4360

IEEE SYSTEMS JOURNAL, VOL. 17, NO. 3, SEPTEMBER 2023

DeepGraphONet: A Deep Graph Operator Network
to Learn and Zero-Shot Transfer the Dynamic
Response of Networked Systems

Yixuan Sun"’, Christian Moya

Abstract—This article develops a deep graph operator net-
work (DeepGraphONet) framework that learns to approximate
the dynamics of a complex system (e.g., the power grid or traffic)
with an underlying subgraph structure. We build our DeepGra-
phONet by fusing the ability of graph neural networks to exploit
spatially correlated graph information and deep operator networks
to approximate the solution operator of dynamical systems. The
resulting DeepGraphONet can then predict the dynamics within
a given short/medium-term time horizon by observing a finite
history of the graph state information. Furthermore, we design
our DeepGraphONet to be resolution independent. That is, we
do not require the finite history to be collected at the exact/same
resolution. In addition, to disseminate the results from a trained
DeepGraphONet, we design a zero-shot learning strategy that
enables using it on a different subgraph. Finally, empirical results
on the transient stability prediction problem of power grids and
traffic flow forecasting problem of a vehicular system illustrate the
effectiveness of the proposed DeepGraphONet.

Index Terms—Deep learning, graph neural networks (GNNs),
networked dynamical systems, operator regression.

I. INTRODUCTION

ETWORKED dynamical systems are ubiquitous in sci-
N ence and engineering, e.g., the power grid or traffic net-
works. To simulate and predict the dynamics of such systems,
researchers have developed sophisticated, high-fidelity numer-
ical schemes that can accurately solve the corresponding gov-
erning equations. However, for tasks requiring multiple forward

Manuscript received 18 July 2022; revised 27 March 2023; accepted 18 July
2023. Date of publication 7 August 2023; date of current version 30 August 2023.
This work was supported by the Advanced Grid Modeling Program, Office of
Electricity Delivery and Energy Reliability of the U.S. Department of Energy.
The work of G. Lin, C. Moya, and Y. Sun was supported in part by the National
Science Foundation under Grant OAC-2311848, Grant DMS-1555072, Grant
DMS-2053746, and Grant DMS-2134209, in part by Brookhaven National
Laboratory Subcontract382247, and in part by the U.S. Department of Energy
(DOE) Office of Science Advanced Scientific Computing Research Program
(DE-SC0021142). (Corresponding author: Guang Lin.)

Yixuan Sun was with the School of Mechanical Engineering, Purdue Uni-
versity, West Lafayette, IN 47907 USA. He is now with Mathematics and
Computer Science Division, Argonne National Laboratory, Lemont, IL 60439
USA (e-mail: yixuan.sun@anl.gov).

Christian Moya is with the Department of Mathematics, Purdue University,
West Lafayette, IN 47907 USA (e-mail: cmoyacal @ purdue.edu).

Guang Lin is with the School of Mechanical Engineering, Purdue University,
West Lafayette, IN 47907 USA, and also with the School of Mechanical Engi-
neering, Purdue University, West Lafayette, IN 47907 USA (e-mail: guanglin@
purdue.edu).

Meng Yue is with the Interdisciplinary Science Department, Brookhaven
National Laboratory, Upton, NY 11973-5000 USA (e-mail: yuemeng @bnl.gov).

Digital Object Identifier 10.1109/JSYST.2023.3298884

, Guang Lin

, and Meng Yue ", Member, IEEE

simulations, e.g., optimization, uncertainty quantification, and
control, these high-fidelity schemes may become prohibitively
expensive [1].

Deep learning techniques have been proposed to simulate and
predict complex dynamical systems and to address the com-
putational cost problem associated with traditional approaches.
These techniques act as fast surrogate models trained using data,
and they can learn either the underlying governing equations [2],
[3], [4] or the future dynamic response [5], [6]. Traditional
neural networks, such as fully connected neural networks or
recurrent neural networks (RNN), have been used for time-
dependent prediction tasks [7], [8], [9]. However, traditional
neural networks often require massive data to learn the system’s
dynamic response, and retraining is often needed for different
operating conditions. This limitation has hindered the wider use
of traditional neural networks for solving complex dynamical
systems in science and engineering, where data are often scarce
and expensive to collect.

To address such a limitation, several works have proposed
to learn the solution operator (i.e., a mapping between infinite-
dimensional spaces) of complex dynamical systems using, for
example, deep operator networks (DeepONet) [10], graph neural
operators [11], or Fourier neural operators [12]. In particu-
lar, the DeepONet, introduced in the seminal paper [10] and
developed based on the universal approximation theorem for
nonlinear operators [13], has demonstrated remarkable accuracy
and generalization capability for learning the solution operator
of nonautonomous systems.

We used the DeepONet framework in a recent study [14] to
learn the dynamic response of the power grid after a disturbance
without using recurrence and fixed resolution, requirements
typically adopted by RNNs. However, our work only considered
the dynamic response at the bus level. Thus, it neglects the
possibly rich information from the interaction between a bus and
its neighbors. Such a spatial correlation is critical for learning
the solution operator of networked dynamical systems, e.g., the
power grid or traffic networks.

To enable learning the solution operator of complex net-
worked dynamical systems, we propose, in this article, the deep
graph operator network (DeepGraphONet) framework. Deep-
GraphONet is a multiinput multioutput DeepONet that learns the
dynamic response of complex networked systems by exploiting
spatially correlated information from the given underlying graph
or subgraph structure.

1937-9234 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DEEPGRAPHONET: A DEEP GRAPH OPERATOR NETWORK

A. Related Work

1) Learning Dynamical Systems: Many works have pro-
posed using machine and deep learning to learn unknown dy-
namical systems from time-series data. In particular, we classify
such works into learning the system’s governing equations [2],
[4], [15] and future response [5], [6]. For example, Brunton
et al. [2], use a dictionary of functions to learn a sparse repre-
sentation of the system’s governing equations. Zhang et al. [15]
adopted Bayesian sparse regression to identify differential equa-
tion terms from a large pool of candidates with error bars.

On the other hand, Qin et al. [5] train a neural network to learn
the next state response of the system given the current state.
The framework then can predict the system’s future response by
recursively using the trained network. Raissi et al. [6] proposed a
multistep method with a feed-forward neural network to approx-
imate the dynamical system response. Most of the aforemen-
tioned works can effectively learn the dynamical system for a
single operating condition. However, the aforementioned works
will require a prohibitive amount of data and training resources
to learn the system’s response to many operating conditions. To
alleviate such limitations, we will use the novel framework of
deep operator learning in this work.

