
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023 6915

MyoPassivity Map: Does Multi-Channel sEMG
Correlate With the Energetic Behavior of

Upper-Limb Biomechanics During
Physical Human-Robot Interaction?

Suzanne Oliver , Graduate Student Member, IEEE, Peter Paik , Graduate Student Member, IEEE,
Xingyuan Zhou , Graduate Student Member, IEEE, and S. Farokh Atashzar , Senior Member, IEEE

Abstract—The human arm has an intrinsic capacity to absorb
energy during physical human-robot interaction (pHRI), which can
be identified as biomechanical excess of passivity (EoP). This can be
used as a central factor in the development of passivity-based pHRI
controllers securing haptic transparency while guaranteeing pHRI
stability. Despite its significance, the real-time estimation of EoP re-
mains an under-investigated topic. For the first time, we investigate
the relationship between the EoP and muscle activity of the forearm
at the wrist joint while analyzing sixteen surface electromyography
(sEMG) sensors. The letter explores optimal sensor placement
for maximizing the correlation between muscle activity and the
estimated EoP. Ten subjects participated in this study. The EoP
of the wrist was identified through high-frequency perturbations
in four directions, and two instructed co-contraction levels. The
results uncover a strong correlation between sEMG and EoP. This
paper also reports the effect of the direction of pHRI interaction
on the EoP of the wrist, with increased energetic passivity in the
abduction-adduction direction compared to supination-pronation.
Also, the study investigated the effect of the observation duration
for sEMG on the sEMG-EoP correlation (short windows would be
required for real-time applications). Although the correlation de-
creases for shorter windows, it remains relatively high, supporting
dynamic estimation of EoP in real-time. Additionally, we found that
sEMG sensors near the wrist have the highest correlation with EoP
for short windows. The findings of this letter indicate that sEMG
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encodes significant potential for real-time estimation of EoP in the
design of next-generation pHRI controllers supporting concurrent
transparency and stability.

Index Terms—Haptics and haptic interfaces, human-centered
robotics, physical human-robot interaction.

I. INTRODUCTION

THE characteristics of physical human-robot interaction
(pHRI) are a fundamental aspect of several human-

centered robotic systems, such as telerobotics, an exponentially
growing field due to the evolution of next-generation com-
munication, extended reality, and AI. With a variety of appli-
cations, including rehabilitation, surgery, and robot-mediated
remote human-human interaction, this technology is stepping
us towards a smarter and more connected society [1], [2], [3].
Haptics-enabled pHRI embedded in such systems would ideally
provide a natural and intuitive bidirectional interface for the
users allowing for an immersive experience [4] and enhanc-
ing the capabilities of such robotic systems in various fields.
For example, in the area of medical robotics, haptics-enabled
pHRI and tele-pHRI can augment the targeted performance in
surgery or can allow for a wide range of rehabilitative tasks in
robotic telerehabilitation platforms [5], [6], [7]. For designing
any haptics-enabled pHRI, there are two main challenges that
should be considered and addressed, namely: 1) guaranteeing
the overall safety of the physical interaction between human
biomechanics and powered robot mechanics, 2) maximizing the
fidelity of the energy exchange and rendered haptics interaction.
The aforementioned two design criteria have been shown to be
opposing, meaning that a perfectly transparent system is at the
edge of instability, which can sacrifice safety [8], [9], [10].

In addition to classic issues, such as internal sensor noise
or actuator failure [11], stability can be further hindered when
controlling a pHRI over a network due to non-ideal quality of
service of communication channels, such as delay, jitter, and
packet loss [12], [13], [14], [15]. Mathematically, it can be
shown that the aforementioned issues result in the injection
of non-passive energy into the interconnected systems, putting
stability, and thus safety, at more significant risk. In addition, in
some specialized tasks, such as assistive robots that inject energy
for empowering disabled users, a high assistive loop gain [16]
will be another source of non-passive energy injection in the
system, which further increases the risk of exacerbating system
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instability and limits the functionality of classic passivity-based
stabilizers that assume a dissipative dynamical behavior for the
rendered haptics field [8], [9], [10], [13], [14]. As a result, various
research teams have investigated solutions to the instability issue
in recent years while focusing on reducing the conservatism of
the proposed algorithms (some examples are as follows: [8],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27]).
Many of the recent solutions are rooted in the formulation of the
Time Domain Passivity Approach (TDPA) [23], which is widely
used for ensuring the stability of classic teleoperation systems.

