
4360 IEEE SYSTEMS JOURNAL, VOL. 17, NO. 3, SEPTEMBER 2023

DeepGraphONet: A Deep Graph Operator Network

to Learn and Zero-Shot Transfer the Dynamic

Response of Networked Systems
Yixuan Sun , Christian Moya , Guang Lin , and Meng Yue , Member, IEEE

Abstract—This article develops a deep graph operator net-
work (DeepGraphONet) framework that learns to approximate
the dynamics of a complex system (e.g., the power grid or traffic)
with an underlying subgraph structure. We build our DeepGra-
phONet by fusing the ability of graph neural networks to exploit
spatially correlated graph information and deep operator networks
to approximate the solution operator of dynamical systems. The
resulting DeepGraphONet can then predict the dynamics within
a given short/medium-term time horizon by observing a finite
history of the graph state information. Furthermore, we design
our DeepGraphONet to be resolution independent. That is, we
do not require the finite history to be collected at the exact/same
resolution. In addition, to disseminate the results from a trained
DeepGraphONet, we design a zero-shot learning strategy that
enables using it on a different subgraph. Finally, empirical results
on the transient stability prediction problem of power grids and
traffic flow forecasting problem of a vehicular system illustrate the
effectiveness of the proposed DeepGraphONet.

Index Terms—Deep learning, graph neural networks (GNNs),
networked dynamical systems, operator regression.

I. INTRODUCTION

N
ETWORKED dynamical systems are ubiquitous in sci-

ence and engineering, e.g., the power grid or traffic net-

works. To simulate and predict the dynamics of such systems,

researchers have developed sophisticated, high-fidelity numer-

ical schemes that can accurately solve the corresponding gov-

erning equations. However, for tasks requiring multiple forward
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simulations, e.g., optimization, uncertainty quantification, and

control, these high-fidelity schemes may become prohibitively

expensive [1].

Deep learning techniques have been proposed to simulate and

predict complex dynamical systems and to address the com-

putational cost problem associated with traditional approaches.

These techniques act as fast surrogate models trained using data,

and they can learn either the underlying governing equations [2],

[3], [4] or the future dynamic response [5], [6]. Traditional

neural networks, such as fully connected neural networks or

recurrent neural networks (RNN), have been used for time-

dependent prediction tasks [7], [8], [9]. However, traditional

neural networks often require massive data to learn the system’s

dynamic response, and retraining is often needed for different

operating conditions. This limitation has hindered the wider use

of traditional neural networks for solving complex dynamical

systems in science and engineering, where data are often scarce

and expensive to collect.

To address such a limitation, several works have proposed

to learn the solution operator (i.e., a mapping between infinite-

dimensional spaces) of complex dynamical systems using, for

example, deep operator networks (DeepONet) [10], graph neural

operators [11], or Fourier neural operators [12]. In particu-

lar, the DeepONet, introduced in the seminal paper [10] and

developed based on the universal approximation theorem for

nonlinear operators [13], has demonstrated remarkable accuracy

and generalization capability for learning the solution operator

of nonautonomous systems.

We used the DeepONet framework in a recent study [14] to

learn the dynamic response of the power grid after a disturbance

without using recurrence and fixed resolution, requirements

typically adopted by RNNs. However, our work only considered

the dynamic response at the bus level. Thus, it neglects the

possibly rich information from the interaction between a bus and

its neighbors. Such a spatial correlation is critical for learning

the solution operator of networked dynamical systems, e.g., the

power grid or traffic networks.

To enable learning the solution operator of complex net-

worked dynamical systems, we propose, in this article, the deep

graph operator network (DeepGraphONet) framework. Deep-

GraphONet is a multiinput multioutput DeepONet that learns the

dynamic response of complex networked systems by exploiting

spatially correlated information from the given underlying graph

or subgraph structure.
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A. Related Work

1) Learning Dynamical Systems: Many works have pro-

posed using machine and deep learning to learn unknown dy-

namical systems from time-series data. In particular, we classify

such works into learning the system’s governing equations [2],

[4], [15] and future response [5], [6]. For example, Brunton

et al. [2], use a dictionary of functions to learn a sparse repre-

sentation of the system’s governing equations. Zhang et al. [15]

adopted Bayesian sparse regression to identify differential equa-

tion terms from a large pool of candidates with error bars.

On the other hand, Qin et al. [5] train a neural network to learn

the next state response of the system given the current state.

The framework then can predict the system’s future response by

recursively using the trained network. Raissi et al. [6] proposed a

multistep method with a feed-forward neural network to approx-

imate the dynamical system response. Most of the aforemen-

tioned works can effectively learn the dynamical system for a

single operating condition. However, the aforementioned works

will require a prohibitive amount of data and training resources

to learn the system’s response to many operating conditions. To

alleviate such limitations, we will use the novel framework of

deep operator learning in this work.