2) Deep Operator Learning: Traditional deep learning tech-
niques [16] focus on approximating the mapping between Eu-
clidean spaces. However, these traditional techniques may not
be adequate for learning the solution operator of a complex
dynamical system. To learn such an operator, several works have
proposed designing operator learning frameworks based on deep
neural networks [10], [11], [12], [17].

We build our work on the DeepONet framework introduced
in [10]. DeepONet is a neural network architecture that can learn
nonlinear operators by using a Branch network to process input
information and a Trunk network to process query locations
within the output function domain. Then, one computes the
output function at a query location by merging the features from
both the Branch and Trunk nets using a dot product. DeepONet
has demonstrated its exceptional approximation and general-
ization capabilities using a low amount of data for problems
in power engineering [14], electroconvection, and multiphysics
tasks [18], or material science tasks [19]. DeepONet, however,
is only a single-input single-output operator framework. Thus,
one cannot directly use DeepONet for networked dynamical
systems.

Jin et al. [20] proposed MIONet, a multiinput function
single-output function DeepONet to alleviate the multiple-input
problem. MIONet is composed of multiple branch networks to
encode the input functions, and a trunk network that is tasked
with encoding the output function’s domain. Nevertheless, the
MIONet framework fails to consider the spatial correlation
among input functions of a networked system and only produces
a single output function. Our work effectively alleviates both
limitations by incorporating a graph neural network (GNN)
within the DeepONet framework.

3) Graph Neural Networks (GNNs): In traditional deep
learning, the training data, e.g., time series, tabular-like data,
and images, are well-structured, and one assumes it belongs

4361

to Euclidean space. However, we cannot naturally assume that
other forms of data, such as power grid and traffic data, belong to
Euclidean space. As a result, researchers developed GNNs [21]
to capture the spatial correlation of data with an underlying graph
representation.

At the early stage, GNNs were used within recursive
schemes [22], [23] to reach steady node states for subse-
quent tasks. These schemes, however, suffered from high-
computational costs and were limited to some specific graph
structures. To alleviate such issues, other works [24], [25], [26]
build on graph signal processing to develop graph spectral con-
volution networks and their localized variants. In graph spectral
convolution, one performs the graph convolution operation in the
Fourier domain. Such spectral convolution requires the eigen-
decomposition of the graph Laplacian. Spectral convolution,
however, is expensive and does not allow transferring to an-
other graph with a different topology [21], [27]. This limitation
prevents the trained GNNs from achieving zero-shot learning.

On the other hand, similar to standard convolutional neural
networks (CNNs), several works [28], [29] proposed nonspec-
tral and spatial convolution directly defined on the graph. In
particular, the spatial convolution locally operates on nodes,
and thus, one can use it on different graphs. Furthermore, by
stacking spatial convolutional layers, we can effectively process
information from nodes located more than one hop away.

To learn with graph data efficiently and effectively, the authors
in [30], [31], and [32] employed the spatial graph convolution
within a message-passing framework. The main idea of such a
framework is to update the node state information by aggregating
information from neighboring nodes, followed by a neural-
network-based transformation. In this work, we adopt such a
message-passing framework, and in particular, the framework
from GraphSage [32], to process the input information to the
DeepONet.

This work aims at learning the dynamic evolution of graph
signals using a fixed graph structure. Many studies [33], [34],
[35], [36], [37] have combined deep learning techniques for
time series (e.g., RNNs [34], [35] and CNNs [33], [36], [37])
with GNNSs to produce time-dependent predictions that can take
into account spatial correlations. However, such methods may
lack flexibility and require high computational cost to learn the
solution operator of a networked dynamical system. Thus, in our
work, we will employ the deep operator learning framework to
learn the parametric mapping between graph functions directly.

B. Our Work

The objectives of this work are twofold.

1) Approximating the Solution Operator: We aim to derive a
deep-learning-based method to approximate the solution
operator of a system in which the dynamics evolve within
an underlying subgraph structure. For instance, we aim to
use our method to learn the dynamics of a control area
within a large-scale power grid or the traffic dynamics of
a city’s neighborhood.

2) Zero-Shot Learning: We aim to apply the trained proposed
model directly to approximate the solution operator on

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

4362

unseen graphs or subgraphs with different structures. In
other words, we aim to achieve zero-shot learning. For
instance, we aim to train the model on a small subgraph,
and then, use it to make highly accurate predictions on a
larger graph.

The contributions of this work are as follows.

1) We first build (in Section III) a DeepGraphONet frame-
work that learns to approximate the solution operator of a
dynamical system with an underlying connected subgraph
structure. DeepGraphONet fuses the ability of GNNs to
exploit the graph information and DeepONets [10] to
approximate the solution operator of nonlinear systems.
The proposed DeepGraphONet takes as inputs a finite
history of the graph state information and the desired query
location with an arbitrary resolution for short/medium-
term prediction. Compared to the vanilla DeepONet [10],
the proposed DeepGraphONet is a multiinput multioutput
framework and resolution-independent in the input func-
tion; that is, we do not require the Branch sensors to be
fixed.

2) We then propose (in Section IV) a zero-shot learning
strategy that exploits the property of message-passing
GNN:ss to enable directly using a trained DeepGraphONet
on a different graph or subgraph for the same task.

3) Finally, we verify the efficacy of the DeepGraphONet on
the transient stability prediction problem of the IEEE 16-
machine 68-bus system and the traffic dynamics forecast-
ing problem using the METR-LA dataset, which contains
traffic information measured using loop detectors in the
highway of Los Angeles County [38].

The rest of this article is organized as follows. Section II
introduces the problem of approximating the solution operator
of a dynamical system with an underlying subgraph structure.
The DeepGraphONet framework to approximate such a solution
operator is detailed in Section III-A. We present the resolution-
independent DeepGraphONet and our zero-shot learning strat-
egy in Sections III-B and III-C, respectively. Numerical exper-
iments illustrate the efficacy of DeepGraphONet in Section IV.
Section V discusses our future work, and finally, Section VI
concludes this article.

