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Abstract—The movement-related cortical potential (MRCP) is
a low-frequency component of the electroencephalography (EEG)
signal that originates from the motor cortex and surrounding
cortical regions. As the MRCP reflects both the intention and
execution of motor control, it has the potential to serve as a
communication interface between patients and neurorehabilita-
tion robots. In this study, we investigated the EEG signal recorded
centered at the Cz electrode with the aim of decoding four rates
of force development (RFD) during isometric contractions of the
tibialis anterior muscle. The four levels of RFD were defined
with respect to the maximum voluntary contraction (MVC)
of the muscle as follows: Slow (20% MVC/s), Medium (30%
MYVC/s), Fast (60% MVC/s), and Ballistic (120% MVC/s). Three
feature sets were assessed for describing the EEG traces in the
classification process. These included: (i) MRCP Morphological
Characteristics in the J-band, such as timing and amplitude; (ii)
MRCP Statistical Characteristics in the 6-band, such as standard
deviation, mean, and kurtosis; and (iii) Wideband Time-frequency
Features in the 0.1-90 Hz range. The four levels of RFD were
accurately classified using a support vector machine. When
utilizing the Wideband Time-frequency Features, the accuracy
was 83% + 9% (mean + SD). Meanwhile, when using the MRCP
Statistical Characteristics, the accuracy was 78% * 12% (mean
+ SD). The analysis of the MRCP waveform revealed that it
contains highly informative data on the planning, execution,
completion, and duration of the isometric dorsiflexion task.
The temporal analysis emphasized the importance of the J-
band in translating to motor command, and this has promising
implications for the field of neural engineering systems.

Index Terms—NeuroHaptics, Force Decoding, BCIL.
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OTOR-RELATED potentials are the aggregation of

neural activity in the motor cortex. The neural activity
can be related to sensory integration, motor preparation, motor
learning, and execution of a motor task [1]-[6]. Research sug-
gests that the dorsal premotor cortex (PMd) is pivotal in motor
planning [7]-[9]. Additionally, the supplementary motor area
(SMA) is recognized as a vital hub for integrating information
from cognitive, motor, and sensory sources [10], [11]. When
electroencephalography (EEG) recordings are taken from the
central region of the brain, particularly near the Cz electrode
location, they represent motor-related local field potentials
(LFPs) in the premotor cortex, SMA, and medial motor cortex
[12]-[14].

Motor-related potentials can discriminate motor impair-
ments, quantify a variety of tasks and also monitor the im-
provements after rehabilitation, especially for stroke and other
central nervous system impairments [3], [15]-[17]. Motor-
related potentials are especially important from the human-
machine interface perspective because they provide informa-
tion about the sensorimotor processing which precedes motor
actions [15], [18], [19]. For cue-based movements, the PMd
is believed to have a major role in this pre-movement activity
which can be captured as negative deflections in the motor-
related potentials [20], [21].

The most noticeable characteristics of the movement-related
cortical potential (MRCP) are the negative deflections in the
neural trace. The MRCP is a component of the low-frequency
(0-4 Hz, 6-band) EEG, which is elicited when a cued or self-
paced voluntary movement is planned and executed [22]-[25].
EEG electrodes positioned at the mid-central area of the brain,
such as Cz, are used to record MRCP in response to lower-limb
movements. These electrodes predominantly reflect sources
from the premotor cortex, primary motor cortex, and SMA [4],
[26]-[28]. The MRCP comprises three components, namely
the readiness potential (RP), movement-monitoring potential
(MMP), and motor potential, corresponding to movement
planning, control, and execution [29], [30]. The RP, also
known as the Bereitschafts potential in the case of self-paced
movements, is a negative deflection that may begin as early
as 2 seconds before the movement onset [29], [31].

The RP consists of two phases, the second of which usually
has a steeper slope and maximum amplitude over the primary
motor cortex [31]. Both the RP and MMP have been shown to
be related to the task’s kinetic parameters, for example, force
and rate of force development (RFD) [22], [29]. In response
to motor imagery, an imaginary MRCP is generated, which
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typically has a smaller amplitude than an actual movement
[29]. The MRCP has been utilized to forecast and comprehend
task execution in both healthy adults and individuals with
medical conditions such as Parkinson’s disease, tremor, and
stroke [25], [32], [33]. The existence of an MRCP in response
to motor tasks such as isometric dorsiflexion has been detected
with an accuracy >85% in related studies [34], [35].

For brain-computer interface (BCI) and neurorehabilitation
technologies, it is crucial to map the MRCP to multiple levels
of a single kinetic parameter. However, existing studies have
had difficulty achieving high classification accuracy with more
than two levels of a single parameter [36], [37]. Nonetheless,
studies have shown that the MRCP can be detected with low
latency (high temporal resolution) [35], [38]. Identifying the
MRCP at various levels of a single kinetic parameter will
be a significant step forward for BCI and neurorehabilitation
technologies. Additionally, the MRCP can distinguish left vs.
right hand, and foot movements [39], [40]. When using the
MRCP to map to a kinetic parameter, distinguishing two levels
of force or RFD has been successful (accuracy > 74% for
force, accuracy > 81% for RFD) [41]. Successful classification
of multiple RFD levels is particularly important as the human-
machine interface (HMI) can aid the user in performing the
task at the intended speed. This provides an additional motor
dimension beyond the start and stop of the task and may be
crucial for neurorehabilitation technologies.

Decoding multiple levels of movement intensity with MRCP
features has strong potential in BCI technologies, such as
assisting impaired users with task execution at the desired
intensity. The aim of this study is to evaluate the capacity
of EEG, in particular, J-band MRCP features, to decode
four levels of RFD during isometric ankle dorsiflexion. Our
first hypothesis is that four levels of RFD can be accurately
discriminated using full-band EEG features from a larger scalp
area spanning nine central electrodes. Secondly, we hypothe-
size that the MRCP’s temporal J-band features from the Cz
electrode can achieve a comparable classification accuracy.