TDPA ensures stability by observing the energy flow of a
closed-loop system and dispersing the extra energy as needed
by injecting damping (altering the communicated force and
velocity). However, due to the fact that TDPA and other
passivity-based controllers unavoidably modify the delivered
force and/or velocity, a degradation of the system’s trans-
parency/performance occurs at the expense of stability. This can
be problematic in advanced technologies such as rehabilitation
robotics and exoskeletons, which require the robot to impart
large forces on the user to assist them in completing the tasks [8],
[28]. Degradation of the transmitted force/velocity can lead to
degradation of perceptual causality and quality of information
exchange, and potential failures of the task.

There are some recent works that have investigated the
impedance of the human limb as a novel modality for in-
teraction in telerobotic systems based on the concept of
teleimpedance [20], [21], [27], [29]. This approach can allow
for controlling a teleoperated robot in a way that follows the
impedance-based commands from the human when closing
the loop. In this letter, instead of teleoperatively rendering the
impedance of humans, we look into the nonlinear capacity of
the arm in absorbing the energy from the telerobotic system, a
biomechanical passivity index that can be exploited to enhance
the transparency and increase the stability margin. It should also
be highlighted that a limitation of classic TDPA is the exclusion
of the impact of the “passivity index” of human biomechanics
in the pHRI loop. Atashzar et al. have shown that even utiliz-
ing a fixed and minimum lower bound of the human biome-
chanical energy absorption capacity significantly enhances the
performance of the controller and improves functionality and
transparency [9], [10], [14].

In order to incorporate the energy absorption capacity of
human biomechanics into the closed loop of haptics systems, the
intrinsic and inherent biomechanical passivity margin of the user
should be quantified in real-time, for which more sensory infor-
mation is needed besides force and motion sensors; otherwise,
the mathematical problem will be ill-conditioned [9], [30]. For
this, we have recently proposed the use of the concept of “Excess
of Passivity” (EoP) from nonlinear control theory in the context
of pHRI, which can be used as an indicator of the nonlinear
energetic behavior of the human limbs [8], [9], [10], [14], [30].
Previous attempts to quantify the EoP of the human upper limb
utilize offline calculations to create a map of the user’s EoP when
moving in different directions with a range of strength of grip,
all of which factor into the passivity and vary depending on the
user’s biomechanics [9]. However, the feasibility of real-time
estimation of EoP has not been investigated in the past. Access
to information regarding the underlying neurophysiology can
help to predict the corresponding changes in the biomechanics
during various muscle contractions and thus changes in EoP.

This work is the first attempt towards investigating if and
how the activation of forearm muscles correlates to the energy

absorption capability of the upper arm. In this letter, we focus
on the wrist joint, which is the most critical due to its direct
physical engagement with the robotic handle. As the biosignal
modality, we used surface Electromyography (sEMG) to de-
tect the propagation and distribution of the underlying muscle
activities and map this information into the EoP of the arm.
Additionally, we compared sixteen locations for sEMG sensors
on the forearm to determine the optimal location for a sensor to
maximally correlate with the EoP and with the changes of the
EoP in real-time.

A robust experimental setup was formulated to test and mea-
sure the EoP while measuring sixteen sEMG channels, placed
on the Brachioradialis, Flexor Carpi Radialis, Extensor Carpi
Ulnaris and Extensor Digitorum muscles [31]. The experiment
was run on ten subjects by perturbing their wrists in four di-
rections: abduction, adduction, pronation, and supination. For
this work, the perturbation frequencies were set in the typical
frequency range of voluntary human interaction as suggested in
the literature [10], [32]. We found that at both the group level
and individual level, the correlation between muscle activation
and EoP is significantly strong and is highest for sensors closer
to the hand.

Since the proposed method is user-specific, it can be tailored
for users for use in rehabilitation robotics as long as there is
enough residual sEMG and muscle power for the patient to be
eligible for the use of typical rehabilitation robotic systems. It
should be noted that sEMG has been used to drive rehabilitation
robots in the literature, which demonstrates the feasibility of this
approach for rehabilitation patients [33].

