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Abstract— This article investigates the potential of surface
electromyography (sEMG) as a new biometric modality and
proposes a deep neural network architecture as the backbone
of a gesture-independent personal identification system (PIS).
This article focuses on the real-world translation of such a
model through systematic optimization, which finds the minimum
number of gestures and sensors needed for training. Focusing
on “dynamic sEMG,” our proposed method can successfully
identify 40 subjects with an average accuracy of 97%. This is
achieved when gestures are the same in training, validation,
and testing (the subjects need to repeat a particular gesture
among a set of seven known gestures as a passcode). In a more
complex scenario, when training gestures differ from those in
validation and testing, our model can achieve an average accuracy
of 90%, demonstrating that the proposed model can extract the
unique patterns to identify a user regardless of gestures. Taking
advantage of gradient-weighted class activation mapping (Grad-
CAM), we explore the attention of the model on segments of
the spectrotemporal space of the input signals. Grad-CAM not
only sheds light on sEMG-based personal identification by decod-
ing and visualizing the unique user-specific neurophysiological
pattern but also generates a 2-D spectrotemporal mask used
to reduce the model complexity significantly. As a result of the
systematic optimization and Grad-CAM analysis, our proposed
identification method needs only 4% of data for training, boosting
practicality. This article also reveals the robustness of the
proposed model for cross-day evaluation. Finally, the comparative
study shows the superiority of our proposed model over several
state-of-the-art algorithms.

Index Terms— Biometric identification, explainable artificial
intelligence (XAI), gesture-independent identification, gesture-
sensor optimization, reliable cross-day identification, surface
electromyography (sEMG).
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I. INTRODUCTION

HE rapid development of the Internet has contributed

to the accelerated growth of several research fields,
including medical technologies. An example is the Internet
of Things (IoT) and the Internet of Medical Things (IoMT),
allowing remote access to personal data for remote assessment
and monitoring on telehealth platforms. However, this has
imposed risks on personal information, such as medical and
financial records [1], [2], [3], [4], [5]. In the last decade,
substantial novel techniques have been designed and developed
to mitigate the risks mentioned above for personal identifica-
tion/verification purposes. The conventional methods such as
personal identification number and password have been shown
security deficient due to the possibility of information leakage,
breaches, and counterfeits [6], [7], [8]. On a larger scale,
there have been several reports on data breaches from credit
agencies and governmental information systems, exposing the
information of millions of employees and customers [9], [10],
[11]. Biological-featured methods that extract the physical
characteristics of human bodies, such as features of the face,
fingerprint, and iris, are conventional approaches of personal
identification system (PIS) to protect information privacy [12],
[13], [14], [15]. However, these physiological methods are
susceptible to hacking since technological advances allow for
duplicating face models using 3-D printers, hacking finger-
prints through latex gloves, and copying the corresponding
biological features using artificial iris contact lenses [16], [17],
[18], [19].

As a result, it is necessary to produce new means of
biometrics that provide a higher level of personalization and
reduce the risk of hacking. Biometrics that express behavioral
features such as electromyography, the electrical manifestation
of muscle contraction [20], [21], suggest a solid approach to
achieve information security robustness by the correspond-
ing uniqueness. This is because neurophysiological responses
[such as those captured by surface electromyography (SEMG)]
are unique to individual users and inherently complex in
nature, making forgeries and falsifications exceedingly diffi-
cult [22], [23]. The advantages of SEMG as a new modality
for personal identification are not limited to its uniqueness.
One of the significant benefits of SEMG is that despite other
physiological biomarkers, the SEMG passcodes can be tunable
by changing to different gestures (studied as gesture-dependent
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identification, where the proposed model trains, validates, and
tests on the same gestures). Thus, this physiological security
layer can be reset by choosing different gestures or muscles
of a user. However, conventional biometrics are visible, such
that they cannot be revoked or detached from users once
compromised. Furthermore, the quality and usability of SEMG
are not restricted to the identification environment and the
physical states of a user, such as skin texture and amputation.
SEMG is also invariant to the mental states of a user [24],
[25], [26]. However, it should be noted that due to neurophys-
iological complexity and potential context-based variability,
even for one individual, fundamental research is needed to
generate techniques that can robustly and consistently detect
the underlying SEMG “‘signature” as biomarkers. This is the
focus of this article.

A few relatively recent works have been conducted in the
literature regarding SEMG-based human identification, moti-
vated by the unique characteristics of this biosignal to prevent
personal information leakage, spoofing attacks, and identity
theft. The conventional machine-learning (ML) approaches
that are based on extracting temporal and spectral features
from SEMG are the most commonly-used methods [27], [28],
[29], [30]. The extracted features are then fed into conventional
classifiers such as support vector machines (SVMs) and linear
discriminant analysis (LDA) to identify individuals. One of the
main limitations of the aforementioned studies is the simplicity
of the extracted features and models. Thus, most of such
efforts were conducted on small datasets, making generalized
identification systems less achievable. In this regard, due to
the variability, nonlinearity, and complexity of sEMG, it is
imperative to test the capacity of this biosignal on a relatively
larger number of individuals and gestures to detect the unique
underlying features.