This study investigates the potential discrimination of four
RFD levels with MRCPs, comparing features both in the -
band and in the full EEG band. Healthy subjects performed
isometric ankle dorsiflexion while EEG signals were recorded.
Characteristics of the MRCP that scaled in response to the
RFD, such as amplitude and timing, constituted the first feature
set (the MRCP Morphological Characteristics, see 1I-E for de-
tailed feature definitions). A second feature set was constructed
from ten temporal attributes of the MRCP, such as mean and
standard deviation (the MRCP Statistical Characteristics, see
II-F for detailed feature definitions). Highlighted features from
the morphological and statistical characteristics demonstrated
a monotonic response to the intensity of the RFD. Some
highlighted features are as follows: min; and min,, for the
morphological characteristics, slope and standard deviation
in the (0, 1)s window for the statistical characteristics. The
classification accuracy of each feature set was evaluated by
using a support vector machine classifier to predict the RFD
level and applying 5-fold cross-validation. A third feature set
which consisted of time-frequency features in the 0.1-90 Hz
band from nine electrodes of the motor cortex (the Wide-

band Time-frequency Features, see 1I-G for detailed feature
definitions), was investigated, and the performance was used
as a benchmark. The low-frequency temporal features in the
MRCP Statistical Characteristics showed a relatively strong
discriminative power, with an accuracy of 78%. The results
highlight the role of the §-band in translating motor command
and have potential applications in HMI systems.

II. METHODS

Five healthy volunteers (aged 20-28 years), without any
prior HMI experience participated in the study. All subjects
gave their signed consent, which was conducted in accordance
with the principles outlined in the Helsinki Declaration and
approved by the University College London Department of
Clinical and Movement Neurosciences (approval date: April
26th 2017, approval reference number: 10037/001).

A. Experimental Protocol

Each subject was seated in a chair with their leg constrained
and ankle fixed to a pedal with an attached force transducer
(NEG1, OT Bioelettronica, Torino, Italy, Fig. 1(a)). Subjects
were instructed to perform a defined rate of isometric dorsi-
flexion of the dominant-sided (right in all subjects) ankle. Four
rates of force development (RFD) were defined based on the
time interval to reach a target force level of 60% of maximal
voluntary contraction (MVC). With real-time visual feedback,
subjects followed a triangular profile (Fig. 1(b)) from O to
60% MVC with the durations of: (i) 3s, (ii) 2s, (iii) 1s, and
@iv) 0.5s, corresponding to RFDs of (i) 20% MVC/s (Slow),
(i1) 30% MVC/s (Medium), (iii) 60% MVC/s (Fast), and (iv)
120% MVC/s (Ballistic).

Each experimental session started with measuring the max-
imum voluntary contraction (MVC) force so that the RFD
levels could be defined. A training phase (approximately 5
min) was included to let the subjects familiarize themselves
with executing the defined force profile while receiving visual
feedback. Subjects were guided to execute a set of at least 25
successful isometric ankle dorsiflexion repetitions at each of
the four target RFD levels. The RFD level was constant across
all repetitions within a given set, and there was a 5s resting
period between each repetition [27], [43]. The sequence of the
four sets corresponding to the RFD levels was randomized for
each subject. Between each set, a break of 5 min was provided
[27], [43]. If the study personnel observed in real-time that the
executed force for a given repetition had a large deviation from
the target force profile, the repetition was marked as a failure,
and an extra repetition was added to the current set.

B. Data Acquisition

EEG data were wirelessly recorded from 64 electrodes
assembled on an active-electrode cap (ActiChamp, Brain Prod-
ucts GmbH, Germany) at 1000 Hz. The 64 electrodes were
arranged according to the extended 10-20 (10%) configuration
[44]. The force signal was recorded at 2048 Hz from a force
transducer mounted on a pedal and connected to an amplifier
(Quattrocento, OTBioelettronica, Turin, Italy). At the start
of each set of isometric dorsiflexions, a trigger pulse was
sent to the EEG recording system when the force signal
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Fig. 1: (a) EEG signals were recorded from 64 electrodes, and force signals were measured using a load cell while subjects performed guided isometric
ankle dorsiflexion. (b) (i) Subjects were guided to reach 60% maximum voluntary contraction (MVC) with four durations (0.5s, 1s, 2s and 3s), giving four
target levels of rate of change of force (Ballistic: 120% MVC/s, Fast: 60% MVC/s, Medium: 30% MVC/s and Slow: 20% MVC/s). (ii) The mean and 95%
confidence interval (C'lgs) executed force plots are shown for each of the Slow, Medium, Fast, and Ballistic tasks. (¢) EEG signals are pre-processed by
applying a high-pass filter at 0.1 Hz, removing power line noise with a notch filter at 50 Hz, and removing unwanted artifacts with an ICA-based method
[42]. The MRCP is produced by applying a low pass filter at 4 Hz and performing a Laplacian spatial filter with eight electrodes surrounding Cz. (d) Several
MRCP morphological characteristics, such as the time features of the minima, seem to scale with the task duration. Heat maps indicate that d-band activity

is highest for Cz and scales in proportion to RFD.

recording started, such that the EEG and force signals could
be synchronized later. The movement onset was defined as the
time at which the force signal reached 10% of its peak trial
value (approximately 6% MVC, as in Fig. 1(b)). Using this
movement onset time as Os for each trial, a (-3, 4)s window
was used to investigate the EEG signals for each trial.

