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Abstract—Type 2 diabetes (T2D) is a major public health
problem, and opportunistic screening to detect T2D at an early
stage can help initiate interventions that delay or prevent the
disease and its complications. In this study, we use electronic
health records (EHR) and concepts extracted from clinical notes
to predict future T2D risk. Our deep neural network-based
model captures the temporal sequence of patient visits. We use
explainable AI algorithms to assess the model decisions and
observe alignment with the domain knowledge of clinical experts.

Index Terms—Machine Learning, Natural Language Processing,
Disease Prediction, Diabetes

I. INTRODUCTION

Type 2 diabetes (T2D) is a highly prevalent chronic condition,
affecting approximately 35 million people in the United States,
23% of whom are undiagnosed [1]. Early detection of T2D,
coupled with opportunistic screening, can identify patients
who are likely to benefit from lifestyle interventions (diet and
exercise) and medications and prevent serious complications.
This is even more important for the underprivileged populations
served by UI Health, the hospital at the institution we are
affiliated with—often, these patients do not access the health
system on a regular basis, but rather, occasionally visit a doctor
or the emergency room when a health crisis occurs.

Traditionally, physicians conduct manual reviews of clinical
notes to identify patients at risk of developing T2D. However
such an approach is not readily scalable. Predictive models
trained using data from electronic health records (EHR) (such as
diagnostic codes, patient demographics, vital signs, laboratory
tests, and prescribed medications) can increase patient access
to diabetes screening [2]. An important and abundant source
of information in EHRs is the unstructured data comprising
notes written by healthcare providers—descriptions elucidating
laboratory test results, inpatient discharge summaries, etc.
Leveraging the wealth of information contained in these notes
requires the use of Natural Language Processing (NLP).

Additionally, EHRs contain longitudinal information in the
form of multiple patient visits over time. This time-series data
contains hidden patterns and latent time-varying features on
the progression of symptoms and other complications that
can be exploited to predict the future risk of disease [3],
[4]. However, there has been limited work on modeling the
information from clinical notes as a time series owing to
challenges such as irregularly distributed events, incongruent
and fragmented notes across visits and healthcare providers,

and data heterogeneity and sparsity. In this work, we propose
a novel neural architecture to model the temporal sequence of
clinical notes across patient visits as an irregularly sampled
time series and predict the future risk of T2D. We effectively
integrate the distinct modalities of unstructured notes across
different patient visits and structured data in the proposed
framework. We explicitly handle the temporal information in
the sequence of clinic visits using recurrent neural networks.
We analyze the concepts and features that are most predictive
and those that are least predictive of the future risk of T2D.

II. DATA DESCRIPTION

We begin with a large dataset comprising adults (age ≥18
years) who have been treated at UI Health from January 1,
2010, to July 31, 2021.1 The data contains UI Health patients
with and without a diagnosis of T2D. The exclusion criteria
include diagnosis of type 1 diabetes or gestational diabetes.
The data comprises clinical notes and structured variables such
as demographic attributes, lab values, diagnosis dates, etc.

A. Sampling and Preprocessing

After consulting the clinical experts, we select the fol-
lowing most informative note types ‘Family Medicine Note’,
‘Transplant Surgery Note’, ‘History and Physical Note’, ‘En-
docrinology Note’, ‘Emergency Department Note’, ‘Diabetes
Education’, ‘Child Psych Discharge Summary’, ‘Exercise/Stress
Procedure’. We drop the duplicate entries and undersample
the non-diabetic patients by 25% so they are around twice
the number of diabetic patients. Since we are only interested
in a patient’s first diagnosis, we drop all visits including and
after the first diagnosis. The final dataset consists of 10621
unique patients, 826 of whom are diabetic. Despite an initial
undersampling of the non-diabetic group, we end up with
further unbalanced data owing to many of the T2D patients
being pre-diagnosed relative to the data collection period.