II. PROBLEM SETTINGS

We consider a complex networked dynamical system. We
model its networked structure using the undirected graph G =
(V, E), where V is the set of |V| nodes and E is the set of | E|
edges, and dynamics using the initial value problem

d
Zx(t) = F(x(0):G)
X(to) = Xp- (1)

Here, x(t) € X ¢ RV is the graph-valued state function,
Xg € X the initial condition, and f: X — X the unknown
vector field. For simplicity, we assume each node’s state has
the same dimension d = 1, and with some abuse of notation, we

IEEE SYSTEMS JOURNAL, VOL. 17, NO. 3, SEPTEMBER 2023

make explicit the dependence of the dynamics f on the underly-
ing graph structure GG. We also let for future work the case when
we know an approximate model of the dynamics fapprox ~ f.

A. Solution Operator

Our goal is to approximate the dynamic response of (1)
described via the solution operator (also known as flow map)

Flx(to); G) () = x(t) = x(to) + / f(x(8):G)dB (@)

forall ¢ € [to,tf], where [to,tf] C [to, o0) denotes a finite time
interval where the solution operator exists and is unique.

For large-scale networked dynamical systems, i.e., when
|[V| > 1, learning the aforementioned solution operator may be
prohibitively expensive. Moreover, one may not have the access
to all graph states and may be interested in learning the dynamics
of a subregion within the network, i.e., a subgraph. For example,
for power grids, we may want to learn the dynamic response of a
control area, or for traffic networks, we may want to approximate
the dynamic response of a city or a district.

To this end, let us split the graph-valued state function as x =
(xg,%g¢). Here, S = (Vg, E) denotes the subgraph region of
interest within the network, where Vg C V' is a connected set of
nodes within V" and F; C F, and S¢ denotes the complement
of S. To describe the dynamics of xg(t), we employ the Mori—
Zwanzig formalism [39], [40], which yields

d

Gxs(t) = R (xs(0)5) + [K (xs(t = 5),5) 4B+ A (xo)

3)

where the first term IR is the Markovian term, which depends on
the current value of xg; the second term is the memory integral,
which depends on the values of the state and input variables from
the initial time 8 = t(to the current time S = ¢. This memory
integral involves /C, which is commonly known as the memory
kernel. Finally, the third term is the “noise” term, which depends
on the initial condition x.

B. Decaying Memory Assumption

Learning the memory integral from the initial time 8 = ¢ is
challenging as the computational cost increases with the integral
bounds. Also, from the neural network approximation point
of view, integrating from the initial time leads to increasing
input length for the network, which is impractical for network
training. To alleviate such a challenge, we assume the memory
decays over time, that is, there exists ty; € (to,t) (we treat ¢ps
as a hyperparameter in this article) such that we can neglect
the effect of the memory for all 3 € [tg,t — tps). Formally,
this corresponds to the following approximation of the memory
integral. For any given € > 0, there exists tg < ;s < ¢ such that

tm

t
/t/C(Xs(t—/a’),ﬁ)dﬁ— [ke xste -).5)d6| < .
“

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DEEPGRAPHONET: A DEEP GRAPH OPERATOR NETWORK

GNN-Branch Net

4363

message

passing
----- >

;1':1 b§'1) i (hn)

b i(hn)

Trunk Net

GNN-based

q 3.,
dot product j=1bj ©;(hn)

¥ 2 b0 (h)

feed-forward
neural network

Fig. 1.

DeepGraphONet architecture. The Branch Net is a GNN that uses message passing to learn the nodes’ representation on the networked system’s graph S

and takes as input the graph state signals {xg(t — 7;)}7* ;. 7 € [0, t7r]. The Trunk Net is a feed-forward neural network that takes as input the query location h.,

within the prediction horizon [0, h]. We obtain the DeepGraphONet’s output Fy ({xg (¢

—7i)}11;S)(hn) by applying the GNN-based dot product between the

GNN-Branch Net and the Trunk Net. The GNN-based dot product performs the standard dot product between each node in the Branch Net-produced graph and

the Trunk Net.

C. Discrete Representation of the Integral

In practice, one computes the truncated integral using some
discretized scheme (e.g., quadrature) such that for any given
K > 0, we have

tar

K (xs(t —8),8)dp

to
—Qxs(t—71),...,xs(t=7)) | <K (5)

where the memory partition of size m (we treat this memory
resolution m as a hyperparameter in this article) is arbitrary and
satisfies 0 < 71, ..., 7 < tprand {t — 7}, C [t —ta, 1]
These decaying memory and discrete representation assump-
tions lead to the following approximate dynamics of xg as

d

%xs(t) =R(xs(t)+Q(xs(t —71),...,x5 (t — 7)) -

(6)

In this article, we employ the local solution operator within
the arbitrary interval [t,¢ + hy], hy, € [0, h], where h is the
predicting horizon, and we treat it as a hyperparameter in this
article. For all t > t, the local memory sensor locations satisfy
{t =7 }1™, C [t — tar,t]. With this local memory, the local
solution operator is

F (xs(t), {xs (t — 7)1 5) () = x5(t)
t+hy,
+ / R (xs(8): §) dB

+Q(Xs(t—Tl),...7XS(t—Tm)). (7)

In the aforementioned, we emphasized that the solution operator
depends on the finite history of the subgraph state informa-
tion x ¢ (¢) within the time interval [t — ¢y, t].

Our goal in this article is to design a DeepGraphONet Fy,
with trainable parameters § € RP, to approximate the solution
operator F for all h, € [0, h]. To control the approximation
power of the proposed DeepGraphONet, we will use the follow-
ing two hyperparameters: the memory’s size ¢, and predicting
horizon h.

III. METHODS

This section describes the proposed DeepGraphONet Fy to
approximate the solution operator F.

A. Deep Graph Operator Network (DeepGraphONet)

Building on the DeepONet, introduced in [10], we pro-
pose DeepGraphONet Fp, a multiinput multioutput DeepGra-
phONet, which consists of two neural networks (see Fig. 1): the
Branch network and the Trunk network.

1) Branch Network: The Branch net is a GNN that pro-
cesses the finite history of the graph-state information. The
Branch maps the graph-state information {xg(t —7;)}7,,
where xg(t — 7;) € RISI, to the graph-based coefficients b €
RaxISI,

To build the proposed GNN-based Branch network, we use a
collection of message passing convolutional graph layers, which
we adopted from [32]. For all ¢ € S, the forward pass of the
corresponding message passing layer reads

z;(t) = o (Whz;(t) + Wa - meanjen;, (x(1))) (8)

where x;(t) is the ith node’s state at time ¢, V; is the set of nodes
adjacent to the ¢th node, W, and W5, are trainable weights, and o

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

4364

is a nonlinear activation function. In our experiments, we chose
to have 20 message-passing layers and rectified linear unit as
the activation function. Within each graph dataset, the nodes
are entities of interest (e.g., power grid buses and traffic net-
work sensors), and the edges describe the connectivity between
nodes. At this point, we do not consider edge features/weights
according to (8).