In recent decades, researchers have leveraged the powerful
feature extraction capability of deep learning (DL) models
to solve complex tasks. However, few of them exploited
these models in human identification. In [31], the denoised
SEMG signals were fed into a convolutional neural network
(CNN) to minimize data preprocessing and let the model
learn the underlying neurophysiological patterns on its own.
Additionally, some researchers have recently converted raw
SEMG signals into 2-D spectrograms, concurrently analyzing
temporal and spectral muscle behaviors and potentially extract-
ing high-dimensional information for generating biomarkers.
This concept has been investigated in [16], where continuous
wavelet transform was used in conjunction with a CNN
architecture. Although the recent use of deep neural networks
may suggest good performance, the existing works suffer
from low diversification regarding subjects and hand gestures,
raising concerns about generalization to a higher number of
people and different gestures. Also, the existing recent DL
research in personal identification cannot explain the attention
of the neural network, raising concerns about the black-box
modeling (e.g., biases in the dataset), which can be challenging
for identification tasks and can pose a risk to system attacks.
Moreover, the use of large spectrotemporal input spaces results
in computationally inefficient models, challenging practicality
in terms of the size of the training set and the implementation
of small and portable identification hardware.
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Motivated by the points mentioned above, this article
proposes an identification method that uses an explainable
CNN-based framework with the optimized input size derived
based on the gradient-weighted class activation mapping
(Grad-CAM) attention-based analysis of the system. Our
identification method is compact, practical, interpretable, and
robust. Gesture and sensor optimization finds the minimum
number of gestures and sensors for training enhancing prac-
ticality. Two protocols are proposed to evaluate our method.
In Protocol 1, the proposed method trains, validates, and tests
on the optimal gestures and achieves 97% accuracy averaged
across 40 subjects. When training on the optimal gestures
but validating and testing on the remaining, nonoverlapping
gestures (i.e., 33 gestures) in Protocol 2, the proposed method
can achieve an average accuracy of about 90% across the
same 40 subjects. As mentioned earlier, DL models have
usually been deemed a black box because they only show
the final predicting results but not the evidence (on the
inputs) for making predictions. In this article, for the first
time, we exploit explainable artificial intelligence (XAI) to
interpret the proposed CNN model’s attention and visualize
each subject’s extracted underlying neurophysiological pat-
terns using Grad-CAM in sEMG-based personal identification.
This explainability analysis also helps generate a 2-D spec-
trotemporal segmenting mask to further shrink the input space
and reduce the model complexity. The multiday evaluation
shows that our proposed method can identify the same subjects
on two different days. We compare this article and the existing
state-of-the-art efforts in SEMG-based biometric identification
in the aspects of the number of participating subjects, involved
gestures, placed sensors, the signal type and length, the model
type, the proposed method, the sensor type, and the intraday
and interday (if applicable) performance. The comparison is
summarized in Table I. The six main contributions of this
article are as follows.

Contribution 1: This article solves a challenging prob-
lem of gesture-independent identification, for the first time,
in which common user-specific neurophysiological patterns
across gestures are utilized by the model for identifica-
tion. This departs from the current trend in the literature
when users would be identified through performing one
or a sequence of fixed gestures (i.e., gesture-dependent
identification).

Contribution 2: For the first time, this work mainly focuses
on the dynamic state of the sSEMG activation for personal
identification. The dynamic state includes imperative informa-
tion regarding user-specific motor unit recruitment “patterns.”
Unlike the literature, which mainly processes the most sta-
ble phase of SEMG at the steady state that can be prone
to contraction intensity, this work analyzes the rich motor
unit recruitment information to solve a more challenging
gesture-independent biometric identification problem for the
first time.

Contribution 3: For the first time, this article systematically
analyzes the optimal selection regarding the number and
locations of SEMG sensors across diverse muscle groups and
the corresponding effect on the system performance. These
analyses will be needed for hardware implementation and
identification accuracy boost.
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TABLE 1
COMPARISON BETWEEN THE PROPOSED MODEL WITH THE STATE-OF-THE-ART EFFORTS IN BIOMETRIC IDENTIFICATION
Signal Sig Model
Paper # Subs # Moves # Channels Type Len Type Method Sensor Type Test Acc
[16] 21 1 8 steady state| 15s | tree: ONN | DWT and CWT; SEMG 99.29% (intraday)
gesture-dependent
] feature engineering; ] 99.8% (intraday);
[27] 22 1 out of 8 64 complete 3s KNN gesture-dependent HD-sEMG 54.03% (interday)
[30] 20 1 out of 34 256 transient |- 5 sym | feawre engineering; HD-sEMG 60% (interday)
removed gesture-dependent
(32] 24 1 out of 16 3 transient |5 | Mahalanobis DFT; SEMG 90.3% (intraday)
removed distance gesture-dependent
any 1 out of 7 . . 97.0% (known,
40 (intraday); | known; any 1 out of | 12 (intraday); XAIL SEMG (intraday); intraday); 87.8%
ours . . complete 15s CNN . HD-sEMG ?
20 (interday) | 33 unknown; 1 for | 256 (interday) gesture-independent . (unknown, intraday);
. (interday) .
interday 80% (interday)

Note: #: Number; Subs: Subjects; Sig Len: Signal Length; Acc: Accuracy; s: Second; ms: Millisecond; KNN: K-Nearest Neighbors; DWT/CWT: discrete/continuous wavelet

transform; DFT: discrete Fourier transform.

Contribution 4: For the first time, this article conducts a
holistic optimization to find the minimum number of ges-
tures for training through clustering based on the synergistic
similarities among SEMG signals from different gestures.

Contribution 5: This is the first article that implements
optimal XAI (i.e., Grad-CAM analysis) to demystify an
interpretable CNN model by processing SEMG for personal
identification. The derived model’s attention interprets and
extracts the unique neural code in a visualizable and reportable
manner projected on spectrograms of sEMG. Moreover,
a particular spectrotemporal mask is proposed based on the
attention of the network to reduce input space. As a result
of gesture and sensor optimization and the spectrotemporal
mask application, only 4% of training data are needed for
identification, pushing our research toward developing portable
personal identification security hardware.

Contribution 6: This article investigates the generalizability
of the proposed method over two days and, at the same
time, evaluates the performance on a single-day dataset.
This approach would allow us to test the behavior of the
model using two different platforms and under two different
experimental settings, highlighting translation to practice and
evaluating any unpredictable behavior under new situations.
Such a systematic and comprehensive evaluation in the context
of user identification is conducted for the first time in this
article.

The rest of this article is written as follows. Section II
introduces the data acquisition and preprocessing. Section III
provides details on the methods. The results are presented
in Section IV. Section V highlights the superiority of our
proposed model over commonly-used classic and DL models.
Lastly, concluding remarks are provided in Section VI.

II. BIOMETRIC DATABASE
A. Data Acquisition Process

Ninapro DB2, a publicly available open-source database,
[33] is used in this article to evaluate the efficacy of the
proposed methodology. The data collection was based on the
Delsys Trigno system with 12 wireless electrodes, out of which
eight channels are placed around the forearm near the radio-
humeral joint, two are placed near the wrist on the extensor
digitorum and flexor digitorum superficialis muscles, and two
are placed on the biceps and triceps brachii muscles. Fig. 1
shows the electrode placements.

Fig. 1. Placement of myoelectric sensors [34].

