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Abstract—The design and analysis of reconfigurable meta-
surfaces operating within rich multi-path propagation fading is of
crucial importance for the development of real-life programmable
electromagnetic environments. We incorporate the effect of multi-
path fading in an impedance-based model of wireless communi-
cation links assisted by reconfigurable surfaces. Previous work
has shown that impedance-based channel models under rich
multi-path propagation have an isomorphism with Sherrington-
Kirkpatrick (SK) Hamiltonians. We focus on received power
minimisation, which is equivalent to the hard-to-solve task
task of finding the ground state of the SK Hamiltonian. It
has been recently discovered that the Quantum Approximate
Optimisation Algorithm (QAQOA) predicts the ground state of
SK Hamiltonians accurately. However, the landscape parameters
of QAOA are dependent on the specific realisation of the random
SK Hamiltonian, which hinders the full usage of quantum
hardware to optimise reconfigurable surfaces dynamically. We
show by Montecarlo simulations that a concentration property
cures this impediment thus making QAOA an excellent candidate
for surface optimisation under fast multi-path fading.

Index Terms—RIS, Quantum Computing,
Kirkpatrick Hamiltonian, QAOA, MIMO

Sherrington-

I. INTRODUCTION

The potentials of programmable meta-surfaces will be
harnessed in future wireless communication systems if the
research community is capable of providing advanced physics-
based models and optimisation algorithms. Programmable
meta-materials are artificial structures engineered to have
desired properties to dynamically control and manipulate
electromagnetic (EM) waves [1]. This new generation of
meta-surfaces, also referred as reconfigurable meta-surfaces,
or reconfigurable intelligent surfaces (RIS), are based realised
loading meta-material cells, or groups of cells, with tuneable
electrics components, e.g., p.i.n. diodes or varactors. Over
the last few years, most of the studies in the literature have
devised first electromagnetic principle models and studied
the performance of reconfigurable meta-surfaces for beam-
forming in quasi-free space [2], [3]. Advanced design and
analysis of meta-surfaces for the next generation of mobile

wireless networks beyond 5G pose two-challenges: i) self-
consistent modelling of the interaction between meta-surface
and dynamic propagation environments; ii) Optimised design
of reconfigurable meta-surfaces in wireless channels with
fading. The first challenge has been recently addressed in
a series of works involving physics-based modelling that
adopts scattering theory [4] and wave chaos theory [5]. The
second challenge has been addressed from an algorithmic
perspective by various authors in the electromagnetics [6] and
wireless communication community [7]. A different angle has
ben taken that concerns physics-based grounded on quantum
graphs [8] and quantum computing [9], [10]. This recent effort
deals with the optimisation of deterministic physics models
through analog computation structures. Here, we focus on
the fast optimisation of stochastic physical models through
universal-gate quantum computing algorithms. In particular,
we adopt the quantum approximate optimisation algorithm
(QAOA) to find the ground state of an effective Sherrington-
Kirckpatrick (SK) Hamiltonian on which the EM model of
the meta-surface scattered energy is mapped onto. In other
words, we tackle the quantum optimisation of large and
dynamically reconfigurable meta-surface under rich multi-
path fading through a physics-based end-to-end (E2E) MIMO
communications model. We have recently showed how to
exploit the mathematical analogy between received power in
RIS-assisted wireless links and SK Hamiltonians to describe
the spin state dynamics of arrays of reflective surface unit
cells [11]. This analogy has been also discussed in the field
of optical simulators of spin glasses (SG) through a spatial
light modulator (SLM) [12], [13]. The quantum computation
of our random SK Hamiltonian extends the workflow adopted
for the radar cross section (RCS) of a binary RIS under oblique
plane wave incidence [9]. Introducing random couplings in
Ising Hamiltonians produce multi-stability that has been a con-
cern already of the statistical physics community for several
decades [14]. The ground state of the SK Hamiltonian was
discovered in 1978 by Giorgio Parisi, who also elucidated
the role of spin glasses in disordered systems. As a matter
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Fig. 1: RIS-assisted wireless communication in presence of
rich uplink and downlink multi-path fading.

of fact, the fluctuation of the ground state is reduced as
the temperature of magnetic spin chain systems is reduced
below a critical temperature. When implemented in quantum
computers, the energy fluctuation driven by the disordered
spin chain underpins the fluctuation of the QAOA landscape
parameters within the computing architectures. Therefore, the
convergence of QAOA landscape parameters is dependent
on the specific statistical realization of the SK Hamiltonian
couplings, which creates a classical bottleneck to quantum
simulations. Furthermore, a question arises on whether the
ground state energy computed by QAOA specifically provides
the Parisi ground state expected by the SK Hamiltonian. Re-
cent work has shown that the convergence to the Parisi value is
fast and accurate with a moderate depth of the quantum circuit
[15]. We elaborate on this achievement and provide shot-based
simulations combined with Montecarlo generation to study
the existence of a concentration property that alleviates the
classical landscape bottleneck.