2) Deep Operator Learning: Traditional deep learning tech-

niques [16] focus on approximating the mapping between Eu-

clidean spaces. However, these traditional techniques may not

be adequate for learning the solution operator of a complex

dynamical system. To learn such an operator, several works have

proposed designing operator learning frameworks based on deep

neural networks [10], [11], [12], [17].

We build our work on the DeepONet framework introduced

in [10]. DeepONet is a neural network architecture that can learn

nonlinear operators by using a Branch network to process input

information and a Trunk network to process query locations

within the output function domain. Then, one computes the

output function at a query location by merging the features from

both the Branch and Trunk nets using a dot product. DeepONet

has demonstrated its exceptional approximation and general-

ization capabilities using a low amount of data for problems

in power engineering [14], electroconvection, and multiphysics

tasks [18], or material science tasks [19]. DeepONet, however,

is only a single-input single-output operator framework. Thus,

one cannot directly use DeepONet for networked dynamical

systems.

Jin et al. [20] proposed MIONet, a multiinput function

single-output function DeepONet to alleviate the multiple-input

problem. MIONet is composed of multiple branch networks to

encode the input functions, and a trunk network that is tasked

with encoding the output function’s domain. Nevertheless, the

MIONet framework fails to consider the spatial correlation

among input functions of a networked system and only produces

a single output function. Our work effectively alleviates both

limitations by incorporating a graph neural network (GNN)

within the DeepONet framework.

3) Graph Neural Networks (GNNs): In traditional deep

learning, the training data, e.g., time series, tabular-like data,

and images, are well-structured, and one assumes it belongs

to Euclidean space. However, we cannot naturally assume that

other forms of data, such as power grid and traffic data, belong to

Euclidean space. As a result, researchers developed GNNs [21]

to capture the spatial correlation of data with an underlying graph

representation.

At the early stage, GNNs were used within recursive

schemes [22], [23] to reach steady node states for subse-

quent tasks. These schemes, however, suffered from high-

computational costs and were limited to some specific graph

structures. To alleviate such issues, other works [24], [25], [26]

build on graph signal processing to develop graph spectral con-

volution networks and their localized variants. In graph spectral

convolution, one performs the graph convolution operation in the

Fourier domain. Such spectral convolution requires the eigen-

decomposition of the graph Laplacian. Spectral convolution,

however, is expensive and does not allow transferring to an-

other graph with a different topology [21], [27]. This limitation

prevents the trained GNNs from achieving zero-shot learning.

On the other hand, similar to standard convolutional neural

networks (CNNs), several works [28], [29] proposed nonspec-

tral and spatial convolution directly defined on the graph. In

particular, the spatial convolution locally operates on nodes,

and thus, one can use it on different graphs. Furthermore, by

stacking spatial convolutional layers, we can effectively process

information from nodes located more than one hop away.

To learn with graph data efficiently and effectively, the authors

in [30], [31], and [32] employed the spatial graph convolution

within a message-passing framework. The main idea of such a

framework is to update the node state information by aggregating

information from neighboring nodes, followed by a neural-

network-based transformation. In this work, we adopt such a

message-passing framework, and in particular, the framework

from GraphSage [32], to process the input information to the

DeepONet.

This work aims at learning the dynamic evolution of graph

signals using a fixed graph structure. Many studies [33], [34],

[35], [36], [37] have combined deep learning techniques for

time series (e.g., RNNs [34], [35] and CNNs [33], [36], [37])

with GNNs to produce time-dependent predictions that can take

into account spatial correlations. However, such methods may

lack flexibility and require high computational cost to learn the

solution operator of a networked dynamical system. Thus, in our

work, we will employ the deep operator learning framework to

learn the parametric mapping between graph functions directly.

B. Our Work

The objectives of this work are twofold.

1) Approximating the Solution Operator: We aim to derive a

deep-learning-based method to approximate the solution

operator of a system in which the dynamics evolve within

an underlying subgraph structure. For instance, we aim to

use our method to learn the dynamics of a control area

within a large-scale power grid or the traffic dynamics of

a city’s neighborhood.

2) Zero-Shot Learning: We aim to apply the trained proposed

model directly to approximate the solution operator on
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unseen graphs or subgraphs with different structures. In

other words, we aim to achieve zero-shot learning. For

instance, we aim to train the model on a small subgraph,

and then, use it to make highly accurate predictions on a

larger graph.

The contributions of this work are as follows.

1) We first build (in Section III) a DeepGraphONet frame-

work that learns to approximate the solution operator of a

dynamical system with an underlying connected subgraph

structure. DeepGraphONet fuses the ability of GNNs to

exploit the graph information and DeepONets [10] to

approximate the solution operator of nonlinear systems.

The proposed DeepGraphONet takes as inputs a finite

history of the graph state information and the desired query

location with an arbitrary resolution for short/medium-

term prediction. Compared to the vanilla DeepONet [10],

the proposed DeepGraphONet is a multiinput multioutput

framework and resolution-independent in the input func-

tion; that is, we do not require the Branch sensors to be

fixed.