The sEMG signals are recorded from 40 intact subjects
(12 females and 28 males) having age 29.9 £ 3.9 years.
DB2 is segmented into three exercises: exercises B, C, and
D. Exercise B contains 17 gestures, among which eight are
various isometric and isotonic hand configurations, and nine
are wrist movements. Exercise C contains 23 gestures of
grasping everyday objects and other functional movements.
Exercise D contains nine force patterns. We combine exercises
B (17 gestures) and C (23 gestures) for our research, taking
into account a total of 40 gestures from 40 subjects. Subjects
performed each hand movement six times, holding the gesture
for 5 s followed by a three-second rest. SEMG signals are
sampled at a frequency of 2000 Hz. The motion labels are
further refined [33]. The Ninapro data were preprocessed
using a notch filter at harmonics of 50 Hz to remove the
power-line interference. This article uses preprocessed data.
For multisession evaluation on our proposed method, we use
the “Hyser” database described in detail in Section III-E.

B. Data Preprocessing

Normalization is one of the data preprocessing techniques
to maximize the performance and training stability of any
ML approach by keeping the input features on a common
scale without distorting the general distribution and ratios
of the raw inputs. The z-score normalization [35] has been
commonly used to mitigate model learning problems, such
as inconsistent feature scales and vanishing gradients. In this
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article, we propose a new normalization pipeline that is based
on the p-law transformation followed by z-score normalization
to boost the model performance.

The p-law transformation [36], [37] is a logarithmic and
nonlinear transformation. This transformation increases the
distinguishability among sensors and has been widely used
in speech processing, where a voice (like SEMGQG) is also the
convolutional summation of signals. The p-law transformation
follows the mathematical design given by:

F () = sign(e) o D) ()
In(1 + )
where x; denotes a single data value and p = 2048.

The strength of the signals collected by each of the
12 sensors varies according to the level of muscle contraction.
The z-score normalization puts these signals on a common
scale. The mean and standard deviation are found from the
training data. Specifically let i be the sensor index, x,(i) be the
single data point from sensor 7, and /Lfr’) and atf) be the mean
and standard deviation of the SEMG signals from sensor i of
only the training data, respectively. The z-score normalization
is given as
S

@ _
& = 5}
Oy
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The duration of hand movement for different gestures and
different subjects varies significantly over repetitions. These
variations are often not considered in the literature. However,
including imbalanced data (i.e., dissimilar amounts of input
signals of hand movement from each subject) in training
the proposed model may inject extra information that can
influence and even inflate the overall model performance
on SEMG-based personal identification. Thus, we only keep
the first 1.5 s of data for each repetition that contains the
reaction (between visual stimuli and movement start), transient
(between movement start and maintenance), and steady-state
(during movement maintenance) parts of hand movement,
named dynamic SEMG. Previous work [38] defined the tran-
sient phase as the first second of each repetition according to
the accelerometer signals. In this regard, more than 66% of
the dynamic sEMG is from the transient phase. Taking into
account the dynamic state of contractions allows us to detect
user-specific patterns during dynamic motor unit recruitment,
which can be a distinguishing factor for the understudied
problem. Unlike the literature, which mainly focuses on pro-
cessing the most stable steady-state SEMG (which would need
an algorithm to locate and cut out the stationary part of the
signal from the transient), our solution is more inclusive and
does not rely on finding the point of transition. In addition,
even though real-time implementation is not a major issue
in SEMG-based biometric identification, we intentionally train
our proposed method on dynamic sEMG, especially including
the reaction and transient signals, to reduce the processing
overheads that exist in the literature, according to Table I.
As a result, all subjects are represented with the same length
of dynamic signals in the dataset. Windowing is a method
of data augmentation on sSEMG data, which is important for
a model to learn the covariant neurophysiological features
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Fig. 2. Segmentation of sEMG signal into small windows.

regardless of phases of gesture performance. SEMG signals
for each channel are segmented into windows (named “sliding
windows”), each having a length of 600 ms and a stride of
100 ms. The windowing process is demonstrated in Fig. 2.
The 1-D sEMG signal from each electrode is converted into
2-D spectrogram images using short-time Fourier transform
(STFT), which is applied with a window size of 500 ms and
an overlap of 95%. The procedure of STFT is to segment
each 600-ms sliding window of raw sEMG signals into small-
and fixed-size windows (usually overlapping) and compute
Fourier transform separately on each small window. This
window size for STFT is a hyperparameter tuned based
on the resulting spectrogram size and desired resolution in
the time and frequency domains. Zero padding captures the
information on the edge of each sliding window of raw
SEMG signals. It is usually needed to obtain a reasonable-size
spectrogram, especially when the window size for STFT is
close to the sliding window size of raw SEMG signals. We also
believe that a high-frequency resolution of a spectrogram will
help generate a fine-grained spectrotemporal mask (discussed
in detail in Section III-D3) that shows the contribution of
different frequency bands when indicating the associated neu-
rophysiological patterns with each subject. Hence, we choose
500 ms (1000 timestamps) to be the window size of STFT to
reduce the need for zero padding but retain a high resolution
of 2 Hz (2000 Hz sampling rate/1000 timestamps window
size) in the frequency domain. We apply windowing before
STFT to simulate the real-world implementation that an ideal
human identification system should start identifying users
with minimum data rather than waiting for the entire trial of
SEMG. The raw spectrogram [shown in Fig. 3(a)] is clipped
at 500 Hz [as can be seen in Fig. 3(b)] to discard potential
noisy information above 500 Hz, serving as a low-pass filter.
Thus, the final shape of the 2-D window (for each channel)
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Fig. 4. High-level overview of the complete process.

after applying STFT and clipping can be represented by a
250 x 25 spectrogram, which is used later in this article
as the input to the CNN model. The processing pipeline is
summarized in Fig. 4.

IIT. METHOD

A 1:N identification system extracts user-specific dynamic
feature patterns to detect one user among a database of
precollected templates of many users. Ninapro DB2 allows
us to explore the possibility of SEMG as a biomarker with-
out the restriction of extracting neurophysiological patterns
from a limited number of gestures and subjects. In this
regard, unlike the literature (see Section I) that identi-
fies a user through one or a sequence of fixed gestures
(i.e., gesture-dependent personal identification), this article
conducts “‘gesture-independent” personal identification by
evaluating our proposed method using two protocols. The goal
of Protocol 1 is to train the proposed model using the same
set of gestures in the training, validation, and testing phases,
whereas, in Protocol 2, the model is further challenged by
differing the training gestures from the validation and testing
gestures, aiming for generalizability and forcing the model to
learn common gesture-independent user-specific neurophysio-
logical patterns for identification. This article aims to design
a compact, optimized, explainable, day-to-day reliable, robust
identification system. The methodology details about model
architecture, gesture and sensor optimization, explainability-
based optimization, and multisession evaluation can be found
in Sections ITI-A-III-E.

