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Abstract— The ability of quadrupedal robots to follow com-
manded velocities is important for navigating in constrained
environments such as homes and warehouses. This paper
presents a simple, scalable approach to realize high fidelity
speed regulation and demonstrates its efficacy on a quadrupedal
robot. Using analytical inverse kinematics and gravity com-
pensation, a task-level controller calculates joint torques based
on the prescribed motion of the torso. Due to filtering and
feedback gains in this controller, there is an error in tracking
the velocity. To ensure scalability, these errors are corrected
at the time scale of a step using a Poincaré map (a mapping
of states and control between consecutive steps). A data-driven
approach is used to identify a decoupled Poincaré map, and
to correct for the tracking error in simulation. However, due
to model imperfections, the simulation-derived Poincaré map-
based controller leads to tracking errors on hardware. Three
modeling approaches — a polynomial, a Gaussian process, and
a neural network — are used to identify a correction to the
simulation-based Poincaré map and to reduce the tracking
error on hardware. The advantages of our approach are
the computational simplicity of the task-level controller (uses
analytical computations and avoids numerical searches) and
scalability of the sim-to-real transfer (use of low-dimensional
Poincaré map for sim-to-real transfer). A video is here http:
//tiny.cc/humanoids23.

I. INTRODUCTION

In recent years, quadrupedal robots such as Boston Dy-
namics’ Spot and Unitree’s A1/Gol have been readily avail-
able for industrial applications and research labs [1], [2].
The access of reliable hardware besides basic features of
quadrupedal robots such as low center of gravity, large
support base, and light legs makes them ideal for stable
and effective navigation in uneven (outdoors) and structured
(indoor) environments.

One of the important basic ability of quadrupeds is to
follow commands such as prescribed linear and rotational
speed with high fidelity. This enables their use in more
complex scenarios, such as navigation in constrained envi-
ronments, in homes and industrial settings, in the presence of
obstacles and clutter. The main challenges are to do faithful
command following with minimal computations so that the
extra computing resources can be used for more complex
tasks (e.g., task and motion planning, computer vision).
Another challenge is the disparity between simulations and
hardware, known as the sim-to-real gap, which makes it
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motion); (b) Final pose obtained in hardware without sim-to-real transfer;
(c) Final pose obtained in hardware using Poincaré map-based sim-to-real-
transfer matches the intended motion in (a).
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challenging to transfer simulated controllers to hardware.
This paper presents a scalable approach to do high fidelity
command following and faithful sim-to-real transfer and
demonstrates the result on a Unitree Al robot.

The background and related work focusses on current
approaches to do low-level (continuous) and high-level (step-
level) control and sim-to-real transfer for quadrupedal robots.

A. Low-level (continuous) control

The low-level control approaches are divided into model-
based and model-free or a combination of the two.

The model-based control approach uses a model to com-
pute joint torques based on the prescribed reference motion
of the torso. The most successful approach has been to use
model predictive control using the single rigid body model
that assumes massless legs [3], [4]. The model is used to
compute the ground reaction forces and foot stepping needed
to achieve the desired linear and angular speed of the torso
over a finite time horizon. The forces are converted to joint
torques using the Jacobian from the foot to the torso. There
have been variants of this approach such as, using automatic
differentiation to compute gradients [5], using exponential
coordinates to better approximate the dynamics [6], and use
of full nonlinear dynamics with approximations of the first
and second derivatives [7]. The limitation of this approach
is that it relies on extensive onboard computations.

The model-free control approach involves optimizing the
control policy by minimizing a suitable cost function. The
most successful approach has been to use reinforcement
learning. The control policy is a neural network that takes
in as inputs the position and velocity of the legs and
torso, and returns outputs of either the joint torques [8] or
joint reference angles [9]. But reinforcement learning is not
sample efficient. To overcome this, one can seed the learning



with samples from a motion capture system [10] or learn in
lower dimensional space such as in the Cartesian space [11].
Hybrid approaches that combine model-based and model-
free methods can overcome the limitation of either approach.
One approach is to use reinforcement learning to generate
an initial population of solutions for the model predictive
controller [12]. This approach has shown to generalize over
a series of legged robots with minimal modification. Another
approach is to use experimental data to improve the model,
which then updates the model-predictive controller [13].

