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Abstract— This article investigates the potential of surface
electromyography (sEMG) as a new biometric modality and
proposes a deep neural network architecture as the backbone
of a gesture-independent personal identification system (PIS).
This article focuses on the real-world translation of such a
model through systematic optimization, which finds the minimum
number of gestures and sensors needed for training. Focusing
on “dynamic sEMG,” our proposed method can successfully
identify 40 subjects with an average accuracy of 97%. This is
achieved when gestures are the same in training, validation,
and testing (the subjects need to repeat a particular gesture
among a set of seven known gestures as a passcode). In a more
complex scenario, when training gestures differ from those in
validation and testing, our model can achieve an average accuracy
of 90%, demonstrating that the proposed model can extract the
unique patterns to identify a user regardless of gestures. Taking
advantage of gradient-weighted class activation mapping (Grad-
CAM), we explore the attention of the model on segments of
the spectrotemporal space of the input signals. Grad-CAM not
only sheds light on sEMG-based personal identification by decod-
ing and visualizing the unique user-specific neurophysiological
pattern but also generates a 2-D spectrotemporal mask used
to reduce the model complexity significantly. As a result of the
systematic optimization and Grad-CAM analysis, our proposed
identification method needs only 4% of data for training, boosting
practicality. This article also reveals the robustness of the
proposed model for cross-day evaluation. Finally, the comparative
study shows the superiority of our proposed model over several
state-of-the-art algorithms.

Index Terms— Biometric identification, explainable artificial
intelligence (XAI), gesture-independent identification, gesture-
sensor optimization, reliable cross-day identification, surface
electromyography (sEMG).
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I. INTRODUCTION

THE rapid development of the Internet has contributed

to the accelerated growth of several research fields,

including medical technologies. An example is the Internet

of Things (IoT) and the Internet of Medical Things (IoMT),

allowing remote access to personal data for remote assessment

and monitoring on telehealth platforms. However, this has

imposed risks on personal information, such as medical and

financial records [1], [2], [3], [4], [5]. In the last decade,

substantial novel techniques have been designed and developed

to mitigate the risks mentioned above for personal identifica-

tion/verification purposes. The conventional methods such as

personal identification number and password have been shown

security deficient due to the possibility of information leakage,

breaches, and counterfeits [6], [7], [8]. On a larger scale,

there have been several reports on data breaches from credit

agencies and governmental information systems, exposing the

information of millions of employees and customers [9], [10],

[11]. Biological-featured methods that extract the physical

characteristics of human bodies, such as features of the face,

fingerprint, and iris, are conventional approaches of personal

identification system (PIS) to protect information privacy [12],

[13], [14], [15]. However, these physiological methods are

susceptible to hacking since technological advances allow for

duplicating face models using 3-D printers, hacking finger-

prints through latex gloves, and copying the corresponding

biological features using artificial iris contact lenses [16], [17],

[18], [19].

As a result, it is necessary to produce new means of

biometrics that provide a higher level of personalization and

reduce the risk of hacking. Biometrics that express behavioral
features such as electromyography, the electrical manifestation

of muscle contraction [20], [21], suggest a solid approach to

achieve information security robustness by the correspond-

ing uniqueness. This is because neurophysiological responses

[such as those captured by surface electromyography (sEMG)]

are unique to individual users and inherently complex in

nature, making forgeries and falsifications exceedingly diffi-

cult [22], [23]. The advantages of sEMG as a new modality

for personal identification are not limited to its uniqueness.

One of the significant benefits of sEMG is that despite other

physiological biomarkers, the sEMG passcodes can be tunable

by changing to different gestures (studied as gesture-dependent
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identification, where the proposed model trains, validates, and

tests on the same gestures). Thus, this physiological security

layer can be reset by choosing different gestures or muscles

of a user. However, conventional biometrics are visible, such

that they cannot be revoked or detached from users once

compromised. Furthermore, the quality and usability of sEMG

are not restricted to the identification environment and the

physical states of a user, such as skin texture and amputation.

sEMG is also invariant to the mental states of a user [24],

[25], [26]. However, it should be noted that due to neurophys-

iological complexity and potential context-based variability,

even for one individual, fundamental research is needed to

generate techniques that can robustly and consistently detect

the underlying sEMG “signature” as biomarkers. This is the

focus of this article.

A few relatively recent works have been conducted in the

literature regarding sEMG-based human identification, moti-

vated by the unique characteristics of this biosignal to prevent

personal information leakage, spoofing attacks, and identity

theft. The conventional machine-learning (ML) approaches

that are based on extracting temporal and spectral features

from sEMG are the most commonly-used methods [27], [28],

[29], [30]. The extracted features are then fed into conventional

classifiers such as support vector machines (SVMs) and linear

discriminant analysis (LDA) to identify individuals. One of the

main limitations of the aforementioned studies is the simplicity

of the extracted features and models. Thus, most of such

efforts were conducted on small datasets, making generalized

identification systems less achievable. In this regard, due to

the variability, nonlinearity, and complexity of sEMG, it is

imperative to test the capacity of this biosignal on a relatively

larger number of individuals and gestures to detect the unique

underlying features.

In recent decades, researchers have leveraged the powerful

feature extraction capability of deep learning (DL) models

to solve complex tasks. However, few of them exploited

these models in human identification. In [31], the denoised

sEMG signals were fed into a convolutional neural network

(CNN) to minimize data preprocessing and let the model

learn the underlying neurophysiological patterns on its own.

Additionally, some researchers have recently converted raw

sEMG signals into 2-D spectrograms, concurrently analyzing

temporal and spectral muscle behaviors and potentially extract-

ing high-dimensional information for generating biomarkers.

This concept has been investigated in [16], where continuous

wavelet transform was used in conjunction with a CNN

architecture. Although the recent use of deep neural networks

may suggest good performance, the existing works suffer

from low diversification regarding subjects and hand gestures,

raising concerns about generalization to a higher number of

people and different gestures. Also, the existing recent DL

research in personal identification cannot explain the attention

of the neural network, raising concerns about the black-box

modeling (e.g., biases in the dataset), which can be challenging

for identification tasks and can pose a risk to system attacks.

Moreover, the use of large spectrotemporal input spaces results

in computationally inefficient models, challenging practicality

in terms of the size of the training set and the implementation

of small and portable identification hardware.