2) We then propose (in Section IV) a zero-shot learning

strategy that exploits the property of message-passing

GNNs to enable directly using a trained DeepGraphONet

on a different graph or subgraph for the same task.

3) Finally, we verify the efficacy of the DeepGraphONet on

the transient stability prediction problem of the IEEE 16-

machine 68-bus system and the traffic dynamics forecast-

ing problem using the METR-LA dataset, which contains

traffic information measured using loop detectors in the

highway of Los Angeles County [38].

The rest of this article is organized as follows. Section II

introduces the problem of approximating the solution operator

of a dynamical system with an underlying subgraph structure.

The DeepGraphONet framework to approximate such a solution

operator is detailed in Section III-A. We present the resolution-

independent DeepGraphONet and our zero-shot learning strat-

egy in Sections III-B and III-C, respectively. Numerical exper-

iments illustrate the efficacy of DeepGraphONet in Section IV.

Section V discusses our future work, and finally, Section VI

concludes this article.

II. PROBLEM SETTINGS

We consider a complex networked dynamical system. We

model its networked structure using the undirected graph G =
(V,E), where V is the set of |V | nodes and E is the set of |E|
edges, and dynamics using the initial value problem

d

dt
x(t) = f(x(t);G)

x(t0) = x0. (1)

Here, x(t) ∈ X ⊂ R
d×|V | is the graph-valued state function,

x0 ∈ X the initial condition, and f : X → X the unknown

vector field. For simplicity, we assume each node’s state has

the same dimension d = 1, and with some abuse of notation, we

make explicit the dependence of the dynamics f on the underly-

ing graph structure G. We also let for future work the case when

we know an approximate model of the dynamics fapprox ≈ f .

A. Solution Operator

Our goal is to approximate the dynamic response of (1)

described via the solution operator (also known as flow map)

F(x(t0);G)(t) ≡ x(t) = x(t0) +

∫ t

t0

f(x(β);G)dβ (2)

for all t ∈ [t0, tf ], where [t0, tf ] ⊂ [t0,∞) denotes a finite time

interval where the solution operator exists and is unique.

For large-scale networked dynamical systems, i.e., when

|V | � 1, learning the aforementioned solution operator may be

prohibitively expensive. Moreover, one may not have the access

to all graph states and may be interested in learning the dynamics

of a subregion within the network, i.e., a subgraph. For example,

for power grids, we may want to learn the dynamic response of a

control area, or for traffic networks, we may want to approximate

the dynamic response of a city or a district.

To this end, let us split the graph-valued state function as x =
(xS ,xSc). Here, S = (VS , ES) denotes the subgraph region of

interest within the network, where VS ⊂ V is a connected set of

nodes within V and Es ⊂ E, and Sc denotes the complement

of S. To describe the dynamics of xS(t), we employ the Mori–

Zwanzig formalism [39], [40], which yields

d

dt
xS(t) = R (xS(t);S) +

∫ t

t0

K (xS(t− β), β) dβ +N (x0)

(3)

where the first term R is the Markovian term, which depends on

the current value of xS ; the second term is the memory integral,

which depends on the values of the state and input variables from

the initial time β = t0 to the current time β = t. This memory

integral involves K, which is commonly known as the memory

kernel. Finally, the third term is the “noise” term, which depends

on the initial condition x0.

B. Decaying Memory Assumption

Learning the memory integral from the initial time β = t0 is

challenging as the computational cost increases with the integral

bounds. Also, from the neural network approximation point

of view, integrating from the initial time leads to increasing

input length for the network, which is impractical for network

training. To alleviate such a challenge, we assume the memory

decays over time, that is, there exists tM ∈ (t0, t) (we treat tM
as a hyperparameter in this article) such that we can neglect

the effect of the memory for all β ∈ [t0, t− tM ). Formally,

this corresponds to the following approximation of the memory

integral. For any given ε > 0, there exists t0 < tM < t such that

∣

∣

∣

∣

∫ t

t0

K (xS(t− β), β) dβ −

∫ tM

t0

K (xS(t− β), β) dβ

∣

∣

∣

∣

< ε.

(4)
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Fig. 1. DeepGraphONet architecture. The Branch Net is a GNN that uses message passing to learn the nodes’ representation on the networked system’s graph S

and takes as input the graph state signals {xS(t− τi)}
m

i=1
, τ ∈ [0, tM ]. The Trunk Net is a feed-forward neural network that takes as input the query location hn

within the prediction horizon [0, h]. We obtain the DeepGraphONet’s output Fθ({xS(t− τi)}
m

i=1
;S)(hn) by applying the GNN-based dot product between the

GNN-Branch Net and the Trunk Net. The GNN-based dot product performs the standard dot product between each node in the Branch Net-produced graph and
the Trunk Net.