By stacking these message passing layers, we can transport
information from nodes located two or more hops away to the ith
node. Such a process allows the network to learn automatically
spatial dependencies among nodes. Furthermore, since our goal
is to obtain the dynamic response of all nodes, we do not use a
readout (pooling) in the proposed GNN-based Branch net.

Remark. Fixed versus resolution-independent sensors: If the
sensor locations used to discretize the input representing the
finite history of graph-state information {xg(t —7;)}7, are
fixed (as in [10]), then we denote the proposed framework as
the standard DeepGraphONet. If, on the other hand, the sensor
locations can change over time, then we denote the proposed
framework as the resolution-independent DeepGraphONet (see
Section III-B for more details).

2) Trunk network: The Trunk net is a multilayer percep-
tron (MLP) that maps a given query location h,,, within the
prediction horizon [0, h], to a collection of trainable Trunk basis
functions

¢ = (p1(hn), p2(hn), - -, @q(hn))T

Finally, we compute the DeepGraphONet’s output for each node
i € S by merging the corresponding Branch coefficients b(?)
with the Trunk basis functions ¢ using the dot product:

€ RY. C))

F& (Uxs(t —m)m ;S bl pi(ha). (10)

Il
.
-
i

3) Training the DeepGraphONet Fy: To train the parame-
ters 6 of the proposed DeepGraphONet, we minimize, using
gradient-based optimization schemes (e.g., Adam [41]), the loss
function

i((t+0)—Fo ({xb(t—)}) (b))

k=1
(11
using the dataset D of N := |D| triplets
N
= {5 —m) iy b xS+ B s, (12)

generated using the true solution operator F.

B. Resolution-Independent DeepGraphONet

The vanilla DeepONet, introduced in [10], effectively and
accurately approximates single-input single-output solution op-
erators F. Thus, DeepONet can predict arbitrary locations
within the output function domain [0, h]. However, the main
limitation of the vanilla DeepONet is that it requires a fixed set
of sensors within the input function domain [t — ¢, t]. This
requirement forces the network to take new data points with the
same resolution, which, in turn, prevents the flexible application

IEEE SYSTEMS JOURNAL, VOL. 17, NO. 3, SEPTEMBER 2023

GNN-Branch Net

messagc

I
I I
I I
l l
| I
| pdbbln‘
| I
| I
| | A
| (IS
I [

input for the Branch Net
{{xs(t —m)}il1, 5}

?

(@)
GNN-Branch Net

N e

messag

! |

I I

! ! assing
bW -nyr, 8 fp (
| 1

| ! /]

input for the Branch Net
Hxs(t =) HLy {t — ity S}
(b)

Fig. 2. Input for the Branch Net in standard and resolution-independent
DeepGraphONet. (a) Input for the Branch Net in the standard DeepGraphONet,
where the network takes the input function values at a fixed set of sensors.
(b) In a resolution-independent DeepGraphONet, the Branch Net takes both
input function values and their locations. The fixed set of sensors requirement
is eliminated.

of the trained network, e.g., in scenarios where sampling may
be inexact or recursive prediction is needed.

To address such a limitation, we propose a simple, intuitive
solution that allows using resolution-independent sensors, as
shown in Fig. 2. More specifically, we enable the GNN-based
Branch network to take as inputs not only the graph-state mem-
ory input {xg(t — 7;) } 7, but also the corresponding, possibly
time-variant, sensor locations. To this end, for each node i € S,
we construct the input function by concatenating the node-state
function values {xg(¢t — 7))}, with its corresponding sen-
sor location {¢ —7;}™ ;. These function-location value pairs
provide complete information about the input, enabling us to
relax the fixed sensors’ requirement. In Section IV, we will
demonstrate that the resolution-independent DeepGraphONet
does not cause performance degradation when compared to the
standard DeepGraphONet.

C. Zero-Shot Learning Scheme

In this article, we build the proposed DeepGraphONet frame-
work to be versatile. That is, once we have trained the Deep-
GraphONet F- using the graph S, we expect to use it with high
accuracy on a different graph S’ # S (with possibly different
number of nodes) for the same task.

Such a zero-shot learning capability of the proposed Deep-
GraphONet is achieved immediately due to the message-passing
nature of the GNN-based Branch network. Zero-shot learning
aims to apply the trained network to unseen instances with
different underlying structures, e.g., domain discretization or
graph. With message-passing GNN layers, the DeepGraphONet

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DEEPGRAPHONET: A DEEP GRAPH OPERATOR NETWORK

learns the weights associated with the node feature dimension
after concatenating the messages from the neighboring nodes.
The trained DeepGraphONet can then directly apply the learned
weights to a different graph after the message-passing operation
for the same task.

In particular, we can directly apply DeepGraphONet to S’
because the trainable weights of the GNN-based Branch depend
on the node feature dimension and not on the adjacency matrix.
Thus, the proposed DeepGraphONet is inductive, and we may
use it beyond the graph S used during training. In Section IV,
we will show that DeepGraphONet can effectively approximate
the solution operator of networked dynamical systems within
subgraph structures S’ not used during training, thus, achieving
zero-shot learning.

IV. EXPERIMENTS

To evaluate the accuracy and effectiveness of the proposed

DeepGraphONet, we test it on the following two different tasks:

1) predicting the transient response of power grids (see Sec-
tion IV-A);

2) forecasting traffic on highway networks (see Sec-
tion IV-B).

In the experiments, we use tys, m, h, and h,, to denote the
memory length, number of sensors within the memory, predic-
tion horizon, and query location within the prediction horizon,
respectively. We treat ¢ 5, and h as hyperparameters in this article
and explore the model performance. We evaluated the proposed
DeepGraphONet against several baseline models. The baseline
models include the following:

1) autoregressive integrated moving average (ARIMA),
which is a commonly used linear model for time-series
forecasting;

2) MLP, which is a fully connected feedforward neural net-
work that takes the input history at different timesteps as
features and outputs the horizon-length predictions;

3) vanilla DeepONet [10] that does not consider the graph
structure.

