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Abstract—The movement-related cortical potential (MRCP) is
a low-frequency component of the electroencephalography (EEG)
signal that originates from the motor cortex and surrounding
cortical regions. As the MRCP reflects both the intention and
execution of motor control, it has the potential to serve as a
communication interface between patients and neurorehabilita-
tion robots. In this study, we investigated the EEG signal recorded
centered at the Cz electrode with the aim of decoding four rates
of force development (RFD) during isometric contractions of the
tibialis anterior muscle. The four levels of RFD were defined
with respect to the maximum voluntary contraction (MVC)
of the muscle as follows: Slow (20% MVC/s), Medium (30%
MVC/s), Fast (60% MVC/s), and Ballistic (120% MVC/s). Three
feature sets were assessed for describing the EEG traces in the
classification process. These included: (i) MRCP Morphological
Characteristics in the δ-band, such as timing and amplitude; (ii)
MRCP Statistical Characteristics in the δ-band, such as standard
deviation, mean, and kurtosis; and (iii) Wideband Time-frequency
Features in the 0.1-90 Hz range. The four levels of RFD were
accurately classified using a support vector machine. When
utilizing the Wideband Time-frequency Features, the accuracy
was 83% ± 9% (mean ± SD). Meanwhile, when using the MRCP
Statistical Characteristics, the accuracy was 78% ± 12% (mean
± SD). The analysis of the MRCP waveform revealed that it
contains highly informative data on the planning, execution,
completion, and duration of the isometric dorsiflexion task.
The temporal analysis emphasized the importance of the δ-
band in translating to motor command, and this has promising
implications for the field of neural engineering systems.

Index Terms—NeuroHaptics, Force Decoding, BCI.
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MOTOR-RELATED potentials are the aggregation of

neural activity in the motor cortex. The neural activity

can be related to sensory integration, motor preparation, motor

learning, and execution of a motor task [1]–[6]. Research sug-

gests that the dorsal premotor cortex (PMd) is pivotal in motor

planning [7]–[9]. Additionally, the supplementary motor area

(SMA) is recognized as a vital hub for integrating information

from cognitive, motor, and sensory sources [10], [11]. When

electroencephalography (EEG) recordings are taken from the

central region of the brain, particularly near the Cz electrode

location, they represent motor-related local field potentials

(LFPs) in the premotor cortex, SMA, and medial motor cortex

[12]–[14].

Motor-related potentials can discriminate motor impair-

ments, quantify a variety of tasks and also monitor the im-

provements after rehabilitation, especially for stroke and other

central nervous system impairments [3], [15]–[17]. Motor-

related potentials are especially important from the human-

machine interface perspective because they provide informa-

tion about the sensorimotor processing which precedes motor

actions [15], [18], [19]. For cue-based movements, the PMd

is believed to have a major role in this pre-movement activity

which can be captured as negative deflections in the motor-

related potentials [20], [21].

The most noticeable characteristics of the movement-related

cortical potential (MRCP) are the negative deflections in the

neural trace. The MRCP is a component of the low-frequency

(0-4 Hz, δ-band) EEG, which is elicited when a cued or self-

paced voluntary movement is planned and executed [22]–[25].

EEG electrodes positioned at the mid-central area of the brain,

such as Cz, are used to record MRCP in response to lower-limb

movements. These electrodes predominantly reflect sources

from the premotor cortex, primary motor cortex, and SMA [4],

[26]–[28]. The MRCP comprises three components, namely

the readiness potential (RP), movement-monitoring potential

(MMP), and motor potential, corresponding to movement

planning, control, and execution [29], [30]. The RP, also

known as the Bereitschafts potential in the case of self-paced

movements, is a negative deflection that may begin as early

as 2 seconds before the movement onset [29], [31].

The RP consists of two phases, the second of which usually

has a steeper slope and maximum amplitude over the primary

motor cortex [31]. Both the RP and MMP have been shown to

be related to the task’s kinetic parameters, for example, force

and rate of force development (RFD) [22], [29]. In response

to motor imagery, an imaginary MRCP is generated, which
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typically has a smaller amplitude than an actual movement

[29]. The MRCP has been utilized to forecast and comprehend

task execution in both healthy adults and individuals with

medical conditions such as Parkinson’s disease, tremor, and

stroke [25], [32], [33]. The existence of an MRCP in response

to motor tasks such as isometric dorsiflexion has been detected

with an accuracy >85% in related studies [34], [35].

For brain-computer interface (BCI) and neurorehabilitation

technologies, it is crucial to map the MRCP to multiple levels

of a single kinetic parameter. However, existing studies have

had difficulty achieving high classification accuracy with more

than two levels of a single parameter [36], [37]. Nonetheless,

studies have shown that the MRCP can be detected with low

latency (high temporal resolution) [35], [38]. Identifying the

MRCP at various levels of a single kinetic parameter will

be a significant step forward for BCI and neurorehabilitation

technologies. Additionally, the MRCP can distinguish left vs.

right hand, and foot movements [39], [40]. When using the

MRCP to map to a kinetic parameter, distinguishing two levels

of force or RFD has been successful (accuracy > 74% for

force, accuracy > 81% for RFD) [41]. Successful classification

of multiple RFD levels is particularly important as the human-

machine interface (HMI) can aid the user in performing the

task at the intended speed. This provides an additional motor

dimension beyond the start and stop of the task and may be

crucial for neurorehabilitation technologies.