A. Initial Model Architecture

The proposed model takes commonly used spectrograms
transformed using STFT as inputs for training, validation,
and testing, processing the spectrotemporal dynamics in
SEMG for biometric identification. The 2-D spectrograms
(the third dimension corresponds to the sensors) generated in
Section II-B are processed using the proposed neural network
to detect the corresponding subject through a classification
scheme. For this purpose, we exploit the power of neu-
ral networks for classification. Our model consists of two
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Fig. 5. Overall architecture of the model.
TABLE 11
MODEL ARCHITECTURE
Layer Layer # of Filter | Stride | Activation
Name Type Channels Size
convl Conv2d 20 3x3 | 1x1 ReLLU
conv2 Conv2d 40 3x3 | 2x1 ReLU
conv3 Conv2d 60 3x3 | 2x1 ReLU
conv4 Conv2d 80 3x3 | 2x2 ReLU
bn BatchNorm2d 80 - - ReLU
fc FC 21600 - - -

modules: the autonomous feature extractor and the classifier.
We choose a CNN as they have been shown to be powerful
for feature extraction [39], [40]. Performing weight sharing
through sliding kernels in a CNN results in a smaller number
of trainable parameters. Also, by sliding a kernel in 2-D space,
the CNN can detect the feature patterns appearing anywhere
in a spectrogram. This lightweight but robust model structure
is well-suited to our design of a compact identification system.

The proposed model contains four CNN blocks, each having
a CNN layer (feature extractor) and a rectified linear unit
(ReLU) activation function, followed by a fully connected
(FC) classifier (Fig. 5). In order to improve the model con-
vergence during training, a 2-D batch normalization is used in
the last CNN block. The summary of the model is reported in
Table II.

In all the experiments, the models are trained for a maxi-
mum of 500 epochs with a batch size of 32. Adam optimizer
is used with a learning rate of 0.0001, which is reduced by a
factor of 0.1 after the first 100 epochs.

B. Gesture and Sensor Optimization

Relying on a large number of training gestures and sensors
is not practical for personal identification in the real world.
To enhance the practicality and usability of the proposed
approach, we investigate how to reduce the number of: 1) train-
ing gestures and 2) sensors to find the optimal selection while
obtaining similar performance to the larger number of gestures
and sensors.

The intuition of gesture-based optimization of the input
space comes from synergistic similarities among SEMG
signals of different gestures that can be clustered into
low-dimensional finite groups [41], [42], from each of which
one representative gesture can be selected as a training gesture.
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The sensor-based optimization of the input space is based on
individual sensor performance ranking. It should be noted that
we conduct gesture and sensor selection in a sequential man-
ner, meaning that for the gesture-based optimization, sSEMG
signals from all sensors are considered, while for the sensor-
based optimization, the optimal gestures from the previous step
are considered.

1) Gesture-Based Input Space Optimization: For gesture-
based optimization, we extract various features from both time
and frequency domains to capture distinguishing spectrotem-
poral patterns. The temporal features are mean absolute value,
variance, mean square root, root mean square, log detector,
waveform length, difference absolute standard deviation value,
zero crossing, skewness, and kurtosis [29]. For the spectral
features, we considered conventional neural frequency bands
of delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta
(12-35 Hz), and gamma (>35 Hz) [43], [44]. For each men-
tioned frequency band, mean power density is considered to be
the spectral feature. We extract these features from each sensor
on the SEMG signals after p-law transformation and averaged
over subjects and repetitions. Thus, the preclustering data
dimensions in the time domain are 40 x 120 (where 40 corre-
sponds to the number of gestures and 120 corresponds to the
ten temporal features calculated for every 12 sensors). Also,
in the frequency domain, the dimension is 40 x 60, where
40 represents the number of gestures and 60 corresponds to
the five spectral features calculated for all 12 sensors.

GMM [45], [46], [47] is used to cluster the gestures
based on the extracted temporal and spectral features (180
for gesture clustering). In this article, GMM is initialized
using K-means to increase the convergence speed and reduce
some computational burden. Compared to K-means, which
gives each data point (e.g., a gesture) a hard assignment to
a particular group, GMM is a soft clustering approach that
gives a probability to each data point belonging to a Gaus-
sian component. Furthermore, the GMM parameters (mixture
weights, means, and variances) are iteratively updated through
the expectation—-maximization (EM) algorithm to find the max-
imum likelihood of a GMM best capturing the distribution of
the gesture representations. A GMM represents the distribution
of gestures in the form of

PN = D o - g(fo (X)| 1tk Tk 3)

k=1
where m is the number of the user-defined clusters, fy(x) is the
representation of the gesture x, and 6 is the parameter of the
representation. X is the vector of GMM parameters including
mixture weights (@), mean vectors (uy), and covariance
matrices (X;). Gaussian densities (g(fy(x)|ur, Xx)) are given
by

e(fo () |, Tp) = e~ 3 (o= TS (fo ) —pu)

1
Vem)PIx
“4)
where D is the dimension of the representation.

Before implementing GMM, we first apply principal compo-
nent analysis (PCA) [48] to reduce the 40 x 180 feature space
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(containing 40 gestures with temporal and spectral features)
to 40 x 15 for better clustering results. GMM clustering
requires the number of clusters m as input. We implement
widely adopted Bayesian information criterion (BIC) (see the
following equation) to derive the optimal number of clusters
as the minimal number of training gestures [49]:

BIC score = logp(fy(x)|1) — a%ﬂlogN (®)]

where « is a penalty weight, 8 is the number of parameters
in a GMM model, and N denotes the number of gestures.

A GMM becomes more complex when the number of
Gaussian components increases, potentially resulting in an
overfitting problem. As a BIC score is penalized by the model
complexity (the number of components) in a GMM, we choose
the number of clusters as seven that has the lowest BIC score to
avoid overfitting problems. The GMM result shows that seven
Gaussian components can optimally and sufficiently capture
the distribution of the 40 x 15 feature space. This article
selects one gesture with the highest log-likelihood from each
assigned cluster as the representative training gesture of that
cluster. As a result, we select seven optimal gestures (named
“Optimal Gestures” in the rest of this article) to reduce the
input space.