C. EEG Pre-processing

Following the recording, signals were processed using
MATLAB R2022b (MathWorks Inc. Natick MA). Nine EEG
electrodes of interest, including and neighboring Cz, i.e., P3,
Pz, P4, C3, Cz, C4, F3, Fz, and F4, were used for the
analysis (Fig. 1(c)). EEG signals from the nine electrodes were
filtered with (i) a zero-phase, 2nd-order Butterworth high pass
filter with a cutoff frequency of 0.1 Hz and with (ii) a zero-
phase, 4th-order Butterworth band stop filter (47.5-52.5 Hz)
to remove line noise. Unwanted signal artifacts were removed
with an ICA-based algorithm [42].

D. MRCP Analysis

The nine pre-processed EEG signals were low-pass filtered
at 4 Hz with a zero-phase, 4th-order Butterworth filter. To

extract the MRCP, a Laplacian spatial filter was applied to
the Cz electrode to enhance the spatial resolution (Fig. 1(c)).
The mean MRCP, 44, across all trials of all subjects was
computed, for each RFD, and the results can be seen in Fig.
2(a) and Fig. 2(b). Additionally, the sample standard deviation,
stdgam = —%=, across all trials of all subjects was computed
and used to compute the MRCP’s 95% confidence interval
(Clys, Flg 2(a)) as Clgs = Hsam T (ZQE))(Stdsam) = fhsam T
(1.96)(stdsqm,). The d-band activity was plotted, resulting in
the activation heat maps as explained in the following. After
band-pass filtering, each of the 64 recorded electrodes was
spatially filtered with an appropriate Laplacian configuration.
The configuration was chosen based on the position of the
electrode of interest and its surrounding electrodes such that
the Euclidean distance deviation from the ideal configuration
was minimized [45]. The configuration was chosen based on
the position of the electrode of interest, and its surrounding
electrodes [45]. The median magnitude of each electrode’s
time domain signal across all subject trials was computed, and
the median in a 100 ms window produced a singular value for
the topographical heat maps (Fig. 2(c)). The 100 ms window
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was centered at the movement onset for the maps in the top
row (centered at Os for all classes). For the bottom row, the
window was centered at the planned movement end (centered
at 3s for Slow, at 2s for Medium, at 1s for Fast and at 0.5s
for Ballistic). Each electrode’s value was normalized using the
maximum across the eight plots in Fig. 2(c).

E. Feature Set 1: MRCP Morphological Characteristics

The following features were extracted from the MRCP
signal at Cz, M RCP(t), for each trial:

1) The RP2 slope (mpgp2), i.e., the slope of the MRCP signal
MRCP(t) between -0.5s and Os [46]:

MRCP(0) — MRCP(-0.5)

0.5 M

2) The first local minimum’s value, miny, traditionally
called peak negativity (PN)

3) The time at which min; occurred, .y,

4) The number of local minima, N,

5) The last local minimum’s value, min,,
6) The time at which min,, occurred, ¢,in,, .

Mmprp2 =

For demonstration purposes, min; and min,, are indicated
on the mean MRCP of the Slow RFD, while RP2 slope is
highlighted for the Ballistic RFD (Fig. 2(b)). The local min-
ima, including men,; and min,,, were identified for each trial
by finding peaks of the inverted MRCP signal. Therefore, the
findpeaks command in MATLAB was applied to —M RCP(t)
with the following parameters: (i) peak must occur within
the (-0.5, 4)s time window (to include most extreme cases of
local minima), (ii) peak height equal to at least half of global
maximum, (iii) time between peaks equal to at least 0.25s.
The classification performance of the full feature set (Fig. 5)
and each feature alone (Fig. 6) was investigated.

F. Feature Set 2: MRCP Statistical Characteristics

The following features were extracted from M RCP(t) for
the following time windows, (-3, 0)s, (0, 1)s, (1, 2)s, (2, 3)s,
and (3, 4)s, within each trial:

1) Mean value

2) Standard deviation (std)

3) Mean absolute value

4) Trapezoidal integral (area under the curve)

5) Slope m;y between the initial MRCP value of the time
window M RCP(t;) and the final MRCP value of the
time window MRCP(ty):

MRCP(t;) — MRCP(t;)
ty —1;

2

mif =

6) Slope sign change (SSC), which is calculated thus for a
given signal x(t) [47], [48]:

S5C = Z_: H{(@(tn) = (tn-1)) X ((2(tn) — x(tns1))}

1 ify>0
Hot = {0 otherwise
3)
7) Mean 4 of MRCP signal

8) Skewness s, which gives a measurement of how asym-
metrically a signal is distributed about the mean, as

s = B[(Z=E3).

g

4)

9) Kurtosis k, which evaluates the tailedness of a distribution

as given below:
T—p
k= E[( )]

(&)

10) Shannon’s entropy H(x), which gives a measure of the
uncertainty in a signal x(t) as:

H(X) ==Y Px(X)log2Px(X) (6)

where X denotes the discretized version of the signal and

Px (X;) denotes the distribution of X [49]-[51].
All features computed in each time window were included in
the feature set (10 features x 5 windows = 50 features) used
to train and evaluate the performance of the classifier (Fig. 7).
We also evaluated the classifier performance when it was only
trained on individual time windows (e.g., 1 to 2 seconds, or 3
to 4 seconds), which is depicted in Fig. 8 and Table III.

a

G. Feature Set 3: Wideband Time-frequency Features

The nine pre-processed EEG signals were filtered with a
zero-phase, 4th-order Butterworth low-pass filter with a cut-
off frequency of 90 Hz. The short-time Fourier transform
(STFT) was performed on each trial with 50% overlapping
Hamming windows of 2s. The nine-electrode STFT formed
the Wideband Time-frequency Features in the broad frequency
range of interest (0.1-90 Hz).

