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Abstract

Deploying socially assistive robots (SARs) at home, such as robotic companion pets, can be useful for tracking behavioral
and health-related changes in humans during lifestyle fluctuations over time, like those experienced during CoVID-19.
However, a fundamental problem required when deploying autonomous agents such as SARs in people’s everyday living
spaces is understanding how users interact with those robots when not observed by researchers. One way to address that is to
utilize novel modeling methods based on the robot’s sensor data, combined with newer types of interaction evaluation such
as ecological momentary assessment (EMA), to recognize behavior modalities. This paper presents such a study of human-
specific behavior classification based on data collected through EMA and sensors attached onboard a SAR, which was deployed
in user homes. Classification was conducted using generative replay models, which attempt to use encoding/decoding methods
to emulate how human dreaming is thought to create perturbations of the same experience in order to learn more efficiently
from less data. Both multi-class and binary classification were explored for comparison, using several types of generative
replay (variational autoencoders, generative adversarial networks, semi-supervised GANs). The highest-performing binary
model showed approximately 79% accuracy (AUC 0.83), though multi-class classification across all modalities only attained
33% accuracy (AUC 0.62, F1 0.25), despite various attempts to improve it. The paper here highlights the strengths and
weaknesses of using generative replay for modeling during human-robot interaction in the real world and also suggests a
number of research paths for future improvement.

Keywords Human-robot interaction - Machine learning - Generative adversarial network - Generative replay - Ecological
momentary assessment - Human activity recognition

1 Introduction
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can try to link those interactive behaviors to health-related

changes through machine learning techniques. However, a
problem that arises is how to best handle sensor data from
multiple types of sensors so that it can be discerned into
identifiable activities that relate to real-time human-robot
interaction (HRI) of interest. Obviously, the same human
behavior is not performed in the exact same way all the time,
but rather there are groups of similar behaviors that clus-
ter into common behavior modalities which we care about
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lection techniques (daily diaries, telephone conversation, and
other data collection methods) have been previously devel-
oped, but those methods are limited in that they are not always
entirely accurate due to the fact that they depend on the user’s
memory and thus suffer from “recall bias” [1, 3-6].

One possible solution to this is to combine the robot’s
sensor data with newer types of interaction evaluation meth-
ods, such as ecological momentary assessment (EMA) [7].
EMA is a technique of random sampling multiple times a day
to capture real-time human behavior, even when researchers
are not directly observing user behavior. Prior studies have
demonstrated that EMA is a powerful tool for monitoring
daily user behavior by collecting real-time data via smart-
phones [8, 9]. As such, more recent work has attempted to
apply EMA during HRI studies, in order to understand the
interactions that occur between humans and robots in the
real world in real-time [2, 10]. As mentioned above, random
sampling of users’ activities over extended periods of time
through EMA is important because the manner in which a
particular activity is performed during use of a SAR may
vary over time, both for a single user as well across different
users. Moreover, previous studies have found that carefully
linking the variability and novelty of a robot’s behavior with
identification of the exact moments when human behavioral
changes occur can contribute to understanding how SARs
could be used to support sustainable health-related behavior
change [11]. Therefore, EMA offers the potential to address
the above problems by combining it with interactive robots
to better understand HRI in-the-wild.

For SARs to interact with humans more autonomously in
the future, appropriate modeling techniques will be required
to identify activities of interest within a particular domain
(e.g., healthcare) based on the data [12, 13]. Such modeling
will help researchers design more advanced real-time inter-
active agents in the future, and furthermore, allow for the
extension of SAR technology into the realm of Internet of
Healthcare Things (health IOT), which envisions an ecosys-
tem of devices in users homes and workspaces intended to
contribute to human activity recognition and the classifica-
tion thereof with the aim of improving people’s everyday
lives [14]. Robots like SARs can provide particular value in
such health IOT settings, as the SARs have a dual-purpose
role in that scenario where long-term it can also provide
companionship and serve as a digital therapeutic (DTx)
intervention device, along with collecting sensor data [15].
Indeed, the broader goal of many health IOT systems is to
provide such DTx interventions, beyond just collecting data.