B. High-level (step-level) control

It is known that humans and animals control movement
over the time scale of a step, also known as step-level control
[14], [15]. The step-level control enables humans to use
discrete footholds for efficient navigation [16].

The Poincaré section and map is one approach to do
effective step-level control [17]. The Poincaré section is
an instant in the locomotion cycle (e.g., foot strike). The
Poincaré map is a function that maps the state and control
from one Poincaré section to the state at the next Poincaré
section [18]. Using the Poincaré map, it has been shown
that a quadrupedal model with springy legs and no external
actuation can demonstrate walking, trotting, and tolting gaits
[19]. Using the eigenvalues of the linearized Poincaré map,
it is shown that these passive gaits are stable [20].

The Poincaré map has been used to compute ground
reaction forces to ensure periodicity in the bounding gait
[21], improve the robot’s ability to handle friction constraints
[22], and enable gait transitions by finding common stable
regions of two gaits at the Poincaré section [23].

C. Sim-to-real transfer

It is a common practice to tune control policies in sim-
ulation before they are deployed to hardware. However,
model deficiencies may prevent these control policies from
working well on hardware. This well known problem is
known as the reality gap [24], [25]. This necessitates the
use of techniques to close the reality gap to enable effective
sim-to-real transfer.

Dynamic randomization is a popular method to enable
sim-to-real transfer [26]. Here, a robust control policy is
learned in simulation by randomizing the model with the
expectation that the randomization would be effective in cap-
turing the hardware and the physical environment [27]. This
method can be generalized by training on many quadrupedal
robots to make the controller robust to the hardware ran-
domization [28]. One variant of this approach is to train
two networks, one for the controller and the other for the
variabilities in the environment. During run time, the second
neural network predicts the correct environment variables,
which is then used by the first network for control [29],
[30]. However, one of the challenges in these approaches is
that they rely on extensive simulations for deployment on
hardware.

D. Our method and contribution

In this paper, we are interested in high-fidelity command
following of a quadrupedal robot. To achieve this, we present
three levels of control. (1) Low-level control: A task-level
controller that uses inputs of prescribed torso orientation and
velocity and outputs the ground reaction forces and the foot
stepping location. These forces and foot stepping locations
are then converted to joint torques using the Jacobian of the
foot to the torso and the joint-level servo. (2) High-level
control: A Poincaré map is used to correct for command
tracking. The Poincaré map is obtained in simulation using
a data-driven approach. (3) Sim-to-real transfer: A correction
to the Poincaré map is done to account for the discrepancies
between simulation and hardware. We investigate three meth-
ods for improving the Poincaré map, a low-order polynomial,
a Gaussian process model, and a shallow neural network.
Note that robot stability is not the focus of this paper, only
the ability to follow a prescribed velocity command. In our
testing for trotting on flat tiled and carpeted flooring, we
found that the robot trot gait was stable enough that we did
not have any falls.

The main contributions of this work are: (1) a com-
putationally simple task-level balance controller that relies
on an analytical inversion of matrices rather than iterative
solutions of nonlinear equations in previous model-based
approaches (e.g., [3], [4]); (2) the demonstration that the
use of reference velocities (fore-aft, lateral, and yaw) leads
to simple, decoupled, linear Poincaré maps that can be
identified with a small set of experiments; and (3) the use of
three approaches (polynomial, Gaussian process, and neural
networks) to model the reality-gap to improve the sim-
to-real transfer. Figure 1 summarizes the results obtained
using the Poincaré map-based sim-to-real transfer. Some
related papers are [31] where we used only Gaussian Process
regression for sim-to-real transfer for a hopping robot, [32]
compares neural network, gaussian process, and polynomial
for approximating the Poincaré map for a hopping model,
and [33] where we used Gaussian Process to model the
Poincaré map for bipedal control.

The paper is organized as follows. The task-level controller
is discussed in Sec. II followed by the high-level controller
and sim-to-real transfer in Sec. III. The results of the ap-
proaches are presented in Sec. IV, followed by the discussion
in Sec. V, and conclusion and future work in Sec. VI.