B. Concept Extraction from free text

We follow a normalized-concept-based approach wherein we
extract clinical concepts from text such as medications, disease,
symptoms, procedures, and anatomical sites, and map them to
unique identifiers (CUIs) in the Unified Medical Language
System (UMLS) [5] metathesaurus using NLP-based tool
cTAKES [6]. Fig. 1 shows an example of concepts extracted
from our data. Minus sign indicates negation of a concept.

1The data is confidential due to protected health information.
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Fig. 1: Concepts CUIs extracted by cTAKES

C. Diabetes Progression Time-Series

In addition to the concepts extracted from clinical notes, we
also experiment with a subset of structured variables. These
include sensitive attributes such as gender—Female (F) or
Male (M), race—Black (B), White (W), or No Information
(NI), ethnicity—Hispanic (Y) or non-Hispanic (N), and age
group—age 18-45 as Adults (A), 46-65 as Middle Aged (M),
and 65 and above as Seniors (S) shown in Fig. 2.2 We also
use the HbA1c test values before the diagnosis, shown in Fig.
3. This is a weighted average of blood glucose over the past 3
months which facilitates the diagnosis of T2D at value ≥ 6.5%
and prediabetes if it is between 5.7 and 6.4. This is a sparse
data source, missing from around 56.8% observations. There
are several patients in the non-diabetic group with HbA1c
≥ 6.5% without a clinical diagnosis of T2D, indicative of
potential missed diagnoses.

For each patient, we combine all their visits into a single
observation and sort them from first to last before diagnosis.
The number of visits varies from 2–234 with a mean of 4.7. We
use up to the last ten visits (91st percentile of total visits) before
diagnosis and pad the shorter sequences using a special token.
We split the data into training-validation-test sets stratified by
the T2D diagnosis, in the ratio 80:10:10.

Fig. 2: Demographics of T2D and non-Diabetic (NoD) patients.

III. METHODOLOGY

A. Baselines

We use Logistic Regression (LR) with 10-fold cross-
validation (CV) over the combined training and validation
splits. For the first baseline, we use the last HbA1c value
before a diagnosis, imputing missing values with the mean. As
second baseline, we use the sensitive attributes—race, ethnicity,
gender, and age group. And as third, a combination of both.

2The distinction in racial categories and the Hispanic/Latino ethnicity follow
from the US census.

Fig. 3: Last HbA1c value before diagnosis in our data.

Fig. 4: Diabetes Progression Time-Series Model Architecture

B. Concept-based Models

a) LR with TF-IDF We flatten the visit sequence by combining
all the unique concepts from the last ten visits into a single bag-
of-CUIs. We train an LR model with L2 regularization and 10-
fold cross-validation using Term Frequency-Inverse Document
Frequency (TF-IDF) vectorization with 1–2 n-grams.
b) Sequential Models: We propose a neural architecture
comprising two encoders—a visit level encoder for each bag-
of-CUIs followed by a patient level encoder for the sequence
of visits. Each CUI is mapped to a vector embedding—random
initialization vs. pre-trained cui2vec embeddings [7] and fine-
tuned during model training.3

i) CNN-LSTM: As the first encoder pair, we use a Convolu-
tional Neural Network (CNN) to encode the bag-of-CUIs in
each visit followed by a Long Short Term Memory (LSTM)
network to encode the sequence of visits.4

ii) Hierarchical Attention Network (HAN): We combine
stacks of recurrent neural networks (RNN) and attention layers

3We were able to map 17360 out of 24701 CUIs in the training set to the
pre-trained vectors and randomly initialized those that couldn’t be mapped.

4We also experimented with mean CUI embeddings (MCE), MCE with
attention, deep averaging network (DAN), and DAN with attention that do
not perform well.
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using HAN [8] at two granularities—visit level and patient level.
We experiment with unidirectional and bidirectional LSTM
and Gated Recurrent Units (GRU) as choices of RNN.

C. Multi-modal Models

We also combine text representation with structured data.
For sensitive attributes, we transform each attribute type with
a fully connected neural network layer specific to that attribute
to get attribute representation. To model the HbA1c time
series, we use a sub-network consisting of GRU with attention
mechanism. The final representations of text and structured data
are concatenated together and processed via a fully connected
layer with sigmoid activation to get the probability of T2D
diagnosis. The model architecture is represented in Fig. 4.