Neural networks and implementation protocols: We use the
same neural network architecture to build the following two
DeepGraphONets: 1) the standard DeepGraphONet, which has
fixed sensors asin [10], and 2) resolution-independent DeepGra-
phONet, which we proposed in this article (see Fig. 2) to alleviate
the fixed-sensors constraint. To build the DeepGraphONets’
architecture, we proceed as follows. The Branch Net uses 20
message passing graph convolution layers, and the Trunk Net
uses five feed-forward layers. The output dimension is 100
neurons for both the Branch and Trunk Nets.

We prepared the data to align with the DeepGraphONet’s
formulation, where we set a memory partition and an out-
put function domain bound h. With regard to the resolution-
independent DeepGraphONet, with the memory partition size
m, we randomly sampled | %% | sensors and stacked them with
their locations as additional feature channels for the Branch Net.

Algorithm 1 shows the procedure of using trained DeepGra-
phONet to predict the complete future trajectories. With the

4365

Algorithm 1: Complete Trajectory Prediction Scheme.

Require: system graph S; trained
DeepGraphONet Fy-; hyperparameters ({57, m, h,
hy,); initial local memory {xs(t —)}/ ,; complete
trajectory length L;

initialize an empty list for saving the predictions C

let N = =t

forn=0,....,.N—1do

for each h,, € [0, 1] do

use the DeepGraphONet’s forward pass to
compute the prediction

X(t+hn) = For ({xs(t=73) 121, {71215.5) ().

append X(t + h,) to C;

end for
update the current time

t<—t+h;

new observations come in

{xs(t —7)}2y;

end for
concatenate ('
Return the concatenated predicted trajectories;

trained network, we use the initial memory and partition to pro-
duce predictions covering the entire prediction horizon. We then
repeat this process with the newly observed ground truth as the
memory for the next prediction horizon until the trajectory’s end.

For example, in the power grid problem, we have a
trained DeepGraphONet with memory length £, = 200 ms and
prediction horizon i = 20 ms. In testing time, we want to pro-
duce predictions of the entire trajectory of size 700 ms after
the initial memory. We use the initial memory and the trained
network to make predictions for the next 20 ms and save the
predictions to a list. We then use the new observations to produce
predictions for another 20 ms until the trajectory ends. Finally,
we concatenate the saved predictions as the predicted complete
trajectory.

We implemented the DeepGraphONet in PyTorch and
trained and tested it with an Nvidia GPU. The source code of the
model can be accessed on https://github.com/cmoyacal/graph-
deepOnetGitHub.! We measured and compared the performance
of the proposed model and baseline models in terms of L,
relative error (L;%), root mean squared error (RMSE), and
coefficient of determination (R?), and investigated the Deep-
GraphONet’s sensitivity to history length, ¢;, and prediction
horizon, h, using L; relative error. The formulations of the
metrics are in Appendix A.

I"The repository will be public upon the acceptance of the manuscript.

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

4366

x10~2
ORI
151 R i
RMSE [1.25
% 1.0 F1.00 g
3 Lo.7s &
0.5 I 0.50
F0.25
0.0 T T T T 0.00
ARIMA MLP DeepONet DeepGraphONet
(@
12
RMSE ros8
101 - R
=8 0.6
= ~
~ =
£ 61 F0.4
~
4 p
0.2
2 p
0 L0.0
ARIMA MLP DeepONet DeepGraphONet
(b)
Fig. 3. Comparisons of ARIMA, MLP, vanilla DeepONet, and the proposed

DeepGraphONet in terms of L relative error (%), RMSE, and coefficient of
determination (R2). (a) Model performances on the power grid problem testing
set with a horizon, h = 20 ms. (b) Model performances on the testing set of the
traffic prediction problem with a horizon, h = 30 min.

Fig. 4. One-line diagram of the New York—-New England 16-generator 68-
bus power grid. We train our DeepGraphONet using the arbitrary subgraph of
buses S := {15,16,17,19,21,24} C G, highlighted with red dots.

A. Experiment 1: Power Transient Stability

1) Dataset: We simulated the datasets for the New York—
New England 16-generator 68-bus power grid model, shown
in Fig. 4, using time-domain simulations with EPTOOL [42].
The simulations considered the full dynamical model of the
generators, including turbine governors, excitation systems, and
power system stabilizers. The faults were simulated by randomly
disconnecting one transmission line. The postfault trajectory
occurred within the interval (¢.;,T], with ¢.; fixed at 2 s and
simulation time 7" at 7 s. More details about the data generation
arein [14]. The power grid dataset consisted of 1830 independent

IEEE SYSTEMS JOURNAL, VOL. 17, NO.

3, SEPTEMBER 2023

Fig.5. Zero-shot learning on a larger subgraph. We train the DeepGraphONet
on an arbitrary small subgraph (marked in red) and directly apply the trained
network to a much larger subgraph (marked in blue) to achieve high predicting
performance (0.686% L1 relative error).

TABLE I
MEAN AND STANDARD DEVIATION (ST.DEV.) OF THE L1-RELATIVE ERROR (%)
BETWEEN THE PREDICTED AND ACTUAL TRANSIENT RESPONSE TRAJECTORIES
FOR MULTIPLE TIME HORIZONS h AND USING THE (1) STANDARD
DEEPGRAPHONET AND (1) RESOLUTION-INDEPENDENT DEEPGRAPHONET

h (ms) 2 10 20 200

qandarg | MeAR 021 064 071 257

stdev. 074 271 262 489

eoing, mean 037 062 072 171

S tdev. 162 257 261 358
TABLE II

MEAN AND STANDARD DEVIATION (ST.DEV.) OF THE L1-RELATIVE ERROR (%)
BETWEEN THE PREDICTED AND ACTUAL TRANSIENT RESPONSE TRAJECTORIES
FOR MULTIPLE MEMORY RESOLUTIONS 1 AND USING THE (1) STANDARD
DEEPGRAPHONET AND (1) RESOLUTION-INDEPENDENT DEEPGRAPHONET

ty (ms) 50 100 200
standard mean 071 0.70 0.66
standar stdev. 262 282 3.14
res.ind mean 072 071 0.68
es.md. stdev. 2,60 346 298

trajectories on a subgraph with six nodes (red buses in Fig. 5).
Each trajectory had 701 time steps with a resolution of 1 ms.
Among the available trajectories, 60%, 20%, and 20% were used
for training, validation, and testing, respectively. We then applied
the trained model to the entire region (marked in blue in Fig. 5),
achieving zero-shot learning.