In this letter, we also investigated the effect of the window of
observation aiming for real-time applications. The results would
allow the generation of future stabilizers that can dynamically
track the energetic capacity of human biomechanics and use that
to minimize the conservatism of control structure, maximizing
agility and haptic transparency while preserving the stability of
pHRI systems, which is imperative for medical applications.

II. METHODS

A. Excess of Passivity of Human Biomechanics

Atashzar et al. have formulated the mathematical base to show
that the passivity of an interconnected system (e.g., a negative
interconnection between humans and (tele)robots) can be writ-
ten as the interplay between the excess of passivity of human
biomechanics and summations of all non-passive energy such as
those generated by the non-passive communication network and
those by non-passive haptics force rendering in assistive systems
(details can be found in [9], [10], [14], [30]). In this regard, the
following definition would be needed to explain the energetic
capacity of human biomechanics.

Definition 1 (Output Strictly Passive System): An Output
Strictly Passive (OSP) system with input variable U(t), output
variable Y (t), and initial energy E(Ts) is defined as:

∫ Te

Ts

U(t)TY (t)dt+ E(Ts) ≥ ξ

∫ Ts

Ts

Y (t)TY (t)dt, (1)

with a non-negative EoP coefficient of ξ. Ts represents the start
time and Te represents the end time of the perturbation window.
The OSP system is L2 stable with a finite L2 gain of 1/ξ [34].
Meanwhile, according to the (1), if ξ < 0, the system is regarded
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TABLE I
DEMOGRAPHIC DATA

to be Output Non-Passive (ONP) with a Shortage of Passivity
(SoP) coefficient of ξ.

Using the OSP definition and relaxing the classic assumption
of linearity on human biomechanics, an estimate of the excess of
passivity of human biomechanics can be calculated as follows
during an identification process. In this regard, τ is the applied
perturbation torque to the wrist, and ω is the resulting measured
angular velocity of the wrist during identification.

ξ =

∫ Te

Ts
τ(t)Tω(t)dt∫ Te

Ts
ω(t)Tω(t)dt

(2)

In the context of pHRI, a higher value of EoP corresponds
to a higher absorption capacity of interactive energy. This value
uncovers an inherent passivity margin which can be exploited
by any passivity stabilizers.

B. Experiment Design and Procedure

Ten healthy subjects (five males and five females, mean age
25.7± 4.0 years) participated in this experiment. The study
was approved by the Institutional Review Board of New York
University. Each subject signed a written consent form prior to
beginning the experiment. All subjects denied a history of mus-
culoskeletal injury or impairment. Demographic information of
the subjects is shown in Table I.

An identification experiment was designed to investigate the
relationship between the recorded 16-channel sEMG and EoP
for each individual. The setup for this experiment is shown in
Fig. 1. For the EoP identification, a Quansar High Definition
Haptic Device (Quansar, Markham ON, Canada) robot was used
to perturb the subject’s wrist in four directions, i.e., abduction,
adduction, pronation, and supination. The perturbation signal
was a mixed-frequency sinusoidal wave, ranging from 1 Hz to
5 Hz. The angle of oscillation was between 0◦ to 30◦ centered
at 15◦ for each direction for ten seconds.

Each subject completed (a) two trials with a relaxed co-
contraction and (b) two trials with a high co-contraction (defined
by a stiff grip) using visual myofeedback, as explained below.
The order of the trials was randomized for each subject. Due to
the high artifact at the moment of transition from one direction

Fig. 1. (a) Experimental setup. (b) Example of torque and angular velocity
profiles. (c) Visual of EMG myofeedback in real-time. (d) Resulting relationship
between EMG and EoP.

Fig. 2. Placement of sEMG sensors along forearm muscles.

to another, the first five seconds of data in each direction was
discarded.

Sixteen wireless Bipolar Delsys Trignosystem (Delsys, Nat-
ick, MA, USA) EMG sensors were placed on the forearm of
the subject, along the Brachioradialis, Flexor Carpi Radialis,
Extensor Carpi Ulnaris, and Extensor Digitorum muscles. The
sensors recorded at a sampling rate of 1778 Hertz. The layout of
the sEMGs is shown in Fig. 2. Before beginning the trials, the
maximum voluntary contraction (MVC) of the participant was
recorded for Sensors 2 and 11 to be used for visual feedback
during the experiment.