2) Sensor-Based Input Space Optimization: Sensor opti-
mization employs performance ranking to find the optimal
sensors. In this approach, we feed sSEMG signals from Optimal
Gestures and only one sensor at a time into the proposed
model. The best-performing sensors are added one by one
into the training set according to the individual performance
in descending order for comparison. According to the one
standard error rule, performance ranking returns five as the
minimal number of sensors (named “Top Sensors” in the rest
of this article) needed for training, securing almost similar
performance with smaller input size. However, Top Sensors
were sparsely positioned on all three muscle groups used in
the dataset. To further enhance the practicality of our proposed
identification method, we select five sensors (named “Optimal
Sensors” in the rest of this article) positioned only on two
muscle groups based on sensor performance ranking.

C. Model Validation Protocols

This article evaluates the performance of the proposed
model by two protocols based on the results of gesture and
sensor optimization. In both protocols, SEMG signals of cor-
responding gestures are pooled together in training, validation,
and testing, tackling gesture-independent personal identifica-
tion tasks. The protocols are described in the following and
can be visualized in Fig. 6.

1) Protocol 1: For this protocol, our model is trained,
validated, and tested on the seven Optimal Gestures to identify
40 subjects. The training, validation, and testing are based
on repetitions (2, 4, 6), (1), and (3, 5) of these gestures,
respectively. A user can be identified by performing any one
gesture of their choice from the seven Optimal Gesture Set,
showing the user-friendliness of our proposed method.
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Fig. 6. Model validation protocols. In Protocol 1, subjects will be identified
by performing any one gesture of their choice from the Optimal Gestures or
training gestures (in the blue rectangle). In Protocol 2, they will be identified
by performing any one gesture from the testing gestures (in the red rectangle),
which are unknown to the proposed model during training.

2) Protocol 2: In this protocol, which is more challenging
from a ML perspective, the training gestures (i.e., seven
Optimal Gestures) differ entirely from validation and testing
gestures (i.e., the remaining 33 gestures in the database). The
training is based on all six repetitions of Optimal Gestures,
while the validation and testing are based on repetitions (2,
4, 6) and (1, 3, 5) of the remaining gestures, respectively.
We hypothesize that common underlying neurophysiological
patterns can be found across gestures for a user. Learning and
extracting these patterns can prevent overfitting to specific
user inputs (e.g., SEMG collected at a certain hand angle
or muscle contraction level), counteracting SEMG variation
because muscle contraction can be different from the same
user when performing the same gestures at different times.
Moreover, Protocol 2 further enhances user-friendliness and
practicality by allowing users to perform any gesture from the
33 gestures not used in the training set, freeing users from
learning a standardized way of doing a particular gesture(s).

D. Grad-CAM Analysis: Explainability-Based Optimization

Grad-CAM enhances the transparency and explainability of
a black-box CNN-based network through the gradients of any
given class flowing into the last convolutional layer of the
network, producing a heatmap that highlights the network
attention on the input [50]. As a part of XAl, Grad-CAM
is often used to reveal the attention of machine intelligence,
extract the underlying information invisible to the naked eye,
and optimize the size of the dataset and model architecture.
This article uses Grad-CAM to: 1) help visualize the attention
of the network on the average subjectwise spectrograms and
the corresponding localization maps in parallel; 2) extract the
identification code from the overlay of the averaged spectro-
gram and attention heatmap for each user; and 3) extensively
reduce the input spaces and the number of the trainable model
parameters, optimizing the size of the proposed network.

1) Subjectwise Attention Heatmap Generation: In this arti-
cle, we concatenate Optimal Sensors horizontally to preserve
the critical channelwise localization information and show
the model’s attention on different sensors. The Grad-CAM
analysis is conducted on the best-performing model trained
on Optimal Gestures and concatenated Optimal Sensors in the
validation set to demystify the model decision. The horizontal
concatenation broadens the input size of each channel (the
third axis of inputs) from 250 x 25 to 250 x 165 with a
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zero padding of 250 x 10 in between sensors to generate
distance between each sensor information. We do not want
the proposed model to treat transitions as part of the signal
patterns; hence, we have introduced gaps using zero padding.
To achieve better model performance, we slightly modify the
proposed model architecture by setting the stride as 2 x 2 in all
convolutional layers. The gradients from the last convolutional
layer are extracted and resized from 30 x 19 to align with
the input size to form the attention heatmap. Each heatmap
indicates the model attention on each sample spectrogram. The
average spectrograms and corresponding heatmaps by subjects
are presented in parallel as the results of the attention analysis.

2) Identification Code Extraction by Subject: By visual
analysis of Grad-CAM, the model attention varies in sensors
and frequency ranges for different subjects, later defined as fre-
quency bins. The attention indicates the distinguishability and
uniqueness of the spectrotemporal neurophysiological charac-
teristics of each subject. These underlying SEMG features can
be translated into identification codes that have the purposes
of: 1) investigating the distinguishing neurophysiological pat-
terns associated with each individual, further qualifying SEMG
as a biomarker and 2) providing intuition and knowledge for
the spectrotemporal mask generated by an automatic algorithm
based on the attention heat of our proposed model, further
reducing the model complexity by shrinking the input space.
The identification codes from the same subject are highly
consistent across repetitions.

To extract the unique identification code for each individual,
we segment the average spectrogram of each subject ranging
from 0 to 500 Hz into 25 frequency bins, each contain-
ing 20-Hz spectrotemporal information across sensors. Thus,
an identification code is an array of five scalar values, named
as identification scalar, each falling into a range between 1 and
25. An identification scalar is calculated through the equation

given by
GCfreq
I(s) = 6
(s) [ 10 —‘ (6)

where GCpeq is the coordinate of a gravity center on the
frequency axis of a heatmap and s =1, ..., 5 is the index of
the five Optimal Sensors. The function center_of_mass [51] is
used to obtain the gravity center coordinates of the subjectwise
Grad-CAM heatmaps of the sensors for each subject. We use
the blurring and thresholding method to ensure the true gravity
center at each sensor is precisely defined, reducing the noise.
As the next step, we convert the heatmap to binary images
to accentuate the hottest areas. It should be noted that this
approach also avoids the gravity center shifts. In Fig. 7, before
applying blurring and thresholding, the gravity center of the
given sensor is found between 151 and 160 on the frequency
axis, translated into identification code 16. However, after
applying blurring and thresholding, the gravity center of the
same sensor is found between 171 and 180 on the same
frequency axis, translated into identification code 18. Thus,
we observe a shift of two in identification code when the
blurring and thresholding method is not applied.