Motivated by the points mentioned above, this article

proposes an identification method that uses an explainable

CNN-based framework with the optimized input size derived

based on the gradient-weighted class activation mapping

(Grad-CAM) attention-based analysis of the system. Our

identification method is compact, practical, interpretable, and

robust. Gesture and sensor optimization finds the minimum

number of gestures and sensors for training enhancing prac-

ticality. Two protocols are proposed to evaluate our method.

In Protocol 1, the proposed method trains, validates, and tests

on the optimal gestures and achieves 97% accuracy averaged

across 40 subjects. When training on the optimal gestures

but validating and testing on the remaining, nonoverlapping

gestures (i.e., 33 gestures) in Protocol 2, the proposed method

can achieve an average accuracy of about 90% across the

same 40 subjects. As mentioned earlier, DL models have

usually been deemed a black box because they only show

the final predicting results but not the evidence (on the

inputs) for making predictions. In this article, for the first

time, we exploit explainable artificial intelligence (XAI) to

interpret the proposed CNN model’s attention and visualize

each subject’s extracted underlying neurophysiological pat-

terns using Grad-CAM in sEMG-based personal identification.

This explainability analysis also helps generate a 2-D spec-

trotemporal segmenting mask to further shrink the input space

and reduce the model complexity. The multiday evaluation

shows that our proposed method can identify the same subjects

on two different days. We compare this article and the existing

state-of-the-art efforts in sEMG-based biometric identification

in the aspects of the number of participating subjects, involved

gestures, placed sensors, the signal type and length, the model

type, the proposed method, the sensor type, and the intraday

and interday (if applicable) performance. The comparison is

summarized in Table I. The six main contributions of this

article are as follows.

Contribution 1: This article solves a challenging prob-

lem of gesture-independent identification, for the first time,

in which common user-specific neurophysiological patterns

across gestures are utilized by the model for identifica-

tion. This departs from the current trend in the literature

when users would be identified through performing one

or a sequence of fixed gestures (i.e., gesture-dependent

identification).

Contribution 2: For the first time, this work mainly focuses

on the dynamic state of the sEMG activation for personal

identification. The dynamic state includes imperative informa-

tion regarding user-specific motor unit recruitment “patterns.”

Unlike the literature, which mainly processes the most sta-

ble phase of sEMG at the steady state that can be prone

to contraction intensity, this work analyzes the rich motor

unit recruitment information to solve a more challenging

gesture-independent biometric identification problem for the

first time.

Contribution 3: For the first time, this article systematically

analyzes the optimal selection regarding the number and

locations of sEMG sensors across diverse muscle groups and

the corresponding effect on the system performance. These

analyses will be needed for hardware implementation and

identification accuracy boost.
Authorized licensed use limited to: New York University. Downloaded on September 08,2024 at 15:55:59 UTC from IEEE Xplore.  Restrictions apply. 



HU et al.: X-MyoNET: BIOMETRIC IDENTIFICATION USING DEEP PROCESSING OF DYNAMIC sEMG 4006413

TABLE I

COMPARISON BETWEEN THE PROPOSED MODEL WITH THE STATE-OF-THE-ART EFFORTS IN BIOMETRIC IDENTIFICATION

Contribution 4: For the first time, this article conducts a

holistic optimization to find the minimum number of ges-

tures for training through clustering based on the synergistic

similarities among sEMG signals from different gestures.

Contribution 5: This is the first article that implements

optimal XAI (i.e., Grad-CAM analysis) to demystify an

interpretable CNN model by processing sEMG for personal

identification. The derived model’s attention interprets and

extracts the unique neural code in a visualizable and reportable

manner projected on spectrograms of sEMG. Moreover,

a particular spectrotemporal mask is proposed based on the

attention of the network to reduce input space. As a result

of gesture and sensor optimization and the spectrotemporal

mask application, only 4% of training data are needed for

identification, pushing our research toward developing portable

personal identification security hardware.

Contribution 6: This article investigates the generalizability

of the proposed method over two days and, at the same

time, evaluates the performance on a single-day dataset.

This approach would allow us to test the behavior of the

model using two different platforms and under two different

experimental settings, highlighting translation to practice and

evaluating any unpredictable behavior under new situations.

Such a systematic and comprehensive evaluation in the context

of user identification is conducted for the first time in this

article.

The rest of this article is written as follows. Section II

introduces the data acquisition and preprocessing. Section III

provides details on the methods. The results are presented

in Section IV. Section V highlights the superiority of our

proposed model over commonly-used classic and DL models.

Lastly, concluding remarks are provided in Section VI.

II. BIOMETRIC DATABASE

A. Data Acquisition Process

Ninapro DB2, a publicly available open-source database,

[33] is used in this article to evaluate the efficacy of the

proposed methodology. The data collection was based on the

Delsys Trigno system with 12 wireless electrodes, out of which

eight channels are placed around the forearm near the radio-

humeral joint, two are placed near the wrist on the extensor

digitorum and flexor digitorum superficialis muscles, and two

are placed on the biceps and triceps brachii muscles. Fig. 1

shows the electrode placements.

Fig. 1. Placement of myoelectric sensors [34].

The sEMG signals are recorded from 40 intact subjects

(12 females and 28 males) having age 29.9 ± 3.9 years.

DB2 is segmented into three exercises: exercises B, C, and

D. Exercise B contains 17 gestures, among which eight are

various isometric and isotonic hand configurations, and nine

are wrist movements. Exercise C contains 23 gestures of

grasping everyday objects and other functional movements.

Exercise D contains nine force patterns. We combine exercises

B (17 gestures) and C (23 gestures) for our research, taking

into account a total of 40 gestures from 40 subjects. Subjects

performed each hand movement six times, holding the gesture

for 5 s followed by a three-second rest. sEMG signals are

sampled at a frequency of 2000 Hz. The motion labels are

further refined [33]. The Ninapro data were preprocessed

using a notch filter at harmonics of 50 Hz to remove the

power-line interference. This article uses preprocessed data.

For multisession evaluation on our proposed method, we use

the “Hyser” database described in detail in Section III-E.

B. Data Preprocessing

Normalization is one of the data preprocessing techniques

to maximize the performance and training stability of any

ML approach by keeping the input features on a common

scale without distorting the general distribution and ratios

of the raw inputs. The z-score normalization [35] has been

commonly used to mitigate model learning problems, such

as inconsistent feature scales and vanishing gradients. In this
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article, we propose a new normalization pipeline that is based

on the μ-law transformation followed by z-score normalization

to boost the model performance.

