

Knowledge regarding the energy absorption capacity of the
human user’s limb during interaction with a robotic system
can reduce the conservatism necessary to maintain stability
and thus allow for improved control of pHRI systems and
haptics rendering. Previous work in this area has relied on
offline system identification procedures, which cannot adapt to
changes in the user’s biomechanics. However, in this work, we
evaluated the interplay between the functional muscle networks
and the energetic behaviors of the upper-limb at two levels of
co-contraction and four directions of perturbation to create an
accurate model of the BioPI that can update in real-time during
dynamic pHRI tasks. To reduce the setup time and computation
complexity, we investigated the performance cost of considering
only a subset of sensors (subnetworks) in the BioPI model,
resulting in smaller graphs explaining distributed co-modulation
between the nodes/muscles. Our investigation showed that even
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a subnetwork of six to eight sensors can perform similarly to
the full sixteen-sensor network. Additionally, we considered the
performance difference between a subnetwork optimized for
each individual subject compared to a generalized subnetwork.
For larger networks, the generalized and individual models had
similar performance, which emphasizes the possibility of having
a similar sensor placement and arrangement for all subjects while
being able to accurately predict the biomechanical passivity
index through the analysis of muscle networks. These results
can be incorporated into a new family of controllers for pHRI
systems, such as exoskeletons and rehabilitative robots, that rely
heavily on the flow of energy from the robot to human biome-
chanics. The outcomes can address the current need explored
in the literature for passivity-based stabilizers for these pHRI
systems by reducing the conservatism of such closed-loop con-
trol platforms. This paper addresses the existing challenges of
force-rendering transparency of such systems. Future work will
include incorporating the proposed BioPI estimation technique
into the design of existing passivity-based stabilizers for pHRI
systems.
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