Decoding multiple levels of movement intensity with MRCP

features has strong potential in BCI technologies, such as

assisting impaired users with task execution at the desired

intensity. The aim of this study is to evaluate the capacity

of EEG, in particular, δ-band MRCP features, to decode

four levels of RFD during isometric ankle dorsiflexion. Our

first hypothesis is that four levels of RFD can be accurately

discriminated using full-band EEG features from a larger scalp

area spanning nine central electrodes. Secondly, we hypothe-

size that the MRCP’s temporal δ-band features from the Cz

electrode can achieve a comparable classification accuracy.

This study investigates the potential discrimination of four

RFD levels with MRCPs, comparing features both in the δ-

band and in the full EEG band. Healthy subjects performed

isometric ankle dorsiflexion while EEG signals were recorded.

Characteristics of the MRCP that scaled in response to the

RFD, such as amplitude and timing, constituted the first feature

set (the MRCP Morphological Characteristics, see II-E for de-

tailed feature definitions). A second feature set was constructed

from ten temporal attributes of the MRCP, such as mean and

standard deviation (the MRCP Statistical Characteristics, see

II-F for detailed feature definitions). Highlighted features from

the morphological and statistical characteristics demonstrated

a monotonic response to the intensity of the RFD. Some

highlighted features are as follows: min1 and minn for the

morphological characteristics, slope and standard deviation

in the (0, 1)s window for the statistical characteristics. The

classification accuracy of each feature set was evaluated by

using a support vector machine classifier to predict the RFD

level and applying 5-fold cross-validation. A third feature set

which consisted of time-frequency features in the 0.1-90 Hz

band from nine electrodes of the motor cortex (the Wide-

band Time-frequency Features, see II-G for detailed feature

definitions), was investigated, and the performance was used

as a benchmark. The low-frequency temporal features in the

MRCP Statistical Characteristics showed a relatively strong

discriminative power, with an accuracy of 78%. The results

highlight the role of the δ-band in translating motor command

and have potential applications in HMI systems.

II. METHODS

Five healthy volunteers (aged 20-28 years), without any

prior HMI experience participated in the study. All subjects

gave their signed consent, which was conducted in accordance

with the principles outlined in the Helsinki Declaration and

approved by the University College London Department of

Clinical and Movement Neurosciences (approval date: April

26th 2017, approval reference number: 10037/001).

A. Experimental Protocol

Each subject was seated in a chair with their leg constrained

and ankle fixed to a pedal with an attached force transducer

(NEG1, OT Bioelettronica, Torino, Italy, Fig. 1(a)). Subjects

were instructed to perform a defined rate of isometric dorsi-

flexion of the dominant-sided (right in all subjects) ankle. Four

rates of force development (RFD) were defined based on the

time interval to reach a target force level of 60% of maximal

voluntary contraction (MVC). With real-time visual feedback,

subjects followed a triangular profile (Fig. 1(b)) from 0 to

60% MVC with the durations of: (i) 3s, (ii) 2s, (iii) 1s, and

(iv) 0.5s, corresponding to RFDs of (i) 20% MVC/s (Slow),

(ii) 30% MVC/s (Medium), (iii) 60% MVC/s (Fast), and (iv)

120% MVC/s (Ballistic).

Each experimental session started with measuring the max-

imum voluntary contraction (MVC) force so that the RFD

levels could be defined. A training phase (approximately 5

min) was included to let the subjects familiarize themselves

with executing the defined force profile while receiving visual

feedback. Subjects were guided to execute a set of at least 25

successful isometric ankle dorsiflexion repetitions at each of

the four target RFD levels. The RFD level was constant across

all repetitions within a given set, and there was a 5s resting

period between each repetition [27], [43]. The sequence of the

four sets corresponding to the RFD levels was randomized for

each subject. Between each set, a break of 5 min was provided

[27], [43]. If the study personnel observed in real-time that the

executed force for a given repetition had a large deviation from

the target force profile, the repetition was marked as a failure,

and an extra repetition was added to the current set.

B. Data Acquisition

EEG data were wirelessly recorded from 64 electrodes

assembled on an active-electrode cap (ActiChamp, Brain Prod-

ucts GmbH, Germany) at 1000 Hz. The 64 electrodes were

arranged according to the extended 10–20 (10%) configuration

[44]. The force signal was recorded at 2048 Hz from a force

transducer mounted on a pedal and connected to an amplifier

(Quattrocento, OTBioelettronica, Turin, Italy). At the start

of each set of isometric dorsiflexions, a trigger pulse was

sent to the EEG recording system when the force signal
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Fig. 1: (a) EEG signals were recorded from 64 electrodes, and force signals were measured using a load cell while subjects performed guided isometric
ankle dorsiflexion. (b) (i) Subjects were guided to reach 60% maximum voluntary contraction (MVC) with four durations (0.5s, 1s, 2s and 3s), giving four
target levels of rate of change of force (Ballistic: 120% MVC/s, Fast: 60% MVC/s, Medium: 30% MVC/s and Slow: 20% MVC/s). (ii) The mean and 95%
confidence interval (CI95) executed force plots are shown for each of the Slow, Medium, Fast, and Ballistic tasks. (c) EEG signals are pre-processed by
applying a high-pass filter at 0.1 Hz, removing power line noise with a notch filter at 50 Hz, and removing unwanted artifacts with an ICA-based method
[42]. The MRCP is produced by applying a low pass filter at 4 Hz and performing a Laplacian spatial filter with eight electrodes surrounding Cz. (d) Several
MRCP morphological characteristics, such as the time features of the minima, seem to scale with the task duration. Heat maps indicate that δ-band activity
is highest for Cz and scales in proportion to RFD.

recording started, such that the EEG and force signals could

be synchronized later. The movement onset was defined as the

time at which the force signal reached 10% of its peak trial

value (approximately 6% MVC, as in Fig. 1(b)). Using this

movement onset time as 0s for each trial, a (-3, 4)s window

was used to investigate the EEG signals for each trial.