The μ-law transformation [36], [37] is a logarithmic and

nonlinear transformation. This transformation increases the

distinguishability among sensors and has been widely used

in speech processing, where a voice (like sEMG) is also the

convolutional summation of signals. The μ-law transformation

follows the mathematical design given by:

F(xt ) = sign(xt )
ln(1 + μ|xt |)

ln(1 + μ)
(1)

where xt denotes a single data value and μ = 2048.

The strength of the signals collected by each of the

12 sensors varies according to the level of muscle contraction.

The z-score normalization puts these signals on a common

scale. The mean and standard deviation are found from the

training data. Specifically let i be the sensor index, x (i)
t be the

single data point from sensor i , and μ
(i)
tr and σ

(i)
tr be the mean

and standard deviation of the sEMG signals from sensor i of

only the training data, respectively. The z-score normalization

is given as

z(i)
t = x (i)

t − μ
(i)
tr

σ
(i)
tr

. (2)

The duration of hand movement for different gestures and

different subjects varies significantly over repetitions. These

variations are often not considered in the literature. However,

including imbalanced data (i.e., dissimilar amounts of input

signals of hand movement from each subject) in training

the proposed model may inject extra information that can

influence and even inflate the overall model performance

on sEMG-based personal identification. Thus, we only keep

the first 1.5 s of data for each repetition that contains the

reaction (between visual stimuli and movement start), transient

(between movement start and maintenance), and steady-state

(during movement maintenance) parts of hand movement,

named dynamic sEMG. Previous work [38] defined the tran-

sient phase as the first second of each repetition according to

the accelerometer signals. In this regard, more than 66% of

the dynamic sEMG is from the transient phase. Taking into
account the dynamic state of contractions allows us to detect
user-specific patterns during dynamic motor unit recruitment,
which can be a distinguishing factor for the understudied
problem. Unlike the literature, which mainly focuses on pro-

cessing the most stable steady-state sEMG (which would need

an algorithm to locate and cut out the stationary part of the

signal from the transient), our solution is more inclusive and

does not rely on finding the point of transition. In addition,

even though real-time implementation is not a major issue

in sEMG-based biometric identification, we intentionally train

our proposed method on dynamic sEMG, especially including

the reaction and transient signals, to reduce the processing

overheads that exist in the literature, according to Table I.

As a result, all subjects are represented with the same length

of dynamic signals in the dataset. Windowing is a method

of data augmentation on sEMG data, which is important for

a model to learn the covariant neurophysiological features

Fig. 2. Segmentation of sEMG signal into small windows.

regardless of phases of gesture performance. sEMG signals

for each channel are segmented into windows (named “sliding

windows”), each having a length of 600 ms and a stride of

100 ms. The windowing process is demonstrated in Fig. 2.

The 1-D sEMG signal from each electrode is converted into

2-D spectrogram images using short-time Fourier transform

(STFT), which is applied with a window size of 500 ms and

an overlap of 95%. The procedure of STFT is to segment

each 600-ms sliding window of raw sEMG signals into small-

and fixed-size windows (usually overlapping) and compute

Fourier transform separately on each small window. This

window size for STFT is a hyperparameter tuned based

on the resulting spectrogram size and desired resolution in

the time and frequency domains. Zero padding captures the

information on the edge of each sliding window of raw

sEMG signals. It is usually needed to obtain a reasonable-size

spectrogram, especially when the window size for STFT is

close to the sliding window size of raw sEMG signals. We also

believe that a high-frequency resolution of a spectrogram will

help generate a fine-grained spectrotemporal mask (discussed

in detail in Section III-D3) that shows the contribution of

different frequency bands when indicating the associated neu-

rophysiological patterns with each subject. Hence, we choose

500 ms (1000 timestamps) to be the window size of STFT to

reduce the need for zero padding but retain a high resolution

of 2 Hz (2000 Hz sampling rate/1000 timestamps window

size) in the frequency domain. We apply windowing before

STFT to simulate the real-world implementation that an ideal

human identification system should start identifying users

with minimum data rather than waiting for the entire trial of

sEMG. The raw spectrogram [shown in Fig. 3(a)] is clipped

at 500 Hz [as can be seen in Fig. 3(b)] to discard potential

noisy information above 500 Hz, serving as a low-pass filter.

Thus, the final shape of the 2-D window (for each channel)

Authorized licensed use limited to: New York University. Downloaded on September 08,2024 at 15:55:59 UTC from IEEE Xplore.  Restrictions apply. 



HU et al.: X-MyoNET: BIOMETRIC IDENTIFICATION USING DEEP PROCESSING OF DYNAMIC sEMG 4006413

Fig. 3. (a) Spectrogram of a channel. (b) Spectrogram after clipping high
frequencies.

Fig. 4. High-level overview of the complete process.

after applying STFT and clipping can be represented by a

250 × 25 spectrogram, which is used later in this article

as the input to the CNN model. The processing pipeline is

summarized in Fig. 4.

III. METHOD

A 1:N identification system extracts user-specific dynamic

feature patterns to detect one user among a database of

precollected templates of many users. Ninapro DB2 allows

us to explore the possibility of sEMG as a biomarker with-

out the restriction of extracting neurophysiological patterns

from a limited number of gestures and subjects. In this

regard, unlike the literature (see Section I) that identi-

fies a user through one or a sequence of fixed gestures

(i.e., gesture-dependent personal identification), this article

conducts “gesture-independent” personal identification by

evaluating our proposed method using two protocols. The goal

of Protocol 1 is to train the proposed model using the same

set of gestures in the training, validation, and testing phases,

whereas, in Protocol 2, the model is further challenged by

differing the training gestures from the validation and testing

gestures, aiming for generalizability and forcing the model to

learn common gesture-independent user-specific neurophysio-

logical patterns for identification. This article aims to design

a compact, optimized, explainable, day-to-day reliable, robust

identification system. The methodology details about model

architecture, gesture and sensor optimization, explainability-

based optimization, and multisession evaluation can be found

in Sections III-A–III-E.