II. STATISTICAL CHANNEL MODEL

A. MIMO Communication model overview

A cascaded communication model, based on impedance ma-
trices that describe a multiple-input multiple-output (MIMO)
system assisted by reconfigurable meta-surface, has been re-
cently derived from first EM principles[11]. The model extends
the quasi-free space channel transfer matrix in [17] to indoor
propagation environments supporting rich multi-path fading.
We treat the meta-surface unit cells as radiating elements
with ports loaded with tuning circuitry. The radiated waves
leaving the unit cells bounce around a large and complex
reflective environments, and return back to the meta-surface.
This mechanism establishes the intricate self- and mutual-
coupling interactions among unit cells, which are captured by
wave chaos theory and are described by the random coupling
model (RCM). Figure 1 shows a RIS-assisted propagation
channel with Nt antenna elements in the transmit array,
Ny antenna elements in the receive array, and Ng unit cells
in the RIS. The channel transfer matrix Hgogp describing

the transmission through the RIS reads in presence of LOS
blockage reads

Hez2e = VrrZ1Zrs Pss Zs1drT (1)
where we have defined the following admittance matrices
Dss = (Zris + Zss) ', 2
Yer= (ZL+ Zrr) ", 3)
Yrr= (Za+Zr) ), @)

with Zq internal generator impedance matrix at transmitter
side, Zr, load impedance matrix at receiver side, Zpr active
impedance matrix of the transmit array, Zrgr active impedance
matrix of the receive array, Zrgs mutual impedance matrix
between receive array and RIS, Zg1 mutual impedance matrix
between RIS and transmit array, Zgg active impedance array
of the RIS, ZR1g equivalent impedance matrix of the tuneable
circuit loading the RIS unit cells. Note that ZRrg can be non-
diagonal if the circuitry is designed so that to interconnect unit
cells. It is worth noticing that the reflection phase in canonical
communication models is replaced by the admittance matrix
®gg, which includes the active impedance matrix Zgg of the
array of unloaded RIS unit cells, as well as the equivalent
impedance matrix Zrig of the tuning circuitry. In presence
of multi-path fading, the field radiated by the antennas is re-
flected back from the environment, and the interaction between
transmit/receive array and RIS is perturbed by the interference
between a multitude of scattered waves. Wave scattering in
large and complex cavities is described by wave chaos theory.
Inherently, the mutual coupling impedance matrices Zgrg,
Zgr, and Zgg become (complex-valued) random matrices.
The RCM incorporates complex wave scattering within the
impedance matrix of antennas and apertures. radiating inside
cavities with irregular geometry and distributed losses (cap-
tured by an average scalar parameter «). Specifically, the
entries of the uplink and downlink impedance matrices, ZRrg
and Zgr respectively, read

Z (n,m) = 299 (n,m) +

®)
RI# (n,n) € (n,m) () \/RI* (m,m),

For moderate values of absorption losses in the environment,
i.e., @« > 1 we have that £ follows a zero mean Gaussian
distribution and standard deviation that scales with 1//c.
Also, according to the first-principle model in [18], the term
ZLOS in (5) captures the single (short-orbit) LOS channels
between RIS unit cells and transmit/receive array elements in
the far-field approximation. It is worth remarking that [19]

(Z(n,n)) = jX7% (n,n) + RT* (n,n) 2 275 (n,n), (6)
with Z/% (n,n) free-space (fs) active impedance of the n-th

antenna element.