II. CONTINUOUS CONTROL (LOW-LEVEL)
A. Hardware platform

The hardware platform used in this work is the quadruped
Al by Unitree Robotics [1]. The robot has four legs, each
with 3 degrees of freedom. Each leg has a mass of 2 kg and
the mass of the torso is 4.75 kg. There is an encoder at each
joint, an inertial measurement unit on the torso, and a touch
sensor on each foot. The minimum and maximum torques
on each joint are —33.5 and 33.5 Nm respectively. There are
sensors to measure the motor currents which are calibrated
to compute the joint torques. There are two computers for
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Fig. 2. Block diagram of the robot controller. A state machine is used to program the robot controller logic. The inputs to the state machine are shown in
the blue/pink highlighted blocks. The inputs in the blue block, sz‘leg height, h foot clearance, ¢ and O, roll and pitch angle of the torso respectively
are kept fixed in this paper. The inputs in the pink block @rer, Yrer, Wrer, the fore-aft, lateral and yaw reference velocities are set once per step. These blocks

are explained in the text.

control execution: an external computer to set torques and
reference motion, and a proprietary motor controller for joint
control. The external computer sends commands at a rate of
1 kHz to the motor controller. Five commands can be sent
and they include torque, position gain, velocity gain, position
set-point, and velocity set-point. The motor controller on
the Al proprietary controller runs at 10 KHz and it is not
accessible. The robot uses Lightweight Communications and
Marshalling (LCM) and User Datagram Protocol (UDP) for
communication.

B. State machine and its inputs

Figure 2 shows a block diagram of the continuous (low-
level) controller. The continuous-level controller uses a finite
state machine and it executes at 1 kHz. The legs are labelled
as Front Right (FR), Front Left (FL), Rear Right (RR), and
Rear Left (RL). For the trot gait, the combinations of FR-RL
and FL-RR move together. The pair of legs cycle between
stance and swing legs at a fixed time sequence given by the
step time. The step time is fixed at 0.2 sec throughout this
work.

The inputs to the state machine are the reference height
of the legs z,, the ground clearance h, the reference roll and
pitch of the torso ¢, and 6, respectively. The other inputs
are fore-aft speed, the lateral speed, and the yaw speed .,
Y, and 1, respectively are set once per step by the step-
level controller (see Sec. III).

C. Cartesian and Joint trajectory

The cartesian trajectory block takes in the torso height
(2.), foot clearance (h), forward speed in body frame (Z.),
lateral speed in body frame (¥,,), and rate of turning ()
and produces the foot position as a function of time, /.
and using the fixed step time, it generates the linear speed
l... Here £ = {{;, ¢, 0.} are the positions of the foot with
respect to the shoulder joint in the body frame. A fifth order
polynomial is used generate a reference profile for the foot.
The coefficients of the polynomial are obtained based on
the 6 inputs: the initial and final position are known, the
initial and final velocity are known, and the initial and final
acceleration is zero.

The inverse kinematics blocks takes in the reference
position and velocity of the foot, ¢, and /., and produces
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FL

Fig. 3. Single Rigid Body (SRB) model assumes entire mass is located on
the torso and the legs are massless. The model is used to compute ground
forces for the prescribed torso motion.

the angular position (g,;) and angular velocity (¢,.;) of the
joints of the leg. Here q = {qo, q1, g2} where qo, g1, g2 are
the hip roll angle, hip pitch angle, and knee pitch angle.
The forward kinematics (f) can be written as ¢ = f(q). To
compute the inverse kinematics, we have q = f=1(¢). It is
possible to compute an analytical inverse of f which makes
computation fast (see [34] for details). The angular velocity
can be found as q = J~'/ where the Jacobian is given by

_ o
J=2

D. Single Rigid Body Model

The single rigid body model (SRB) shown in Fig. 3 is
used to compute the ground reaction force on the legs that
are in the contact with the ground. These forces are then
converted to joint torques (see Sec. II-E)

The SRB model assumes that the mass and inertia are
concentrated in the torso and the legs are massless. Since we
are interested in trotting, any two diagonal legs are assumed
to be in contact with the ground. These contacting legs
interact with the ground through ground reaction forces F';
and F; where i and j are the two legs. For each force there is
an x-, a y-, and a z- component. Using the free-body diagram,
one can write

MtotP = Fi + Fj — Mg (])
IlmQ =r; xF, + r; X Fj = [ri]xFi + [I‘j]XFj 2)
where [v]x is the vector v written as a skew-symmetric

matrix. The total mass is m,,, the corresponding mass matrix
is M,,, the inertia about the center of mass is I, and



gravity vector g. In the last equation, we have ignored the
term Q x (I,8). This is justified as the roll and pitch
angular velocities are small and hence their coupling with
yaw motion is negligible even for a large yaw rate (turning).