A. Initial Model Architecture

The proposed model takes commonly used spectrograms

transformed using STFT as inputs for training, validation,

and testing, processing the spectrotemporal dynamics in

sEMG for biometric identification. The 2-D spectrograms

(the third dimension corresponds to the sensors) generated in

Section II-B are processed using the proposed neural network

to detect the corresponding subject through a classification

scheme. For this purpose, we exploit the power of neu-

ral networks for classification. Our model consists of two

Fig. 5. Overall architecture of the model.

TABLE II

MODEL ARCHITECTURE

modules: the autonomous feature extractor and the classifier.

We choose a CNN as they have been shown to be powerful

for feature extraction [39], [40]. Performing weight sharing

through sliding kernels in a CNN results in a smaller number

of trainable parameters. Also, by sliding a kernel in 2-D space,

the CNN can detect the feature patterns appearing anywhere

in a spectrogram. This lightweight but robust model structure

is well-suited to our design of a compact identification system.

The proposed model contains four CNN blocks, each having

a CNN layer (feature extractor) and a rectified linear unit

(ReLU) activation function, followed by a fully connected

(FC) classifier (Fig. 5). In order to improve the model con-

vergence during training, a 2-D batch normalization is used in

the last CNN block. The summary of the model is reported in

Table II.

In all the experiments, the models are trained for a maxi-

mum of 500 epochs with a batch size of 32. Adam optimizer

is used with a learning rate of 0.0001, which is reduced by a

factor of 0.1 after the first 100 epochs.

B. Gesture and Sensor Optimization

Relying on a large number of training gestures and sensors

is not practical for personal identification in the real world.

To enhance the practicality and usability of the proposed

approach, we investigate how to reduce the number of: 1) train-

ing gestures and 2) sensors to find the optimal selection while

obtaining similar performance to the larger number of gestures

and sensors.

The intuition of gesture-based optimization of the input

space comes from synergistic similarities among sEMG

signals of different gestures that can be clustered into

low-dimensional finite groups [41], [42], from each of which

one representative gesture can be selected as a training gesture.
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The sensor-based optimization of the input space is based on

individual sensor performance ranking. It should be noted that

we conduct gesture and sensor selection in a sequential man-

ner, meaning that for the gesture-based optimization, sEMG

signals from all sensors are considered, while for the sensor-

based optimization, the optimal gestures from the previous step

are considered.

1) Gesture-Based Input Space Optimization: For gesture-

based optimization, we extract various features from both time

and frequency domains to capture distinguishing spectrotem-

poral patterns. The temporal features are mean absolute value,

variance, mean square root, root mean square, log detector,

waveform length, difference absolute standard deviation value,

zero crossing, skewness, and kurtosis [29]. For the spectral

features, we considered conventional neural frequency bands

of delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta

(12-35 Hz), and gamma (>35 Hz) [43], [44]. For each men-

tioned frequency band, mean power density is considered to be

the spectral feature. We extract these features from each sensor

on the sEMG signals after μ-law transformation and averaged

over subjects and repetitions. Thus, the preclustering data

dimensions in the time domain are 40 × 120 (where 40 corre-

sponds to the number of gestures and 120 corresponds to the

ten temporal features calculated for every 12 sensors). Also,

in the frequency domain, the dimension is 40 × 60, where

40 represents the number of gestures and 60 corresponds to

the five spectral features calculated for all 12 sensors.

GMM [45], [46], [47] is used to cluster the gestures

based on the extracted temporal and spectral features (180

for gesture clustering). In this article, GMM is initialized

using K -means to increase the convergence speed and reduce

some computational burden. Compared to K -means, which

gives each data point (e.g., a gesture) a hard assignment to

a particular group, GMM is a soft clustering approach that

gives a probability to each data point belonging to a Gaus-

sian component. Furthermore, the GMM parameters (mixture

weights, means, and variances) are iteratively updated through

the expectation–maximization (EM) algorithm to find the max-

imum likelihood of a GMM best capturing the distribution of

the gesture representations. A GMM represents the distribution

of gestures in the form of

p( fθ (x)|λ) =
m∑

k=1

ωk · g( fθ (x)|μk, �k) (3)

where m is the number of the user-defined clusters, fθ (x) is the

representation of the gesture x , and θ is the parameter of the

representation. λ is the vector of GMM parameters including

mixture weights (ωk), mean vectors (μk), and covariance

matrices (�k). Gaussian densities (g( fθ (x)|μk, �k)) are given

by

g( fθ (x)|μk, �k) = 1√
(2π)D|�k |

e− 1
2
( fθ (x)−μk )

ᵀ�−1
k ( fθ (x)−μk )

(4)

where D is the dimension of the representation.

Before implementing GMM, we first apply principal compo-

nent analysis (PCA) [48] to reduce the 40 × 180 feature space

(containing 40 gestures with temporal and spectral features)

to 40 × 15 for better clustering results. GMM clustering

requires the number of clusters m as input. We implement

widely adopted Bayesian information criterion (BIC) (see the

following equation) to derive the optimal number of clusters

as the minimal number of training gestures [49]:

BIC score = logp( fθ (x)|λ) − α
1

2
βlogN (5)

where α is a penalty weight, β is the number of parameters

in a GMM model, and N denotes the number of gestures.

A GMM becomes more complex when the number of

Gaussian components increases, potentially resulting in an

overfitting problem. As a BIC score is penalized by the model

complexity (the number of components) in a GMM, we choose

the number of clusters as seven that has the lowest BIC score to

avoid overfitting problems. The GMM result shows that seven

Gaussian components can optimally and sufficiently capture

the distribution of the 40 × 15 feature space. This article

selects one gesture with the highest log-likelihood from each

assigned cluster as the representative training gesture of that

cluster. As a result, we select seven optimal gestures (named

“Optimal Gestures” in the rest of this article) to reduce the

input space.

2) Sensor-Based Input Space Optimization: Sensor opti-

mization employs performance ranking to find the optimal

sensors. In this approach, we feed sEMG signals from Optimal

Gestures and only one sensor at a time into the proposed

model. The best-performing sensors are added one by one

into the training set according to the individual performance

in descending order for comparison. According to the one

standard error rule, performance ranking returns five as the

minimal number of sensors (named “Top Sensors” in the rest

of this article) needed for training, securing almost similar

performance with smaller input size. However, Top Sensors

were sparsely positioned on all three muscle groups used in

the dataset. To further enhance the practicality of our proposed

identification method, we select five sensors (named “Optimal

Sensors” in the rest of this article) positioned only on two

muscle groups based on sensor performance ranking.