C. Discrete Representation of the Integral

In practice, one computes the truncated integral using some

discretized scheme (e.g., quadrature) such that for any given

κ > 0, we have

∣

∣

∣

∣

∫ tM

t0

K (xS(t− β), β) dβ

−Q (xS (t− τ1) , . . . ,xS (t− τm))

∣

∣

∣

∣

< κ (5)

where the memory partition of size m (we treat this memory

resolutionm as a hyperparameter in this article) is arbitrary and

satisfies 0 ≤ τ1, . . . , τm ≤ tM and {t− τi}
m
i=1 ⊂ [t− tM , t].

These decaying memory and discrete representation assump-

tions lead to the following approximate dynamics of xS as

d

dt
xS(t) = R(xS(t)) +Q (xS (t− τ1) , . . . ,xS (t− τm)) .

(6)

In this article, we employ the local solution operator within

the arbitrary interval [t, t+ hn], hn ∈ [0, h], where h is the

predicting horizon, and we treat it as a hyperparameter in this

article. For all t > t0, the local memory sensor locations satisfy

{t− τi}
m
i=1 ⊂ [t− tM , t]. With this local memory, the local

solution operator is

F̃ (xS(t), {xS (t− τi)}
m
i=1;S) (hn) = xS(t)

+

∫ t+hn

t

R (xS(β);S) dβ

+Q (xS (t− τ1) , . . . ,xS (t− τm)) . (7)

In the aforementioned, we emphasized that the solution operator

depends on the finite history of the subgraph state informa-

tion xS(t) within the time interval [t− tM , t].
Our goal in this article is to design a DeepGraphONet Fθ,

with trainable parameters θ ∈ R
p, to approximate the solution

operator F̃ for all hn ∈ [0, h]. To control the approximation

power of the proposed DeepGraphONet, we will use the follow-

ing two hyperparameters: the memory’s size tM and predicting

horizon h.

III. METHODS

This section describes the proposed DeepGraphONet Fθ to

approximate the solution operator F̃ .

A. Deep Graph Operator Network (DeepGraphONet)

Building on the DeepONet, introduced in [10], we pro-

pose DeepGraphONet Fθ, a multiinput multioutput DeepGra-

phONet, which consists of two neural networks (see Fig. 1): the

Branch network and the Trunk network.

1) Branch Network: The Branch net is a GNN that pro-

cesses the finite history of the graph-state information. The

Branch maps the graph-state information {xS(t− τi)}mi=1,

where xS(t− τi) ∈ R
|S|, to the graph-based coefficients b ∈

R
q×|S|.

To build the proposed GNN-based Branch network, we use a

collection of message passing convolutional graph layers, which

we adopted from [32]. For all i ∈ S, the forward pass of the

corresponding message passing layer reads

x′
i(t) = σ (W1xi(t) +W2 · meanj∈Ni

(xj(t))) (8)

where xi(t) is the ith node’s state at time t, Ni is the set of nodes

adjacent to the ith node,W1 andW2 are trainable weights, and σ
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is a nonlinear activation function. In our experiments, we chose

to have 20 message-passing layers and rectified linear unit as

the activation function. Within each graph dataset, the nodes

are entities of interest (e.g., power grid buses and traffic net-

work sensors), and the edges describe the connectivity between

nodes. At this point, we do not consider edge features/weights

according to (8).

By stacking these message passing layers, we can transport

information from nodes located two or more hops away to the ith

node. Such a process allows the network to learn automatically

spatial dependencies among nodes. Furthermore, since our goal

is to obtain the dynamic response of all nodes, we do not use a

readout (pooling) in the proposed GNN-based Branch net.

Remark. Fixed versus resolution-independent sensors: If the

sensor locations used to discretize the input representing the

finite history of graph-state information {xS(t− τi)}mi=1 are

fixed (as in [10]), then we denote the proposed framework as

the standard DeepGraphONet. If, on the other hand, the sensor

locations can change over time, then we denote the proposed

framework as the resolution-independent DeepGraphONet (see

Section III-B for more details).

2) Trunk network: The Trunk net is a multilayer percep-

tron (MLP) that maps a given query location hn, within the

prediction horizon [0, h], to a collection of trainable Trunk basis

functions

ϕ := (ϕ1(hn), ϕ2(hn), . . . , ϕq(hn))
� ∈ R

q. (9)

Finally, we compute the DeepGraphONet’s output for each node

i ∈ S by merging the corresponding Branch coefficients b
(i)

with the Trunk basis functions ϕ using the dot product:

F
(i)
θ ({xS(t− τi)}

m
i=1 ;S) (hn) =

q
∑

j=1

b
(i)
j · ϕj(hn). (10)

3) Training the DeepGraphONet Fθ: To train the parame-

ters θ of the proposed DeepGraphONet, we minimize, using

gradient-based optimization schemes (e.g., Adam [41]), the loss

function

L (θ;D)=
1

N

N
∑

k=1

∣

∣

∣
x
k
S(t+hk

n)−Fθ

(

{

x
k
S(t−τi)

}m

i=1

)

(hk
n)
∣

∣

∣

1

(11)

using the dataset D of N := |D| triplets

D :=
{

{xk
S(t− τi)}

m
i=1, h

k
n,x

k
S(t+ hk

n)
}N

k=1
(12)

generated using the true solution operator F .