Using the SRB model, we do a task-based control of the
torso using the stance legs. Our goal is to regulate the torso
as follows

¥ = Cyp(dy — T), 3)
y= Cy( ref ) 4
Z=K. (2 —2)—C.2 (5)
¢ Ky(¢u — ¢) — Coh, (6)

= Ky (9m 0) — Cq9, (7
b = Cy(tha — 1) (8)

where K, and C are position and damping gains that are
hand-tuned in simulation. We substitute Eqns 3-5 in Eqn. 1
where P = [i 4 Z] and substitute Eqns 6-8 in Eqn. 2
where () = [qb 0 z/J]

The equations can then be simplified to the following form.

AF =b ©))

where A and b are functions of mass, gravity and location
of the center of mass from the feet and F = [F;, F;] is the
6 x 1 unknown force vector. Using the pseudo inverse, AT,
to solve for, F = A*b

E. Stance leg controller

The stance leg controller block uses the ground reaction
forces from the SRB model and computes the joint torques
on the stance legs. The stance leg torque is computed as
Tet = JTF where J is the Jacobian of the foot with respect
to joint angles J = g—é. This controller is task-based since it
uses the feedback from the task space (or Cartesian space)
to obtain the torques. This controller can become unstable
for large tracking errors. To create stable control, additional
feedback from joint angles is needed,

Tst = JTF + Kq(qrcf - Q) + Cq(qmr - OI) (10)
where the joint angles q = [qo Q1 qg], the proportional

gain at the joint is K, and damping gain at the joint is C,.

FE. Swing phase controller

The swing phase controller uses the joint level control us-
ing reference joint angles/rates and actual joint angles/rates.
The torque is given by
(11

w=J"F, + K, (qu —q) + Cy(Qur — 4)

where F, is the torque due to gravity. Since the legs are
lightweight, we set the Fy = 0 to simplify the computation.
This had an insignificant effect on the tracking as the legs
are light weight; the feedback controller makes up for this
modeling error.

Perturbed trajectory

initial state, X;

final state,X; 1 ® _
XOﬁxed point
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Fig. 4. Poincaré map and section

G. State Estimation

The state estimation block takes inputs from the joint angle
sensors and inertial measurement unit and returns the esti-
mated state. The joint angular velocity was also made avail-
able by the robot manufacturer. This was probably obtained
by differentiation and filtering. The sensors provided by the
software were not filtered or post-processed as they were
found to be adequate for control. However, we estimated
the height of the leg z using forward kinematics and sensor
joint angles. We also estimated the linear velocities =, y, z
using the derivative of the forward kinematic terms and the
measured joint angles. We had to use an exponential filter to
smooth out the estimated linear velocities.

III. STEP-LEVEL CONTROL (HIGH-LEVEL)

The low-level control discussed in Sec. II achieves the de-
sired motion of the torso using the torques on the stance and
swing legs. The torso has 3 positions, 3 angular positions,
and their respective rates leading to N = 12 states. However,
to control the overall progression of the robot, only a subset
of these states needs to be regulated. We choose three states,
N, = 3. These are: the body frame torso speed in the fore-
aft direction z, the torso speed in the lateral direction Y,
and the yaw velocity ¢. These are compactly written as
©,, = {&, 9, v}. The Poincaré section and map is an efficient
way of controlling this low-dimensional set of states and is
discussed in the next section.

To control these, we use three parameters from our low-
level controller discussed Sec. II and shown in Fig. 2. These
are fore-aft reference velocity ., lateral reference velocity
Yer» and the yaw velocity .. These are compactly written
as U = {Zos, Yur, Yur ). We now resort to a Poincaré map to
achieve the desired regulation.