C. Model Validation Protocols

This article evaluates the performance of the proposed

model by two protocols based on the results of gesture and

sensor optimization. In both protocols, sEMG signals of cor-

responding gestures are pooled together in training, validation,

and testing, tackling gesture-independent personal identifica-

tion tasks. The protocols are described in the following and

can be visualized in Fig. 6.

1) Protocol 1: For this protocol, our model is trained,

validated, and tested on the seven Optimal Gestures to identify

40 subjects. The training, validation, and testing are based

on repetitions (2, 4, 6), (1), and (3, 5) of these gestures,

respectively. A user can be identified by performing any one

gesture of their choice from the seven Optimal Gesture Set,

showing the user-friendliness of our proposed method.
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Fig. 6. Model validation protocols. In Protocol 1, subjects will be identified
by performing any one gesture of their choice from the Optimal Gestures or
training gestures (in the blue rectangle). In Protocol 2, they will be identified
by performing any one gesture from the testing gestures (in the red rectangle),
which are unknown to the proposed model during training.

2) Protocol 2: In this protocol, which is more challenging

from a ML perspective, the training gestures (i.e., seven

Optimal Gestures) differ entirely from validation and testing

gestures (i.e., the remaining 33 gestures in the database). The

training is based on all six repetitions of Optimal Gestures,

while the validation and testing are based on repetitions (2,

4, 6) and (1, 3, 5) of the remaining gestures, respectively.

We hypothesize that common underlying neurophysiological

patterns can be found across gestures for a user. Learning and

extracting these patterns can prevent overfitting to specific

user inputs (e.g., sEMG collected at a certain hand angle

or muscle contraction level), counteracting sEMG variation

because muscle contraction can be different from the same

user when performing the same gestures at different times.

Moreover, Protocol 2 further enhances user-friendliness and

practicality by allowing users to perform any gesture from the

33 gestures not used in the training set, freeing users from

learning a standardized way of doing a particular gesture(s).

D. Grad-CAM Analysis: Explainability-Based Optimization

Grad-CAM enhances the transparency and explainability of

a black-box CNN-based network through the gradients of any

given class flowing into the last convolutional layer of the

network, producing a heatmap that highlights the network

attention on the input [50]. As a part of XAI, Grad-CAM

is often used to reveal the attention of machine intelligence,

extract the underlying information invisible to the naked eye,

and optimize the size of the dataset and model architecture.

This article uses Grad-CAM to: 1) help visualize the attention

of the network on the average subjectwise spectrograms and

the corresponding localization maps in parallel; 2) extract the

identification code from the overlay of the averaged spectro-

gram and attention heatmap for each user; and 3) extensively

reduce the input spaces and the number of the trainable model

parameters, optimizing the size of the proposed network.

1) Subjectwise Attention Heatmap Generation: In this arti-

cle, we concatenate Optimal Sensors horizontally to preserve

the critical channelwise localization information and show

the model’s attention on different sensors. The Grad-CAM

analysis is conducted on the best-performing model trained

on Optimal Gestures and concatenated Optimal Sensors in the

validation set to demystify the model decision. The horizontal

concatenation broadens the input size of each channel (the

third axis of inputs) from 250 × 25 to 250 × 165 with a

zero padding of 250 × 10 in between sensors to generate

distance between each sensor information. We do not want

the proposed model to treat transitions as part of the signal

patterns; hence, we have introduced gaps using zero padding.

To achieve better model performance, we slightly modify the

proposed model architecture by setting the stride as 2 × 2 in all

convolutional layers. The gradients from the last convolutional

layer are extracted and resized from 30 × 19 to align with

the input size to form the attention heatmap. Each heatmap

indicates the model attention on each sample spectrogram. The

average spectrograms and corresponding heatmaps by subjects

are presented in parallel as the results of the attention analysis.

2) Identification Code Extraction by Subject: By visual

analysis of Grad-CAM, the model attention varies in sensors

and frequency ranges for different subjects, later defined as fre-

quency bins. The attention indicates the distinguishability and

uniqueness of the spectrotemporal neurophysiological charac-

teristics of each subject. These underlying sEMG features can

be translated into identification codes that have the purposes

of: 1) investigating the distinguishing neurophysiological pat-

terns associated with each individual, further qualifying sEMG

as a biomarker and 2) providing intuition and knowledge for

the spectrotemporal mask generated by an automatic algorithm

based on the attention heat of our proposed model, further

reducing the model complexity by shrinking the input space.

The identification codes from the same subject are highly

consistent across repetitions.

To extract the unique identification code for each individual,

we segment the average spectrogram of each subject ranging

from 0 to 500 Hz into 25 frequency bins, each contain-

ing 20-Hz spectrotemporal information across sensors. Thus,

an identification code is an array of five scalar values, named

as identification scalar, each falling into a range between 1 and

25. An identification scalar is calculated through the equation

given by

I (s) =
⌈

GCfreq

10

⌉
(6)

where GCfreq is the coordinate of a gravity center on the

frequency axis of a heatmap and s = 1, . . . , 5 is the index of

the five Optimal Sensors. The function center_of_mass [51] is

used to obtain the gravity center coordinates of the subjectwise

Grad-CAM heatmaps of the sensors for each subject. We use

the blurring and thresholding method to ensure the true gravity

center at each sensor is precisely defined, reducing the noise.

As the next step, we convert the heatmap to binary images

to accentuate the hottest areas. It should be noted that this

approach also avoids the gravity center shifts. In Fig. 7, before

applying blurring and thresholding, the gravity center of the

given sensor is found between 151 and 160 on the frequency

axis, translated into identification code 16. However, after

applying blurring and thresholding, the gravity center of the

same sensor is found between 171 and 180 on the same

frequency axis, translated into identification code 18. Thus,

we observe a shift of two in identification code when the

blurring and thresholding method is not applied.

However, this approach may fail to detect any hot zone when

the heatmap is highly dispersed. The sensorwise segmentation

Authorized licensed use limited to: New York University. Downloaded on September 08,2024 at 15:55:59 UTC from IEEE Xplore.  Restrictions apply. 