For the above-mentioned myofeedback, during the identifica-
tion experiments, users were visually provided with a real-time
measurement of their co-contraction level from Sensors 2 and
11, during each trial, in the form of percent MVC. An example is
shown in Fig. 1(c). For the stiff contraction, subjects were asked
to grasp the robotic handle while maintaining 40% MVC. For
the relaxed state, subjects were asked to maintain below 5% of
their MVC (a light contact between the robot handle and their
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Fig. 3. Experimental setup showing the posture of the subject, high definition
haptic robot, myoelectric bar feedback, and Delsys wireless system.

fingers and palm). During the experiment, subjects were asked
to stand with their upper arm against their torso and elbow at
a 90◦ angle, with their forearm extending directly ahead. The
wrist was initially in a neutral position, with the fingers wrapped
around the vertical handle of the robot before the perturbations
began. The robot was placed on a height-adjustable table to
allow for consistent posture between subjects of varying heights.
The myofeedback display was placed directly in front of the
user, so they could see it without disturbing their posture. The
subjects were not harnessed to avoid disrupting their natural
biomechanics and to mimic the expected conditions (reactive
biomechanics) during a pHRI task. It should be noted that
there is the possibility of energy coupling between the joints
in the experimental scenario, which is similar to a typical pHRI.
This letter does not isolate the energetic behavior of each joint
from the rest of the biomechanics. The setup is designed to
closely resemble a practical pHRI scenario without adding extra
constraints. The experimental setup is provided in Fig. 3.

C. Data Analysis

The data from the sEMG sensors and the robot was processed
in MATLAB. The EoP was calculated as described in Section
II-A. The sEMG signals were filtered with a bandpass filter
between 20 and 500 Hz and bandstop filters of width 4 Hz
at multiples of 60 Hz (for power-line noise). The filters were
4th order Butterworth filters. The data was then epoched into
segments of equal length for further processing. To investigate
the effect of window size, we considered segment lengths of 5
seconds, 0.1 seconds, and 0.01 seconds.

From each segment, the Root-Mean-Square (RMS) of the
filtered sEMG signal was calculated as

√
1
N

∑N
i=1 X2

i , where N
is the number of points in the segment and Xi is the ith point.
This calculation gives us a measure of the signal magnitude. The
correlation between the RMS value of sEMG and the mean EoP
of the corresponding segment was assessed by the line of best

fit and computing the R2 value of the fit. Two additional linear
regressions were computed for each subject and window size,
one using all sixteen sEMG sensors as input and one using the
subset of the four sensors closest to the wrist (Sensors 1, 5, 9,
and 13) as input. For each regression, the R2 value between the
EoP estimated by the model and the true EoP was calculated.

In order to assess the performance of the sensors relative to
each other, the R2 correlation values were compared, and the
statistical significance of the differences was evaluated. Before
conducting a significance test, we first performed a Kolmogorov-
Smirnov normality test on the distribution of the differences in
correlation values for each pair of sensors. The test rejected the
null hypothesis of normality at a significance level of 0.05. After
the normality test, a right-tailed Wilcoxon signed-rank test was
performed on each pair of sensors to determine if there was a
significant increase in the correlation of one sensor compared to
another, again with a significance level of 0.05.

Finally, to evaluate the effect of sensor placement on the
R2 values, the sensors were grouped into four Bands based on
distance from the wrist, as shown in Fig. 2. The Kolmogorov-
Smirnov normality test also rejected the normality of these
distributions, so a two-tailed Wilcoxon signed-rank test was
performed to assess the significance of differences in the dis-
tributions. Both tests used a significance level of 0.05.

III. RESULTS

Fig. 4 shows the correlation between the sEMG RMS of
Sensor 10 (as an example) and the EoP for each subject. The
X-axis shows the two tested contraction levels picked up by
sEMG, and the Y-axis shows the EoP. The directions of per-
turbation, i.e., abduction, adduction, pronation, and supination,
are shown by various symbols. As expected, there are variations
between subjects in the slope of the line of best fit, attributed to
biomechanical differences in their arms. It can also be seen that
there is a distinct difference between the EoP behavior during
perturbations in the pronation/supination orientation (P/S) com-
pared to the abduction/adduction orientation (A/A). The EoP in
the A/A direction is higher than in the P/S direction. This trend is
consistent among all of the ten subjects. A possible explanation
for this phenomenon is that the wrist is less compliant when
twisting in the A/A direction.