However, this approach may fail to detect any hot zone when
the heatmap is highly dispersed. The sensorwise segmentation
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Fig. 7. Heatmap of a sensor before and after blurring and thresholding,
subject 30 on sensor 8.

of the attention heatmap is used as an alternative approach
that further divides the heatmap corresponding to the sensor
into five equal 100-Hz segments. Each segment returns an
average heat, indicating the strength of the model’s attention
on that segment. By using the same function, five gravity
center candidates can be found at each sensor. The gravity
center of the segment that has the highest average heat is
considered as the final candidate for the gravity center at
the sensor. Thus, the gravity centers, respectively, represent
the most concentrated attention spots for the best sensors on
each heatmap. The resulting five centers form the identifica-
tion code of a particular subject, which shows the specific
attention of the network on different frequencies and sensors
for identifying each subject.

To evaluate the relation between the model attention and the
model performance (see Fig. 8), we calculate the means and
standard deviations of the identification codes of the top 1-10
and top 11-20 performing subjects and convert the analysis
results back to frequencies in hertz. The analysis results show
that the proposed model pays attention to median-to-high
frequencies, especially the higher gamma band of >80 Hz
for best-performing subjects. This observation matches the
observation on the spectrotemporal mask and serves as an
examination of the automatic algorithm that generates the
mask, more than 50% of which includes these frequencies.

3) Attention-Based Spectrotemporal Mask Generation and
Model’s Size Optimization: Based on the previously
mentioned gesture-based and sensor-based optimizations,
we enhance the practicality by minimizing the number of
gestures and sensors used in training. The smaller input space
and less trainable parameters can further refine the proposed
identification system by reducing the data storage, speeding
up the training process, and increasing the practicality.

In this section, we propose an optimizing attention-based
spectrotemporal mask that abandons the trivial areas, which
play the minimum role in classification from the input space.
We hypothesize that retraining the model only on the most
informative segments of spectrograms can result in similar
performance while significantly reducing the model size. The
median Grad-CAM heatmap of the top-10-performing sam-
ples of the spectrograms from the validation set is utilized
to generate the most significant attention-based segment of
spectrotemporal information across subjects and gestures. The
median heatmap rather than the average heatmap is employed
for mask generation as the data may not be normally dis-
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forming subjects. Solid lines indicate the means. Dashed lines and filled
areas indicate the distances of one standard deviation away from the means.
The legend “Top Subs 1-10” means the top-1-to-10-performing subjects. The
meaning of the other legend follows the same pattern.

tributed. Based on the results achieved on the model attention
summarized from the previous radius distribution analysis, the
optimizing spectrotemporal mask is systematically calculated
using sensor segmentation. We segment each sensor into
multiple fine pieces and select the top 60% segments that
have the highest average heat. The outcome consists of both
low- and high-frequency areas at each sensor (Fig. 9). It is
expected that our model pays attention to both low- and
high-frequency areas on the average spectrogram because our
input signals include low-frequency contraction at transient
phase and high-frequency contraction at plateau phase.

After applying the mask (calculated based on the average
attention map of best-performing subjects) on each spec-
trogram for all subjects, the segments for each sensor are
concatenated vertically, making one transformed spectrogram
for each sensor. The resulting five transformed spectrograms
are horizontally concatenated with zero paddings in between,
forming the small input space (see Fig. 10) for the model. The
model is retrained on the reduced dataset.

E. Evaluation on Multisession sEMG

The multisession evaluation of our method is imperative
for showing the suitability of SEMG as a biomarker. SEMG
recordings from the same subject on varying days could be
different due to the possible variation in neurophysiology, arti-
facts caused by stochastic noises, and electrode misplacement
and displacement during doffing and donning [52]. We eval-
uate the robustness of the proposed model on a two-session
dataset collected using high-density surface electromyography
(HD-sEMG) from 20 subjects.

The conducted multisession evaluation is based on a pub-
licly available HD-sEMG dataset (“Hyser”) that includes
16 different degree-of-freedom finger and wrist gestures col-
lected from two different days with a cross-day interval of
3-25 days [53]. The dataset was collected from 20 intact
subjects, who maintained each gesture for 4 s for two repeti-
tions each day. The HD-sEMG signals were acquired using the
Quattrocento system (OT Bioelettronica, Turin, Italy) through
four 8 x 8 electrode grids (a total of 256 sensors) with a
sampling rate of 2048 Hz. On each forearm side (extensor
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or flexor), two 8 x 8 electrode grids construct one 16 x 8
electrode grid. The Hyser data were first preprocessed using
an eighth-order Butterworth bandpass filter between 10 and
500 Hz, followed by a notch filter at harmonics of 50 up
to 400 Hz to remove the power-line interference. This article
uses preprocessed data.

The number of sensors in Ninapro (with 12 sensors) is
different from that of Hyser (with 256 sensors). To keep
the model structure consistent regarding the number of input
channels (sensors), we conduct an additional data preprocess-
ing step on the high-density data. Thus, we apply a 2-D
average pooling with a kernel and stride size of 4 x 4 to
each HD-sEMG grid. The pooling outputs are flattened and
concatenated to obtain 16 input channels of highly condensed
and highly representative information. In addition, we reduce
the window stride to ten timestamps to mitigate the overfitting
issue caused by the 20 subjects difference between the two
databases. We train the model for a single gesture on Day 1,
validate the same gesture from the second repetition of Day 2,
and test on the same gesture from the first repetition of Day 2.
We also investigate which gestures (out of 16) can secure a
reliable cross-day performance.

IV. RESULTS

This article uses accuracy, precision, recall, F1 score,
receiver operating characteristic (ROC) curve, and area under
the curve (AUC) score averaged across subjects to evaluate
the performance of the proposed model. These metrics are
commonly used to comprehensively evaluate biometric iden-
tification (see examples in [54] and [55]). We implement the
majority-voting strategy for the metric calculation to optimize
the performance and practicality of our identification system.
In this regard, our model predicts a subject for each repetition
of gesture performance based on the predicted majority of its
ten windows.