4006413 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Fig. 7. Heatmap of a sensor before and after blurring and thresholding,
subject 30 on sensor 8.

of the attention heatmap is used as an alternative approach

that further divides the heatmap corresponding to the sensor

into five equal 100-Hz segments. Each segment returns an

average heat, indicating the strength of the model’s attention

on that segment. By using the same function, five gravity

center candidates can be found at each sensor. The gravity

center of the segment that has the highest average heat is

considered as the final candidate for the gravity center at

the sensor. Thus, the gravity centers, respectively, represent

the most concentrated attention spots for the best sensors on

each heatmap. The resulting five centers form the identifica-

tion code of a particular subject, which shows the specific

attention of the network on different frequencies and sensors

for identifying each subject.

To evaluate the relation between the model attention and the

model performance (see Fig. 8), we calculate the means and

standard deviations of the identification codes of the top 1–10

and top 11–20 performing subjects and convert the analysis

results back to frequencies in hertz. The analysis results show

that the proposed model pays attention to median-to-high

frequencies, especially the higher gamma band of >80 Hz

for best-performing subjects. This observation matches the

observation on the spectrotemporal mask and serves as an

examination of the automatic algorithm that generates the

mask, more than 50% of which includes these frequencies.

3) Attention-Based Spectrotemporal Mask Generation and
Model’s Size Optimization: Based on the previously

mentioned gesture-based and sensor-based optimizations,

we enhance the practicality by minimizing the number of

gestures and sensors used in training. The smaller input space

and less trainable parameters can further refine the proposed

identification system by reducing the data storage, speeding

up the training process, and increasing the practicality.

In this section, we propose an optimizing attention-based

spectrotemporal mask that abandons the trivial areas, which

play the minimum role in classification from the input space.

We hypothesize that retraining the model only on the most

informative segments of spectrograms can result in similar

performance while significantly reducing the model size. The

median Grad-CAM heatmap of the top-10-performing sam-

ples of the spectrograms from the validation set is utilized

to generate the most significant attention-based segment of

spectrotemporal information across subjects and gestures. The

median heatmap rather than the average heatmap is employed

for mask generation as the data may not be normally dis-

Fig. 8. Means and standard deviations of identification codes of top-per-
forming subjects. Solid lines indicate the means. Dashed lines and filled
areas indicate the distances of one standard deviation away from the means.
The legend “Top Subs 1-10” means the top-1-to-10-performing subjects. The
meaning of the other legend follows the same pattern.

tributed. Based on the results achieved on the model attention

summarized from the previous radius distribution analysis, the

optimizing spectrotemporal mask is systematically calculated

using sensor segmentation. We segment each sensor into

multiple fine pieces and select the top 60% segments that

have the highest average heat. The outcome consists of both

low- and high-frequency areas at each sensor (Fig. 9). It is

expected that our model pays attention to both low- and

high-frequency areas on the average spectrogram because our

input signals include low-frequency contraction at transient

phase and high-frequency contraction at plateau phase.

After applying the mask (calculated based on the average

attention map of best-performing subjects) on each spec-

trogram for all subjects, the segments for each sensor are

concatenated vertically, making one transformed spectrogram

for each sensor. The resulting five transformed spectrograms

are horizontally concatenated with zero paddings in between,

forming the small input space (see Fig. 10) for the model. The

model is retrained on the reduced dataset.

E. Evaluation on Multisession sEMG

The multisession evaluation of our method is imperative

for showing the suitability of sEMG as a biomarker. sEMG

recordings from the same subject on varying days could be

different due to the possible variation in neurophysiology, arti-

facts caused by stochastic noises, and electrode misplacement

and displacement during doffing and donning [52]. We eval-

uate the robustness of the proposed model on a two-session

dataset collected using high-density surface electromyography

(HD-sEMG) from 20 subjects.

The conducted multisession evaluation is based on a pub-

licly available HD-sEMG dataset (“Hyser”) that includes

16 different degree-of-freedom finger and wrist gestures col-

lected from two different days with a cross-day interval of

3–25 days [53]. The dataset was collected from 20 intact

subjects, who maintained each gesture for 4 s for two repeti-

tions each day. The HD-sEMG signals were acquired using the

Quattrocento system (OT Bioelettronica, Turin, Italy) through

four 8 × 8 electrode grids (a total of 256 sensors) with a

sampling rate of 2048 Hz. On each forearm side (extensor
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Fig. 9. Spectrogram segmentation and mask generation.

Fig. 10. Example: mask application result.

or flexor), two 8 × 8 electrode grids construct one 16 × 8

electrode grid. The Hyser data were first preprocessed using

an eighth-order Butterworth bandpass filter between 10 and

500 Hz, followed by a notch filter at harmonics of 50 up

to 400 Hz to remove the power-line interference. This article

uses preprocessed data.

The number of sensors in Ninapro (with 12 sensors) is

different from that of Hyser (with 256 sensors). To keep

the model structure consistent regarding the number of input

channels (sensors), we conduct an additional data preprocess-

ing step on the high-density data. Thus, we apply a 2-D

average pooling with a kernel and stride size of 4 × 4 to

each HD-sEMG grid. The pooling outputs are flattened and

concatenated to obtain 16 input channels of highly condensed

and highly representative information. In addition, we reduce

the window stride to ten timestamps to mitigate the overfitting

issue caused by the 20 subjects difference between the two

databases. We train the model for a single gesture on Day 1,

validate the same gesture from the second repetition of Day 2,

and test on the same gesture from the first repetition of Day 2.

We also investigate which gestures (out of 16) can secure a

reliable cross-day performance.

IV. RESULTS

This article uses accuracy, precision, recall, F1 score,

receiver operating characteristic (ROC) curve, and area under

the curve (AUC) score averaged across subjects to evaluate

the performance of the proposed model. These metrics are

commonly used to comprehensively evaluate biometric iden-

tification (see examples in [54] and [55]). We implement the

majority-voting strategy for the metric calculation to optimize

the performance and practicality of our identification system.

In this regard, our model predicts a subject for each repetition

of gesture performance based on the predicted majority of its

ten windows.

A. Gesture and Sensor Optimization

In gesture-based optimization, we investigate five, six, and

seven gestures and evaluate the corresponding model perfor-

mance given all 12 sensors because of the similar BIC scores.

According to the one standard error rule, we choose seven

Optimal Gestures of 4, 12, 15, 22, 26, 30, and 32 based

on the mixed-domain (temporal and spectral) clustering. The

gesture numbers correspond to the thumb opposing base of the

little finger, wrist pronation (rotation axis through the little

finger), radial wrist deviation, medium wrap, writing tripod

grasp, tripod, and tip pinch grasp.