The models are trained for 20 epochs using a batch size of 32
on RTX 2080 Ti GPU using Keras API. We reduce the learning
rate if the validation loss doesn’t improve for a few epochs.
We use Adam optimizer to minimize binary cross-entropy loss
and class weights to handle imbalance. The kernel weights are
randomly initialized. Masking is used to model missing values
in HbA1c time series, batch normalization is used for scaling,
and dropout is used to prevent overfitting. We use Bayesian
search and manual tuning to select the hyperparameters and
save the model with the least validation loss.

IV. RESULTS AND DISCUSSION

We report the evaluation results in Table I. We use Precision
(P) and Recall (R) for each of the two classes and the macro-
average of their harmonic mean (macro-F1) for comparisons.
Even with a majority baseline classifying all patients as non-
diabetic, we achieve a high macro-average F1 at 47.97%.
Among the baselines that use only the structured or semi-
structured time series inputs, we find that HbA1c is quite
important. However, the last HbA1c before diagnosis is not
predictive enough which can be attributed to it being sparse
and noisy. The performance of the model with GRU and
attention mechanism gets a notable boost owing to more
balanced predictions for both classes. The models that use
the sensitive attributes have poor performance. Moreover, they
also degrade the performance of the last HbA1c-based model
when combined with it.

In the second panel of Table I, describing CUI-based models,
there is a performance improvement starting with LR. Neural
models with pre-trained cui2vec embeddings provide a sizable
improvement over this. Although, random initialization of CUIs
leads to a performance drop. The CNN-LSTM model with
cui2vec has the best performance with a macro average F1 at
74.15 due to more balanced scores for both classes.

In the third panel of Table I, we show results for bimodal
models. Again, the sensitive attributes reduce the performance
of the models in comparison to the respective variants in the
second panel. The HbA1c values help improve the precision
for the T2D class for the CNN-LSTM variant and that of
the majority non diabetes class for HAN variant. However,
overall this sparse input reduces the performance compared to
CUI-only models.

TABLE I: Results on the held-out test set. SA refers to sensitive
attributes. HbA1Cts refers to the time series of HbA1c values

Model Text Macro T2D NoD
Encoding F1 P R P R

B
as

el
in

e LR (HbA1Clast) NA 60.1 22.1 45.8 95.0 86.3
LR (SA) NA 54.1 16.8 72.3 96.7 69.6
LR (HbA1Clast+SA) NA 58.4 19.8 60.2 95.9 79.4
RNN+Attention (HbA1Cts) NA 65.3 35.2 37.4 94.7 94.2

C
U

I

LR tf-idf 68.2 50.9 33.7 94.5 97.2
HAN Random 64.3 28.1 51.8 95.6 88.8
CNN-LSTM Random 66.4 29.3 73.5 97.4 85.0
CNN-LSTM Cui2Vec 74.2 46.0 62.7 96.7 93.8
HAN Cui2Vec 70.7 38.8 60.2 96.5 92.0

B
im

od
al HAN (CUI+SA) Cui2Vec 69.5 43.9 43.4 95.2 95.3

CNN-LSTM (CUI+HbA1Cts) Cui2Vec 69.7 59.6 33.7 94.6 98.1
HAN (CUI+HbA1Cts) Cui2Vec 68.2 32.4 69.9 97.2 87.7
HAN (CUI+HbA1Cts+SA) Cui2Vec 65.8 29.0 66.3 96.8 86.2
Support 1063 83 980

TABLE II: Top 5 features for positive (T2D) and negative
(NoD) classes in the LR Model.