2) Testing Accuracy: We show the model testing results in
Figs. 3(a) and 6 and Tables I and II. Overall, our trained both
standard and resolution-independent DeepGraphONets accu-
rately approximated the solution operator for the power grid
problem. Compared to other baseline models, the DeepGra-
phONet resulted in the lowest L relative error and RMSE and
the highest R? score. The L; relative errors of all short- and
medium-term forecasting settings were within 1%. Moreover,
the resolution-independent DeepGraphONet, taking the input
function representation with an arbitrary resolution, did not
show performance degradation compared to the standard [see
Fig. 7(b)].

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DEEPGRAPHONET: A DEEP GRAPH OPERATOR NETWORK

g S 1m
05: 1.00 UEE’ 1.02
= 095 il L9
= 0.90 = 096

[}
=

by 19
1]1110 17 15
5@, 16

(d

Fig. 6.

4367

oL
HSTS

() aBearon
ocoor

(4) aBeapon
cooor
BRBES

(e) ®

Comparison of the DeepGraphONet predicted transient trajectories (dashed red lines) with the actual trajectories (solid black lines) on the subgraph of

buses S := {15,16,17,19,21,24} C G. DeepGraphONet generated all predictions at the same time given the memory trajectory (dashed gray lines). We test
multiple prediction horizons h and memory resolutions ¢ . In particular, (a) h = 2ms with £3; = 50 ms; (b) h = 10 ms with ¢t3; = 50 ms; (¢c) A = 20 ms with
tar = 50ms; (d) h = 200 ms with 3,7 = 50 ms; (e) h = 20 ms with ¢, = 100 ms; and (f) h = 20 ms with ¢, = 200 ms.

1.0
0.8
0.6

() oFearon

24
by 311 19,
uy,
12(1)6’1-1 > 16 0

(b)

Fig. 7. Comparison of the DeepGraphONet predicted transient trajectories
(dashed red lines) with the actual trajectories (solid black lines) on the subgraph
of buses S :={15,16,17,19,21,24} C G using the proposed resolution-
independent DeepGraphONet. We test two time horizons h and memory resolu-
tions tpz. (a) h = 500 ms with ¢3; = 200 ms. (b) h = 2ms with tj; = 50 ms.

3) Varying Memory Lengths: We explored the impact and
sufficiency of local memory lengths. We trained the Deep-
GraphONet with different memory lengths, ¢y = 50ms, ¢ty =
100 ms, t3; = 200 ms, and evaluated the networks on the test-
ing dataset. The prediction results suggest that with larger
tar, the average model performance improves [see Fig. 6(d),
(e), and (f)]. We observed the same trend in both original
and resolution-independent DeepGraphONets, as shown in
Table II.

4) Varying Horizons: To investigate the performance change
of DeepGraphONet with respect to the change of the output
function domain, we varied the prediction horizons h. In par-
ticular, we trained the networks with h = 2ms, h = 10 ms,
h =20ms, and h = 200ms with the same memory length,
tyr = 50ms. The results (see Fig. 6(a), (b), and (c), and
Table I) show for all prediction horizons, both the standard and
resolution-independent DeepGraphONet made accurate approx-
imations to the solution operators. Furthermore, the network
performance increases as h decreases. For short- and medium-
term forecasting, the networks led to L; relative errors of less
than 1%, whereas when h = 200 ms, the relative error was over
2%. However, with longer local memory (¢3; = 200 ms), the
trained DeepGraphONet accurately predicted the longer hori-
zon (h = 500 ms), shown in Fig. 7(a).

5) Zero-Shot Learning: Finally, we applied the trained model
to a larger subgraph from the same power grid model. The
new subgraph has 34 nodes and contains the graph used during
training. By directly applying the trained model to the larger
subgraph without further training, we achieved zero-shot learn-
ing with high accuracy. Fig. 8 depicts the prediction results on
nine randomly selected nodes of the new subgraph. For these
nodes, the predictions aligned with the ground truth well with a
L relative error of 0.686%.

With the aforementioned, we conclude that the proposed
DeepGraphONet can successfully learn the solution operator
with local memories for predicting the transient stability of
power grids. Particularly, the resolution-independent DeepGra-
phONet, although having the flexibility of taking the discrete
input function representation with an arbitrary resolution, does
not show performance degradation. In addition, one can directly
apply the trained DeepGraphONet to solve the power grid
transient stability problem with a different underlying graph
structure, achieving zero-shot learning.

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

4368

Fig. 8. Zero-shot learning results. Comparison of the DeepGraphONet pre-
dicted transient trajectories (dashed red lines) with the actual trajectories (solid
black lines) on a subgraph of buses S’ :={2,3,4,5,6,7,18,25,27} C G
different from the training subgraph S.

(]
o dads
] e
' q
‘ Burbank |
*o.cu. 0 ’ﬁ o
‘ lendale .
04
(2] o
N 02
6 Beverly Hills :
Los Aﬂ&lg
itomi. @ 00

Fig.9. METR-LA traffic network (adopted from [35]). The black dots repre-
sent the loop detectors, which we regard as the nodes of the graph G.

B. Experiment 2: Traffic Forecasting

1) Dataset: We used the METR-LA dataset [38], containing
179 loop detectors, that collect the speed data on the freeway
network in Los Angeles County, shown in Fig. 9. The dataset
contained speed measurements of the year 2018, with a res-
olution of 5 min. Due to the lack of independent trajectories,
we split the data based on the time for training, validation, and
testing purposes. We used the data from January to June 2018
for training, July to September 2018 for validation, and October
to December 2018 for testing. We trained and evaluated the
network using the first 20 nodes in the graph and directly applied
the trained network to the entire graph for zero-shot learning.

We followed the same training protocol as in the power grid
experiment and reported model performances on the testing set.
Fig. 3(b) compares the DeepGraphONet and other baseline mod-
els. The results suggest that the DeepGraphONet has superiority
over other baseline models in terms of all metrics.

2) Varying Horizons: Weinvestigated the DeepGraphONet’s
performance in traffic forecasting under the commonly used
horizons [43], h = 15min, h = 30 min, and h = 60 min with
the local memory length fixed as ¢3; = 60 min. Fig. 10 shows
the prediction results from the randomly picked four nodes in the
graph where the predicting horizon was h = 60 min. DeepGra-
phONet captured the future speed of all nodes at the same time
accurately using the history observation, while at some sharp
turning points, the model did not match the oscillation exactly
but captured the average behavior. The results suggest that with

IEEE SYSTEMS JOURNAL, VOL. 17, NO. 3, SEPTEMBER 2023

50 ;" Rt | node #: 13
2% . |
75
50 g ‘ i node #: 8
:S; 25
E 7w - : >
= v d N node #: 6
g » 2! L
@'
&) -
50] T d] i node #: 1
- I H | 1
25 - 1 ‘I 1

time (h)

Fig. 10. Comparison of the DeepGraphONet predicted trajectories (dashed
red lines) with the actual trajectories (solid black lines) on the subgraph S :=
{1,6,8,13} of the highway network G using ¢;; = 60 (minutes) memory
length.

