
Article https://doi.org/10.1038/s41467-024-47487-y

Miniature computational spectrometer with
a plasmonic nanoparticles-in-cavity
microfilter array

Yangxi Zhang 1,4, Sheng Zhang 2,4, Hao Wu 1, Jinhui Wang 1,

Guang Lin 2,3 & A. Ping Zhang 1

Optical spectrometers are essential tools for analysing light‒matter interac-

tions, but conventional spectrometers can be complicated and bulky.

Recently, efforts have been made to develop miniaturized spectrometers.

However, it is challenging to overcome the trade-off between miniaturizing

size and retaining performance. Here, we present a complementary metal

oxide semiconductor image sensor-based miniature computational spectro-

meter using a plasmonic nanoparticles-in-cavity microfilter array. Size-

controlled silver nanoparticles are directly printed into cavity-length-varying

Fabry‒Pérot microcavities, which leverage strong coupling between the loca-

lized surface plasmon resonance of the silver nanoparticles and the Fabry‒

Pérot microcavity to regulate the transmission spectra and realize large-scale

arrayed spectrum-disparate microfilters. Supported by a machine learning-

based training process, the miniature computational spectrometer uses arti-

ficial intelligence and was demonstrated to measure visible-light spectra at

subnanometre resolution. The high scalability of the technological approaches

shown here may facilitate the development of high-performance miniature

optical spectrometers for extensive applications.

The optical spectrum carries essential information of a light beam;

various optical spectroscopy technologies have been developed as

powerful characterization and measurement tools, such for studying

the structures of atoms and molecules, analyzing material composi-

tions, and remotely sensing distant targets such as satellite imaging

and astronomical observation1–5. Traditional spectrometers are bulky

and highly sophisticated instruments that are only suited for

laboratory-based use. Dispersive elements, such as diffraction grat-

ings, are typically used to discriminate light components of different

wavelengths for spectral measurement and analysis1,2. These spectro-

meters are bulky because of the use of relatively large sizes of these

dispersive components and their corresponding need for mechanical

movement or rotation for resolving wavelengths. Alternatively, tun-

able optical filters or scanning-form interferometers may be used6,7.

For instance, Fourier transform spectrometers (FTSs) based on

Michelson interferometers arewidely utilized in infrared spectroscopy

testing and measurement8,9. However, the use of a Michelson inter-

ferometer with a movable mirror leads to bulky and long

response times.

Recently, to unlock new spectroscopy applications for on-site

measurement and portable tools, many efforts have been invested in

developing low-cost, small, and easy-to-use computational

spectrometers1,2. In computational spectrometers, incident light is

sampled by a wavelength-selective component, and the sampled light

spectrum is reconstructed from the measured optical response of

photosensors. Such computational spectrometers fully leverage the

high computing power of microprocessors. With sophisticated spec-

trum reconstruction algorithms, the spectral resolving ability of
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spectrometers can be greatly improved, e.g., by enabling a commercial

RGB image sensor with only three broadband color filters for effective

spectrum measurement10,11 and decreasing the orthogonal require-

ment of wavelength-selective components in spectrometer construc-

tion. Therefore,many types of photonic technologies, such as thin-film

optical filters12, perovskite film13, single nanowire and superconducting

nanowire14,15, tunable van der Waals junction16, folded digital meta-

lenses17, integrated photonic chips18,19, and wavelength-selective

photodetector13,20, have been used as computational spectrometers

for integrated chip-size spectrometers.

In particular, complementarymetal oxide semiconductor (CMOS)

or charge-coupled device (CCD) image sensor-based miniature spec-

trometers have been widely considered themost viable candidates for

resolving the tradeoff between miniaturizing size and retaining per-

formance. They offer the capability of integrating millions (and even

tens ofmillions) of photosensorswhile being verycompact and robust;

additionally, they have been widely tested in smartphones and lab-on-

a-chip systems. Similar to how encoding capacity can be increased by

the length of coding, the resolution of such CMOS/CCD image sensor-

based computational spectrometers can be efficiently enhanced by

increasing the number of spectrum-disparate filters. Therefore,

developing miniature spectrometers by devising optical microfilter

arrays with many spectrum-disparate elements and spectrum recon-

struction algorithms has recently come to the forefront.Many types of

microfilters, such as quantum dots21,22, photonic crystals23–26, plas-

monic encoders27, plasmonic rainbow chips28, metamaterials6,11,15,29,30,

liquid crystals31, random structures32,33, multilayer film filters and

interference filters12,34–38, and 3D-printed microoptics39, have been

demonstrated to beuseful for computational spectrometry.Multilayer

film filters have good flexibility in tailoring optical spectral

responses12,36,37. However, their fabricationprocesses usingmany steps

of deposition/patterning are less scalable in the fabrication of large-

scale distinct filter arrays. Nanophotonic methods that realize the

optical responses of nanostructures via material and geometric

nanoengineering have become among the most promising approa-

ches. For instance, plasmonic 2D chirped gratings, in which the

rainbow trapping effect is utilized to split wavelengths40, have been

used to construct a dual-function computational spectrometer for

simultaneous spectroscopic and polarimetric analysis. However, the

optical transmittance of suchmetallic 2D chirped gratings is low; thus,

computational spectrometers can operate in reflection mode only,

which may limit further miniaturization for portable applications.

Metamaterial/metasurface structures have also been used to fabricate

opticalmicrofilter arrays for computational spectrometers6,11, and very

promising results with subnanometer spectral resolution have been

demonstrated29,30. However, such nanophotonic filters usually require

the useof either e-beam lithography (EBL) or nanoimprintingwith EBL-

fabricated nanotemplates to fabricate many ultrafine structures at the

nanometer scale. These nanofabrication processes are very time-

consuming and expensive and thus limit the total number of manu-

facturable spectrum-disparate microfilters. Therefore, innovative

designs are still needed to alleviate the dependence of nanophotonic

microfilters on nanometer-scale geometry to enable the fabrication of

very large-scale arrayed spectrum-disparate microfilters for high-

performance computational spectrometers.

In this paper, we present an artificial intelligence (AI)-empowered

miniature spectrometer based on a highly scalable plasmonic

nanoparticles-in-cavity microfilter array to resolve the above-

mentioned challenges. As shown in Fig. 1, the plasmonic microfilter

array is used to sample incident light before the light beam is detected

by a digital image sensor. The image data carry spectral information

about the incident light and can be used to reconstruct the spectrum

of incident light via algorithms. The plasmonic nanoparticles-in-cavity

structure, in which both the length of the Fabry‒Pérot (FP) interfero-

metricmicrocavity and the size of the silver nanoparticles (AgNPs) can

be precisely tailored, is designed to harness the transmission spectra

of the microfilters. Owing to the strong coupling between the FP

resonance and the localized surface plasmon resonance or Mie reso-

nance of AgNPs, such a structure greatly enhances the spectral diver-

sity to develop large-scale arrayed optical disparate microfilters.