A. Gesture and Sensor Optimization

In gesture-based optimization, we investigate five, six, and
seven gestures and evaluate the corresponding model perfor-
mance given all 12 sensors because of the similar BIC scores.
According to the one standard error rule, we choose seven
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Optimal Gestures of 4, 12, 15, 22, 26, 30, and 32 based
on the mixed-domain (temporal and spectral) clustering. The
gesture numbers correspond to the thumb opposing base of the
little finger, wrist pronation (rotation axis through the little
finger), radial wrist deviation, medium wrap, writing tripod
grasp, tripod, and tip pinch grasp.

In sensor-based optimization, we derive Top Sensors based
on the ranking of individual sensor performance and then com-
bine the most informative sensors. An identification system
is easier to use when a user is required to attach sensors to
fewer locations on the arm, potentially attracting more users.
In order to further enhance the practicality of our identification
system, our analysis results in sensor IDs 6, 7, 8, 11, and
12 to be the five Optimal Sensors spreading among two muscle
groups (extensor—flexor group and biceps and triceps group),
achieving the same accuracy as the five Top Sensors [see
Fig. 11(b)].

Remark 1: 1t should be highlighted that our proposed
method can identify 40 subjects after training only on 7%
of data from Ninapro DB2 beneficial from gesture and sensor
optimization.

B. Results of Validation Protocols

For Protocol 1, in which training, validation, and testing
are based on the same seven Optimal Gestures, our proposed
model achieves 96.96% accuracy, 97.17% precision, 96.96%
recall, 96.95% F1 score, and 0.998 AUC averaged across
40 subjects. Even though our proposed model is trained on
Optimal Gestures but validated and tested on the 33 nonover-
lapping gestures with a train-validate-test split of 18/41/41
in Protocol 2, it still achieves 87.75% accuracy, 88.21%
precision, 87.75% recall, 87.78% F1 score, and 0.991 AUC
across same subjects. By solving such a challenging task in
Protocol 2, this article shows the power of the proposed model
in extracting common underlying user-specific neurophysio-
logical patterns regardless of gestures, indicated by the less
than 10% performance reduction compared with the results of
Protocol 1.

C. Grad-CAM

Fig. 12 shows the spectrograms and attention heatmaps
(generated by Grad-CAM) of two subjects (i.e., #19 and #28)
with top performance. We can conclude that the proposed
model makes decisions based on distinct frequency bins
among sensors, which reveal the underlying spectrotemporal
patterns that can be exploited to identify subjects and optimize
the proposed model. As explained, the unique features of the
attention heatmaps are translated into identification codes, each
consisting of five frequency bin numbers ranging from 1 to 25.
For example, the algorithm generates the identification codes
14-17-21-7-2 for Subject #19 and 25-25-25-11-4 for Subject
#28.

We utilize Grad-CAM to further reduce the size of the
network by optimizing the input space. The results show
that the application of the spectrotemporal mask reduces the
individual input size from 250 x 165 to 150 x 165.
Hence, the proposed approach allows for dropping 40% of
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Fig. 11. (a) Performance ranking of top gestures is based on Optimal Sensors;
the blue bar shows the accuracy of Optimal Gestures. (b) Performance ranking
of Top Sensors is based on Optimal Gestures; the blue bar shows the accuracy
of Optimal Sensors.

the trainable parameters of the network, from 938k to 563k
parameters, resulting in a much less complex network. Also,
it results in over 20% reduction of time needed for training
(this number may vary on different machines). This approach
achieves these reductions while accuracy, precision, recall,
and F1 score are decreased by about 5%, and AUC by
0.005 compared with model performance in the optimization
section (see Section IV-A). Fig. 13 shows the microaverage
ROC curves across subjects before and after applying the
spectrotemporal mask. The model performance after applying
the mask shows the efficacy of the proposed attention-based
data masking optimization technique proposed in this article.

D. Evaluation on Multisession sEMG

We conduct a comprehensive analysis on each of the
16 gestures that have two-day data. We observe three gestures:
1) middle finger extension; 2) hand close; and 3) hand open
(see Fig. 14) that show high reliability in distinguishing
all 20 subjects with 80% average accuracy, 71.39% average
precision, 80% average recall, 74.17% average F1 score, and
0.946 average AUC (see Fig. 15). These results prove that our
proposed model trained on Day 1 can still identify subjects on
Day 2 by robustly capturing the neurophysiological signature
associated with each subject.
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V. COMPARATIVE STUDY

The goal of this comparative study is to highlight the supe-
riority of our proposed CNN model over the commonly used
classic and DL models when training on Optimal Gestures and
Optimal Sensor derived in Section III-B. Thus, we compare
our proposed model with: 1) a two-layer multilayer perceptron
(MLP) model; 2) a two-module hybrid model with four CNN
blocks followed by six long short-term memory (LSTM) layers
and an FC layer; and 3) a classic SVM model. In this compar-
ative study, each comparing model trains on Optimal Gestures
4, 12, 15, 22, 26, 30, and 32) and the most informative
Optimal Sensors (6, 7, 8, 11, and 12). The validation data
include sSEMG signals from the even repetitions (2, 4, and 6)
of the remaining 33 gestures, while the test data contain the
SEMG signals from the odd repetitions (1, 3, and 5) of the
same 33 gestures.

In this section, we select the comparing models (neural
networks) to be comparable in terms of complexity to our
proposed CNN model. The MLP model has 30 neurons on
the hidden layer. We modify our recently proposed hybrid
model [56] specifically for the identification problem. The
hybrid model has a CNN module followed by an LSTM
module. The CNN module consists of four CNN blocks, each
having a 2-D convolutional layer, a batch normalization layer,
and a ReLU layer. The convolutional layers have 20, 40, 60,
and 80 channels, respectively, with a kernel size of 3 x 3. The
output from the last CNN block is fed to the LSTM module,
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score of the top-3-performing gestures. (a) Average test accuracy. (b) Average
precision. (c) Average recall. (d) Average F1 score.

which consists of six LSTM layers with 92 hidden units on
each layer. The last layer is an FC layer with 4240 neurons. For
the SVM model, we extract mean, median, root mean square,
and variance from sliding windows of size 10 x 25 with a 20%
overlap along the frequency axis on each input spectrogram.
This results in a feature vector of size 124 for each sensor. This
procedure is done for all five Optimal Sensors. Therefore, each
sample spectrogram is converted to a vector of 620 features,
which are reduced to seven principal components using PCA
before feeding to the SVM. The results are summarized in
Table III and highlighted in the following contributions.