C. EEG Pre-processing
Following the recording, signals were processed using

MATLAB R2022b (MathWorks Inc. Natick MA). Nine EEG

electrodes of interest, including and neighboring Cz, i.e., P3,

Pz, P4, C3, Cz, C4, F3, Fz, and F4, were used for the

analysis (Fig. 1(c)). EEG signals from the nine electrodes were

filtered with (i) a zero-phase, 2nd-order Butterworth high pass

filter with a cutoff frequency of 0.1 Hz and with (ii) a zero-

phase, 4th-order Butterworth band stop filter (47.5-52.5 Hz)

to remove line noise. Unwanted signal artifacts were removed

with an ICA-based algorithm [42].

D. MRCP Analysis
The nine pre-processed EEG signals were low-pass filtered

at 4 Hz with a zero-phase, 4th-order Butterworth filter. To

extract the MRCP, a Laplacian spatial filter was applied to

the Cz electrode to enhance the spatial resolution (Fig. 1(c)).

The mean MRCP, μsam, across all trials of all subjects was

computed, for each RFD, and the results can be seen in Fig.

2(a) and Fig. 2(b). Additionally, the sample standard deviation,

stdsam = σ√
n

, across all trials of all subjects was computed

and used to compute the MRCP’s 95% confidence interval

(CI95, Fig. 2(a)) as CI95 = μsam± (Z95)(stdsam) = μsam±
(1.96)(stdsam). The δ-band activity was plotted, resulting in

the activation heat maps as explained in the following. After

band-pass filtering, each of the 64 recorded electrodes was

spatially filtered with an appropriate Laplacian configuration.

The configuration was chosen based on the position of the

electrode of interest and its surrounding electrodes such that

the Euclidean distance deviation from the ideal configuration

was minimized [45]. The configuration was chosen based on

the position of the electrode of interest, and its surrounding

electrodes [45]. The median magnitude of each electrode’s

time domain signal across all subject trials was computed, and

the median in a 100 ms window produced a singular value for

the topographical heat maps (Fig. 2(c)). The 100 ms window
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was centered at the movement onset for the maps in the top

row (centered at 0s for all classes). For the bottom row, the

window was centered at the planned movement end (centered

at 3s for Slow, at 2s for Medium, at 1s for Fast and at 0.5s

for Ballistic). Each electrode’s value was normalized using the

maximum across the eight plots in Fig. 2(c).

E. Feature Set 1: MRCP Morphological Characteristics

The following features were extracted from the MRCP

signal at Cz, MRCP (t), for each trial:

1) The RP2 slope (mRP2), i.e., the slope of the MRCP signal

MRCP (t) between -0.5s and 0s [46]:

mRP2 =
MRCP (0)−MRCP (−0.5)

0.5
(1)

2) The first local minimum’s value, min1, traditionally

called peak negativity (PN)

3) The time at which min1 occurred, tmin1

4) The number of local minima, Nmin

5) The last local minimum’s value, minn

6) The time at which minn occurred, tminn .

For demonstration purposes, min1 and minn are indicated

on the mean MRCP of the Slow RFD, while RP2 slope is

highlighted for the Ballistic RFD (Fig. 2(b)). The local min-

ima, including min1 and minn, were identified for each trial

by finding peaks of the inverted MRCP signal. Therefore, the

findpeaks command in MATLAB was applied to −MRCP (t)
with the following parameters: (i) peak must occur within

the (-0.5, 4)s time window (to include most extreme cases of

local minima), (ii) peak height equal to at least half of global

maximum, (iii) time between peaks equal to at least 0.25s.

The classification performance of the full feature set (Fig. 5)

and each feature alone (Fig. 6) was investigated.

F. Feature Set 2: MRCP Statistical Characteristics

The following features were extracted from MRCP (t) for

the following time windows, (-3, 0)s, (0, 1)s, (1, 2)s, (2, 3)s,

and (3, 4)s, within each trial:

1) Mean value

2) Standard deviation (std)

3) Mean absolute value

4) Trapezoidal integral (area under the curve)

5) Slope mif between the initial MRCP value of the time

window MRCP (ti) and the final MRCP value of the

time window MRCP (tf ):

mif =
MRCP (tf )−MRCP (ti)

tf − ti
(2)

6) Slope sign change (SSC), which is calculated thus for a

given signal x(t) [47], [48]:

SSC =

N−1∑
n=2

f{((x(tn)− x(tn−1))× ((x(tn)− x(tn+1))}

f{y} =

{
1 if y > 0

0 otherwise
(3)

7) Mean d
dt of MRCP signal

8) Skewness s, which gives a measurement of how asym-

metrically a signal is distributed about the mean, as

s = E[(
x− μ

σ
)3]. (4)

9) Kurtosis k, which evaluates the tailedness of a distribution

as given below:

k = E[(
x− μ

σ
)4] (5)

10) Shannon’s entropy H(x), which gives a measure of the

uncertainty in a signal x(t) as:

H(X) = −
∑

PX(Xi)log2PX(Xi) (6)

where X denotes the discretized version of the signal and

PX(Xi) denotes the distribution of X [49]–[51].

All features computed in each time window were included in

the feature set (10 features × 5 windows = 50 features) used

to train and evaluate the performance of the classifier (Fig. 7).

We also evaluated the classifier performance when it was only

trained on individual time windows (e.g., 1 to 2 seconds, or 3

to 4 seconds), which is depicted in Fig. 8 and Table III.