Going beyond the result for only one sensor, Figs. 5 and 6
show the correlations between the EoP and each sEMG sensor
and the combined model with all sensors for the P/S and A/A
directions separately. The box plots report the corresponding R2

value of the linear fit for all subjects.
As mentioned before, in this letter, we also investigate the

effect of the window of observation on the understudied cor-
relation. From a practical point of view, shorter windows are
preferable due to their agility in detecting dynamic changes
in the EoP and their real-time implementation. In Figs. 5 and
6, each row corresponds to a different window length (the top
row is for 5-second observation, the middle row is for 100-ms
observation, and the bottom row is for 10-ms observation). As
can be seen in the aforementioned figures, using the 5-second
window, for all subjects and each sensor, there is a very strong
correlation between the EoP and EMG RMS, with a median R2

score of 0.95 in the P/S case and 0.89 in the A/A case. The
results of this letter showed strong performance of the proposed
model for the tested levels of co-contraction (the two sides of
the co-contraction spectrum: relax and stiff, to cover the range).
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Fig. 4. (a) Trend between the EoP and sEMG RMS of Sensor 10 for each subject. Separate linear trend lines are shown for the Adduction/Abduction (A/A) and
Pronation/Supintation (P/S) correlations. Shaded regions indicate the standard deviation. (b) Box plot distributions of P/S and A/A trend line slopes for all subjects
for Sensor 10. Dotted lines indicate the change in slope for each subject.

Fig. 5. R2 values for the trend between EoP and EMG RMS during perturba-
tions in the Pronation/Supination direction for each sensor and for the fit using
multiple sensors (labelled ‘All’ for the model with all sixteen sensors and ‘B1’
for the model with the four sensors in Band 1), at different epoch lengths (Top:
5 seconds, Middle: 0.1 seconds, Bottom: 0.01 seconds).

However, it should be noted that the study if limited by the use
of only two co-contraction levels. More intermediate ranges of
co-contraction will be studied in future work. The results of the
statistical test (i.e., right-tailed paired Wilcoxon signed rank test
evaluating the significant increase) are explained in detail later
in this section; however, for the case of 5-second observation for
P/S perturbations, it can be mentioned that in almost all cases
of comparison, no statistical significance was observed (details
below). This suggests that for the 5-second recording window,
the EoP v.s. sEMG RMS trend is robust to the sensor location
for perturbations in the P/S direction.

However, as mentioned before, in order to use these results
in a real-time application and to secure agility in response to
dynamic changes in EoP, a smaller window of observation would
be desired for updating the EoP estimate. Thus, we investigated
the possibility of using shorter windows while maintaining a
high level of correlation. The corresponding results can be found

Fig. 6. R2 values for the trend between EoP and EMG RMS during perturba-
tions in the Abduction/Adduction direction for each sensor and for the fit using
multiple sensors (labelled ‘All’ for the model with all sixteen sensors and ‘B1’
for the model with the four sensors in Band 1), at different epoch lengths (Top:
5 seconds, Middle: 0.1 seconds, Bottom: 0.01 seconds).

in the second and the third row of Figs. 5 and 6, in which the
EoP-sEMG correlation was evaluated for 100-ms and 10-ms
observation over all sEMG sensors. As can be seen, the R2

values between EoP and sEMG RMS decrease as the window
shortens, but the correlation does remain relatively high even
with short windows securing a medianR2 value of 0.77 in the P/S
direction and 0.68 in the A/A direction for a 100-ms recording.
As the window gets shorter, we also see more variation between
the sensors.