H. Violin Plots

Note that each violin plot in this paper shows the distribution
of data points as density curves. The width of each curve
corresponds with the approximate frequency of data points
along the y-axis. Within each violin plot, there is a box plot
where the white dot indicates the median and the grey box
shows the interquartile range.

1. Statistical Analysis

The relationship of features with respect to the four levels of
RFD was analyzed for the MRCP Morphological Characteris-
tics (Feature Set 1) and for the MRCP Statistical Characteris-
tics (Feature Set 2). The feature distributions when combining
all subject trials at each RFD level are shown as violin plots for
Feature Set 1 and Feature Set 2 (Fig. 3). Note that each of the
five subjects performed 25 trials at four RFD levels. Hence,
a 2-way Repeated Measures ANOVA (RM-ANOVA) model
was chosen, where the two factors were the RFD level and
trial number [52], [53]. Since the normality assumption was
violated by the raw feature distributions, a rank transformation
was performed to ensure normality prior to conducting RM-
ANOVA [54], [55]. As five subjects conducted 25 trials at
four RFD levels in our analysis, the rank-transformed features
have a value between 1 and 500 (5 x 25 x 4 = 500). The
RM-ANOVA analysis was conducted in IBM SPSS Statistics
for Windows, Version 29.0.2.0, Armonk, NY. With regard to
the RM-ANOVA model assumptions, it should be noted that

Authorized licensed use limited to: New York University. Downloaded on September 08,2024 at 15:35:16 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Haptics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TOH.2024.3428308

O’KEEFFE et al..LOW-FREQUENCY MOTOR CORTEX EEG PREDICTS FOUR LEVELS OF RATE OF FORCE DEVELOPMENT DURING ANKLE DORSIFLEXION

(a) MRCPs for each level of RFD
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Fig. 2: (a) Mean (center line) MRCP with 95% confidence interval (shaded area) across all subjects. (b) Mean MRCP for each class of RFD, where the
dots signify local minima. The first local minimum (mén1) and last local minimum (min,,) are indicated for the Slow RFD. The slope of the late readiness
potential (RP2 slope) is indicated for the Ballistic RFD. The time between the first and last local minimum (denoted by a horizontal dashed line) is closely
related to the duration of the force application. (c¢) Topographical plots of J-band activation for the recorded electrodes. The maps in the top row considered
the movement onset (0s), while the maps in the bottom row considered the planned movement end as the time window center. The dominant ¢-band activation
appears to be at Cz and is monotonically ascending with the level of RFD (with Slow having the smallest and Ballistic having the largest). The activation of
Cz trended higher at the movement onset than at the end. For each subject and trial, the median activity was quantified for the 100ms window around the
specified time. Here, the maps represent the median across all subject trials and were normalized to the maximum activity across the eight plots.

for all rank-transformed features: (i) normality was maintained
(Shapiro-Wilk Test: p > 0.05), (ii) no significant outliers were
observed, and (iii) sphericity (homogeneity of variances) was
maintained (Mauchly’s test: p > 0.09) [52], [56].

The significance level for the RM-ANOVA tests was o =
0.05. It should be noted that the effect of the trial number was
not significant for any of the MRCP features (RM-ANOVA:
F(24,96) > 0.095, p > 0.96), the effect of interaction
between trial number and RFD level was not significant for
any of the MRCP features (RM-ANOVA: F(72,288) > 0.095,
p > 0.96), and only the effect of the RFD level is reported
in the Results section. The RM-ANOVA test results for the
effect of RFD level, including F-statistic, p-value, and effect
size (partial eta-squared, 77,) are shown in Table I and Table II.
If the effect of RFD level was significant (F'(3,12) > 3.475,
p < 0.05), post-hoc pairwise comparisons were conducted
using the estimated marginal mean (EMM) (Fig. 4). The color-
coded bar and associated black vertical line indicate the EMM

and 95% confidence interval, respectively, at a given RFD
level (Fig. 4). The significance level was adjusted for multiple
comparisons using the Bonferroni-Holm procedure [57], [58],
and a significant p-value is indicated with bold font and a solid
line (Fig. 4).

J. Machine Learning Classification

A Support Vector Machine (SVM) classifier with a linear
kernel function was used for all feature sets. For a given
subject, there were 25 trials of each RFD class (Slow, Medium,
Fast, Ballistic). The machine learning model was evaluated by
performing k-fold cross-validation with & = 5 [59], [60]. The
trials of each subject were divided into five distinct folds. Four
folds, ~20 trials for each subject, were designated for training
the classifier while the remaining fold, ~5 trials, constituted the
test set. The accuracy of the trained classifier was evaluated by
predicting the RFD level of each trial in the test set based on
the EEG features, and comparing the prediction to the ground
truth. The train and test process was repeated for each of
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Fig. 3: Violin plots of MRCP features (without rank transformation). The raw feature values for all subject trials are shown for each distribution (n = 125).

See Section II-H for more information about how to interpret the violin plots.

the five folds. The distribution of the classification accuracies
across the five folds of each subject is shown for Feature Set 1
in Fig. 5(a), for Feature Set 2 in Fig. 7(a), and for Feature Set
3 in Fig. 10(a). The confusion matrices in Figs. 5(b), 7(b), and
10(b) indicate the patterns of classification performance across
all subject trials. The distribution of classification accuracies
across all subject folds is shown for each feature in Fig. 6 and
for each time window in Fig. 8.