G. Feature Set 3: Wideband Time-frequency Features

The nine pre-processed EEG signals were filtered with a

zero-phase, 4th-order Butterworth low-pass filter with a cut-

off frequency of 90 Hz. The short-time Fourier transform

(STFT) was performed on each trial with 50% overlapping

Hamming windows of 2s. The nine-electrode STFT formed

the Wideband Time-frequency Features in the broad frequency

range of interest (0.1-90 Hz).

H. Violin Plots

Note that each violin plot in this paper shows the distribution

of data points as density curves. The width of each curve

corresponds with the approximate frequency of data points

along the y-axis. Within each violin plot, there is a box plot

where the white dot indicates the median and the grey box

shows the interquartile range.

I. Statistical Analysis

The relationship of features with respect to the four levels of

RFD was analyzed for the MRCP Morphological Characteris-

tics (Feature Set 1) and for the MRCP Statistical Characteris-

tics (Feature Set 2). The feature distributions when combining

all subject trials at each RFD level are shown as violin plots for

Feature Set 1 and Feature Set 2 (Fig. 3). Note that each of the

five subjects performed 25 trials at four RFD levels. Hence,

a 2-way Repeated Measures ANOVA (RM-ANOVA) model

was chosen, where the two factors were the RFD level and

trial number [52], [53]. Since the normality assumption was

violated by the raw feature distributions, a rank transformation

was performed to ensure normality prior to conducting RM-

ANOVA [54], [55]. As five subjects conducted 25 trials at

four RFD levels in our analysis, the rank-transformed features

have a value between 1 and 500 (5 × 25 × 4 = 500). The

RM-ANOVA analysis was conducted in IBM SPSS Statistics

for Windows, Version 29.0.2.0, Armonk, NY. With regard to

the RM-ANOVA model assumptions, it should be noted that
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Fig. 2: (a) Mean (center line) MRCP with 95% confidence interval (shaded area) across all subjects. (b) Mean MRCP for each class of RFD, where the
dots signify local minima. The first local minimum (min1) and last local minimum (minn) are indicated for the Slow RFD. The slope of the late readiness
potential (RP2 slope) is indicated for the Ballistic RFD. The time between the first and last local minimum (denoted by a horizontal dashed line) is closely
related to the duration of the force application. (c) Topographical plots of δ-band activation for the recorded electrodes. The maps in the top row considered
the movement onset (0s), while the maps in the bottom row considered the planned movement end as the time window center. The dominant δ-band activation
appears to be at Cz and is monotonically ascending with the level of RFD (with Slow having the smallest and Ballistic having the largest). The activation of
Cz trended higher at the movement onset than at the end. For each subject and trial, the median activity was quantified for the 100ms window around the
specified time. Here, the maps represent the median across all subject trials and were normalized to the maximum activity across the eight plots.

for all rank-transformed features: (i) normality was maintained

(Shapiro-Wilk Test: p > 0.05), (ii) no significant outliers were

observed, and (iii) sphericity (homogeneity of variances) was

maintained (Mauchly’s test: p > 0.09) [52], [56].

The significance level for the RM-ANOVA tests was α =
0.05. It should be noted that the effect of the trial number was

not significant for any of the MRCP features (RM-ANOVA:

F (24, 96) > 0.095, p > 0.96), the effect of interaction

between trial number and RFD level was not significant for

any of the MRCP features (RM-ANOVA: F (72, 288) > 0.095,

p > 0.96), and only the effect of the RFD level is reported

in the Results section. The RM-ANOVA test results for the

effect of RFD level, including F-statistic, p-value, and effect

size (partial eta-squared, ηp) are shown in Table I and Table II.

If the effect of RFD level was significant (F (3, 12) > 3.475,

p < 0.05), post-hoc pairwise comparisons were conducted

using the estimated marginal mean (EMM) (Fig. 4). The color-

coded bar and associated black vertical line indicate the EMM

and 95% confidence interval, respectively, at a given RFD

level (Fig. 4). The significance level was adjusted for multiple

comparisons using the Bonferroni-Holm procedure [57], [58],

and a significant p-value is indicated with bold font and a solid

line (Fig. 4).

J. Machine Learning Classification

A Support Vector Machine (SVM) classifier with a linear

kernel function was used for all feature sets. For a given

subject, there were 25 trials of each RFD class (Slow, Medium,

Fast, Ballistic). The machine learning model was evaluated by

performing k-fold cross-validation with k = 5 [59], [60]. The

trials of each subject were divided into five distinct folds. Four

folds, ~20 trials for each subject, were designated for training

the classifier while the remaining fold, ~5 trials, constituted the

test set. The accuracy of the trained classifier was evaluated by

predicting the RFD level of each trial in the test set based on

the EEG features, and comparing the prediction to the ground

truth. The train and test process was repeated for each of
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Fig. 3: Violin plots of MRCP features (without rank transformation). The raw feature values for all subject trials are shown for each distribution (n = 125).
See Section II-H for more information about how to interpret the violin plots.

the five folds. The distribution of the classification accuracies

across the five folds of each subject is shown for Feature Set 1

in Fig. 5(a), for Feature Set 2 in Fig. 7(a), and for Feature Set

3 in Fig. 10(a). The confusion matrices in Figs. 5(b), 7(b), and

10(b) indicate the patterns of classification performance across

all subject trials. The distribution of classification accuracies

across all subject folds is shown for each feature in Fig. 6 and

for each time window in Fig. 8.