As expected, by significantly increasing the number of sensors
in the model to four and then to sixteen, the regression perfor-
mance increases, and this increase was also modulated by the
duration of the window (the higher the window of observation,
the better the regression performance). Thus, the combined
model using all sensors represents a ‘best-case scenario’ for
EoP approximation using sEMG RMS. For both the 100-ms
and 10-ms case, the four-sensor model has a higher correlation
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with the true EoP than any individual sensor, and the correlations
for the sixteen-sensor model are even higher, with median R2

values of 0.90 (P/S) and 0.85 (A/A) for the four-sensor model
and 0.93 (P/S) and 0.89 (A/A) for the sixteen-sensor model
using the 100-ms window. However, it should be added that
from a practical point of view, it is strongly desirable to use
a lower number of channels and shorter windows (to enable
real-time estimation rather than a delayed response). Thus, we
next considered the performance differences between the indi-
vidual sensors to determine the optimal placement for a single
sensor.

Fig. 7 shows the difference in median values of correlation
(R2) for each pair of sensors for P/S twists and indicates which
sensors have statistically significant increases in the R2 dis-
tributions compared to each other sensor, using a right-tailed
Wilcoxon signed-rank test. Since we investigating the optimal
sensor placement, we are specifically interested in which sensors
outperformed others, instead of simply which sensors had dif-
ferences in performance. Thus, the right-tailed test was chosen
over the two-tailed test. However, it should be noted that the
standard for significance is lower for the right-tailed test than
a two-tailed test [35]. We see that in the 5-second case, only
seven sensor pairs have a statistically significant increase. More
specifically, Sensor 10 shows a higher statistical correlation than
Sensors 5, 6, 7, and 11; Sensor 9 shows a higher correlation than
Sensor 14; and Sensors 3 and 16 have a higher correlation than
Sensor 4.

In contrast with the previous case, in the 100-ms and 10-ms
cases, there are many significant differences in the P/S direc-
tion, and a trend emerges, as explained in the following. For
the 100-ms window, Sensors 3 and 4 have significantly lower
correlation values than most other sensors. Moving to the 10-ms
case, Sensors 3, 4, 15, and 16 have lower correlations than most
other sensors. In particular, Sensor 4’s correlation is significantly
lower than every other sensor for the 10-ms window. It is notable
here that all four of these sensors are placed close to the elbow on
the Brachioradialis (Sensors 3 and 4) and Extensor Digitorum
(Sensors 15 and 16) muscles (we call these four the elbow-group
sensor set).

These results suggest that increased distance from the wrist
along the Brachioradialis and Extensor Digitorum muscles de-
creases the correlation between EoP and sEMG for P/S perturba-
tions for the short time windows. To support this finding, Fig. 9
shows the distributions of R2 values for each sensor and subject
using the 10-ms window, grouped by the sensor distance from
the wrist. The sensors placed closest to the wrist (Band 1) have
significantly higher R2 values than those further from the wrist
(Bands 3 and 4).

In contrast, Sensors 6, 10, 11, 12, and 13 each significantly
outperform the aforementioned elbow group sensors. Three of
these five high-performing sensors are placed along the Extensor
Carpi Ulnaris muscle (i.e., Sensors 10, 11, and 12), which
suggests the activation of this muscle has a particularly strong
correlation to the EoP.

It should be noted that the magnitude of the differences in
the shorter time windows cases are much greater than in the
5-second case, with the maximum difference in median R2

increasing from 0.05 to 0.18 and 0.22, for the 100-ms and 10-ms
windows, respectively. Correspondingly, the standard deviation
of the median R2 values from each sensor increases from 0.016
for the 5-second case to 0.050 for the 100-ms case and 0.060
for the 10-ms case. This indicates a greater variability between

Fig. 7. Pronation/Supination heatmaps showing the difference between me-
dians (over subjects) of R2 values of sensor pairs (in particular, entry (i, j)
represents the median of R2 value for the ith sensor minus the median of R2

value for the jth sensor). White dots indicate a statistically significant increase
(p < 0.05) between the two paired sensor R2 distributions. Top (5-second win-
dow), middle (100-millisecond window), and bottom (10-millisecond window).

sensors using the short time window compared to the longer one
for perturbations in the P/S direction.