B. Derivation of Sherrington-Kirkpatrick Hamiltonian

The MIMO communication model (1) with RCM pre-
scriptions encoded in (5) can be written an an effective SK
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Hamiltonian. By assuming an inter-distance between RIS unit
cells of \/2, it is known that the mutual coupling is reduced
and the RIS active impedance is approximately diagonal [11]

Pgs (n,n) = R(n) s(n), @)
with RIS unit cell (port) phase factor
s(n) = e 72 (®)
The calculation of the received power
Hris = ||He2ellr = Tr [HEQE HEQE:| , 9
where ||...|r indicates the Frobenius norm, yields the SK
Hamiltonian

N N, -
Hrs =)~ 3 " s(n)s(na)J (nn2),  (10)
For RIS-assisted MIMO systems, the couplings J (ni,ns)
in (10) have the form of a generalised Hopfield model.
Furthermore, it has been already shown that generalised Hop-
field converges to a non-zero mean Gaussian distribution on
account of the central limit theorem [11], [12]. Optimising
the performance of a RIS-assisted communication channel
requires maximisation/minimisation of (10) under appropriate
constraints. In real-life environments where the RIS operates
in a multi-path fading environment, the unit cells would
configure as spatially disordered (optimised) reflective states
that change with fade duration. This dynamic optimisation
is no doubt computationally intensive and time consuming,
hence a question arises on whether quantum algorithms help
addressing this challenge. We already demonstrated that for
fast multi-path fading channel hardening alleviates the require-
ment of dynamic ground state search of the SK Hamiltonian,
hence removing the link between the (classical) channel state
information and (quantum) hardware landscape. We prove
the existence of a concentration property that makes QAOA
independent on the classical fluctuation of the SK Hamiltonian.
Both channel hardening and concentration help predicting a
robust state for the RIS under channel variability.

III. QUANTUM APPROXIMATE OPTIMISATION ALGORITHM:
A MICRO PRIMER

Without lack of generality, we tackle the general problem
of minimisation of SK Hamiltonians of the form (10). This
is equivalent to maximising (10) with negative couplings
-J (n1,n2). The SK Hamiltonian can be implemented in
a universal gate quantum computer through QAOA, which
runs through P hardware layers to achieve the associated
ground state eigenvalue. The QAOA iterates a specific Ansatz
composed of two unitary operators with p-layer paramaters
(Yp, Bp). The iterated application of the Ansatz to P-layers
produces the landscape parameters (3,7) that are dictated by
the numerical convergence of the Hamiltonian to the ground
state. The optimisation of these parameters is classical and
pertains the rotation angles of quantum state, in this case
generated by the SK Hamiltonian dynamics, at each hardware
layer. The entire procedure is depicted in Fig. 2. From a
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Fig. 2: QAOA ansatz and optimization

mathematical standpoint, we prepare the quantum computer in
the state with uniform superposition of bit strings by applying
a Hadamard gate to each qubit in the zero state [20]. Then,
for each layer p of QAOA, we evolve the system with the cost
Hamiltonian for some angle +,

U, = exp (—ivpHe), (11)
and then evolve the system with a driver Hamiltonian
1
Hp = Z o, (12)
for an angle 3
Vp = exp (—iBpHp), (13)

where o® is the Pauli X matrix. Repeated applications of the
cost and driver dynamics evolves the system to the quantum

state 3,1))

18,7) = VpUp - - Val, ViUs [9h) (14)

Functional evaluation is performed by Monte-Carlo estimation
of the cost Hamiltonian with samples drawn from a Gaussian
distribution. In the original QAOA algorithm the control
(landscape) parameters (3,7) are optimised such that the
functional, the expectation of the cost Hamiltonian for a given
instance of the problem

ming (8, Y[Hsk|B,7) (15)

is minimized, with Hsx = Hgs in this work. This leads
to the ground state eigenvalue J,, for the single realisation
(instance) of the SK Hamiltonian. However, due to coupling
fluctuation, this introduces a potentially expensive training step
for every query associated with the instance, which poses
a computational bottleneck. This is alleviated by the use of
a single set of landscape parameters for the optimisation
of whole statistical ensemble of SK Hamiltonians. Results
become accurate upon onset of a concentration property with
respect to large statistical ensembles of SK Hamiltonians [15].
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Fig. 3: Decoupling of classical Montecarlo generation of the
SK Hamiltonians from QAQOA simulations that retrieve their
ground state.