III. RESULTS

A. Feature Set 1: MRCP Morphological Characteristics

Increases in RFD resulted in identifiable changes in the

MRCP signal features. The CI95 plots demonstrated signif-

icant differences between the group average MRCPs across

the RFDs (Fig. 2(a)). The value of the first local minimum,

the distance between the first and last local minima, and

the MRCP slope before the execution, i.e., the readiness

potential (RP2), seemed to be among the features contributing

to the separation of the MRCPs and their respective CI95.

Furthermore, the distance between the first and last MRCP

minima seemed to scale with the force development time for

each group (Fig. 2(a), Fig. 2(b)). The activation maps after

Laplacian filter indicated monotonically increasing activity

around the Cz area from the Slow, to Medium, to Fast, and

to Ballistic RFDs. This activity tended to diminish at the

end of the force development (Fig. 2(c)). For reference, the

force development time is 3s for the Slow group, 2s for the

Medium group, 1s for the Fast group, and 0.5s for the Ballistic

group. The brain activity centered around Cz trended highest

at the time points considered for Ballistic, particularly at the

movement onset (Fig. 2(c)).

The rank-transformed MRCP Morphological Characteristics

showed significant differences depending on the level of RFD

for pre-movement, movement onset, and post-movement fea-

tures. The effect of RFD level was significant for the following

features within the rank-transformed MRCP Morphological

Characteristics: RP2 slope, min1, minn, tminn
, and Nmin

(RM-ANOVA: F (3, 12) > 7.14, p < 0.006) (Table I). The

EMM of RP2 slope, min1, and minn showed trends of

monotonical ascension in response to increasing RFD level

(Fig. 4(a)). The post-hoc RM-ANOVA test showed that RP2

slope and min1 were higher at the Ballistic RFD compared

to the Slow, Medium, and Fast RFD levels (RP2 slope:

p < 0.008, min1: p < 0.011) (Fig. 4(a)). The EMM of

features with a post-movement component such as tminn and

Nmin showed trends of monotonical descension in response

to increasing RFD level (Fig. 4(a)). The post-hoc pairwise

comparison indicated that tminn
and Nmin were enlarged at

the Slow RFD compared to the Medium, Fast, and Ballistic

RFD levels (tminn
: p < 0.025, Nmin1

: p < 0.011) (Fig.

4(a)). Five of the six features shown demonstrated a difference

between Slow and Ballistic RFD (post-hoc RM-ANOVA test:
p < 0.009).

Using the MRCP Morphological Characteristics as the

feature set for the SVM algorithm demonstrated medium

discriminative power in relation to the four levels of RFD

(>50%), which is double the chance level for four classes (Fig.

5). The average overall accuracy was ~58% across subjects

and classes (Fig. 5). The confusion matrix for this feature set

also suggested a strong discriminative power if only two RFD

groups were considered (Fig. 5(b)). The cumulative accuracy

of the adjacent RFD groups (i.e., Ballistic and Fast vs. Medium

and Slow) reached >84%. Note that this feature set had only

six features derived from the δ-band MRCP and robustly

classified dual-level RFDs and performed well beyond the

chance level for the four-level RFD classification using SVM.

With regard to the feature-wise classification (Fig. 6), Nmin

and min1 had the highest accuracy (∼ 45%), followed by RP2

slope and tminn (∼ 40%).

B. Feature Set 2: MRCP Statistical Characteristics

The rank-transformed MRCP Statistical Characteristics

showed significant differences depending on the level of RFD

for pre- and post-movement features. The effect of RFD
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Fig. 4: Post-hoc RM-ANOVA pairwise comparisons regarding the effect of RFD level are indicated for the highlighted rank-transformed features. As five
subjects conducted 25 trials at four RFD levels in our analysis, each rank-transformed feature has a value between 1 and 500 (5 × 25 × 4 = 500). The
color-coded bar and associated vertical black line indicate the estimated marginal mean (EMM) and 95% confidence interval at a given RFD level. (a) The
RP2 slope, min1, and minn showed trends of monotonical ascension, while tminn and Nmin showed trends of monotonical descension in response to
increasing RFD. Five of the six features shown demonstrated a difference between Slow and Ballistic RFD (p < 0.009). (b) The slope in the (-3, 0)s window
and the std in the (0, 1)s window showed trends of monotonical ascension, while the slope in the (0, 1)s window, the slope in the (1, 2)s window, and the
mean in the (2, 3)s window showed trends of monotonical descension in response to enlarging RFD. Five of the six features shown demonstrated a difference
between Slow and Ballistic RFD (p < 0.012).

Feature F-statistic Test Significance ηp

RP2 slope 15.32 p < 0.001 0.79

min1 17.6 p < 0.001 0.81

minn 7.15 p = 0.005 0.64

tmin1 0.358 p = 0.784 0.08

tminn 16.05 p < 0.001 0.8

Nmin 18.21 p < 0.001 0.82

TABLE I: Results for the RM-ANOVA model to test the effect of RFD level
on the MRCP Morphological Characteristics. Values are shown for F-statistic,
p-values, and effect size (ηp). The significance level was set at p = 0.05.

level was significant for all six of the highlighted rank-

transformed MRCP Statistical Characteristics (RM-ANOVA:
F (3, 12) > 5.18, p < 0.016) (Table II). The EMM of the

slope in the (-3, 0)s window showed trends of monotonical

ascension in response to increasing RFD level (Fig. 4(b)). The

post-hoc RM-ANOVA test indicated that the slope in the (-

3, 0)s window was enlarged at the Ballistic RFD compared

to the Slow, Medium, and Fast RFD levels (p < 0.009)