B. Resolution-Independent DeepGraphONet

The vanilla DeepONet, introduced in [10], effectively and

accurately approximates single-input single-output solution op-

erators F . Thus, DeepONet can predict arbitrary locations

within the output function domain [0, h]. However, the main

limitation of the vanilla DeepONet is that it requires a fixed set

of sensors within the input function domain [t− tM , t]. This

requirement forces the network to take new data points with the

same resolution, which, in turn, prevents the flexible application

Fig. 2. Input for the Branch Net in standard and resolution-independent
DeepGraphONet. (a) Input for the Branch Net in the standard DeepGraphONet,
where the network takes the input function values at a fixed set of sensors.
(b) In a resolution-independent DeepGraphONet, the Branch Net takes both
input function values and their locations. The fixed set of sensors requirement
is eliminated.

of the trained network, e.g., in scenarios where sampling may

be inexact or recursive prediction is needed.

To address such a limitation, we propose a simple, intuitive

solution that allows using resolution-independent sensors, as

shown in Fig. 2. More specifically, we enable the GNN-based

Branch network to take as inputs not only the graph-state mem-

ory input {xS(t− τi)}
m
i=1, but also the corresponding, possibly

time-variant, sensor locations. To this end, for each node i ∈ S,

we construct the input function by concatenating the node-state

function values {xS(t− τi)}
m
i=1 with its corresponding sen-

sor location {t− τi}mi=1. These function-location value pairs

provide complete information about the input, enabling us to

relax the fixed sensors’ requirement. In Section IV, we will

demonstrate that the resolution-independent DeepGraphONet

does not cause performance degradation when compared to the

standard DeepGraphONet.

C. Zero-Shot Learning Scheme

In this article, we build the proposed DeepGraphONet frame-

work to be versatile. That is, once we have trained the Deep-

GraphONet Fθ∗ using the graph S, we expect to use it with high

accuracy on a different graph S ′ 
= S (with possibly different

number of nodes) for the same task.

Such a zero-shot learning capability of the proposed Deep-

GraphONet is achieved immediately due to the message-passing

nature of the GNN-based Branch network. Zero-shot learning

aims to apply the trained network to unseen instances with

different underlying structures, e.g., domain discretization or

graph. With message-passing GNN layers, the DeepGraphONet
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learns the weights associated with the node feature dimension

after concatenating the messages from the neighboring nodes.

The trained DeepGraphONet can then directly apply the learned

weights to a different graph after the message-passing operation

for the same task.

In particular, we can directly apply DeepGraphONet to S ′

because the trainable weights of the GNN-based Branch depend

on the node feature dimension and not on the adjacency matrix.

Thus, the proposed DeepGraphONet is inductive, and we may

use it beyond the graph S used during training. In Section IV,

we will show that DeepGraphONet can effectively approximate

the solution operator of networked dynamical systems within

subgraph structures S ′ not used during training, thus, achieving

zero-shot learning.

IV. EXPERIMENTS

To evaluate the accuracy and effectiveness of the proposed

DeepGraphONet, we test it on the following two different tasks:

1) predicting the transient response of power grids (see Sec-

tion IV-A);

2) forecasting traffic on highway networks (see Sec-

tion IV-B).

In the experiments, we use tM , m, h, and hn to denote the

memory length, number of sensors within the memory, predic-

tion horizon, and query location within the prediction horizon,

respectively. We treat tM andh as hyperparameters in this article

and explore the model performance. We evaluated the proposed

DeepGraphONet against several baseline models. The baseline

models include the following:

1) autoregressive integrated moving average (ARIMA),

which is a commonly used linear model for time-series

forecasting;

2) MLP, which is a fully connected feedforward neural net-

work that takes the input history at different timesteps as

features and outputs the horizon-length predictions;

3) vanilla DeepONet [10] that does not consider the graph

structure.

Neural networks and implementation protocols: We use the

same neural network architecture to build the following two

DeepGraphONets: 1) the standard DeepGraphONet, which has

fixed sensors as in [10], and 2) resolution-independent DeepGra-

phONet, which we proposed in this article (see Fig. 2) to alleviate

the fixed-sensors constraint. To build the DeepGraphONets’

architecture, we proceed as follows. The Branch Net uses 20

message passing graph convolution layers, and the Trunk Net

uses five feed-forward layers. The output dimension is 100

neurons for both the Branch and Trunk Nets.

We prepared the data to align with the DeepGraphONet’s

formulation, where we set a memory partition and an out-

put function domain bound h. With regard to the resolution-

independent DeepGraphONet, with the memory partition size

m, we randomly sampled �m
2 � sensors and stacked them with

their locations as additional feature channels for the Branch Net.