Moreover, a digital ultraviolet exposure-based fabrication technology

was established to directly print both size-controlled AgNPs and

Fig. 1 | Schematics of the working principle of a miniature computational

spectrometer and its plasmonic nanoparticles-in-cavity microfilters. The top

section illustrates the working principle of our proposed miniature computational

spectrometer, while the bottom section shows the cross-section of the plasmonic

microfilter array, in which both the size of AgNPs and the length of FP cavities are

designed to create a large-scale spectrum-disparate microfilter array. A more

detailed diagram of the spectrum reconstruction algorithm is shown in the Sup-

plementary Information.
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length-varying FP cavities to ensure the high scalability of the plas-

monic microfilter array. Leveraging a machine learning-based training

process, the AI-empowered miniature spectrometer with a plasmonic

microfilter array of more than a thousand spectrum-disparate micro-

filters was demonstrated to measure visible-light spectra at sub-

nanometer resolution.

Results
Plasmonic nanoparticles-in-cavity microfilter array
Microcavity plasmonics with strong coupling between optical micro-

cavities and plasmons have recently emerged as tools for tailoring the

optical responses of photonic structures41,42. Here, we incorporate

AgNPs into an FP microcavity to harness the strong coupling between

FP resonance andMie resonance for the creationof large-scale arrayed

microfilters with different transmission spectra. When considering a

layer of random and dense AgNPs, diffraction orders resulting from a

periodic lattice of scatterers can be neglected43,44. The corresponding

reflection and transmission can be expressed as functions of fre-

quency, which is known as Mie resonance. For small AgNPs, the

reflection from such an AgNP layer is weak.When AgNPs are located at

one of the antinodes of the FP mode, the strong coupling in the cavity

leads to Rabi splitting, which can be expressed as41,43,44:

1
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ffiffiffiffiffiffiffiffiffiffi
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r
 !
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where λ0 is thewavelengthmatched between the plasmonic resonance

and the FP cavitymode, λ+ and λ
−
are the split resonant peak positions,

V is the effective scatter volume, A is the unit cell area, and L is the

equivalent length of the FP cavity. This reveals that a high-density

metal nanoparticle layer is favorable for large Rabi splitting, and the

splitting magnitude is inversely proportional to the square root of the

cavity length. When the AgNP layer is at the center of the cavity, odd

modes of the FP cavity interact with the plasmons of the Mie

resonance; when the AgNP layer is at other positions, even modes

may also interact with plasmons. For longer etalon lengths L and high-

order modes, the splitting effect is reduced. Notably, as the

concomitant on-resonance quasistatic polarizability of Mie resonance

can far exceed the polarizability attained by a single dipole scatter41,45,

a low-Q Mie resonance of AgNPs can also lead to strong coupling.

Considering such coupling mechanisms, we design a plasmonic

nanoparticles-in-cavity microfilter to make large-scale arrayed thin-

filmmicrofilters with different transmission spectra, as shown in Fig. 1.

In this design, a photopolymer layer together with two silver nano-

layers is used to form FP microcavities; therefore, the length of FP

microcavities can be precisely tailored by dynamic UV exposure

technology. Moreover, with the incorporation of a titanium dioxide

photocatalytic nanolayer, these size-controlled AgNPs can be directly

printed by precision photoreduction technology46,47, avoiding the use

of expensive nanofabrication processes such as EBL. In contrast to

microfilters engineered by either FP microcavity length or AgNP size

alone, combinations of n FPmicrocavity lengths andm AgNP sizes can

provide n ×m different microfilters and thus endow such thin-film

microfilter devices with high scalability for high-resolution broadband

computational spectrometers.

Figure 2 shows the simulation results of the transmission spectra

of these plasmonic nanoparticles-in-cavity microfilters. The thickness

of the two silver mirror layers is optimized to 25 nm to balance the

transmission and the resonance strength of the FP cavity. The thick-

nesses of the SiO2protective layer andTiO2photocatalytic layer,which

form the space between the AgNPs and the bottom Ag mirror, are set

to 43.5 nm and 10 nm, respectively. Figure 2a(i–iii) shows the trans-

mission spectraof theplasmonicmicrofilterswhen the thickness of the

photopolymer layer is 250, 320, or 400 nm. In the 250nm case (see

Fig. 2a(i)), when the AgNP diameter increases, a redshift of the 2nd FP

peak can be observed, even though the 2nd FP peak (500–600 nm) is

not exactly at the position of the plasmonic resonance mode

(~400 nm). In the 320 nmcase (see Fig. 2a(ii)),when theAgNPdiameter

increases, a typical Rabi splitting of the 3rd FP peak can be observed at

wavelengths ranging from 400 to 450 nm, as this coincides with the

plasmonic resonance mode. A redshift of the 2nd FP peak at

600–700nmcan also be observed. In the 400nmcase (see Fig. 2a(iii)),

when the AgNP diameter increases, the 2nd FP peak and the 3rd FP

peakboth redshift, while the 4th FPpeakblueshifts. These results show

that the introduction of AgNPs directly causes Rabi splitting and also

causes a Rabi splitting-like opposite shift to FP modes on two sides of

the plasmonic resonance mode, even if those sides are far from the

plasmonic resonance frequency near 400nm, such that the response

can effectively cover the visible spectrum. Notably, these shifts are not

caused by the unidirectional equivalent cavity length change but

rather by the coupling of the two resonant systems, thus resulting in

opposite shift directions.

Figure 2b(i, ii) shows the transmission spectra of the plasmonic

microfilters when the average diameters of the AgNPs are 10 nm and

8 nm, respectively, while the thickness of the photopolymer layer

changes from 260 to 350 nm. With the movement of the FP peaks

according to the change in cavity length, another typical phenomenon

of strong coupling, anticrossing, can be observed in the movement of

the Rabi splitting peaks (i.e., the FP− peak with its peak wavelength λ
−

and the FP+ peak with its peak wavelength λ
+), as shown in Fig. 2c.