(Fig. 4(b)). On the other hand, the EMM of the slope in the

(0, 1)s window showed trends of monotonical descension in

response to increasing RFD level (Fig. 4(b)). The post-hoc

Feature F-statistic Test Significance ηp

slope in (-3, 0)s 9.95 p < 0.001 0.71

std in (0, 1)s 11.7 p < 0.001 0.74

slope in (0, 1)s 18.88 p < 0.001 0.82

mean in (1, 2)s 5.19 p = 0.015 0.56

slope in (1, 2)s 6.51 p = 0.007 0.62

mean in (2, 3)s 12.35 p < 0.001 0.75

TABLE II: Results for the RM-ANOVA model to test the effect of RFD level
on the MRCP Statistical Characteristics. Values are shown for F-statistic, p-
values, and effect size (ηp). The significance level was set at p = 0.05.

pairwise comparison illustrated that the slope in the (0, 1)s

window and the mean in the (2, 3)s were higher at the Slow

RFD compared to the Medium, Fast, and Ballistic RFD levels

(slope in the (0, 1)s window: p < 0.009, mean in the (2,

3)s window: p < 0.012) (Fig. 4(b)). Five of the six features

shown demonstrated a difference between Slow and Ballistic

RFD (post-hoc RM-ANOVA test: p < 0.012).

Combining the ten MRCP statistical characteristics from

each of the five time windows resulted in an RFD classification

accuracy of >75% (Fig. 7). Four out of the five subjects

had >75% classification accuracy (Fig. 7(a), Table III). The
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Fig. 5: Classification accuracy from the MRCP Morphological Characteristics
(Feature Set 1). (a) Subject-wise violin plots of classification accuracy. The
distribution of the classification accuracy across the five folds is shown for
each subject. See Section II-H for more information about how to interpret
the violin plots. (b) Overall confusion matrix. The classification results from
all subjects are pooled, and the mean accuracy is shown above.

mean accuracy across subjects and RFD classes was ~78%

(Fig. 7(b)), with the highest discriminative accuracy at 87.8%

for the Slow RFD. The cumulative accuracy of the two-level

RFD with adjacent classes (i.e., Ballistic and Fast vs. Medium

and Slow) reached >91% (Fig. 7(b)). Considering the MRCP

Statistical Characteristics only from selected time windows

as the SVM feature set reveals that the SVM classifier is

likely most responsive to attributes in the (1, 2)s window

with accuracy ~60% (Fig. 8). The least discriminative power

was for the (3, 4)s time window with ~30% (around chance)

accuracy. Interestingly, the median accuracy with all the time

windows included was ~80%, which was greater than each

individual time window (Fig. 8). The detailed per subject and

window accuracy results also confirmed that for all subjects,

either the (0, 1)s or the (1, 2)s window provided the highest

accuracy (Table III).

C. Feature Set 3: Wideband Time-frequency Features

An exemplar spectrogram plot for the STFT of one of

the nine electrodes included in Feature Set 3 is shown in

Fig. 9. The SVM classification using STFT full temporal

and spectral feature set yielded >80% classification accuracy

for the four levels of RFD. The subject-wise classification

accuracy revealed >80% accuracy for four out of the five

subjects (Fig. 10(a)), while the overall group accuracy for the

STFT feature set was at ~83% (Fig. 10(b)). In comparison

to the wideband classification accuracy, a preliminary analysis

indicated that performing the STFT on the nine electrodes

filtered to the δ-band band led to a reduced classification

accuracy (~67%). Adjacent classes with the fastest RFDs (i.e.,

Fast and Ballistic) had a high mutual misclassification rate

compared to the misclassification rate when the inter-class

distance increased.

IV. DISCUSSION

A. Key Outcomes

In this paper, the ability of the MRCP to predict four levels

of RFD was investigated and novel success was achieved. Four

RFD levels could be discriminated with ~78% accuracy when

only using δ-band MRCP statistical characteristics. In this

Fig. 6: Feature-wise classification accuracy from MRCP Morphological char-
acteristics (Feature Set 1). Each violin plot depicts the accuracy obtained when
classifying the level of RFD with the highlighted feature alone. See Section
II-H for more information about how to interpret the violin plots.

study, we investigated the complete MRCP waveform for four

levels of RFD, which provided a rich source of information

about the (i) planning, (ii) execution, (iii) completion, and

(iv) duration of the isometric dorsiflexion task utilizing the

tibialis anterior muscle. The results showed that morphological

features, such as the time between the first and last minima

encapsulate critical information with potential use in HMI.

We demonstrated that both rank-transformed MRCP morpho-

logical and statistical features present monotonic trends with

respect to the RFD levels (Slow RFD was differentiated from

Ballistic RFD in 10 out of 12 features shown in Fig. 4,

p < 0.012). This paper also highlights morphological features

such as the number of minima (Nmin) and the time of the last

minimum (tminn ) which have at least the same discriminative

power as previously highlighted features such as RP2 slope

and time of first minimum (min1). Using the MRCP feature

sets provides a transparent and interpretable SVM classifier

that is not a “black box” and can inform researchers about

the EEG waveform dynamics. The novel MRCP features are

neurophysiological indications of the underlying mechanism

of motor monitoring and execution by the motor cortex and

the neighboring areas. Our results illustrate the exciting possi-

bility of MRCP to RFD mapping, which has strong potential

applications, particularly in neurorehabilitation.

B. New Findings about MRCP Characteristics

Previous studies have explored the significance of certain

MRCP features, such as RP2 slope and min1 [28], [61]–[64].