Algorithm 1 shows the procedure of using trained DeepGra-

phONet to predict the complete future trajectories. With the

Algorithm 1: Complete Trajectory Prediction Scheme.

trained network, we use the initial memory and partition to pro-

duce predictions covering the entire prediction horizon. We then

repeat this process with the newly observed ground truth as the

memory for the next prediction horizon until the trajectory’s end.

For example, in the power grid problem, we have a

trained DeepGraphONet with memory length tM = 200ms and

prediction horizon h = 20ms. In testing time, we want to pro-

duce predictions of the entire trajectory of size 700 ms after

the initial memory. We use the initial memory and the trained

network to make predictions for the next 20 ms and save the

predictions to a list. We then use the new observations to produce

predictions for another 20 ms until the trajectory ends. Finally,

we concatenate the saved predictions as the predicted complete

trajectory.

We implemented the DeepGraphONet in PyTorch and

trained and tested it with an Nvidia GPU. The source code of the

model can be accessed on https://github.com/cmoyacal/graph-

deepOnetGitHub.1 We measured and compared the performance

of the proposed model and baseline models in terms of L1

relative error (L1%), root mean squared error (RMSE), and

coefficient of determination (R2), and investigated the Deep-

GraphONet’s sensitivity to history length, tM , and prediction

horizon, h, using L1 relative error. The formulations of the

metrics are in Appendix A.

1The repository will be public upon the acceptance of the manuscript.
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Fig. 3. Comparisons of ARIMA, MLP, vanilla DeepONet, and the proposed
DeepGraphONet in terms of L1 relative error (%), RMSE, and coefficient of
determination (R2). (a) Model performances on the power grid problem testing
set with a horizon, h = 20 ms. (b) Model performances on the testing set of the
traffic prediction problem with a horizon, h = 30min.

Fig. 4. One-line diagram of the New York–New England 16-generator 68-
bus power grid. We train our DeepGraphONet using the arbitrary subgraph of
buses S := {15, 16, 17, 19, 21, 24} ⊂ G, highlighted with red dots.

A. Experiment 1: Power Transient Stability

1) Dataset: We simulated the datasets for the New York–

New England 16-generator 68-bus power grid model, shown

in Fig. 4, using time-domain simulations with EPTOOL [42].

The simulations considered the full dynamical model of the

generators, including turbine governors, excitation systems, and

power system stabilizers. The faults were simulated by randomly

disconnecting one transmission line. The postfault trajectory

occurred within the interval (tcl, T ], with tcl fixed at 2 s and

simulation time T at 7 s. More details about the data generation

are in [14]. The power grid dataset consisted of 1830 independent

Fig. 5. Zero-shot learning on a larger subgraph. We train the DeepGraphONet
on an arbitrary small subgraph (marked in red) and directly apply the trained
network to a much larger subgraph (marked in blue) to achieve high predicting
performance (0.686% L1 relative error).

TABLE I
MEAN AND STANDARD DEVIATION (ST.DEV.) OF THE L1-RELATIVE ERROR (%)
BETWEEN THE PREDICTED AND ACTUAL TRANSIENT RESPONSE TRAJECTORIES

FOR MULTIPLE TIME HORIZONS h AND USING THE (I) STANDARD

DEEPGRAPHONET AND (II) RESOLUTION-INDEPENDENT DEEPGRAPHONET

TABLE II
MEAN AND STANDARD DEVIATION (ST.DEV.) OF THE L1-RELATIVE ERROR (%)
BETWEEN THE PREDICTED AND ACTUAL TRANSIENT RESPONSE TRAJECTORIES

FOR MULTIPLE MEMORY RESOLUTIONS m AND USING THE (I) STANDARD

DEEPGRAPHONET AND (II) RESOLUTION-INDEPENDENT DEEPGRAPHONET

trajectories on a subgraph with six nodes (red buses in Fig. 5).

Each trajectory had 701 time steps with a resolution of 1 ms.

Among the available trajectories, 60%, 20%, and 20% were used

for training, validation, and testing, respectively. We then applied

the trained model to the entire region (marked in blue in Fig. 5),

achieving zero-shot learning.

2) Testing Accuracy: We show the model testing results in

Figs. 3(a) and 6 and Tables I and II. Overall, our trained both

standard and resolution-independent DeepGraphONets accu-

rately approximated the solution operator for the power grid

problem. Compared to other baseline models, the DeepGra-

phONet resulted in the lowest L1 relative error and RMSE and

the highest R2 score. The L1 relative errors of all short- and

medium-term forecasting settings were within 1%. Moreover,

the resolution-independent DeepGraphONet, taking the input

function representation with an arbitrary resolution, did not

show performance degradation compared to the standard [see

Fig. 7(b)].
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Fig. 6. Comparison of the DeepGraphONet predicted transient trajectories (dashed red lines) with the actual trajectories (solid black lines) on the subgraph of
buses S := {15, 16, 17, 19, 21, 24} ⊂ G. DeepGraphONet generated all predictions at the same time given the memory trajectory (dashed gray lines). We test
multiple prediction horizons h and memory resolutions tM . In particular, (a) h = 2ms with tM = 50ms; (b) h = 10ms with tM = 50ms; (c) h = 20ms with
tM = 50ms; (d) h = 200ms with tM = 50ms; (e) h = 20ms with tM = 100ms; and (f) h = 20ms with tM = 200ms.