More detailed numerical simulation results are provided in

Fig. 2d, e. Figure 2d shows the transmission spectrum of the total

microfilter structure when the diameter of the AgNPs changes from 0

to 60nm, and the thickness of the photopolymer is fixed at 200, 300,

and 400nm. Figure 2e shows the transmission spectrum of the total

microfilter structure when the thickness of the photopolymer layer

changes from 50 to 500 nm, and the diameter of the AgNPs is fixed at

0, 10, or 20 nm. These results demonstrate that changing the thickness

of the photopolymer layer (the length of the FP cavity) and the size of

the AgNPs, both exhibit clear modulatory effects on the overall spec-

tral response of the strong coupling structure, which can realize a

spectral variety of filters.

Fabrication and characterization of the plasmonic
microfilter array
The fabrication of such a plasmonic microfilter array includes five

steps: sputtering deposition of silver and SiO2 nanolayers (acting as a

bottommirror and protective layer, respectively); sol-gel spin coating

of the TiO2 nanolayer; direct printing of size-controlled AgNPs;

grayscale patterning and nanoscale thickness tuning of polymer FP

cavities; and sputtering deposition of silver and SiO2 nanolayers (act-

ing as a top mirror and protective layer, respectively), as shown in

Fig. 3a. Two critical steps of the fabrication process are direct printing

of size-controlled AgNPs and nanoscale thickness tuning of the poly-

mer FP cavity, which are the keys to achieving a large-scale spectrum-

disparate microfilter array.

Recently, we developed a precision photoreduction technology

to additively print size-controlled AgNPs or gold nanoparticles

(AuNPs) using a digital UV exposure technique for plasmonic

applications46,47. With the use of an opaque substrate with a silver

mirror layer (for FP microcavities), however, previous printing pro-

cesses cannot be directly applied, as the UV light must illuminate the

TiO2 photocatalytic layer through the silver salt solution instead of

through the bottom SiO2 substrate side. There were two challenges

associated with this technique: (i) UV light may directly trigger

unwanted photoreduction reactions in silver salt solution; (ii) the

scattering of UV light may increase with the growth of AgNPs, and the

resulting UV pattern may become too blurry to print a well-defined

micropattern of AgNPs. To overcome these challenges, we modified

the previousmaterial formulation. Ethylene glycol was used to replace

Article https://doi.org/10.1038/s41467-024-47487-y

Nature Communications |  �����15:3807 3



water and glucose to act as both a solvent and reducing agent. The

previously used additive PVP was removed from the solution. Experi-

ments revealed that such an adjustment can slightly lower the activity

of the silver salt solution and thus enhance the stability of the printing

process. Figure 3b shows SEM images of the printed AgNPs, from

which one can see that AgNPs of different sizes with diameters ranging

from 0 to 50 nm are printed through the control of the UV expo-

sure dose.

To rapidly fabricate polymer cavity length-varying FP micro-

cavities, a digital grayscale photopolymerization technology, as shown

Fig. 2 | Numerical simulation results of plasmonic nanoparticles-in-cavity

spectrum-disparate microfilters. a Rabi splitting and opposing wavelength shift

phenomena: (i–iii) the transmission spectra of the microfilters with different sizes

of AgNPs when the thickness of the photopolymer layer(t) is 250, 320, and 400nm,

respectively. b Wavelength shifts caused by the change of photopolymer layer

thickness: (i, ii) the transmission spectra of the microfilters with different thick-

nesses of the photopolymer layer when the diameter of AgNPs(d) is 10 and 8 nm,

respectively. c Anti-crossing phenomenon, based on the peak wavelength data

from (b(ii)). d Modulation effect of AgNP size on the transmission spectra of total

microfilter structure: (i–iii) the transmission spectra of the microfilters whose

photopolymer layer has the thickness of 200, 300, and 400 nm, respectively.

eModulation effect of polymer layer thickness on the transmission spectra of total

microfilter structure: (i–iii) the transmission spectra of the microfilters with 0, 10,

and 20 nm AgNP diameters, respectively.
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in Fig. S1, was developed to enable rapid micrometer-scale patterning

and ultrafine nanometer-scale thickness tuning of photopolymer films.

More specifically, an oxygen inhibition mechanism of free-radical

polymerization is used in combinationwith grayscale optical exposure

to tailor the polymerization of the polymer in the vertical direction.

Oxygen inhibition leads to an induction period and can significantly

slow polymerization48–50. For the dipentaerythritol hexaacrylate

(DPHA) film with a thickness of hundred nanometers used in our

experiments, thediffusionof oxygen from the air to thefilm results in a

gradient of oxygen inhibition in the vertical direction. UV light can be

exponentially absorbed in the same direction. Consequently, poly-

merization may initiate from the bottom and extend to the top of the

photopolymer film, and the degree of polymerization in the

upper section will be relatively lower than that in the bottom section.

In the following development process, oligomers with a low degree of

polymerization may be dissolved by the solvent. After development,

the polymer film is further baked at a relatively high temperature (at

120 °C for 2 h) to evaporate the solvent and achieve a stable nanofilm.

The reactivity and viscosity of the monomer, the concentration of the

photoinitiator, and the intensity of the UV light were optimized to

flexibly tune the thickness of the micropatterned polymer at the

nanoscale. Typical cross-sectional SEM images of the fabricated pho-

topolymer nanofilms with different thicknesses are shown in Fig. 3c.

Notably, both fabrication techniques are based on digital

ultraviolet exposure technology using a digital micromirror array

(DMD). A high-speed DMD has a switching time of less than one

millisecond, which enables ultrafast, parallel modulation of UV

exposure doses at different target positions. The size of the AgNPs

and the thickness of the FP microcavities can be rapidly and finely

tailored via precision photoreduction and grayscale photo-

polymerization, respectively, to fabricate the designed large-scale

disparate microfilter array. Figure 3d shows a fabricated sample

with a total of 1152 microfilters. The size of each microfilter element

is 38.1 μm× 38.1 μm, while the total size of the microfilter array is

2.914mm × 2.690mm. The color of the transmissive optical micro-

scope images of the fabricated microfilters periodically change

from blue to red according to the tuning of the fabrication para-

meters, which reveals the great flexibility of such precision photo-

reduction and digital greyscale photopolymerization combined

fabrication processes. Additional intermediate results during the

production process can be found in Fig. S2a, b, and additional

fabricated microfilter samples can be seen in Fig. S2c.