However, our research indicates that other features, such as

the timing of the last minimum (tminn
) and the number of

minima (Nmin), may have matched or superior discriminative

power (Fig. 4, Fig. 6). We observed that while min1, minn,

and RP2 slope decreased in response to increasing RFD levels,

Nmin and tminn
increased (Figs. 2, 4). Previous studies have

identified the local minimum of the negative deflection that

occurs around the movement onset as the peak negativity

(PN) [64], [65], denoted in this study as min1. The scaling

of PN (min1) may indicate the level of corrective actions

and error processing in the premotor and motor cortices [13],

[66]. Interestingly, we observed that the PN is not necessarily
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Subject/Window (-3, 0)s (0, 1)s (1, 2)s (2, 3)s (3, 4)s All
1 41.25+/- 8.39 46.25+/- 12.18 42.5+/- 9.27 31.25+/- 7.65 25+/- 8.84 60+/- 5.59
2 54.74+/- 7.98 72.63+/- 5.77 60+/- 16.48 47.37+/- 8.32 25.26+/- 10.12 87.37+/- 7.98
3 45.56+/- 9.13 62.22+/- 14.38 66.67+/- 11.79 33.33+/- 7.86 24.44+/- 7.45 76.67+/- 9.13
4 38.37+/- 2.74 53.26+/- 6.71 62.63+/- 8.37 54+/- 11.4 52.74+/- 4.47 80.26+/- 6.12
5 38.1+/- 8.91 49.52+/- 5.43 58.1+/- 12.33 57.1+/- 11.86 39.05+/- 8.52 83.81+/- 8.65

TABLE III: Window-wise classification accuracy (CA) using the MRCP Statistical Characteristics. The mean ± SD CA across the five folds is shown subject-
wise for each window.

Fig. 7: Classification accuracy from the MRCP Statistical Characteristics
(Feature Set 2) from all time windows. (a) Subject-wise plots of classification
accuracy. The distribution of the classification accuracy across the five folds
is shown for each subject. See Section II-H for more information about how
to interpret the violin plots. (b) Overall confusion matrix. The classification
results from all subjects are pooled and mean accuracy is shown above.

a global minimum when considering the full task duration

(e.g., Slow in Fig. 2(b)). Rather, the PN is just the first of

a set of local minima, indicating that the error processing

and movement monitoring can continue beyond the initial

recruitment of the muscle.

Depending on the task duration, there may be deeper

negative deflections after the min1 point. Previous research

indicated that two levels of RFD can be detected by two

distinct min1 points [36]. In our study, we defined four levels

of RFD by varying the duration to reach the target force (60%

MVC). It was demonstrated that min1 increases in response to

the RFD level (Fig. 2(a), Fig. 4(a)). In addition, the timing of

the last MRCP minimum (minn) scaled in inverse proportion

to RFD (Fig. 2(a), Fig. 4(a)). In other experimental setups

with a constant force duration rather than constant force, the

amplitude rather than the timing of MRCP minima would

perhaps be more discriminative regarding the RFD level. Our

findings demonstrate that the timing and intensity of the

MRCP minima indicate different motor activities and cortical

processes [25], [67]. The minima are distinctive features of the

movement monitoring potential (MMP) and are linked to the

subject’s intention to correct errors when tracking the force

profile [29], [68].

C. Strong Discriminative Power of MRCP

The strong discriminative power of EEG features with

regard to four RFD levels validated both hypotheses in the

study, and shows promise for decoding the user’s intention

with enhanced resolution. The Wideband Time-Frequency

features successfully discriminated the four RFD levels with a

classification accuracy of 83% (Fig. 10), validating the first hy-

pothesis. The MRCP Statistical Characteristics demonstrated

Fig. 8: Window-wise classification accuracy from statistical characteristics
(Feature Set 2). Each of the first five violin plots depicts the accuracy
obtained when classifying the level of rate of change of force with features
across just that time window. The final violin plot shows the accuracy when
classifying with features pooled from all time windows. Each violin plot shows
a subjects × folds distribution for the given time window. The green line
plot indicates the mean classification accuracy. See Section II-H for more
information about how to interpret the violin plots.

78% classification accuracy (Fig. 7), highlighting the role of

δ-band signals in motor tasks. The four-class classification

performance of ∼ 80% achieved here is comparable to pre-

vious studies which only discriminated two levels of RFD

[36], [41]. Even though the full spectrum of EEG from 9

channels (9774 features) can secure a 5% higher accuracy

than the performance of δ-band MRCP, the results support

that the small feature set of statistical MRCP characteristics

can recover the classification performance and closely follow

that of the full spectrum, confirming the second hypothesis.

Furthermore, the two-level classification accuracy with the

MRCP Statistical Characteristics was at ~90% (Fig. 7(b)),

suggesting strong discrimination of the behavior based on

the MRCP waveform when the Ballistic and Fast trials are

compared with the Slow and Medium trials.

Our preliminary analysis of applying the STFT only on the

δ-band showed an overall average accuracy of 67%, under-

lining the advantage of the MRCP Statistical Characteristics

compared to the STFT feature set of the same signal. The

strong classification accuracy of MRCP Statistical Character-

istics (with very low number of features) is aligned with the

individual features showing statistical differences between the

levels of RFD (Fig. 4(b)); for example, our analysis showed

that the Slow task can be differentiated from Ballistic by the

rank-transformed signal mean, slope and standard deviation

features (p < 0.012). The MRCP Statistical Characteristics

are indicative of the complexity of the waveform and the

rate and overall magnitude (and power) of the deflection of

the waveform from its baseline. The combination of these
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Fig. 9: An example STFT plot (spectrogram) is shown for the Cz electrode
during the Ballistic task. Feature Set 3 includes STFT features from nine
electrodes including Cz.

statistical characteristics quantitatively describes the changes

in the MRCP, and, based on the results, can effectively map

the signal to the different RFD levels.