Fig. 7. Comparison of the DeepGraphONet predicted transient trajectories
(dashed red lines) with the actual trajectories (solid black lines) on the subgraph
of buses S := {15, 16, 17, 19, 21, 24} ⊂ G using the proposed resolution-
independent DeepGraphONet. We test two time horizons h and memory resolu-
tions tM . (a) h = 500ms with tM = 200ms. (b) h = 2ms with tM = 50ms.

3) Varying Memory Lengths: We explored the impact and

sufficiency of local memory lengths. We trained the Deep-

GraphONet with different memory lengths, tM = 50ms, tM =
100ms, tM = 200ms, and evaluated the networks on the test-

ing dataset. The prediction results suggest that with larger

tM , the average model performance improves [see Fig. 6(d),

(e), and (f)]. We observed the same trend in both original

and resolution-independent DeepGraphONets, as shown in

Table II.

4) Varying Horizons: To investigate the performance change

of DeepGraphONet with respect to the change of the output

function domain, we varied the prediction horizons h. In par-

ticular, we trained the networks with h = 2ms, h = 10ms,

h = 20ms, and h = 200ms with the same memory length,

tM = 50ms. The results (see Fig. 6(a), (b), and (c), and

Table I) show for all prediction horizons, both the standard and

resolution-independent DeepGraphONet made accurate approx-

imations to the solution operators. Furthermore, the network

performance increases as h decreases. For short- and medium-

term forecasting, the networks led to L1 relative errors of less

than 1%, whereas when h = 200ms, the relative error was over

2%. However, with longer local memory (tM = 200ms), the

trained DeepGraphONet accurately predicted the longer hori-

zon (h = 500ms), shown in Fig. 7(a).

5) Zero-Shot Learning: Finally, we applied the trained model

to a larger subgraph from the same power grid model. The

new subgraph has 34 nodes and contains the graph used during

training. By directly applying the trained model to the larger

subgraph without further training, we achieved zero-shot learn-

ing with high accuracy. Fig. 8 depicts the prediction results on

nine randomly selected nodes of the new subgraph. For these

nodes, the predictions aligned with the ground truth well with a

L1 relative error of 0.686%.

With the aforementioned, we conclude that the proposed

DeepGraphONet can successfully learn the solution operator

with local memories for predicting the transient stability of

power grids. Particularly, the resolution-independent DeepGra-

phONet, although having the flexibility of taking the discrete

input function representation with an arbitrary resolution, does

not show performance degradation. In addition, one can directly

apply the trained DeepGraphONet to solve the power grid

transient stability problem with a different underlying graph

structure, achieving zero-shot learning.
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Fig. 8. Zero-shot learning results. Comparison of the DeepGraphONet pre-
dicted transient trajectories (dashed red lines) with the actual trajectories (solid
black lines) on a subgraph of buses S′ := {2, 3, 4, 5, 6, 7, 18, 25, 27} ⊂ G

different from the training subgraph S.

Fig. 9. METR-LA traffic network (adopted from [35]). The black dots repre-
sent the loop detectors, which we regard as the nodes of the graph G.

B. Experiment 2: Traffic Forecasting

1) Dataset: We used the METR-LA dataset [38], containing

179 loop detectors, that collect the speed data on the freeway

network in Los Angeles County, shown in Fig. 9. The dataset

contained speed measurements of the year 2018, with a res-

olution of 5 min. Due to the lack of independent trajectories,

we split the data based on the time for training, validation, and

testing purposes. We used the data from January to June 2018

for training, July to September 2018 for validation, and October

to December 2018 for testing. We trained and evaluated the

network using the first 20 nodes in the graph and directly applied

the trained network to the entire graph for zero-shot learning.

We followed the same training protocol as in the power grid

experiment and reported model performances on the testing set.

Fig. 3(b) compares the DeepGraphONet and other baseline mod-

els. The results suggest that the DeepGraphONet has superiority

over other baseline models in terms of all metrics.

2) Varying Horizons: We investigated the DeepGraphONet’s

performance in traffic forecasting under the commonly used

horizons [43], h = 15min, h = 30min, and h = 60min with

the local memory length fixed as tM = 60min. Fig. 10 shows

the prediction results from the randomly picked four nodes in the

graph where the predicting horizon was h = 60min. DeepGra-

phONet captured the future speed of all nodes at the same time

accurately using the history observation, while at some sharp

turning points, the model did not match the oscillation exactly

but captured the average behavior. The results suggest that with

Fig. 10. Comparison of the DeepGraphONet predicted trajectories (dashed
red lines) with the actual trajectories (solid black lines) on the subgraph S :=
{1, 6, 8, 13} of the highway network G using tM = 60 (minutes) memory
length.