Themeasured transmission optical spectra of the fabricated large-

scale arrayed plasmonic microfilters are shown in Fig. 4. Figure 4a

shows that such a plasmonic microfilter array provides high-density

transmission spectral peaks, i.e., 2436 transmission peaks, ranging from

ii

iv

iii

v

cb

i ii iii

iv v vi

146.1 nm
77.9 nm

308.4 nm

i ii iii

d

ii iii

iv v

i

a

i ii iii iv v

Spin-coating

TiO2 layer
AgNPs Photopolymer Photopolymer

Sputtering

Sputtering

Heating

200 nm 200 nm

400 μm 40 μm

Ag/SiO2 layer

Gray-scale exposure Gray-scale exposure Development

Fig. 3 | Fabrication of plasmonic nanoparticles-in-cavity microfilter array.

a Schematics of fabrication processes: (i) sputtering of Ag/SiO2 layers; (ii) spin

coating of TiO2 nanolayer; (iii) direct printing of size-controlled AgNPs; (iv) grays-

cale patterning of polymer FP cavities; (v) sputtering of Ag/SiO2 layers. b SEM

images of printed AgNPs. c SEM images of the cross-sections of the fabricated

polymer thickness-tuned FP microcavities. d Transmissive optical images of the

fabricated plasmonic microfilter array: (i) the whole sample image with 1152

microfilters; (ii-v) partially enlarged images of eight microfilters.
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425 to 850nm. The full widths at half-maximum (FWHMs) of those

transmission spectral peaks range from 12.2 to 88.3 nm,with an average

value of 23.8 nm. The wavelength and transmittance distributions of

these spectral peaks are shown in Fig. 4b. Typically, measured trans-

mission spectra are given in Fig. 4c, which shows that thesemicrofilters

have sharp transmission peaks varying in the wavelength range from

400 to 900nm. The peak density distributions and estimated ideal

spectral resolving abilities of the fabricated plasmonic microfilters are

shown in Fig. S3.

Moreover, Rabi splitting, which was predicted via numerical

simulation, was observed in the measured reflection and transmis-

sion spectra in the short wavelength region. When the cavity length

is short, a broad resonance peak of the 1st-order FPmode appears in

the wavelength range of visible light. With the increasing size of the

AgNPs, clear spectral splitting was observed at approximately

400–600 nm in both the reflection and transmission spectra, as

shown in Fig. 4d(i, ii). However, the depth of the transmission dip

caused by Rabi splitting is not as deep as that in the numerical

simulation results, which may be attributed to the variation in the

size of the printed AgNPs. When the cavity length becomes

relatively longer, the resonance spectral peaks of the 2nd- and 3rd-

order FP modes enter the visible light range (see Fig. 4d(iii) and 4-

d(iv)). For this case, the resonance spectral peak of the 3rd FP mode

shows Rabi splitting because its resonance wavelength is close to

that of plasmonic AgNPs, while the resonance spectral peak of the

2nd FPmode remains in a longer wavelength region andmay shift to

a longer wavelength with increasing size.

The polarization dependence of these plasmonic microfilters was

measured with a polarization-switchable input light beam, as shown in

Fig. S4. The transmittanceof plasmonicmicrofilters changesminimally

when the polarization of the linearly polarized input light varies from0

to 180°. The measured polarization dependence is approximately

0.086 dB, which indicates that the computational spectrometer is not

sensitive to the polarization of the input light. The cross-correlation

coefficients and their statistical distributions in the transmission

spectra of the fabricated plasmonic microfilters are presented in

Fig. S5. The majority (~70.6%) of the cross-correlation coefficients are

between 0.2 and 0.6. This result signifies the necessity of the use of the

AI method for spectrum reconstruction in our computational

spectrometer.

Fig. 4 | Measured spectra of the fabricated plasmonic nanoparticles-in-cavity

microfilters. a Transmission spectra of all elements of the fabricated microfilter

array. b Distribution of the peak wavelengths of all elements of the fabricated

microfilter array. c Typical transmission spectra of microfilter elements: i-ix, the

transmission spectra of the microfilters whose photopolymer layer has the

thickness of ~240, ~280, ~310, ~330, ~370, ~410, ~430, ~450, and ~480 nm,

respectively. d Typical Rabi splitting and peak wavelength shifts in reflection and

transmission spectra: (i, ii) the reflection and transmission spectra of a microfilter

whose photopolymer layer has a thickness of ~60 nm; (iii, iv) the reflection and

transmission spectra of a microfilter whose photopolymer layer has a thickness

of ~310 nm.
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AI-empowered miniature computational spectrometer
A machine-learning-based AI method was established to enable the

spectrometer to use a large-scale plasmonic microfilter array to

reconstruct the spectrumof an input light beam from theCMOS image

output. Suppose that there are m microfilters and n training data

points that are the pairs of input light spectra and CMOS outputs:

(xj, yj), j = 1,…, n. An input light spectrum xj(λ) is a function that maps

eachwavelength λ to the intensity of the light at thatwavelength.When

a microfilter array of m elements is used, we have a CMOS image

output with m effective pixel values yj = [yj,1, …, yj,m]
T for each input

light spectrum xj. For a new unknown input light spectrum ex(λ), the
problem is how to reconstruct exðλÞ from the CMOS output ỹ = [ỹ1, …,

ỹm]
T. To achieve efficient spectrum reconstruction, we assume that i)

the training data, i.e., the input single narrow-peak light spectra, are

sufficient and ii) the reconstruction target is a continuous spectrum,

which facilitates the use of denoising methods such as LASSO, ridge

regression, total variation (TV), and quadratic variation (QV).

To ensure the effectiveness of the training process, we apply a

series of single-narrow-peak light spectra generated by a tunable

monochromator as training data. Then, any input light spectrum ex can

be effectively constructed by a linear combination of such training

light spectra xj as:

~xðλiÞ ffi
Xn

j = 1

wjxjðλiÞ, ð2Þ

where λi are the discretized wavelengths under monitoring by a cali-

bration spectrometer. Because the CMOS sensor typically has a linear

response to input light, i.e., y linearly depends on x, the relationship

between the CMOS outputs ỹ and yj can be derived from Eq. (2) as:

~y≈
Xn

j = 1

wjyj: ð3Þ

Equivalently
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Therefore, the problem of finding wj, where j = 1, …., n, for the

spectrum construction is transformed into solving the following

optimization problem:

Minimize Loss ðw1, � � � ,wnÞ=
Xm

k = 1

~yk �
Xn

j = 1

wjyj,k

 !2

+ c1
Xn

j = 1

jwj j+ c2
Xn

j = 1

w2
j

+
Xn�1

p= 1

c3,p
Xn

j =p+ 1

jwj �wj�pj+
Xn�1

q= 1

c4,q
Xn

j = q+ 1

ðwj �wj�qÞ
2,

ð5Þ

where c1, c2, c3,p, and c4,q are nonnegative hyperparameters. The first

term is a least-squares termused tominimize the discrepancy between

the calculated CMOS response of the reconstructed spectrum and the

measured CMOS readings. The last four terms are regularization terms

used to denoise and ensure the robustness of the machine learning

algorithm.