III. RESULTS
A. Feature Set 1: MRCP Morphological Characteristics

Increases in RFD resulted in identifiable changes in the
MRCP signal features. The Clgs plots demonstrated signif-
icant differences between the group average MRCPs across
the RFDs (Fig. 2(a)). The value of the first local minimum,
the distance between the first and last local minima, and
the MRCP slope before the execution, i.e., the readiness
potential (RP2), seemed to be among the features contributing
to the separation of the MRCPs and their respective C'lgs.
Furthermore, the distance between the first and last MRCP
minima seemed to scale with the force development time for
each group (Fig. 2(a), Fig. 2(b)). The activation maps after
Laplacian filter indicated monotonically increasing activity
around the Cz area from the Slow, to Medium, to Fast, and
to Ballistic RFDs. This activity tended to diminish at the
end of the force development (Fig. 2(c)). For reference, the
force development time is 3s for the Slow group, 2s for the
Medium group, 1s for the Fast group, and 0.5s for the Ballistic
group. The brain activity centered around Cz trended highest
at the time points considered for Ballistic, particularly at the
movement onset (Fig. 2(c)).

The rank-transformed MRCP Morphological Characteristics
showed significant differences depending on the level of RFD
for pre-movement, movement onset, and post-movement fea-
tures. The effect of RFD level was significant for the following
features within the rank-transformed MRCP Morphological
Characteristics: RP2 slope, mini, ming,, tmin,, and Npip

(RM-ANOVA: F(3,12) > 7.14,p < 0.006) (Table I). The
EMM of RP2 slope, min;, and men, showed trends of
monotonical ascension in response to increasing RFD level
(Fig. 4(a)). The post-hoc RM-ANOVA test showed that RP2
slope and min; were higher at the Ballistic RFD compared
to the Slow, Medium, and Fast RFD levels (RP2 slope:
p < 0.008, mini: p < 0.011) (Fig. 4(a)). The EMM of
features with a post-movement component such as ¢,,;,, and
Npin showed trends of monotonical descension in response
to increasing RFD level (Fig. 4(a)). The post-hoc pairwise
comparison indicated that ¢,,,;,, and N,,;, were enlarged at
the Slow RFD compared to the Medium, Fast, and Ballistic
RFD levels (tmin,: p < 0.025, Npin,: p < 0.011) (Fig.
4(a)). Five of the six features shown demonstrated a difference
between Slow and Ballistic RFD (post-hoc RM-ANOVA test:
p < 0.009).

Using the MRCP Morphological Characteristics as the
feature set for the SVM algorithm demonstrated medium
discriminative power in relation to the four levels of RFD
(>50%), which is double the chance level for four classes (Fig.
5). The average overall accuracy was ~58% across subjects
and classes (Fig. 5). The confusion matrix for this feature set
also suggested a strong discriminative power if only two RFD
groups were considered (Fig. 5(b)). The cumulative accuracy
of the adjacent RFD groups (i.e., Ballistic and Fast vs. Medium
and Slow) reached >84%. Note that this feature set had only
six features derived from the d-band MRCP and robustly
classified dual-level RFDs and performed well beyond the
chance level for the four-level RFD classification using SVM.
With regard to the feature-wise classification (Fig. 6), Npin
and min; had the highest accuracy (~ 45%), followed by RP2
slope and t,,i,, (~ 40%).

B. Feature Set 2: MRCP Statistical Characteristics

The rank-transformed MRCP Statistical Characteristics
showed significant differences depending on the level of RFD
for pre- and post-movement features. The effect of RFD
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(b) rank-transformed MRCP statistical characteristics (Feature Set 2)

Window: (-3, 0)s Window: (0, 1)s Window: (0, 1)s

p = 0.004 p=0.417 p = 0.008
p =0.008 p =0.001 p <0.001
p=0726 p=006 p=0050
p=0.002 p <0.001 p <0.001
p=0152 p=0089 00089
500 p = 0.241 5001 )T o582 500} 520305 .
400 400 400 400
300 © 300 £ 300 £ 300
cgs_ 300 & g § sé
@ 200 9 200 % 200 g 200 200
100 100 100 100 100 100
0 0 0 0 0

Window: (1, 2)s Window: (1, 2)s Window: (2, 3)s

Fig. 4: Post-hoc RM-ANOVA pairwise comparisons regarding the effect of RFD level are indicated for the highlighted rank-transformed features. As five
subjects conducted 25 trials at four RFD levels in our analysis, each rank-transformed feature has a value between 1 and 500 (5 x 25 x 4 = 500). The
color-coded bar and associated vertical black line indicate the estimated marginal mean (EMM) and 95% confidence interval at a given RFD level. (a) The
RP2 slope, min1, and min, showed trends of monotonical ascension, while £y, and Ny, showed trends of monotonical descension in response to
increasing RFD. Five of the six features shown demonstrated a difference between Slow and Ballistic RFD (p < 0.009). (b) The slope in the (-3, 0)s window
and the std in the (0, 1)s window showed trends of monotonical ascension, while the slope in the (0, 1)s window, the slope in the (1, 2)s window, and the
mean in the (2, 3)s window showed trends of monotonical descension in response to enlarging RFD. Five of the six features shown demonstrated a difference

between Slow and Ballistic RFD (p < 0.012).

| Feature | F-statistic | Test Significance | np |
| RP2 slope | 15.32 | p<0.001 | 0.79 |
| mini | 176 | p < 0.001 | 0.81 |
| min, | 715 | p=0.005 | 0.64 |
| tmin, | 0358 | p=0784 | 0.08 |
| tmin, | 1605 | p<0.001 | 08 |
| Noin | 1821 | p<0.001 | 0.82 |

TABLE I: Results for the RM-ANOVA model to test the effect of RFD level
on the MRCP Morphological Characteristics. Values are shown for F-statistic,
p-values, and effect size (7,). The significance level was set at p = 0.05.