TABLE III
MEAN AND STANDARD DEVIATION (ST.DEV.) OF THE L1-RELATIVE ERROR (%)

BETWEEN THE PREDICTED AND ACTUAL TRAFFIC TRAJECTORIES FOR

MULTIPLE TIME HORIZONS T AND USING THE (I) STANDARD DEEPGRAPHONET

AND (II) RESOLUTION-INDEPENDENT DEEPGRAPHONET

an increasing horizon, the model performance decreased overall

and the error range became larger. Table III lists the mean and

standard deviation of the L1 relative error of the models, both

for original and resolution-independent DeepGraphONet, with

different predicting horizons on the testing set. The results imply

the great ability of the proposed DeepGraphONet in predicting

the traffic dynamics for all nodes present in the network simul-

taneously, with ∼6% error for short-term (5 min) prediction and

∼11% for long-term (1 h).

3) Zero-Shot Learning: To test the DeepGraphONet’s po-

tential of zero-shot learning for traffic forecasting, we directly

applied the trained network to the entire METR-LA network

with 179 nodes. Fig. 11 shows the visualized model prediction

results on four randomly picked nodes among the 179. With

1-h predicting horizon, the trained model closely predicted the

future on the unseen graph structure for all nodes at the same

time, resulting in the L1 relative error of 10.79%.

The experiment results for the traffic forecasting problem

strongly suggest that our proposed DeepGraphONet was power-

ful in learning the solution operator for traffic dynamics. Also,

the DeepGraphONet can be better implemented for practical

applications for it is easy to train, can produce predictions at

arbitrary time step within the horizon, and does not require

forward dependence to obtain the value at this step.
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Fig. 11. Zero-shot learning results. Comparison of the DeepGraphONet pre-
dicted trajectories (dashed red lines) with the actual trajectories (solid black
lines) on all the 179 nodes of the METR-LA highway network G. We illustrate
the predicted trajectories for the following four nodes {21, 121, 165, 172},
which we selected uniformly at random.

V. DISCUSSION AND FUTURE WORK

We used the proposed DeepGraphONet to learn the solution

operator of networked dynamical systems and demonstrated its

effectiveness in power grid transient stability and traffic fore-

casting tasks. In particular, the resolution-independent DeepGra-

phONet demonstrated excellent accuracy in approximating the

solution operator without performance degradation while having

the ability of flexible discrete input function representation.

We demonstrated that the trained DeepGraphONet can pro-

duce predictions at arbitrary query locations within the output

function domain and does not require forward dependence in the

output sequence. In addition, we showed that one could directly

apply the DeepGraphONet, trained on a small subgraph region,

to a larger graph region for the same task, achieving zero-shot

learning with high accuracy. With the promising wide-ranged

applications of the proposed DeepGraphONet, we provide next

a preamble for our future work.

1) On physics-informed DeepGraphONet. This article fo-

cuses on developing a physics-informed version of Deep-

GraphONet. We plan to use first-principles models to train

the DeepGraphONet without data or use them as prior

information during data-driven training.

2) On anomaly detection with DeepGraphONet. We will

focus part of our future work on using DeepGraphoNet

for detecting anomalies. To this end, we must endow the

proposed DeepGraphONet with the ability to estimate the

network’s edges status using graph trajectory data.

3) On learning networked control systems. We plan to extend

the proposed DeepGraphONet for learning networked

control dynamical systems. This problem is more chal-

lenging because we need to learn the system’s response

using graph trajectory and its response to external inputs. If

successful, our DeepGraphONet for control may become

an essential tool for implementing model-based multia-

gent continuous reinforcement learning.

4) On predicting long-term trajectories. We plan to develop

effective training strategies to alleviate error accumulation

such that we can recursively use the trained DeepGra-

phONet to forecast trajectories for long-term horizons

with high accuracy.

VI. CONCLUSION

In this article, we introduced the DeepGraphONet framework

to predict the dynamics of complex systems with underlying

subgraph structures. By fusing the ability of GNNs to correlate

graph trajectory information and DeepONet to approximate

nonlinear operators, we achieved significant results on complex

problems such as predicting the transient stability of a control

area of a power grid and the traffic flow within a city or district.

Moreover, we built our DeepGraphONet to be resolution inde-

pendent, i.e., we do not require a set of fixed sensors to encode the

graph trajectory history. Finally, we designed a zero-shot learn-

ing strategy that enables using the proposed DeepGraphONet

on a different subgraph with high predicting performance.

APPENDIX

A. Evaluation Metrics

In the following formulations of evaluation metrics, we use y

to represent the true values, ŷ the model approximated values,

and N the data size.

1) L1 relative error

L1 relative error =
||y − ŷ||1
||y||1

× 100%. (13)

2) Root mean square error (RMSE)

RMSE =

√

∑

(y − ŷ)2

N
. (14)

3) Coefficient of determination

R2 = 1−

∑

(y − ŷ)2
∑

(y − ȳ)
, (15)

where ȳ is the average of the true values.
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