The hyperparameter c1 influences the L1 norm of the parameter

vector w and induces its sparsity such that w has fewer nonzero

components. This hyperparameter is also known as the least absolute

shrinkage and selection operator (LASSO)51. In the context of our

spectrum reconstruction, a larger c1 promotes sparser reconstruction

(for example, low intensities are filtered out as noise, resulting in a

narrow-peak light spectrum with zero intensity at most wavelengths).

The hyperparameter c2 is used for L2 norm regularization of the

parameter vector w. This hyperparameter is also used in ridge

regression52. L2 norm regularization reduces noise and adds stability to

the algorithmwhen the trainingdata are highly correlated.When large-

scale arrayedmicrofilters with weak spectral orthogonality are used in

our computational spectrometer, the training process produces many

similar output images. Numerically, this trend causes the least-square

regression problem in Eq. (4) to be ill-posed, resulting in non-

identifiability and overfitting. A corresponding solution is to use L2
norm regularizationby setting c2 > 0,which restricts large components

of the parameter vector w and thus has a smoothing effect on the

solution. From the optimization perspective, the quadratic penalty

term in the loss function (Eq. (5)) results in a strongly convex

function53; e.g., the matrix∇2Loss � 2c2I is positive semidefinite for all

elements except a subset of zero measurements, which endows the

algorithm with many advantages, such as (i) a unique global minimum

without other local minima and (ii) fast convergence.

Thehyperparameter c3,1 leads to the termTV,which often appears

in fused LASSO22,54,55 to enhance the local constancy of the coefficient

profile. In our context, this approachencourages the responsivenessof

the reconstructed light spectrum such that it reacts quickly when a

major change in intensity is detected across the wavelength while

otherwise maintaining stability. This process preserves more edge

information, such as square wave-like outputs. The hyperparameter

c4,1 promotes continuity and smoothness of the reconstructed light

spectrum. This term is called QV in the literature56. In the present

context, this approach facilitates Gaussian-wave-like outputs. The

hyperparameters c3,p (p ≥ 2) control variants of TV, while c4,q (q ≥ 2)

control variants of QV. They introduce larger step sizes in TV and QV

and should be set according to the spacing of the input light spectra in

training. In practice, only a few of those terms are needed, with the

other terms set to 0.

Notably, our machine learning algorithm represents a general-

ization of various algorithms, such as least squares, LASSO, ridge

regression, elastic net, fused LASSO, TV, and QV, and thus our model

adapts to different practical cases by using different hyperparameters.

When c1 = c2 = c3,p = c4,q =0 (p ≥ 1, q ≥ 1), the optimization reduces to

least squares. When c2 = c3,p = c4,q =0 (p ≥ 1, q ≥ 1), the optimization

becomes LASSO. When c1 = c3, p = c4,q =0 (p ≥ 1, q ≥ 1), the optimization

involves ridge regression. When c3,p = c4,q =0 (p ≥ 1, q ≥ 1), the optimi-

zation appears as anelastic net,which is the combinationof LASSOand

ridge regression53. When c2 = c3,p = c4,q =0 (p ≥ 2, q ≥ 1), the optimiza-

tion comes to be fused LASSO. When c1 = c2 = c3,p = c4,q =0 (p ≥ 2, q ≥ 1),

the optimization is TV. When c1 = c2 = c3,p = c4,q =0 (p ≥ 1, q ≥ 2), the

optimization is QV. Generally, the larger the hyperparameters (c1, c2,

c3,p, and c4,q) are, themore robust themethod is to noise. Nevertheless,

because the use of too large hyperparameters may filter out weak and

sharp signals, proper selection of hyperparameters is important for

computational spectrometers to simultaneously contain noise and

maintain spectral resolution. In the implementation, CVXPY57,58, an

open-source Python package for convex optimization problems, is

used to determine the optimal wj. With the calculated wj, the input

light spectrum ex(λ) can be reconstructed by using the training light

spectra xj(λ), as shown in Eq. (2). A diagram of our machine learning-

based spectrum reconstruction procedure is shown in Figure S6.

In our experiments, a tunable optical monochromator with a

broadband halogen tungsten light source (WDG15-Z, Beijing Optical

Century Instrument Co., Ltd., China), a xenon lamp light source

(BBZM-3, Anhui Bobei Lighting Electrical Appliance Factory, China), a

monochrome camera (ASI178MM camera, Suzhou ZWO CO., LTD.,

China)with a 14-bit CMOS image sensorwith 3096 × 2080 pixels (Sony

IMX178 sensor, Sony Group Corporation, Japan), and a commercial

optical spectrometer (USB4000, Ocean Optics, USA) were used to

construct a setup for training and testing the plasmonic microfilter

array-based computational spectrometer, as shown in Figure S7. For
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ease of installation, the fabricated microfilter array was not directly

attached to the CMOS image sensor but was instead installed on the

imaging position of a lens (DTCM110-16.6, VICO Technology Co., Ltd.,

China) that can clearly project the light pattern passing through the

microfilter array onto the CMOS image sensor. The light output from

the tuneable monochromator is divided into two light beams by a

beam splitter. One light beam is monitored by a commercial spectro-

meter to obtain xj, while the other light beam passes through the

microfilter array, and the resulting light pattern generated by the

microfilter array is recorded by the monochromatic camera to obtain

yj. Thesemonochrome images that aremeasuredby the camera, where

the dark field and bias response were carefully corrected to enhance

the signal-to-noise ratio (SNR), were pretreated with pixel binning and

data filtering for noise reduction. Typical image data after denoising

processes for spectral reconstruction are shown in Fig. S8.