For the A/A direction, shown in Fig. 8, there are more sig-
nificant differences in the 5-second case than we saw in the P/S
direction, and the magnitude of the difference between median
R2 values is also larger. In this case, Sensor 14 performs the
worst and has a significantly lower correlation than twelve of
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Fig. 8. Abduction/Adduction heatmaps showing the difference between me-
dians (over subjects) of R2 values of sensor pairs (in particular, entry (i, j)
represents the median of R2 value for the ith sensor minus the median of R2

value for the jth sensor). White dots indicate a statistical significant increase
(p < 0.05) between the two paired sensor R2 distributions. Top (5-second win-
dow), middle (100-millisecond window), and bottom (10-millisecond window).

the other sensors. The best-performing sensors are Sensors 9,
10, and 11 (again along the Extensor Carpi Ulnaris), as well as
Sensor 2 (on the Brachioradialis).

It is important to note that for the 100-ms and 10-ms windows
of the A/A perturbations, we see a similar trend as in the
P/S perturbations. For the 100-ms window, Sensors 3 and 4
again have significantly lower R2 distributions than most other
sensors. In the 10-ms case, the same elbow-group sensor set (i.e.,

Fig. 9. Distributions of R2 values for all subjects based on the distance of the
sensor from the wrist using the 10-ms window size. Band 1 consists of the four
sensors closest to the wrist (Sensors 1, 5, 9, and 13), while Band 4 contains the
results from the four sensors furthest form the wrist (Sensors 4, 8, 12, and 16).
Results from the P/S (top) and A/A (bottom) perturbations are shown separately.
Each dot shows the R2 value for an individual subject and sensor.

Sensors 3, 4, 15, and 16) we saw in the P/S case have the lowest
performance. As before, in the 10-ms case, Sensor 4 has a signif-
icantly lower correlation than every other sensor. Additionally,
the sensors with the highest correlation, in this case, are Sensors
1 and 2 (close to the wrist on the Brachioradialis), indicating
that distance from the wrist along this muscle is important for
EoP estimating in the A/A direction. As in the P/S case, in Fig. 9,
there is a significant difference in the distributions close to the
wrist compared to those far from the wrist, further supporting
the conclusion that sensor distance from the wrist is important
in the 10-ms case.

Also in keeping with the results from the P/S case, the standard
deviation of the median R2 distribution for A/A is larger for
the short time windows than in the 5-second case, increasing
from 0.051 to 0.060 and 0.066 for 100-ms and 10-ms cases,
respectively, indicating there is more variability between sensors
using the shorter time window.

IV. CONCLUSION

In this letter, we investigated the relationship between EoP
and sEMG for the human upper limb in the frequency range of
voluntary human interaction. The ultimate goal of this work is
the real-time estimation of excess of passivity (which identifies
the energetic behavior of the system, here human biomechanics)
to be used in pHRI controllers, enhancing haptic rendering trans-
parency and stability. Ten subjects participated in an experiment
to measure muscle activation using multi-channel sEMG sensors
while a robot perturbed their wrist, evaluating the energetic
behavior of their biomechanics based on the definition of EoP.
We found a strong linear correlation between EoP and sEMG for
a 5-second window of sEMG observation. For shorter windows,
the correlation decreased but still remained relatively strong.
We found that for the 5-second window length, the sixteen
studied sEMG sensors had a similarly strong correlation for
the P/S direction (with a relatively small difference between
the median R2 values across subjects). For the A/A direction
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and the 5-second window length, the sensors along Extensor
Carpi Ulnaris were the most correlated with EoP. For the shorter
period (i.e., 100 ms and 10 ms), there was increased variability
between sensors for both perturbation directions. We found that
sensors placed further from the wrist along the Brachioradialis
and Extensor Digitorum were less correlated with the EoP than
sensors close to the wrist and along the other muscles.

The results of this study can be used in the design of haptic
systems, rehabilitation robots, surgical robots (with appropriate
adaptation due to the delicate nature of surgery), and other areas
of pHRI that require high levels of energy exchange between hu-
man biomechanics and powered robot mechanics. Because this
method is specific to the user, it can be tailored for patients with
atrophied muscles due to stroke or other neurological damage
for use in rehabilitation robotics. The focus of this work was in
the typical frequency range of voluntary human interaction. A
separate frequency analysis can be conducted as a future work
in this line of research to further shed light on higher frequen-
cies than the typical voluntary range. Future work will also
include integrating these findings into a new family of controllers
for pHRI.
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