A. Poincaré section and map

Figure 4 shows a pictorial depiction of the Poincaré section
and map [17]. Consider an instant in the gait cycle (e.g.,
an instant when any two diagonal feet contact the ground).
This is our chosen Poincaré section. Let the reduced state at
the Poincaré map at the current step be ©¢,. This is shown
with the red diamond. Our low-level control parameterization
chose the control U? which then takes the reduced state to
O at the Poincaré section at the next step. We can find



a function P, known as the Poincaré map, that maps the
reduced state from one step to the next. This is given by

et = P(e,U" (12)

Note that the control U is set once per step and kept constant
during the step.

B. High-level control problem

The high-level control problem is stated as follows. Given
the state at the current step, ©,, compute the control at the
current step, U® such that the state at the next step is ©%.
From Eqn. 12 we can write

ey = P(e),U") (13)

For a generic Poincaré map, the control U? can be found by
root finding, which might involve a finite search. However,
as shown next, for our chosen task-based controller, the
Poincaré map given by Eqn. 12 is linear and decoupled, thus
simplifying the control.

C. Poincaré map simplification

The generic expression for the Poincaré map given by
Eqn. 12 has 3 outputs in ©%+1 and 6 inputs in ®! and U’.
This would make the Poincaré map, P, high dimensional.
The task-level controller achieves decoupling of the dynam-
ics. This is evident from Eqns. 3 - 8. Since the velocities in
the x-, y-, and 1) direction are decoupled, we can write three
decoupled equations for the Poincaré map as follows

P =P (i, 1) (14)
gt =Py, vl,) (15)
P =Py (¢, Yh) (16)

The above equations are an assumed simplification that needs
to be checked with data. The checks were done as follows in
the simulation. We varied z,.; and measured the state 2. Then
we fit the Eqn. 14 using the simplest polynomial expression.
We repeated this for Eqns. 15 and 16. This completed the
training of the equations. Next, we test the equations by
running randomly chosen inputs ., ¥., and ., and found
that the above equations can explain the test data.

D. Sim-to-real transfer

The simplified, decoupled Poincaré map equations in
Sec. III-C are fit in simulation. When tested on hardware,
they may not lead to perfect tracking. To improve tracking,
we improve the Poincaré map as follows. Let the measured
(true) state be &it!l gitl il We fit the Poincaré map
errors as follows

‘firj:el - Pm(iiv ‘(bir) = AI("tia ‘il/.fel') (17)
Ve — Py Un) = By(¥',5) (18)
frjel - Px(fvi,.’tir) = A’JJ (W, ;Let) (19)

The function Ay, Ay, and Ay are assumed to be functions
of state and control as shown. We used three methods to
fit these functions: (1) polynomial regression, (2) Gaussian
process regression, and (3) neural network-based regression.

Once these functions are ﬁttﬁ:d, the control problem is to
compute the control &, ¥, ¥, given the state at the current

ref

step 4%, 4%, 1" and the desired state *, ¢, and ™

j,/_des — :ti"'l = Pz(xl,xfd) + Ax(‘fbiﬂfbfer) (20)
g =g =Py i) + Ay (35 @D
djdes = WH = PUJ (W, rza) + Adl (1/]1’ rlef) (22)

To solve for the control, we need to do numerical root
finding as the equations are nonlinear and cannot be solved
analytically.

IV. RESULTS

The low-level controller discussed in Sec. II was pro-
grammed using the C interface of MuJoCo [35]. The low-
level gains of the joints, K, and C, (see Eqns. 10 and 11)
were manually tuned in simulation and then verified that they
give reasonable tracking in hardware. The gains of the task-
level controller, C,, Cy, K., C,, K4, Cy, Kg, Cy, and C,
(see Eqns. 3 to 8), were tuned in a similar fashion. We set
the robot height z; = 0.275 m, foot clearance height h = 0.1
m, and step time t; = 0.2 sec. The worst-case computation
time for the controller was 0.1 ms. Since the controller runs
at 1 kHz (1 ms control loop), this is adequate.