Observation 1: The SVM fails in the identifying task. The
hybrid model achieves about 79% accuracy, which is 8% lower
than our proposed CNN.

Observation 2: The MLP achieves about 13% less average
accuracy than the proposed model. The comparing MLP model
architecture has to be simple (two layers) to match the struc-
tural complexity of our proposed model. Rather than flattening
the inputs, training a CNN model preserves the spatiotemporal
information of the spectrograms. Leveraging kernel sliding,
our CNN model can detect neural feature patterns appearing
anywhere in a spectrogram based on a smaller amount of
training data than the data needed for training an MLP for
the same task.

Observation 3: Our CNN model trains in 26% (5 s/19 s) of
the time required by the hybrid model on each iteration. Given

the similar model convergence, which is the number of training
iterations for a model to achieve its maximum performance,
our proposed model is more efficient.

Considering the above observations, the proposed model
proves to be considerably well-suited with a compact,
practical, explainable, and robust design for a PIS.

Remark 2: Gesture optimization in Section III-B1 is
model-independent because it is the result of GMM clus-
tering based on the extracted features of each gesture.
However, sensor optimization based on performance ranking in
Section III-B2 is sensitive to model types. To enhance the fair-
ness of the comparison between our model and the compared
ML/DL models, given the Optimal Gestures, we compare our
proposed model with the abovementioned compared models on
all 12 sensors. The comparison results show that our model can
achieve 90.5% average accuracy when given full information
from all the sensors, outperforming the hybrid, MLP, and
SVM models by 0.9%, 10.2%, and 43.5%, respectively. As a
result, in the next step, we conduct sensor optimization on the
compared hybrid model because its identification performance
on all 12 sensors is close to that of our proposed model. The
sensor optimization on the two-module hybrid model results
for the five Optimal Sensors (i.e., sensors 1, 6, 10, 11, and 12),
which are not only less practical by having sensor placement
at three locations on the forearm but also give a lower accuracy
of 85.53% compared to our model’s 87.75%.

Remark 3: To evaluate the performance of our proposed
model over the conventional method for multisession biometric
identification based on sEMG, we compare our model with
SVM (used in [30]). We follow the same experiments in
terms of preprocessing, windowing, and feature extraction as
when comparing our model to SVM for single-session eval-
uation (the preprocessing steps can be found in Section III-E
and the windowing and feature extraction mentioned in this
section). To form a fair comparison, we identify the same
20 subjects through the most reliable gestures (i.e., middle
finger extension, hand close, and hand open) described in
Section IV-D. The total number of features extracted from each
spectrogram input is 1984 (31 windows * four feature types
* 16 sensors), which is further reduced to 20 (which explains
90% variances of the original feature space) after PCA to
reduce computational efforts and avoid overfitting. As a result,
the compared SVM model can identify 20 subjects with
average accuracies of 58.89%, 57.01%, and 44.61% in middle
finger extension, hand close, and hand open, respectively.
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TABLE III

RESULTS FOR COMPARING THE PROPOSED MODEL WITH
COMMONLY USED CLASSIC AND DL MODELS

Models # Trainable Parameters Accuracy Time/Epoch
Proposed CNN 937,540 87.753% Ss
Two-module Hybrid 932,456 79.09% 19s
Two-layer MLP 938,770 74.97% 2s
SVM N/A 44.116% N/A

Note: #: Number. s: second. N/A: Not Applicable.

Considering the performance of the proposed model in these
scenarios (i.e., 75%, 85%, and 80%), this means that our
proposed model outperforms the conventional method, SVM,
by 16.11%, 27.99%, and 35.39%.

VI. CONCLUSION

In this article, we investigate the possibility of using the
hidden underlying neurophysiological patterns in multichannel
SEMG signals to identify users while securing high perfor-
mance. We propose and evaluate an optimized and explainable
neural network that analyzes the information context of ges-
tures and sensors to find out the minimum but sufficient
number of Optimal Gestures, Optimal Sensors, and best fre-
quency bands for training the model to enhance practicality
and efficiency. We have also shown that the performance can
be preserved using data from only two muscle groups. This
article, for the first time, aims to tackle gesture-independent
personal identification, demonstrating the capability of our
model in extracting common, user-specific neurophysiological
patterns across gestures. The Grad-CAM analysis is also
performed to decode the attention of the neural network
model. The outcome of Grad-CAM analysis is also utilized
to reduce the needed data size and thereby reduce the number
of trainable parameters of the model, reducing the complexity
and increasing the speed of training. As a result of gesture
and sensor optimization and Grad-CAM analysis, the proposed
method can identify 40 subjects based on only 4% of training
data from the database. The comprehensive evaluation of the
proposed model on: 1) a multisession dataset using HD-sEMG
and 2) a single-session dataset using bipolar sSEMG, not only
shows the robustness of the proposed method in generalization
over time but also highlights the performance of the sys-
tem under various experimental conditions, and experimental
setups and SEMG modalities. It is worth noting that none
of our methods (GMM clustering, CNN model structure,
and Grad-CAM XAI) is completely new. They have been
researched separately in other domains but not collectively in
the domain of SEMG signal processing for personal identifica-
tion purposes over the last two decades. This article sheds light
on the capacity of the underlying neurophysiological signature
of SEMG biosignals for identifying individuals. XAI helps
visualize the unique and complex neural feature patterns asso-
ciated with each subject and quantify these patterns through
identification codes, pushing forward biometric research on
human identification.

This article preliminarily proves that the proposed model
is generalizable and robust in identifying 60 subjects (40 for
single day and 20 for multiday biometric identification) from
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two datasets under different experimental settings without
modifying the architecture. To further enhance the real-life
practicality of sEMG-based biometric identification when
considering the accelerated interest in using biosignals for
identification, the future work in this research field can be:
1) raising the limit on the number of subjects by pooling mul-
tiple datasets to generate a multicenter benchmarking database
to enhance system generalization; 2) collecting multiday sig-
nals from more subjects performing more gestures to enhance
the flexibility and robustness of multiday identification; and
3) evaluating the system performance on recognizing intruders
(i.e., unknown subjects to the system) through leave-one-
subject-out cross validation to enhance system reliability and
unbiasedness.
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