TABLE III
MEAN AND STANDARD DEVIATION (ST.DEV.) OF THE L1-RELATIVE ERROR (%)
BETWEEN THE PREDICTED AND ACTUAL TRAFFIC TRAJECTORIES FOR
MULTIPLE TIME HORIZONS 1" AND USING THE (1) STANDARD DEEPGRAPHONET
AND (I1) RESOLUTION-INDEPENDENT DEEPGRAPHONET

h (min) 15 30 60
standard mean 5.52 7.60 10.79
) st.dev. 9.49 14.74 22.05
res.ind mean 6.84 8.62 11.87
o stdev. 1256 16.79 23.57

an increasing horizon, the model performance decreased overall
and the error range became larger. Table III lists the mean and
standard deviation of the L relative error of the models, both
for original and resolution-independent DeepGraphONet, with
different predicting horizons on the testing set. The results imply
the great ability of the proposed DeepGraphONet in predicting
the traffic dynamics for all nodes present in the network simul-
taneously, with ~6% error for short-term (5 min) prediction and
~11% for long-term (1 h).

3) Zero-Shot Learning: To test the DeepGraphONet’s po-
tential of zero-shot learning for traffic forecasting, we directly
applied the trained network to the entire METR-LA network
with 179 nodes. Fig. 11 shows the visualized model prediction
results on four randomly picked nodes among the 179. With
1-h predicting horizon, the trained model closely predicted the
future on the unseen graph structure for all nodes at the same
time, resulting in the L, relative error of 10.79%.

The experiment results for the traffic forecasting problem
strongly suggest that our proposed DeepGraphONet was power-
ful in learning the solution operator for traffic dynamics. Also,
the DeepGraphONet can be better implemented for practical
applications for it is easy to train, can produce predictions at
arbitrary time step within the horizon, and does not require
forward dependence to obtain the value at this step.

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DEEPGRAPHONET: A DEEP GRAPH OPERATOR NETWORK

7 -
50 il A | " g node #: 21
I 1 (
25 p
7 -
50 i ' ' node #: 121
1 1 '
—~ 25
= %
S
E B o
= 50 o . M '{ node #: 172
g »
n
7
50 node #: 165
25

time (h)

Fig. 11. Zero-shot learning results. Comparison of the DeepGraphONet pre-
dicted trajectories (dashed red lines) with the actual trajectories (solid black
lines) on all the 179 nodes of the METR-LA highway network G. We illustrate
the predicted trajectories for the following four nodes {21,121, 165,172},
which we selected uniformly at random.

V. DISCUSSION AND FUTURE WORK

We used the proposed DeepGraphONet to learn the solution
operator of networked dynamical systems and demonstrated its
effectiveness in power grid transient stability and traffic fore-
casting tasks. In particular, the resolution-independent DeepGra-
phONet demonstrated excellent accuracy in approximating the
solution operator without performance degradation while having
the ability of flexible discrete input function representation.

We demonstrated that the trained DeepGraphONet can pro-
duce predictions at arbitrary query locations within the output
function domain and does not require forward dependence in the
output sequence. In addition, we showed that one could directly
apply the DeepGraphONet, trained on a small subgraph region,
to a larger graph region for the same task, achieving zero-shot
learning with high accuracy. With the promising wide-ranged
applications of the proposed DeepGraphONet, we provide next
a preamble for our future work.

1) On physics-informed DeepGraphONet. This article fo-
cuses on developing a physics-informed version of Deep-
GraphONet. We plan to use first-principles models to train
the DeepGraphONet without data or use them as prior
information during data-driven training.

2) On anomaly detection with DeepGraphONet. We will
focus part of our future work on using DeepGraphoNet
for detecting anomalies. To this end, we must endow the
proposed DeepGraphONet with the ability to estimate the
network’s edges status using graph trajectory data.

3) Onlearning networked control systems. We plan to extend
the proposed DeepGraphONet for learning networked
control dynamical systems. This problem is more chal-
lenging because we need to learn the system’s response
using graph trajectory and its response to external inputs. If
successful, our DeepGraphONet for control may become
an essential tool for implementing model-based multia-
gent continuous reinforcement learning.

4369

4) On predicting long-term trajectories. We plan to develop
effective training strategies to alleviate error accumulation
such that we can recursively use the trained DeepGra-
phONet to forecast trajectories for long-term horizons
with high accuracy.

VI. CONCLUSION

In this article, we introduced the DeepGraphONet framework
to predict the dynamics of complex systems with underlying
subgraph structures. By fusing the ability of GNNs to correlate
graph trajectory information and DeepONet to approximate
nonlinear operators, we achieved significant results on complex
problems such as predicting the transient stability of a control
area of a power grid and the traffic flow within a city or district.
Moreover, we built our DeepGraphONet to be resolution inde-
pendent, i.e., we do notrequire a set of fixed sensors to encode the
graph trajectory history. Finally, we designed a zero-shot learn-
ing strategy that enables using the proposed DeepGraphONet
on a different subgraph with high predicting performance.

APPENDIX
A. Evaluation Metrics

In the following formulations of evaluation metrics, we use y
to represent the true values, g the model approximated values,
and N the data size.

1) L relative error

L relative error = |y||;||y|1 x 100%. (13)
1
2) Root mean square error (RMSE)
—)2
RMSE = 72(@/]\7 sy (14)
3) Coefficient of determination
)2
R 2w—9 (15)

-9’

where ¥ is the average of the true values.

REFERENCES

[1] A.Iserles, A First Course in the Numerical Analysis of Differential Equa-
tions. Cambridge, U.K.: Cambridge Univ. Press, 2009, no. 44.

[2] S.L.Brunton,J. L. Proctor, and J. N. Kutz, “Discovering governing equa-
tions from data by sparse identification of nonlinear dynamical systems,”
Proc. Nat. Acad. Sci., vol. 113, no. 15, pp. 3932-3937, 2016.

[3] E.Kaiser,J.N.Kutz, and S. L. Brunton, “Sparse identification of nonlinear
dynamics for model predictive control in the low-data limit,” Proc. Roy.
Soc. A, vol. 474, no. 2219, 2018, Art. no. 20180335.