level was significant for all six of the highlighted rank-
transformed MRCP Statistical Characteristics (RM-ANOVA:
F(3,12) > 5.18,p < 0.016) (Table II). The EMM of the
slope in the (-3, 0)s window showed trends of monotonical
ascension in response to increasing RFD level (Fig. 4(b)). The
post-hoc RM-ANOVA test indicated that the slope in the (-
3, 0)s window was enlarged at the Ballistic RFD compared
to the Slow, Medium, and Fast RFD levels (p < 0.009)
(Fig. 4(b)). On the other hand, the EMM of the slope in the
(0, 1)s window showed trends of monotonical descension in
response to increasing RFD level (Fig. 4(b)). The post-hoc

| Feature | F-statistic | Test Significance | np |
| slope in (-3, 0)s | 9.95 | p<0.001 | 0.71 |
| stdin (0, Ds | 117 | p < 0.001 | 0.74 |
| slope in (0, 1)s | 18.88 | p<0.001 | 0.82 |
| mean in (1,2)s | 5.19 | p=0.015 | 0.56 |
| slope in (1, 2)s | 6.51 | p =0.007 | 0.62 |
| mean in (2, 3)s | 1235 | p<0.001 | 0.75 |

TABLE II: Results for the RM-ANOVA model to test the effect of RFD level
on the MRCP Statistical Characteristics. Values are shown for F-statistic, p-
values, and effect size (7);,). The significance level was set at p = 0.05.

pairwise comparison illustrated that the slope in the (0, 1)s
window and the mean in the (2, 3)s were higher at the Slow
RFD compared to the Medium, Fast, and Ballistic RFD levels
(slope in the (0, 1)s window: p < 0.009, mean in the (2,
3)s window: p < 0.012) (Fig. 4(b)). Five of the six features
shown demonstrated a difference between Slow and Ballistic
RFD (post-hoc RM-ANOVA test: p < 0.012).

Combining the ten MRCP statistical characteristics from
each of the five time windows resulted in an RFD classification
accuracy of >75% (Fig. 7). Four out of the five subjects
had >75% classification accuracy (Fig. 7(a), Table III). The
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Fig. 5: Classification accuracy from the MRCP Morphological Characteristics
(Feature Set 1). (a) Subject-wise violin plots of classification accuracy. The
distribution of the classification accuracy across the five folds is shown for
each subject. See Section II-H for more information about how to interpret
the violin plots. (b) Overall confusion matrix. The classification results from
all subjects are pooled, and the mean accuracy is shown above.

mean accuracy across subjects and RFD classes was ~78%
(Fig. 7(b)), with the highest discriminative accuracy at 87.8%
for the Slow RFD. The cumulative accuracy of the two-level
RFD with adjacent classes (i.e., Ballistic and Fast vs. Medium
and Slow) reached >91% (Fig. 7(b)). Considering the MRCP
Statistical Characteristics only from selected time windows
as the SVM feature set reveals that the SVM classifier is
likely most responsive to attributes in the (1, 2)s window
with accuracy ~60% (Fig. 8). The least discriminative power
was for the (3, 4)s time window with ~30% (around chance)
accuracy. Interestingly, the median accuracy with all the time
windows included was ~80%, which was greater than each
individual time window (Fig. 8). The detailed per subject and
window accuracy results also confirmed that for all subjects,
either the (0, 1)s or the (1, 2)s window provided the highest
accuracy (Table III).

C. Feature Set 3: Wideband Time-frequency Features

An exemplar spectrogram plot for the STFT of one of
the nine electrodes included in Feature Set 3 is shown in
Fig. 9. The SVM classification using STFT full temporal
and spectral feature set yielded >80% classification accuracy
for the four levels of RFD. The subject-wise classification
accuracy revealed >80% accuracy for four out of the five
subjects (Fig. 10(a)), while the overall group accuracy for the
STFT feature set was at ~83% (Fig. 10(b)). In comparison
to the wideband classification accuracy, a preliminary analysis
indicated that performing the STFT on the nine electrodes
filtered to the J-band band led to a reduced classification
accuracy (~67%). Adjacent classes with the fastest RFDs (i.e.,
Fast and Ballistic) had a high mutual misclassification rate
compared to the misclassification rate when the inter-class
distance increased.

IV. DISCUSSION

A. Key Outcomes

In this paper, the ability of the MRCP to predict four levels
of RFD was investigated and novel success was achieved. Four
RFD levels could be discriminated with ~78% accuracy when
only using d-band MRCP statistical characteristics. In this
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Fig. 6: Feature-wise classification accuracy from MRCP Morphological char-
acteristics (Feature Set 1). Each violin plot depicts the accuracy obtained when
classifying the level of RFD with the highlighted feature alone. See Section
II-H for more information about how to interpret the violin plots.

study, we investigated the complete MRCP waveform for four
levels of RFD, which provided a rich source of information
about the (i) planning, (ii) execution, (iii) completion, and
(iv) duration of the isometric dorsiflexion task utilizing the
tibialis anterior muscle. The results showed that morphological
features, such as the time between the first and last minima
encapsulate critical information with potential use in HMI.
We demonstrated that both rank-transformed MRCP morpho-
logical and statistical features present monotonic trends with
respect to the RFD levels (Slow RFD was differentiated from
Ballistic RFD in 10 out of 12 features shown in Fig. 4,
p < 0.012). This paper also highlights morphological features
such as the number of minima (/V,,;, ) and the time of the last
minimum (%,,:r,, ) Which have at least the same discriminative
power as previously highlighted features such as RP2 slope
and time of first minimum (min;). Using the MRCP feature
sets provides a transparent and interpretable SVM classifier
that is not a “black box” and can inform researchers about
the EEG waveform dynamics. The novel MRCP features are
neurophysiological indications of the underlying mechanism
of motor monitoring and execution by the motor cortex and
the neighboring areas. Our results illustrate the exciting possi-
bility of MRCP to RFD mapping, which has strong potential
applications, particularly in neurorehabilitation.