Figure 5 shows the test results of the computational optical

spectrometer, in which the control hyperparameters c1, c2, c3,1, c3,5, c3,9,
and c4,1 in the objective function (Eq. (5)) are 600, 0.1, 0.1, 0.02, 0.05

and 0.06, respectively. The other hyperparameters, i.e., c3,p (p = 2, 3, 4,

6, 7, 8, or p ≥ 10) and c4,q (q ≥ 2), are all zero. In the first group of tests, a

series of single-peak light spectra with a full width at half maximum

(FWHM) of ~0.54nm was used for training and testing the spectro-

meter. As shown in Fig. 5a, the computational spectrometer can

measure peak wavelengths very well at wavelengths of 450, 550, and

650 nm. However, the spectral profile reconstructed at the short

wavelength of 650 nm is slightly wider than the input light spectrum,

and better results are achieved at wavelengths of 450 and 550 nm. The

spectrum-resolving ability of the spectrometer was tested by using a

time-elongated exposure of two quickly generated adjacent single-

peak light spectra. Figure 5b shows that the spectrometer can dis-

criminate two adjacent spectral peaks with a wavelength separation of

~0.8 nm. Further testing of the spectrometer’s performance over the

whole visible range was conducted by sweeping such single-peak light

spectraoverwavelengths ranging from395 nmto725 nmwith a stepof

0.2 nm. Figure 5c shows the root-mean-square errors (RMSEs) of the

peak wavelengths of the measured spectra. Figure 5c shows that the

spectrometer can measure peak wavelengths accurately over the

whole testing wavelength range (i.e., 395–725 nm), and its error is

approximately 0.03 nm. The results of the measured FWHMs of the

peak wavelengths of the spectra are shown in Fig. 5d. The average

value of the FWHMs is 0.65 nm, which is close to the FWHM of the

input spectrum, i.e., 0.54nm.

The ability of the spectrometer to measure broadband light

spectra with asymmetric profiles was also tested. Here, the light

spectra were generated by using the broadband light source of the

monochromator together with a few bandpass filters. For fast training

and measurement, the spectrometer was trained with a series of

broader single-peak spectra with an average FWHM of ~8.6 nm. Cor-

respondingly, the best suitable control parameters for spectrum

reconstruction were altered to c1 = 1.41 × 105, c2 = 1.4, c3,1 = 1.09 × 107,

c3,5 = 1.14 × 105, c3,9 = 4.6 and c4,1 = 4000. The other hyperparameters

are all zero. The resulting spectral reconstructions are shown in Fig. 5e.

The spectrometer can measure and reconstruct broadband spectra of

different profiles well, and smooth or abrupt changes in the spectral

curves were reconstructed. For the four input spectra under test, the

cosine similarities of their reconstructed spectra are 0.9981, 0.9958,

546 549 552

Input

Reconstructed

In
te

n
s
it
y

Wavelength (nm)

a

c

e

i ii iii iv

b

i ii iii i ii

1.0 nm0.8 nm

400 450 500 550 600 650 700
-1.0

-0.5

0.0

0.5

1.0

Wavelength (nm)

)
m

n( r
orr

E 
ht

g
n

e l
e

v
a

W 
k

a
e

P

400 450 500 550 600 650 700
0.0

0.5

1.0

1.5

2.0

F
W

H
M

 (
n
m

)

Wavelength (nm)

447 450 453

yti
s

n
et

nI

Wavelength (nm)

Input

Reconstructed

547 550 553

Input

Reconstructed

In
te

n
s
it
y

Wavelength (nm)
647 650 653

Input

Reconstructed

In
te

n
s
it
y

Wavelength (nm)
546 549 552

Input

Reconstructed

In
te

n
s
it
y

Wavelength (nm)

d

550 600 650 700

Input
Reconstructed

yti
s

n
et

nI

Wavelength (nm)
550 600 650 700

Wavelength (nm)

In
te

n
s
it
y

Input
Reconstructed

550 600 650 700
Wavelength (nm)

In
te

n
s
it
y

Input
Reconstructed

550 600 650 700
Wavelength (nm)

In
te

n
s
it
y

Input
Reconstructed

Fig. 5 | Testing results of the miniature computational spectrometer. a Testing

results for single-peak spectrum inputs: (i–iii) the peak wavelengths of input single-

peak spectra are ~450, ~550, and ~650nm, respectively. b Testing results for dual-

peak spectrum inputs: (i, ii) the wavelength separations of input dual-peak spectra

are 0.8, and 1.0 nm, respectively. c The root-mean-square errors (RMSEs) of the

peak wavelengths of the reconstructed spectra for narrow single-peak spectrum

inputs.dThe FWHMsof the reconstructed spectra for narrowsingle-peak spectrum

inputs. eTesting results for somebroadband input spectra: (i–iv) the bandwidths of

the broadband input spectra are ~85, ~40, ~37, and ~22 nm, respectively.
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0.9941, and 0.9983. Additional test results for the measurement of

more broadband light spectra fromOLEDs aregiven in Fig. S9. Another

test of the measurement of narrowband and broadband input spectra

using the sameset of narrowband single-peak training spectra is shown

in Fig. S10. These results show that spectrometers can generally

measure various input spectra with different profiles.

Discussion
Because of their large number of photosensors, CMOS/CCD camera-

based computational spectrometers are widely regarded as among the

most promising tools for achieving next-generation high-performance

miniature/portable optical spectrometers. To achieve high resolution

for such a computational spectrometer, the first step is to construct a

thin-film transmissive spectrum-disparate microfilter array with high-

density distinct spectral peaks or/and valleys. Here, we present a

plasmonic nanoparticles-in-cavity microfilter array that provides a

near-perfect solution to this challenge. Two independent parameters,

i.e., the size of the AgNPs and the length of the FP cavity, can be

harnessed to tune the transmission spectra of the microfilters. Com-

pared to the scheme using pure FP cavity-based microfilters (i.e.,

without plasmonic nanoparticles)35, this approach can efficiently

increase the number of spectrum-disparate microfilters and thereby

solve the challenge of ultrahigh-precision nanofabrication of a large

number of different cavity lengths within amicrometer-scale thin film.

Compared to the scheme using pure plasmonic nanoparticles (i.e.,

without FP microcavities), this approach can greatly enhance the

spectral tailoring ability and avoid the tough requirement of the pre-

cise engineering of individual plasmonic nanostructures for the fab-

rication of a large-scale spectrum-disparate plasmonic

microfilter array.

We experimentally demonstrated that both the size and length of

the FP cavity of AgNPs can be precisely tailored by computer-

controlled dynamic UV exposure technology. The light pixels of the

UV light pattern are grouped to work parallelly in the patterning of

microfilter elements, while the exposure dose, which is typically con-

trolled according to the exposure time, is utilized to regulate nano-

particle size and tailor cavity length in the printing ofAgNPs and the FP

cavity, respectively. Due to implementing such a unique fabrication

strategy, the proposed computational spectrometer has an important

advantage, i.e., high scalability, over other previously reported meth-

ods (see the comparison in Table S1) and thus has great potential in the

development of practical miniature computational spectrometers.