IV. NUMERICAL RESULTS
A. Quantum Montecarlo simulations

The maximisation/minimisation of (10) implies a stochastic
optimisation problem that is more involved than the Ising
Hamiltonian optimisation [9]. In particular, we perform a
numerical analysis of the random couplings via Montecarlo
simulations of an arbitrary MIMO system. The caveat in this
simulations is that the total number of radiating elements in
both the transmit and receive array should be smaller than the
number of the (mutually uncoupled) unit cells in the RIS. This
aspect is important to avoid memory effects in the SK Hamil-
tonian that would create a deviation from Gaussian of the ran-
dom couplings resulting from multi-stability underpinned by a
spin glass state [14]. The distinctive different between QAOA
of SK Hamiltonians and classical Metropolis-Hastings (MH)
or simulated annealing (SA) optimisation is that the choice of
the landscape parameters of the quantum computer is related
to the Montecarlo generation of the (random) Hamiltonian
couplings. This hybrid classical-quantum optimisation creates
a bottleneck in searching the optimal RIS state that causes
the response of the RIS to the EME variability to increase.
Our idea is centred around the decoupling of Monte Carlo
generation from QAOA execution. This is visually depicted in
the scheme of Fig. 3. Inherently, it has been recently proposed
that a unique set of landscape parameters can be used to run
QAOA optimisation on a (large) ensemble of SK Hamiltonians
[15].

B. Concentration property

The choice of the optimal set of QAOA angles has been de-
vised using deep learning methods in the MaxCut optimisation
problem [20]. More recently, it has been shown that the QAOA
converges to the Parisi eigenvalue with a low circuit depths
[15] thanks to the concentration property of the associated
ansatz. The study in [15] considers an SK Hamiltonians
with Bernoulli couplings fluctuating between +1 and -1 with

Am as p increases

[ ] ® QAOA eigenvalues
—~0.55 Exact eigenvalues
° === Parisi limit

[ 4
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Fig. 4: Comparison between the average ground-state mini-
mum eigenvalue (blue dots) computed by QAOA, the theo-
retical eigenvalue (orange dots), and the Parisi limit (dashed
line) for an increasing circuit depth p.

equiprobability. In this work, we perform Qiskit [16] based
simulations on an SK Hamiltonians with couplings following
a non-central Gaussian distribution with mean value equal to
10 and unit variance. The convergence of the average ground-
state (minimum) eigenvalue to the exact (Parisi) eigenvalue
is shown in Fig. 4 for an increasing quantum circuit depth
p. In Fig. 5 we show that the landscape parameters have
reduced fluctuation with increasingly large ensemble distri-
bution, which achieves the statistical concentration property.
Furthermore, the eigenvalue associated with the ground state
of the SK Hamiltonian has small error with respect to the
multivariate set of optimised landscape parameters for a large
statistical ensemble of instances (here we used 128 instances).
In all the simulations we have adopted a low number of qubits
(n = 3), which is important in lieu of implementation on
practical quantum computing architectures where the hardware
noise increases with an increasing number of qubits.

V. CONCLUSION

Using quantum algorithms to design optimised large an-
tenna arrays and surfaces constitute a viable way forward in
computational electromagnetics. However, the real-life opera-
tion of surfaces needs to account for the effect of the environ-
ment on the end-to-end RIS-assisted link at design stage. The
electromagnetic propagation variability can be included in the
channel gains of programmable environments through wave
chaos theory, and recasted into a random Hamiltonian whose
optimisation is a hard task. We find that searching for the
optimal average RIS states state translates into searching for
the average ground state of an SK Hamiltonian. Environment-
aware design of the RIS becomes possible by using Monte
Carlo generation in quantum optimisation: The coupling of
the two operations create a bottleneck that is detrimental to
achieve a quantum advantage over classical algorithms. We
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Fig. 5: Variance of two selected quantum circuit parameters: Decay with an increasing number of instances indicates statistical
concentrations that decouples the Montecarlo generation from QAOA execution.

have found evidences of a statistical concentration property
that decouples the Monte Carlo simulations from the QAOA
execution. These findings support the prospects that QAOA
will be an effective method for solving electromagnetics
engineering problems on near-term quantum computers.

ACKNOWLEDGMENT

Funded by the EPSRC under Grant EP/V048937/1, and the
Royal Society under Grant INF\R2\192066.

REFERENCES

[1] E. Calvanese Strinati et al., “Wireless environment as a service enabled
by reconfigurable intelligent surfaces: The RISE-6G perspective,” Proc.
of EUCNC 6G Summit, Porto, Portugal, June 2021.

[2] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, R. Zhang,
“Wireless communications through reconfigurable intelligent surfaces,
IEEE Access, Vol. 7, 116753, 2019.

[3] E. Martini, S. Maci, “Theory, Analysis, and Design of Metasurfaces for
Smart Radio Environments,” Proceedings of the IEEE, vol. 110, no. 9,
pp. 1227-1243, Sept. 2022.

[4] A.Rabault, L. L. Magoarou, J. Sol, G. C. Alexandropoulos, N. Shlezinger,
H. V. Poor, P. del Hougne, “On the tacit linearity assumption in common
cascaded models of RIS-parametrized wireless channels,” arXiv preprint
arXiv:2302.04993, 2023.