[4] H. Schaeffer, “Learning partial differential equations via data discovery
and sparse optimization,” Proc. Roy. Soc. A, Math., Phys. Eng. Sci.,
vol. 473, no. 2197, 2017, Art. no. 20160446.

[5] T.Qin, K. Wu, and D. Xiu, “Data driven governing equations approxima-
tion using deep neural networks,” J. Comput. Phys., vol. 395, pp. 620635,
2019.

[6] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Multistep neural net-
works for data-driven discovery of nonlinear dynamical systems,” 2018,
arXiv:1801.01236.

[7]1 J. Li, M. Yue, Y. Zhao, and G. Lin, “Machine-learning-based online
transient analysis via iterative computation of generator dynamics,” in
Proc. IEEE Int. Conf. Commun., Control, Comput. Technol. Smart Grids,
2020, pp. 1-6.

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

4370

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

H. Wilms, M. Cupelli, A. Monti, and T. Gross, “Exploiting spatio-temporal
dependencies for RNN-based wind power forecasts,” in Proc. IEEE PES
GTD Grand Int. Conf. Expo. Asia, 2019, pp. 921-926.

Y. Sun, T. Mallick, P. Balaprakash, and J. Macfarlane, “A data-centric
weak supervised learning for highway traffic incident detection,” Accident
Anal. Prevention, vol. 176, 2022, Art. no. 106779.

L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning
nonlinear operators via DeepONet based on the universal approximation
theorem of operators,” Nature Mach. Intell., vol. 3, no. 3, pp. 218-229,
2021.

A. Anandkumar et al., “Neural operator: Graph kernel network for partial
differential equations,” in Proc. ICLR Workshop Integration Deep Neural
Models Differ. Equ., 2020.

Z. Li et al., “Fourier neural operator for parametric partial differential
equations,” 2020, in Proc. Int. Conf. Learn. Representations., 2020.

T. Chen and H. Chen, “Universal approximation to nonlinear operators
by neural networks with arbitrary activation functions and its applica-
tion to dynamical systems,” IEEE Trans. Neural Netw., vol. 6, no. 4,
pp- 911-917, Jul. 1995. [Online]. Available: https://ieeexplore.ieee.org/
document/392253/

C. Moya, S. Zhang, M. Yue, and G. Lin, “DeepoNet-grid-UQ: A trust-
worthy deep operator framework for predicting the power grid’s post-fault
trajectories,” Neurocomputing, vol. 535, pp. 166—182, 2023.

S.Zhang and G. Lin, “Robust data-driven discovery of governing physical
laws with error bars,” Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 474,
no. 2217, 2018, Art. no. 20180305.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

N. Winovich, K. Ramani, and G. Lin, “ConvPDE-UQ: Convolutional neu-
ral networks with quantified uncertainty for heterogeneous elliptic partial
differential equations on varied domains,” J. Comput. Phys., vol. 394,
pp. 263-279, 2019.

S.Cai,Z. Wang, L. Lu, T. A. Zaki, and G. E. Karniadakis, “DeepM &MNet:
Inferring the electroconvection multiphysics fields based on operator
approximation by neural networks,” J. Comput. Phys., vol. 436, 2021,
Art. no. 110296.

S. Goswami, M. Yin, Y. Yu, and G. Karniadakis, “A physics-informed
variational DeepONet for predicting the crack path in brittle materials,”
Comput. Methods Appl. Mech. Eng., vol. 391, 2022, Art. no. 114587.
P.Jin, S. Meng, and L. Lu, “Mionet: Learning multiple-input operators via
tensor product,” SIAM J. Sci. Comput., vol. 44, no. 6, pp. A3490-A3514,
2022.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A com-
prehensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4-24, Jan. 2021.

A. Sperduti and A. Starita, “Supervised neural networks for the classifica-
tion of structures,” IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 714-735,
May 1997.

M. Gori, G. Monfardini, and F. Scarselli, “A new model for earning in
raph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw., 2005, vol. 2,
pp. 729-734.

J. B. Estrach, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and deep locally connected networks on graphs,” in Proc. 2nd Int. Conf.
Learn. Representations, 2014.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[38]
[39]

[40]

[41]

[42]

[43]

IEEE SYSTEMS JOURNAL, VOL. 17, NO. 3, SEPTEMBER 2023

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs
via spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30, no. 2,
pp. 129-150, 2011.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc Int. Conf. Learn. Representations, 2016.
J. Zhou et al., “Graph neural networks: A review of methods and ap-
plications,” Al Open, vol. 1, pp. 57-81, 2020. [Online]. Available: https:
//doi.org/10.1016/j.aiopen.2021.01.001

J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, vol. 29.

M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 2014—
2023.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1263-1272.

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Representations,
2018.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017, vol. 30.
S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proc. AAAI Conf. Artif. Intell., 2019, pp. 922-929.

Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated graph sequence
neural networks,” in Proc. 4th Int. Conf. Learn. Representations, 2016,
pp. 1-20.

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in Proc. Int. Conf. Learn.
Representations, 2018.

L. Zhao et al., “T-GCN: A temporal graph convolutional network for
traffic prediction,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9,
pp. 3848-3858, Sep. 2020.

J. Zhu, Q. Wang, C. Tao, H. Deng, L. Zhao, and H. Li, “AST-GCN:
Attribute-augmented spatiotemporal graph convolutional network for traf-
fic forecasting,” IEEE Access, vol. 9, pp. 35973-35983, 2021.

H. V. Jagadish et al., “Big data and its technical challenges,” Commun.
ACM, vol. 57, no. 7, pp. 86-94, 2014.

A.J. Chorin and O. H. Hald, Stochastic Tools in Mathematics and Science,
vol. 1, Berlin, Germany: Springer, 2009.

A. J. Chorin, O. H. Hald, and R. Kupferman, “Optimal prediction
with memory,” Physica D, Nonlinear Phenomena, vol. 166, no. 3-4,
pp. 239-257, 2002.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, vol. 2015, 2015.

J. H. Chow and K. W. Cheung, “A toolbox for power system dynamics
and control engineering education and research,” IEEE Trans. Power Syst.,
vol. 7, no. 4, pp. 1559-1564, Nov. 1992.

Z.Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the
dots: Multivariate time series forecasting with graph neural networks,” in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 753-763.

Authorized licensed use limited to: Purdue University. Downloaded on September 08,2024 at 16:06:11 UTC from IEEE Xplore. Restrictions apply.