An evaluation of the critical role of the microfilter number in

enhancing the spectrometer resolution is presented in Fig. S11. Here,

two groups of single-narrow-peak light spectra with FWHMs of 0.61

and 0.44 nmwere used to train and test a computational spectrometer

based on a plasmonicmicrofilter array of 1440 elements, after which a

portion of the CMOS outputs corresponding to a certain amount of

microfilters were sequentially extracted for spectrum reconstruction.

The achievable spectral resolution, represented by the achieved

FWHM of the reconstructed spectral peaks, is dramatically enhanced

with increasing microfilter number when the total number of filters is

less than ~500. The increase in the number of microfilters gradually

decreases when the total number of microfilters is greater than ~500,

and this contribution becomes negligible until the total number of

microfilters reaches ~1152 (for the case trained and tested with single-

peak spectra with a FWHM of 0.44 nm) or ~1440 (for the case trained

and tested with single-peak spectra with a FWHM of 0.61 nm).

The second most significant factor that may limit the perfor-

mance of computational spectrometers, such as resolution, is the

efficiency of spectrum reconstruction algorithms and the training

dataset. Figures S12 and S13 present a comparison of the perfor-

mances of different algorithms, including ridge, TV, LASSO, and our

hybrid algorithm, on the reconstruction of spectra. Here, a series of

single-peak input spectra with an average FWHM of 0.44 nm over the

wavelength range from 580 to 680 nm were used for training and

testing. Comparedwith the results obtained by the LASSO, ridge, and

TV algorithms, the ridge algorithmperformed better in terms of peak

wavelength error (Fig. S12(a–c)), while the LASSO algorithm had

relatively better performance in terms of the FWHM (Fig. S13(a–c)).

Inspired by these results, we developed a hybrid algorithm that is

similar to LASSO (i.e., c1 = 600, c2 = 0.1, c3,1 = 0.1, c3,5 = 0.02, c3,9 = 0.05

and c4,1 = 0.06 in Eq. (5); the other hyperparameters are all zero.) for

spectrum reconstruction. With these optimized parameters, the

hybrid algorithm can achieve an average FWHM of 0.48 nm, which is

highly consistent with the FWHM of the input spectrum. The RMSE

between the input and reconstructed peak wavelengths is 0.018 nm,

which also indicates the high accuracy of the spectrometer in terms

of spectrum reconstruction.

A spectrometer trainedwith narrower input spectra alsoexhibited

better performance in resolving two adjacent spectral peaks, as shown

in Fig. S14. The spectrometer can resolve two spectral peakswell with a

wavelength separation of 0.6 nm. This result is better than that

achieved by the spectrometer trainedwith the input spectrawith 0.54-

nm wide input spectra, whose resolvable wavelength separation is

~0.8 nm, as shown in Fig. 5b(i). Using the spectral peak density infor-

mation given in Fig. S3, the ultimate resolution of the computational

spectrometer canbe optimistically estimated to be0.15–0.3 nm,which

indicates that the performance of such a computational spectrometer

may be further improved if a better reconstruction algorithm and

training method are adopted.

Another remarkable factor that may limit the performance of

computational spectrometers is noise, such as system errors and/or

measurement noise, because the spectral reconstruction problem of a

computational spectrometer is typically a seriously ill-conditioned

system of equations whose solution is sensitive to perturbations

coming from various types of noises59,60. To assess the susceptibility of

the computational spectrometer to noise, we intentionally loosened

the image data denoising process and then tested the effect of noise

levels, in terms of the root mean square error (RMSE), on the achiev-

able resolution. Figure S15 shows the corresponding test results for

single-narrow-peak inputs with a spectral width of ~0.61 nm in the

range of 527–725 nm.The achievable spectral resolutionwas enhanced

from 2.16 to 0.71 nm when the RMSE was decreased from 3.13% to

0.31%. This noise-susceptible result is in line with those of previously

reported computational spectrometers21,22.

To demonstrate its potential applications, a smartphone-based

computational spectrometer was constructed using a plasmonic

microfilter array and assembled as shown in Fig. S16a. One can see that

such a plasmonic microfilter array is very compatible with a smart-

phone because it makes full use of its image sensor and computing

power to make portable computational spectrometers. The pre-

liminary results obtainedwith the spectrometer are shown in Fig. S16b.

One can see that the portable spectrometer can very well measure the

broadband light spectrum with a bandwidth of ~50 nm. However, its

performance in measuring narrow spectral peaks needs further

improvement, whichmay be attributed to the relatively low contrast of

the image sensor.

Therefore, to further improve the performance of computational

spectrometers, especially in terms of spectral resolution, one needs to

further improve the fabrication processes, e.g., increase the uniformity

of AgNPs, to create better-quality plasmonic microfilter arrays with

high-density spectral peaks or/and valleys uniformly distributed

among elements; additionally, a better spectrum reconstruction

algorithm that is less sensitive to noise should be pursued. The

monochromator-based training setup can be further upgraded to

provide narrower bandwidth light spectra for training high-resolution

spectrometers. In addition, a better image sensor with high contrast

and a highly linear response is also needed for pursuing the ultimate

performance of computational spectrometers. To further pursue a
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broader range of applications, we can choose differential material

platforms to fabricate FP microcavities with more distinct cavity

lengths and to print different plasmonic nanoparticles, e.g., gold

nanoparticles (AuNPs), with Mie resonance wavelengths that are

longer than that of AgNPs, to construct a plasmonic microfilter array

for high-resolution broadband computational spectrometers.

An AI-empowered high-resolution computational spectrometer

based on a CMOS image sensor has been presented for measuring the

input spectra of visible light. A plasmonic nanoparticles-in-cavity

microfilter with strong coupling between the localized surface plas-

mon resonance of AgNPs and an optical FPmicrocavity was devised to

flexibly regulate the transmission spectra by tuning the size and length

of the FP microcavity for the creation of a large-scale scalable optical

disparate microfilter array. Moreover, digital UV lithography-based

fabrication processes have been established to fabricate a designed

plasmonic microfilter array in which both the AgNP size and FP cavity

length are precisely tuned by a computer-controlled dynamic UV

exposure technique. A plasmonic microfilter array with 1152 elements

was fabricated for integration with a commercial CMOS image sensor

to construct a miniature computational spectrometer. With amachine

learning-based training process, an AI-empowered miniature spectro-

meter has been demonstrated tomeasure different input spectra at an

average spectral resolution of 0.65 nm over the whole visible light

range. Such a highly scalable plasmonicmicrofilter arraymay pave the

way for the development of high-performance miniature computa-

tional spectrometers for many applications, such as portable skin

health monitoring and spectral imaging devices.