[S] P. Mursia, S. Phang, V. Sciancalepore, G. Gradoni, M. D. Renzo,
“SARIS: Scattering Aware Reconfigurable Intelligent Surface Model and
Optimization for Complex Propagation Channels,” in IEEE Wireless
Communications Letters, doi: 10.1109/LWC.2023.3299304.

[6] G. Oliveri, P. Rocca, M. Salucci, A. Massa, “Holographic Smart
EM Skins for Advanced Beam Power Shaping in Next Generation
Wireless Environments,” in IEEE Journal on Multiscale and Multi-
physics Computational Techniques, vol. 6, pp. 171-182, 2021, doi:
10.1109/IMMCT.2021.3121300.

[7] Y. Liu et al., “Reconfigurable Intelligent Surfaces: Principles and Oppor-
tunities,” in IEEE Communications Surveys & Tutorials, vol. 23, no. 3,
pp. 1546-1577, Third Quarter 2021, doi: 10.1109/COMST.2021.3077737.

[8] T. Lawrie, G. Tanner, D. Chronopoulos, “A quantum graph approach to
metamaterial design,” Scientific Reports, 12(1), p.18006, 2022.

[9] C. Ross, G. Gradoni, Q. J. Lim, Z. Peng, “Engineering Reflective
Metasurfaces With Ising Hamiltonian and Quantum Annealing,” IEEE
Transactions on Antennas and Propagation, vol. 70, no. 4, pp. 2841-2854,
April 2022.

[10] P. Rocca, N. Anselmi, G. Oliveri, A. Polo, A. Massa, “Antenna Array
Thinning Through Quantum Fourier Transform,” in IEEE Access, vol. 9,
pp. 124313-124323, 2021, doi: 10.1109/ACCESS.2021.3109938.

[11] G. Gradoni, S. Terranova, Q. J. Lim, C. Ross, Z. Peng, “Random Ising
Hamiltonian Model of Metasurfaces in Complex Environments,” 2023
17th European Conference on Antennas and Propagation (EuCAP), Flo-
rence, Italy, 2023, pp. 1-5, doi: 10.23919/EuCAP57121.2023.10132939.

[12] M. Leonetti, E. Hormann, L. Leuzzi, G. Parisi, and G. Ruocco, “Optical
computation of a spin glass dynamics with tunable complexity,” Pro-
ceedings of the National Academy of Sciences, 118(21), p.e2015207118,
2021.

[13] D. Pierangeli, G. Marcucci, and C. Conti, “Large-scale photonic Ising
machine by spatial light modulation,” Physical review letters, 122(21),
p.213902, 2019.

[14] G. Parisi, “Nobel lecture: Multiple equilibria,” Reviews of Modern
Physics, 95(3), p.030501, 2023.

[15] E. Farhi, J. Goldstone, S. Gutmann, L. Zhou, “The quantum approximate
optimization algorithm and the Sherrington-Kirkpatrick model at infinite
size.” Quantum, 6, p.759, 2022.

[16] P. N. Singh and S. Aarthi, “Quantum circuits—an application in Qiskit-
Python. In 2021 third international conference on intelligent communica-
tion technologies and virtual mobile networks,” icicv, pp. 661-667, IEEE,
February 2021.

[17] G. Gradoni, M. Di Renzo, “End-to-End Mutual Coupling Aware
Communication Model for Reconfigurable Intelligent Surfaces: An
Electromagnetic-Compliant Approach Based on Mutual Impedances,” in
IEEE Wireless Communications Letters, vol. 10, no. 5, pp. 938-942, May
2021.

[18] J. H. Yeh, T. M. Antonsen, E. Ott, S. M. Anlage, “First-principles
model of time-dependent variations in transmission through a fluctuating
scattering environment.” Physical Review E, 85(1), p.015202, 2012.

[19] G. Gradoni et al., “Statistical model for MIMO propagation channel
in cavities and random media,” 2020 XXXIIIrd General Assembly and
Scientific Symposium of the International Union of Radio Science, 2020,
pp. 1-4, doi: 10.23919/URSIGASS49373.2020.9232187.

[20] G. E. Crooks, “Performance of the quantum approximate opti-
mization algorithm on the maximum cut problem,” arXiv preprint
arXiv:1811.08419, 2018

Authorized licensed use limited to: University of lllinois. Downloaded on September 08,2024 at 17:46:34 UTC from IEEE Xplore. Restrictions apply.