B. New Findings about MRCP Characteristics

Previous studies have explored the significance of certain
MRCEP features, such as RP2 slope and miny [28], [61]-[64].
However, our research indicates that other features, such as
the timing of the last minimum (%,,:,,) and the number of
minima (V,,;,), may have matched or superior discriminative
power (Fig. 4, Fig. 6). We observed that while miny, min,,,
and RP2 slope decreased in response to increasing RFD levels,
Nyin and tp,;y, increased (Figs. 2, 4). Previous studies have
identified the local minimum of the negative deflection that
occurs around the movement onset as the peak negativity
(PN) [64], [65], denoted in this study as min;. The scaling
of PN (min;) may indicate the level of corrective actions
and error processing in the premotor and motor cortices [13],
[66]. Interestingly, we observed that the PN is not necessarily
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Subject/Window | (-3, 0)s 0, I)s (1, 2)s (2, 3)s 3, 4)s All

1 41.25+/- 8.39 | 46.25+/- 12.18 | 42.54/- 9.27 31.254/- 7.65 | 25+/- 8.84 60+/- 5.59

2 54.74+/- 798 | 72.63+/- 5.77 60+/- 16.48 47.37+/- 8.32 | 25.26+/- 10.12 | 87.37+/- 7.98
3 45.56+/- 9.13 | 62.22+/- 14.38 | 66.67+/- 11.79 | 33.334/- 7.86 | 24.44+/- 7.45 76.67+/- 9.13
4 38.374/- 2.74 | 53.26+4/- 6.71 62.63+/- 8.37 54+/- 11.4 52.74+/- 4.47 80.26+4/- 6.12
5 38.14/- 8.91 49.52+/- 5.43 58.14/- 12.33 57.14/- 11.86 | 39.05+/- 8.52 83.81+4/- 8.65

TABLE III: Window-wise classification accuracy (CA) using the MRCP Statistical Characteristics. The mean £ SD CA across the five folds is shown subject-

wise for each window.
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Fig. 7: Classification accuracy from the MRCP Statistical Characteristics
(Feature Set 2) from all time windows. (a) Subject-wise plots of classification
accuracy. The distribution of the classification accuracy across the five folds
is shown for each subject. See Section II-H for more information about how
to interpret the violin plots. (b) Overall confusion matrix. The classification
results from all subjects are pooled and mean accuracy is shown above.

a global minimum when considering the full task duration
(e.g., Slow in Fig. 2(b)). Rather, the PN is just the first of
a set of local minima, indicating that the error processing
and movement monitoring can continue beyond the initial
recruitment of the muscle.

Depending on the task duration, there may be deeper
negative deflections after the min; point. Previous research
indicated that two levels of RFD can be detected by two
distinct min, points [36]. In our study, we defined four levels
of RFD by varying the duration to reach the target force (60%
MVO). It was demonstrated that min; increases in response to
the RFD level (Fig. 2(a), Fig. 4(a)). In addition, the timing of
the last MRCP minimum (min,,) scaled in inverse proportion
to RFD (Fig. 2(a), Fig. 4(a)). In other experimental setups
with a constant force duration rather than constant force, the
amplitude rather than the timing of MRCP minima would
perhaps be more discriminative regarding the RFD level. Our
findings demonstrate that the timing and intensity of the
MRCP minima indicate different motor activities and cortical
processes [25], [67]. The minima are distinctive features of the
movement monitoring potential (MMP) and are linked to the
subject’s intention to correct errors when tracking the force
profile [29], [68].

C. Strong Discriminative Power of MRCP

The strong discriminative power of EEG features with
regard to four RFD levels validated both hypotheses in the
study, and shows promise for decoding the user’s intention
with enhanced resolution. The Wideband Time-Frequency
features successfully discriminated the four RFD levels with a
classification accuracy of 83% (Fig. 10), validating the first hy-
pothesis. The MRCP Statistical Characteristics demonstrated

Performance of Feature Set 2
for each time window

100
80
60
40|

20

Classification Accuracy (%)

L . n w0 =

o - 8 » g <

® o < o o

T 2 T & <
Window

Fig. 8: Window-wise classification accuracy from statistical characteristics
(Feature Set 2). Each of the first five violin plots depicts the accuracy
obtained when classifying the level of rate of change of force with features
across just that time window. The final violin plot shows the accuracy when
classifying with features pooled from all time windows. Each violin plot shows
a subjects X folds distribution for the given time window. The green line
plot indicates the mean classification accuracy. See Section II-H for more
information about how to interpret the violin plots.

78% classification accuracy (Fig. 7), highlighting the role of
0-band signals in motor tasks. The four-class classification
performance of ~ 80% achieved here is comparable to pre-
vious studies which only discriminated two levels of RFD
[36], [41]. Even though the full spectrum of EEG from 9
channels (9774 features) can secure a 5% higher accuracy
than the performance of §-band MRCP, the results support
that the small feature set of statistical MRCP characteristics
can recover the classification performance and closely follow
that of the full spectrum, confirming the second hypothesis.
Furthermore, the two-level classification accuracy with the
MRCP Statistical Characteristics was at ~90% (Fig. 7(b)),
suggesting strong discrimination of the behavior based on
the MRCP waveform when the Ballistic and Fast trials are
compared with the Slow and Medium trials.

Our preliminary analysis of applying the STFT only on the
0-band showed an overall average accuracy of 67%, under-
lining the advantage of the MRCP Statistical Characteristics
compared to the STFT feature set of the same signal. The
strong classification accuracy of MRCP Statistical Character-
istics (with very low number of features) is aligned with the
individual features showing statistical differences between the
levels of RFD (Fig. 4(b)); for example, our analysis showed
that the Slow task can be differentiated from Ballistic by the
rank-transformed signal mean, slope and standard deviation
features (p < 0.012). The MRCP Statistical Characteristics
are indicative of the complexity of the waveform and the
rate and overall magnitude (and power) of the deflection of
the waveform from its baseline. The combination of these
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Fig. 9: An example STFT plot (spectrogram) is shown for the Cz electrode

during the Ballistic task. Feature Set 3 includes STFT features from nine
electrodes including Cz.

statistical characteristics quantitatively describes the changes
in the MRCP, and, based on the results, can effectively map
the signal to the different RFD levels.