Figure 5 shows the performance of the low-level controller
when the inputs Z.. ¥U. Y. and 60, are varied. These
reference values are shown using a red dotted line and
abbreviated as ‘reference’. The output is the raw sensor data
that is shown in black and can be seen to be noisy. The
torso fore-aft speed, lateral speed, and yaw speed show the
most noise and lead to unstable behavior. These values were
filtered using an exponential filter. The ‘filtered’ values are
shown as a blue solid line and have acceptable values for
control. The exponential filtering and task-level gains cause
tracking errors between ‘reference’ and ‘filtered’ values for
the three speeds. These are improved using Poincaré map,
as discussed next.

Our goal is to tune the ‘reference’ such that the ‘filtered’
values track the desired velocities given by 98, g9, q/des,
To do this, we fit the Poincaré map given by Eqns. 14 -
16 in a data-driven fashion. We run three experimental runs
in the simulation. In each experiment, each of the three
state/command pairs (e.g,. 2° and @) are varied. Then fit
the simplest polynomial expression for P, P, and P, using
the simulation data. We found that a first-order polynomial
could adequately fit the experimental data. Our fit was

Pt = 0.4714" + 0.48847, (23)
y' T = 0.4435° + 0.511¢, (24)
P = —0.298¢)" 4 1.205¢, (25)

The R? for these fits (in the given order) were 0.998,
0.999, and 0.999 respectively and the root mean square
error, RMSE, was 0.015 m/s, 0.008 m/s, and 0.012 rad/s
respectively. This indicates that the assumed decoupled linear
form for the Poincaré map is an adequate approximation of
the Poincaré map.
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To test the fit, we generated a desired state, 29, 7, e,

Then we set 4i+1 = 395, i+l = gdes and ¢hi+1 = yjdes and Type of sim-to-real | & (m/s) | g (m/s) [ & (radss) |

inverted Eqns. 23 - 25 to compute the input command i, no learning 0.0282 | 0.0112 | 0.0446

ji 1bi for the measured state, 4%, ¢, and . The testin polynomial 0.0232 | 0.0111 | 0.0188

Yeerr Yrer > v : . . g gaussian process 0.0296 | 0.0141 | 0.0288

was done on hardware. In the Fig. 6, the red dotted line with neural network 0.0196 | 0.0104 | 0.0447

a circle shows the fidelity of the tracking. The plots (a), (b),

(c) show the reference and tracking, while (d), (e), and (f) TABLE I

show the tracking error. From the latter plots, it can be seen ROOT MEAN SQUARE ERROR FOR METHODS TO DO SIM-TO-REAL
that the tl‘acking errors iS Wlthln _004 to 0’ _004 to O’ and TRANSFER (POLYNOMIAL, GAUSSIAN PROCESS, NEURAL NETWORK)
701 to O f0r x'»’ y’ and w reSpeCtiVely. AGAIN NO LEARNING. THE LATTER INVOLVED TRANSFERRING THE

LEARNED MODEL FROM THE SIMULATION TO THE HARDWARE.

To further improve the sim-to-real transfer, we used the
data from the hardware run to fit the errors between the



experimental value and the model given by Eqns. 23 - 25.
Our goal is to fit the A’s in Eqns 17 - 19. We tried three types
of regression models, a first-order polynomial, a Gaussian
process, and a neural network. For the polynomial, we
use the MATLAB function polyfitn (available at MATLAB
central) to fit a first-order polynomial. For the Gaussian
process, we used MATLAB function firrgp with a quadratic
basis function and a matern52 kernel. For the neural network,
we used MATLAB function train with just 2 hidden layers.

The resulting model for the Poincaré map is given by
Eqgns. 17 to 19 is nonlinear. The resulting control problem
given by Eqns. 20 to 22 is solved using a nonlinear root
finder. Here inputs are i’ and £ and the unknowns are
the commands ' and similar to other equations. We used
MATLAB function fsolve to solve the problem and saved a
lookup table. The lookup table was evaluated in real time to
compute the required control in hardware. Figure 6 shows
the results for each of these fits: magenta dashed line with
an asterisk for polynomial (poly), blue dashed line with a
cross for Gaussian process (gp), and cyan dashed line with
a diamond for neural network (nn). Table IV compares the
root mean square error (rmse) for the three fits and with no
learning (first line). It can be seen that the neural network
does the most improvement to the & fit and the Gaussian
process does the most improvement to the v fit while there
is almost no improvement for ¢y whose desired reference is 0
in the experiment. These results show that the Poincaré map
refinement using experimental data enables better sim-to-real
transfer.