In sensor-based optimization, we derive Top Sensors based

on the ranking of individual sensor performance and then com-

bine the most informative sensors. An identification system

is easier to use when a user is required to attach sensors to

fewer locations on the arm, potentially attracting more users.

In order to further enhance the practicality of our identification

system, our analysis results in sensor IDs 6, 7, 8, 11, and

12 to be the five Optimal Sensors spreading among two muscle

groups (extensor–flexor group and biceps and triceps group),

achieving the same accuracy as the five Top Sensors [see

Fig. 11(b)].

Remark 1: It should be highlighted that our proposed

method can identify 40 subjects after training only on 7%

of data from Ninapro DB2 beneficial from gesture and sensor

optimization.

B. Results of Validation Protocols

For Protocol 1, in which training, validation, and testing

are based on the same seven Optimal Gestures, our proposed

model achieves 96.96% accuracy, 97.17% precision, 96.96%

recall, 96.95% F1 score, and 0.998 AUC averaged across

40 subjects. Even though our proposed model is trained on

Optimal Gestures but validated and tested on the 33 nonover-

lapping gestures with a train-validate-test split of 18/41/41

in Protocol 2, it still achieves 87.75% accuracy, 88.21%

precision, 87.75% recall, 87.78% F1 score, and 0.991 AUC

across same subjects. By solving such a challenging task in

Protocol 2, this article shows the power of the proposed model

in extracting common underlying user-specific neurophysio-

logical patterns regardless of gestures, indicated by the less

than 10% performance reduction compared with the results of

Protocol 1.

C. Grad-CAM

Fig. 12 shows the spectrograms and attention heatmaps

(generated by Grad-CAM) of two subjects (i.e., #19 and #28)

with top performance. We can conclude that the proposed

model makes decisions based on distinct frequency bins

among sensors, which reveal the underlying spectrotemporal

patterns that can be exploited to identify subjects and optimize

the proposed model. As explained, the unique features of the

attention heatmaps are translated into identification codes, each

consisting of five frequency bin numbers ranging from 1 to 25.

For example, the algorithm generates the identification codes

14-17-21-7-2 for Subject #19 and 25-25-25-11-4 for Subject

#28.

We utilize Grad-CAM to further reduce the size of the

network by optimizing the input space. The results show

that the application of the spectrotemporal mask reduces the

individual input size from 250 × 165 to 150 × 165.

Hence, the proposed approach allows for dropping 40% of
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Fig. 11. (a) Performance ranking of top gestures is based on Optimal Sensors;
the blue bar shows the accuracy of Optimal Gestures. (b) Performance ranking
of Top Sensors is based on Optimal Gestures; the blue bar shows the accuracy
of Optimal Sensors.

the trainable parameters of the network, from 938k to 563k

parameters, resulting in a much less complex network. Also,

it results in over 20% reduction of time needed for training

(this number may vary on different machines). This approach

achieves these reductions while accuracy, precision, recall,

and F1 score are decreased by about 5%, and AUC by

0.005 compared with model performance in the optimization

section (see Section IV-A). Fig. 13 shows the microaverage

ROC curves across subjects before and after applying the

spectrotemporal mask. The model performance after applying

the mask shows the efficacy of the proposed attention-based

data masking optimization technique proposed in this article.

D. Evaluation on Multisession sEMG

We conduct a comprehensive analysis on each of the

16 gestures that have two-day data. We observe three gestures:

1) middle finger extension; 2) hand close; and 3) hand open

(see Fig. 14) that show high reliability in distinguishing

all 20 subjects with 80% average accuracy, 71.39% average

precision, 80% average recall, 74.17% average F1 score, and

0.946 average AUC (see Fig. 15). These results prove that our

proposed model trained on Day 1 can still identify subjects on

Day 2 by robustly capturing the neurophysiological signature

associated with each subject.

Fig. 12. Average spectrogram and heatmap of top-performed subjects #19 and
#28. The left figure is the spectrogram, and the right figure is the attention
heatmap. (a) Subject 19. (b) Subject 28.

Fig. 13. ROC curves of the proposed model before and after applying the
spectrotemporal mask. The black dashed line represents a nondiscriminatory
test, where AUC equals 0.5. (a) Before applying mask. (b) After applying
mask.

V. COMPARATIVE STUDY

The goal of this comparative study is to highlight the supe-

riority of our proposed CNN model over the commonly used

classic and DL models when training on Optimal Gestures and

Optimal Sensor derived in Section III-B. Thus, we compare

our proposed model with: 1) a two-layer multilayer perceptron

(MLP) model; 2) a two-module hybrid model with four CNN

blocks followed by six long short-term memory (LSTM) layers

and an FC layer; and 3) a classic SVM model. In this compar-

ative study, each comparing model trains on Optimal Gestures

(4, 12, 15, 22, 26, 30, and 32) and the most informative

Optimal Sensors (6, 7, 8, 11, and 12). The validation data

include sEMG signals from the even repetitions (2, 4, and 6)

of the remaining 33 gestures, while the test data contain the

sEMG signals from the odd repetitions (1, 3, and 5) of the

same 33 gestures.

In this section, we select the comparing models (neural

networks) to be comparable in terms of complexity to our

proposed CNN model. The MLP model has 30 neurons on

the hidden layer. We modify our recently proposed hybrid

model [56] specifically for the identification problem. The

hybrid model has a CNN module followed by an LSTM

module. The CNN module consists of four CNN blocks, each

having a 2-D convolutional layer, a batch normalization layer,

and a ReLU layer. The convolutional layers have 20, 40, 60,

and 80 channels, respectively, with a kernel size of 3 × 3. The

output from the last CNN block is fed to the LSTM module,
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Fig. 14. Root mean square of the four 8 × 8 electrode arrays examples of the top-3-performing gestures. Arrays 1 and 3 were placed close to the wrist.
Arrays 2 and 4 were positioned close to the elbow. For all subplots, the first row shows the HD-sEMG signals collected on Day 1, while the second row
includes HD-sEMG signals on Day 2. (a) Middle finger extension. (b) Close hand. (c) Open hand.

Fig. 15. Individual and averaged test accuracy, precision, recall, and F1
score of the top-3-performing gestures. (a) Average test accuracy. (b) Average
precision. (c) Average recall. (d) Average F1 score.

which consists of six LSTM layers with 92 hidden units on

each layer. The last layer is an FC layer with 4240 neurons. For

the SVM model, we extract mean, median, root mean square,

and variance from sliding windows of size 10 × 25 with a 20%

overlap along the frequency axis on each input spectrogram.