D. Significance in the Context of BCI

The results presented here show the advantageous inter-
pretability of the MRCP features. The MRCP Statistical Char-
acteristics and full-spectrum STFT feature sets achieved strong
accuracy thresholds with a simple SVM algorithm. The use of
brain-computer interfaces to decode spatial/kinematic aspects
of motion in the upper limb has been extensively studied, as
reflected in the literature [69], [70]. However, the literature is
limited when it comes to decoding kinetic aspects of motor
intention, specifically the intensity of task conduction. In
recent years, some research has been conducted to predict
two levels of rate of force development using EEG signals in
the lower limb [36], [63]. Despite these efforts, no study has
been done on discriminating more than two intensity levels.
A higher number of detectable intensity levels is crucial for
improving the resolution of BCI in decoding the intensity of
intended motion for more intuitive implementations.

This paper presents a novel investigation about the informa-
tion content of MRCP, in the context of decoding as many as
four grades of intensity, which has not been reported before.
In recent times, complex machine learning techniques such
as deep learning algorithms have been harnessed to process
various biosignals like EMG [71], [72], EEG [73], [74], and
MRCP [37], [75]. While such techniques often achieve high
performance, the high dimensionality of these models makes
it challenging to identify key features and interpret the results
neurophysiologically. Moreover, complex models require a
large volume of training datasets, which may not always
be feasible, particularly for bio-signals. This study shows
that using a minimal, neurophysiologically meaningful MRCP
feature set provides adequate information about the kinetic
output and enables successful classification of the response
with up to four levels of intensity. This finding is significant
because it demonstrates that relatively low-dimensional feature
sets can help with the interpretability of results, especially
when identifying motor impairments.

E. Potential of MRCP-based Neurorehabilitation

The illustrated relationship between MRCP and RFD has
significant potential for application to neurorehabilitation and
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Fig. 10: Classification accuracy from wideband STFT features (Set 3) derived
from the full spectrum of nine electrodes. (a) Subject-wise plots of classifica-
tion accuracy. The distribution of the classification accuracy across five folds
is shown for each subject. See Section II-H for more information about how
to interpret the violin plots. (b) Overall confusion matrix. The classification
results from all subjects are pooled and the mean accuracy is shown above.

HMI by providing information about the patient’s intended
kinetic parameters (i.e., force and especially RFD), so that
the assistance can be tailored to the patient’s intended task
speed. We have shown that four levels of RFD can be
most accurately classified when considering features at and
following the movement onset (Fig. 8, Table III). The MRCP
seems most suited for assistive BCI where the movement
prediction can be ongoing while the subject attempts the
task [76], [77]. By utilizing the post-movement discriminative
power of the MRCP in conjunction with intention-detection
algorithms [30], [32], [35], there is potential for new BCI
technologies to determine the required assistive RFD for pa-
tients with sensorimotor impairments, improving the quality of
neurorehabilitation. Additionally, the MRCP can be employed
to trigger stimulation at approximately the movement onset
and prompt neuroplastic changes in the nervous system [6],
[34], [78]. The separation between Slow and Ballistic RFD by
MRCEP features at or before the movement onset (Fig. 4) shows
the potential for adjusting stimulation in proportion to the
classified level of RFD. Notably, the MRCP has been identified
as a biomarker of stroke [79]. Therefore, the novel MRCP
features discovered here can help enhance this biomarker’s
ability to differentiate impairments and motor improvements.

F. Limitations

One limitation of this study is that source localization was
not performed on the EEG. The features pertaining to MRCP
deflections before the start of the task (RP1 slope, RP2 slope,
and main,) are components of motor preparation and likely to
originate from the PMd [21], [27]. The rest of the waveform
may represent mixed activity from the primary motor cortex,
SMA, and other neighboring motor cortices [21], [80]. Another
limitation is the number of subjects.

G. Future Work

Future works with a larger sample size can help to support
the results of this study regarding the statistical and machine
learning analysis. Future studies can also investigate RFD
prediction from MRCP features when combining all subject
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trials and perhaps evaluate the model performance with leave-
one-subject-out cross-validation [81], [82]. Previous works
have shown that the MRCP amplitude is reduced in response to
fatigue [83], [84]. Future research can investigate the influence
of fatigue on the proportionality between MRCP and RFD
level that was demonstrated here.

V. CONCLUSION

In this paper, four RFD levels were successfully classified
based on the MRCP. We found that the user’s intended RFD
level could be successfully decoded by features derived from
(1) full-band EEG spanning nine electrodes with a classifi-
cation accuracy of 83%, and (ii) the J-band at Cz with a
classification accuracy of 78%. The findings validated both
hypotheses of the study, and show promise for decoding
the user’s intention from EEG with enhanced resolution.
Key MRCP characteristics responded to the task intensity in
an intuitive manner. Moreover, §-band features showed high
effect size and monotonic changes across the four RFD levels.
The monotonic response and high classification accuracy show
potential for mapping the MRCP to the user’s intended RFD
level. The relationship between MRCP and RFD could be
harnessed in assistive technologies by allowing the patient to
control the level of assistance based on their intended intensity.

Disclaimer: This article reflects the views of the authors and
should not be construed to represent FDA’s views or policies.
The mention of commercial products, their sources, or their
use in connection with material reported herein is not to be
construed as either an actual or implied endorsement of such
products by the Department of Health and Human Services.
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