Methods
Materials
Silver nitrate, ethylene glycol, and titanium (IV) butoxide (97%) were

purchased from Sigma Aldrich, Inc., USA. Shenzhen Huashi Technol-

ogy Co., Ltd., China, provided nitric acid solution (1mol/L aqueous

solution). Shanghai Guangyi Chemical Co., Ltd., China, supplied

dipentaerythritol hexaacrylate (DPHA) acrylate resin (Easepi 7300).

The photoinitiator ethyl (2,4,6-trimethylbenzoyl)phenylphosphinate

(TPO-L) was purchased from CNBM (Chengdu) Optoelectronic Mate-

rials Co., Ltd., China. The FC 4432 fluorocarbon surfactant was pur-

chased from 3M Co., USA. Isopropyl alcohol (IPA) and acetone were

obtained from Anaqua Chemicals Supply, Inc., Ltd., USA. The Donghai

County Zhongzheng Quartz Products Factory, China, provided quartz

sheets with a thickness of 1mm.All thematerialswere used as received

without further purification. Deionized (DI) water with a resistance of

18 MΩ·cm was used in all the experiments.

Sputtering of silver and silica nanolayers
The quartz substrates were cleaned using DI water, IPA, and acetone in

an ultrasonic cleaner and then subjected to high-power plasma treat-

ment for 300 seconds using a plasma cleaner (PDC-002-HP, Harrick

Plasma, USA). After cleaning and treatment, the substrates were

coated with an Ag/SiO2 thin film using a sputtering system (Denton

Vacuum, USA) with Ag and SiO2 sputtering targets. The sputtering

process was carried out with the following parameters: DC 50W/Ar

30 sccm for the Ag layer (with a deposition rate of ~10.5 nm/min) and

RF 200W/Ar 30 sccm for the SiO2 layer (with a deposition rate of

~3.3 nm/min).

Sol-gel spin coating of the titanium dioxide nanolayer
Titanium (IV) butoxide was diluted with IPA to afford a 2wt% solution.

Then, 1mol/L nitric acid aqueous solution was added at a volume ratio

of 1:100. The final solution was then spin-coated on a quartz substrate

capped with silver/silica nanolayers. The process consisted of spin

coating at 500 rpm for 6 s followed by centrifugation at 3000 rpm for

30 s. The substrateswere thenbaked at 110 °C for 10min to remove the

solvent and convert titanate to TiO2 through hydrolysis in air.

Direct printing of size-controlled AgNPs by precision
photoreduction
A homemade troughwasmade of glass slide and coverslip to contain a

2% solution of silver nitrate in ethylene glycol. The quartz substrate

spin-coated with a titanium dioxide nanolayer was then placed inside

the glass trough for the printing of size-controlled AgNPs. From top to

bottom, the structure has multiple layers, including the coverslip, the

silver salt solution, and the quartz substrate. UV light irradiated the

TiO2nanolayer on thequartz substrate through the coverslip and silver

salt solution.

An in-house digital UV lithography setup built with a 365-nm UV

light-emitting diode and a digital micromirror device (DMD) with

1920 × 1080 pixels (DLi6500, Texas Instruments, USA) was used to

print the size-controlled AgNPs. Grayscale image data were loaded to

the DMD to generate dynamic light patterns. The optical resolution of

the system is approximately 297 nm, and its highest illumination

intensity is 1803mWcm−2. The typical exposure time was

1–60 seconds. After the exposureprocess, the quartz substrate printed

with AgNPs was rinsed sequentially with DI water and IPA and finally

dried with a nitrogen gun.

Printing of polymer FP cavities by digital grayscale photo-
polymerization technology
Easepi 7300 DPHA acrylate resin was mixed with 2% TPO-L photo-

initiator. After diluting IPA to a 30wt% concentration, 0.2 wt%of the FC

4432 fluorocarbon surfactant was added. The substrate was ultra-

sonically cleaned and then spin-coated with the photopolymer solu-

tion using a two-step spin coating process, i.e., 500 rpm for 6 s and

2000 rpm for 30 s. After spin coating, the substratewas baked on a hot

plate at 80 °C for 2min to remove the solvent and ensure proper

adhesion of the photopolymer. Greyscale UV exposurewas performed

by using the same in-house digital UV lithography setup used in the

printing of size-controlled AgNPs. The typical exposure time was

1 ~ 10 seconds. After exposure, the sample was developed by using

acetone and IPA and finally dried by using a nitrogen gun.

Numerical simulation
The spectral responses of the plasmonic nanoparticles-in-cavity

microfilters were numerically simulated by using the commercial

software COMSOL Multiphysics. AgNPs were modeled as periodic

arrays in a square lattice. A linearly polarized plane wave was used as

excitation light to illuminate the nanoparticles-in-cavity structure at

normal incidence from the side of the quartz substrate.

Spectrometer characterization and testing
Optical color images of the plasmonicmicrofilters were taken by using

a commercial metallurgical microscope (L3203, Guangzhou LISS

Optical Instrument Co., Ltd., China) and a camera (A7R2, Sony Group

Corporation, Japan). Field-emission scanning electron microscopy

(MAIA3, TESCAN, Czech) was used to obtainmicroscopy images of the

microfilter samples. The transmission and reflection optical spectra of

the samples were measured by using UV‒Vis optical fiber spectro-

meters (USB650 and USB4000, Ocean Optics, USA) with a 50x

objective installed on a metallurgical microscope (L3203, Guangzhou

LISS Optical Instrument Co., Ltd., China).

In addition to the custom-made plasmonic microfilter array, a

C-mount bitelecentric lens (DTCM110-16.6; VICO Technology Co., Ltd.,

China) and a CMOSmonocolour image camera (ASI178MM; integrated

with a Sony IMX178 sensor and 14-bit apparent diffusion coefficient

(ADC)) were used to construct the computational spectrometer. The

spectrum-tunable light sources used in the training and testing of the

computational spectrometer were a tungsten halogen lamp plus a

grating-based monochromator (WDG15-Z, Beijing Optical Century

Instrument Co., Ltd., China) and a xenon lamp light source (BBZM-3,

Anhui Bobei Lighting Electrical Appliance Factory, China).
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Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided in this paper.

Code availability
The codes that support the findings of this study are available in

[repository name e.g., “figshare”] with the identifier(s) [data DOI].
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