This results in a feature vector of size 124 for each sensor. This

procedure is done for all five Optimal Sensors. Therefore, each

sample spectrogram is converted to a vector of 620 features,

which are reduced to seven principal components using PCA

before feeding to the SVM. The results are summarized in

Table III and highlighted in the following contributions.

Observation 1: The SVM fails in the identifying task. The

hybrid model achieves about 79% accuracy, which is 8% lower

than our proposed CNN.

Observation 2: The MLP achieves about 13% less average

accuracy than the proposed model. The comparing MLP model

architecture has to be simple (two layers) to match the struc-

tural complexity of our proposed model. Rather than flattening

the inputs, training a CNN model preserves the spatiotemporal

information of the spectrograms. Leveraging kernel sliding,

our CNN model can detect neural feature patterns appearing

anywhere in a spectrogram based on a smaller amount of

training data than the data needed for training an MLP for

the same task.

Observation 3: Our CNN model trains in 26% (5 s/19 s) of

the time required by the hybrid model on each iteration. Given

the similar model convergence, which is the number of training

iterations for a model to achieve its maximum performance,

our proposed model is more efficient.

Considering the above observations, the proposed model

proves to be considerably well-suited with a compact,

practical, explainable, and robust design for a PIS.

Remark 2: Gesture optimization in Section III-B1 is

model-independent because it is the result of GMM clus-

tering based on the extracted features of each gesture.

However, sensor optimization based on performance ranking in

Section III-B2 is sensitive to model types. To enhance the fair-

ness of the comparison between our model and the compared

ML/DL models, given the Optimal Gestures, we compare our

proposed model with the abovementioned compared models on

all 12 sensors. The comparison results show that our model can

achieve 90.5% average accuracy when given full information

from all the sensors, outperforming the hybrid, MLP, and

SVM models by 0.9%, 10.2%, and 43.5%, respectively. As a

result, in the next step, we conduct sensor optimization on the

compared hybrid model because its identification performance

on all 12 sensors is close to that of our proposed model. The

sensor optimization on the two-module hybrid model results

for the five Optimal Sensors (i.e., sensors 1, 6, 10, 11, and 12),

which are not only less practical by having sensor placement

at three locations on the forearm but also give a lower accuracy

of 85.53% compared to our model’s 87.75%.

Remark 3: To evaluate the performance of our proposed

model over the conventional method for multisession biometric

identification based on sEMG, we compare our model with

SVM (used in [30]). We follow the same experiments in

terms of preprocessing, windowing, and feature extraction as

when comparing our model to SVM for single-session eval-

uation (the preprocessing steps can be found in Section III-E

and the windowing and feature extraction mentioned in this

section). To form a fair comparison, we identify the same

20 subjects through the most reliable gestures (i.e., middle

finger extension, hand close, and hand open) described in

Section IV-D. The total number of features extracted from each

spectrogram input is 1984 (31 windows * four feature types

* 16 sensors), which is further reduced to 20 (which explains

90% variances of the original feature space) after PCA to

reduce computational efforts and avoid overfitting. As a result,

the compared SVM model can identify 20 subjects with

average accuracies of 58.89%, 57.01%, and 44.61% in middle

finger extension, hand close, and hand open, respectively.
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TABLE III

RESULTS FOR COMPARING THE PROPOSED MODEL WITH

COMMONLY USED CLASSIC AND DL MODELS

Considering the performance of the proposed model in these

scenarios (i.e., 75%, 85%, and 80%), this means that our

proposed model outperforms the conventional method, SVM,

by 16.11%, 27.99%, and 35.39%.

VI. CONCLUSION

In this article, we investigate the possibility of using the

hidden underlying neurophysiological patterns in multichannel

sEMG signals to identify users while securing high perfor-

mance. We propose and evaluate an optimized and explainable

neural network that analyzes the information context of ges-

tures and sensors to find out the minimum but sufficient

number of Optimal Gestures, Optimal Sensors, and best fre-

quency bands for training the model to enhance practicality

and efficiency. We have also shown that the performance can

be preserved using data from only two muscle groups. This

article, for the first time, aims to tackle gesture-independent

personal identification, demonstrating the capability of our

model in extracting common, user-specific neurophysiological

patterns across gestures. The Grad-CAM analysis is also

performed to decode the attention of the neural network

model. The outcome of Grad-CAM analysis is also utilized

to reduce the needed data size and thereby reduce the number

of trainable parameters of the model, reducing the complexity

and increasing the speed of training. As a result of gesture

and sensor optimization and Grad-CAM analysis, the proposed

method can identify 40 subjects based on only 4% of training

data from the database. The comprehensive evaluation of the

proposed model on: 1) a multisession dataset using HD-sEMG

and 2) a single-session dataset using bipolar sEMG, not only

shows the robustness of the proposed method in generalization

over time but also highlights the performance of the sys-

tem under various experimental conditions, and experimental

setups and sEMG modalities. It is worth noting that none

of our methods (GMM clustering, CNN model structure,

and Grad-CAM XAI) is completely new. They have been

researched separately in other domains but not collectively in

the domain of sEMG signal processing for personal identifica-

tion purposes over the last two decades. This article sheds light

on the capacity of the underlying neurophysiological signature

of sEMG biosignals for identifying individuals. XAI helps

visualize the unique and complex neural feature patterns asso-

ciated with each subject and quantify these patterns through

identification codes, pushing forward biometric research on

human identification.

This article preliminarily proves that the proposed model

is generalizable and robust in identifying 60 subjects (40 for

single day and 20 for multiday biometric identification) from

two datasets under different experimental settings without

modifying the architecture. To further enhance the real-life

practicality of sEMG-based biometric identification when

considering the accelerated interest in using biosignals for

identification, the future work in this research field can be:

1) raising the limit on the number of subjects by pooling mul-

tiple datasets to generate a multicenter benchmarking database

to enhance system generalization; 2) collecting multiday sig-

nals from more subjects performing more gestures to enhance

the flexibility and robustness of multiday identification; and

3) evaluating the system performance on recognizing intruders

(i.e., unknown subjects to the system) through leave-one-

subject-out cross validation to enhance system reliability and

unbiasedness.
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