D. Significance in the Context of BCI
The results presented here show the advantageous inter-

pretability of the MRCP features. The MRCP Statistical Char-

acteristics and full-spectrum STFT feature sets achieved strong

accuracy thresholds with a simple SVM algorithm. The use of

brain-computer interfaces to decode spatial/kinematic aspects

of motion in the upper limb has been extensively studied, as

reflected in the literature [69], [70]. However, the literature is

limited when it comes to decoding kinetic aspects of motor

intention, specifically the intensity of task conduction. In

recent years, some research has been conducted to predict

two levels of rate of force development using EEG signals in

the lower limb [36], [63]. Despite these efforts, no study has

been done on discriminating more than two intensity levels.

A higher number of detectable intensity levels is crucial for

improving the resolution of BCI in decoding the intensity of

intended motion for more intuitive implementations.
This paper presents a novel investigation about the informa-

tion content of MRCP, in the context of decoding as many as

four grades of intensity, which has not been reported before.

In recent times, complex machine learning techniques such

as deep learning algorithms have been harnessed to process

various biosignals like EMG [71], [72], EEG [73], [74], and

MRCP [37], [75]. While such techniques often achieve high

performance, the high dimensionality of these models makes

it challenging to identify key features and interpret the results

neurophysiologically. Moreover, complex models require a

large volume of training datasets, which may not always

be feasible, particularly for bio-signals. This study shows

that using a minimal, neurophysiologically meaningful MRCP

feature set provides adequate information about the kinetic

output and enables successful classification of the response

with up to four levels of intensity. This finding is significant

because it demonstrates that relatively low-dimensional feature

sets can help with the interpretability of results, especially

when identifying motor impairments.

E. Potential of MRCP-based Neurorehabilitation
The illustrated relationship between MRCP and RFD has

significant potential for application to neurorehabilitation and

Fig. 10: Classification accuracy from wideband STFT features (Set 3) derived
from the full spectrum of nine electrodes. (a) Subject-wise plots of classifica-
tion accuracy. The distribution of the classification accuracy across five folds
is shown for each subject. See Section II-H for more information about how
to interpret the violin plots. (b) Overall confusion matrix. The classification
results from all subjects are pooled and the mean accuracy is shown above.

HMI by providing information about the patient’s intended

kinetic parameters (i.e., force and especially RFD), so that

the assistance can be tailored to the patient’s intended task

speed. We have shown that four levels of RFD can be

most accurately classified when considering features at and

following the movement onset (Fig. 8, Table III). The MRCP

seems most suited for assistive BCI where the movement

prediction can be ongoing while the subject attempts the

task [76], [77]. By utilizing the post-movement discriminative

power of the MRCP in conjunction with intention-detection

algorithms [30], [32], [35], there is potential for new BCI

technologies to determine the required assistive RFD for pa-

tients with sensorimotor impairments, improving the quality of

neurorehabilitation. Additionally, the MRCP can be employed

to trigger stimulation at approximately the movement onset

and prompt neuroplastic changes in the nervous system [6],

[34], [78]. The separation between Slow and Ballistic RFD by

MRCP features at or before the movement onset (Fig. 4) shows

the potential for adjusting stimulation in proportion to the

classified level of RFD. Notably, the MRCP has been identified

as a biomarker of stroke [79]. Therefore, the novel MRCP

features discovered here can help enhance this biomarker’s

ability to differentiate impairments and motor improvements.

F. Limitations

One limitation of this study is that source localization was

not performed on the EEG. The features pertaining to MRCP

deflections before the start of the task (RP1 slope, RP2 slope,

and min1) are components of motor preparation and likely to

originate from the PMd [21], [27]. The rest of the waveform

may represent mixed activity from the primary motor cortex,

SMA, and other neighboring motor cortices [21], [80]. Another

limitation is the number of subjects.

G. Future Work

Future works with a larger sample size can help to support

the results of this study regarding the statistical and machine

learning analysis. Future studies can also investigate RFD

prediction from MRCP features when combining all subject
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trials and perhaps evaluate the model performance with leave-

one-subject-out cross-validation [81], [82]. Previous works

have shown that the MRCP amplitude is reduced in response to

fatigue [83], [84]. Future research can investigate the influence

of fatigue on the proportionality between MRCP and RFD

level that was demonstrated here.

V. CONCLUSION

In this paper, four RFD levels were successfully classified

based on the MRCP. We found that the user’s intended RFD

level could be successfully decoded by features derived from

(i) full-band EEG spanning nine electrodes with a classifi-

cation accuracy of 83%, and (ii) the δ-band at Cz with a

classification accuracy of 78%. The findings validated both

hypotheses of the study, and show promise for decoding

the user’s intention from EEG with enhanced resolution.

Key MRCP characteristics responded to the task intensity in

an intuitive manner. Moreover, δ-band features showed high

effect size and monotonic changes across the four RFD levels.

The monotonic response and high classification accuracy show

potential for mapping the MRCP to the user’s intended RFD

level. The relationship between MRCP and RFD could be

harnessed in assistive technologies by allowing the patient to

control the level of assistance based on their intended intensity.

Disclaimer: This article reflects the views of the authors and

should not be construed to represent FDA’s views or policies.

The mention of commercial products, their sources, or their

use in connection with material reported herein is not to be

construed as either an actual or implied endorsement of such

products by the Department of Health and Human Services.
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