Positive Features Negative Features
CUI Concept Name CUI Concept Name
C0025598 Metformin C0747752 Polysubstance abuse
C0017642 Glipizide C0006684 Calcium Channel Blockers
C0857112 Bilateral glaucoma C0162703 Pain Threshold
C0591573 Glucophage C0392557 Nuclear cataract
C0584640 Tibial plateau structure C0178316 Fracture of upper limb

In the high-stakes setting of the public health domain, it
is imperative to understand why a model predicts a certain
class for a given input. Beginning with the white box LR
classifier, it is straightforward to infer the features associated
with each class using the coefficients corresponding to each
feature (CUI). We compute the idf weighted scores from the
coefficients associated with each CUI. Table II shows the top
five CUIs most predictive of a positive (T2D) and negative
(No Diabetes) classification respectively in decreasing order of
their predictive power. Some of the top positively correlated
features are antidiabetes drugs such as ‘Metformin’, ‘Glipizide’,
and ‘Glucophage’. Note that these are administered before the
formal diagnosis. There is no known association between some
other concepts in this table with T2D. For instance, undiagnosed
T2D might lead to ‘Bilateral glaucoma’. However, the latter is
not a known cause of the prior.

To open up the black box of our best-performing CNN-
LSTM classifier, we borrow the layerwise relevance propagation
(LRP) [9] technique from explainable AI. LRP is a powerful
technique that can uncover for each input feature (in our
case, a CUI) if it has a positive or a negative contribution
towards a particular prediction. These contributions are called
relevance scores. LRP computes these scores by decomposing
the prediction scores from the model output back to the input
source by propagating it layer-by-layer, following a layerwise
conservation principle. This means the relevance scores stay
the same across layers. We use the LRP implementation from
DeepExplain package [10]5. We show two example heatmaps
obtained with this technique in Fig. 5. The CUIs are translated

5https://github.com/marcoancona/DeepExplain
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(a) Patient A

(b) Patient B

Fig. 5: Normalized LRP attribution score heatmaps for CNN-LSTM from snippets of concepts for two different patients’ visits.

to the corresponding concept names using UMLS rest API for
readability. The image only depicts the model attributions over a
small fragment from a single visit from a patient in the positive
(T2D) class. The CUIs highlighted in red depict highly positive
relevance scores concerning the T2D class while the ones in
blue depict highly negative relevance scores. We note from Fig.
5 (a) that the concept ‘Prediabetes syndrome’ contributes highly
towards a positive prediction. ‘Therapeutic immunosuppression’
also has a high positive contribution, as do ‘illness’ and
‘glucose’. On the other hand, generic concepts such as complete
blood count have highly negative relevance towards diabetes
prediction. In the case of patient B, we find a different set of
concepts namely ‘Chronic kidney disease stage 5’ as having
highly positive contributions. Interestingly, our model also
finds ‘unemployment’ to be a positive contributor. Although
we cannot infer from this information alone whether and
how unemployment may cause diabetes or whether symptoms
leading to diabetes may cause unemployment, employment and
job security are identified by the World Health Organization
among the important social determinants of health.

V. CONCLUSION

We predict the future risk of T2D by modeling concepts
extracted from the temporal sequence of patient visits using
neural models. A challenge for modeling our dataset is a high
class imbalance, which is reflective of the real-world setting.
Despite this, we find sizable performance improvements even
for the sparse T2D class by leveraging the concepts from
clinical notes using sequential representation. The models’
performances drop when we combine the concepts with
structured attributes, one of which (HbA1c) is noisy and sparse.
In the future, we will experiment with additional data sources
such as glucose sensor variables, insulin pump values, patient
vitals, and medications when available.

We also uncover several mistakes made by the concept
extraction and normalization pipeline of cTAKES. For instance,
the word “Plan” is mapped to disease/disorder type while
“today” is mapped to medication. In many examples, “DM2” is
mapped to the CUI for Dystrophia Myotonica Type 2 when it
refers to Diabetes Mellitus Type 2. In the future, we would like
to integrate other text representations, such as word embeddings
and large pre-trained clinical language model embeddings.

Finally, we investigate the patterns driving model decisions
for both LR and top-performing neural models using explain-
able AI techniques. We illustrate that the highly predictive
features align with the medical knowledge, fostering trust in
the models. The heatmap visualizations for a classifier can also
be a useful tool for clinicians to help focus their attention on
relevant concepts while reviewing a patient’s medical history.
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