V. DISCUSSION

The paper presented a task-level balance controller for
low-level balance control and a Poincaré map-based high-
level controller for command following. The task-level con-
troller takes inputs of reference body orientation and veloc-
ities and calculates ground reaction forces using the single
rigid body model and stepping locations. These forces are
then converted to joint torques using the Jacobian from the
foot to the torso and supplemented with joint-level torques
from inverse kinematics for increased stability. Then a data-
driven approach is used in simulation to fit a Poincaré map
between torso velocities at the next step as a function of
torso velocities at the current step and reference velocity.
The Poincaré map is further refined using experimental data
to enable sim-to-real transfer and for effective tracking on
the hardware. The approach is validated on a quadrupedal
robot.

The prime advantage of the approach is the choice of
parameterization used in the task-level control; the reference
velocities are in the fore-aft, lateral, and yaw directions.
This choice simplifies the Poincaré map to be linear and
decoupled. Thus, very little simulated data is needed to fit
the Poincaré map. These advantages carry forward to the
sim-to-real transfer, where again, very little data is needed to
improve the Poincaré map approximation. Another advantage
is the computational simplicity of the approach. The task-
level control relies on analytical inverse using the equation

of the single rigid body model and the Poincaré map is based
on 1-dimensional root solving.

The task-level balance control relies on smooth and accu-
rate estimates of the torso’s linear velocity (fore-aft and lat-
eral), but this was a major challenge. We used the kinematic
model of the stance leg with the joint angle/velocity and torso
orientation data to compute the linear velocity of the shoulder
joint. We then averaged the velocities of the two stance legs
to compute the linear velocity of the torso. This estimate
was noisy, and we had to use a slow filter to smoothen the
estimate. This caused the estimated velocity to lag the actual
velocity even though the controller was stable. One way to
solve the problem is to fuse the joint angle/velocity data
with the accelerometer data with a model-based filter (e.g.,
Kalman filter).

The presented work has limitations that need to be ad-
dressed in the future. In the trot gait, the quadrupedal is
fully actuated at all times (assuming all feet are firmly on
the ground). This makes it straightforward to implement task-
level control. The task-level control needs to be modified for
systems with under-actuation (e.g., bipeds with small feet)
and other quadrupedal gaits with phases of underactuation
(e.g., bounding). One way of overcoming the under-actuation
is to delay stabilization of some degrees of freedom to a
longer horizon using the Poincaré map [36]. The computation
of feasible ground reaction forces is based on the single rigid
body model, which is a good approximation for robots with
light legs and heavy torso and at relatively slow speeds.
This approximation needs to be thoroughly evaluated for
robots with a distributed mass (e.g., humanoids) and at high
speeds (e.g., bounding). Our controller is based on fixed
step time (as is the standard practice for trot gaits), but this
assumption can be problematic when the robot is negotiating
rough terrain where the foot contact time is variable. Finally,
it is unclear if the simple parameterization of the task-
level control would enable simple, decoupled Poincaré map
equations for underactuated systems like bipedal robots.

VI. CONCLUSIONS AND FUTURE WORK

We conclude that task-level balance control using a single
rigid body model is a promising approach for control of
quadrupedal robots for trotting. The approach is computa-
tionally simple and leads to simple, decoupled equations
for step-level control. The latter enables fitting the Poincaré
map with very little data in simulation and hardware, which
enables a high fidelity command following in hardware.

The future work will explore two thrusts. One, extending
the control approach to uneven terrain where it is expected
that the Poincaré map estimation, state estimation, and sim-
to-real transfer would be more challenging. Two, using
the step-level control in a motion planning framework for
navigation in an environment with obstacles.

APPENDIX

A video that shows the results can be found on this link
https://youtu.be/OKZ4axbgo44 or this short link
https://tiny.cc/humanoids23.
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