To that end, the goal of this paper is to explore vari-
ous generative replay deep learning modeling methods for
human activity recognition based on robotic sensor data
from in-home settings during HRI, in order to evaluate the
potential that such models have when applied to interac-
tive autonomous agents in the real-world. Generative replay
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attempts to use encoding/decoding methods to first memorize
and then reinforce learned patterns in the data, similar to how
human learning is thought to be reinforced during sleep time
[16]. To understand such potential, we explore various types
of generative replay models, for both binary and multi-class
classification, and compare their performance to previously
reported results using other types of machine learning and
deep learning models.

2 Related works

2.1 EMA and sensor data for human activity
recognition

Prior studies have shown that EMA is a powerful tool for
monitoring routine patient behavior via various random sam-
pling and self-assessment techniques [17-20]. Related to
that, there are also numerous prior studies that attempt to
directly recognize human activities through sensing technol-
ogy such as smartphones, otherwise referred to as ambulatory
assessment [20-22]. Understanding human activity using
sensor data requires identification of detectable behaviors
that exist within the patterns of collected sensor data. Not all
behaviors meet that requirement, either due to limitations in
the sensing technology or because the choice of sensor suite
by the technology designers (e.g., roboticists) [23]. In some
prior HRI studies, researchers have attempted to address
that issue by having participants perform certain behaviors
in a controlled environment monitored by researchers [24],
as well as by recording videos in people’s everyday liv-
ing spaces over a long period of time [25]. However, such
approaches can be costly and cause serious privacy issues.
Previous studies have found human participants are generally
uncomfortable with cameras placed in their homes, making
cameras an infeasible solution for real-world deployed robots
[26, 27].

A potential solution to this problem is to utilize real-
time self-reported data by the user (via EMA) as “ground
truth” labels of behavior with the sensor data (e.g., partici-
pant behavior) as suggested in previous HRI research [10].
Similar “ground truth” EMA approaches have been used in
recent research attempting to detect human activity with other
technology, such as smartphones and wearables [9, 28, 29].
The aim in all those research applications is to move away
from the difficulties with recall-based methods of data col-
lection (see Sect. 1).

2.2 Temporal detection of human activities
Another topic of major concern when attempting to model

real-world sensor data for human activity recognition is how
to deal with the issue of “time”. Traditionally, data collected
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from sensors such as accelerometers use a fixed-size slid-
ing time window for preprocessing, which extracts features
for human activity recognition models. Researchers choose
an appropriate time window size (e.g., some number of
seconds), and then the windows are slid along the tempo-
ral sequence of sensor data, with some degree of overlap
between one window to the next (e.g., 50%) The challenge is
that activities don’t happen instantaneously, nor do all activ-
ities occur for the same lengths of time. For instance, sitting
down in a chair is an event that typically unfolds over several
seconds [30]. However, what may be an appropriate time win-
dow for one behavior (e.g., 2s) may be too short for another.
Or vice versa, if the time window is too long (e.g., 2min),
then a brief 1-s behavior may be nothing more than a tiny
blip in the sensor data, completely undetectable.

Some prior studies have indicated that a window size of
1-2 s intervals provides the best balance between recognition
speed and accuracy [31], though other studies have indicated
longer window sizes (e.g., 10s) [30, 32]. Furthermore, there
are also studies that suggested the use of an adaptive time
window for human activity recognition may be better if the
human behaviors are periodic or quasi-periodic [33]. Likely,
the optimal window size will depend on the behaviors of
interest, which makes this a challenging issue [34]. Regard-
less, this issue is an area of active research in the field.

3 Methods
3.1 Data description

The study here included 12 participants in their 20’s from
South Korea (8 females, 4 male), who participated over a
3-week-long period by interacting with a SAR robotic pet
in their own homes. All participants were recruited from the
general population, with residence types that varied among
single-person households, living with family members, and
living in dormitories. Each participant was given a Joy-For-
Allrobot pet (Fig. 1) from Hasbro, equipped with a separately
built sensor collar (Fig. 2). The sensor collar was developed
through a research collaboration between Mississippi State
University, Indiana University, and Hanyang University, and
includes sensors that can detect light, sound, movement,
indoor air quality, and other environmental health data. The
sensor data was collected roughly 9 times per second, 24 h
a day, which resulted in a total sensor dataset of nearly 150
million data points (roughly ~12 million per participant).
Since we built the sensor devices, that sampling rate was
programmed into them, by design.

While sensor data were collected via the collars, self-
reported interaction behavior modalities were collected
simultaneously using an EMA mobile app (Expiwell, https://
www.expiwell.com/). The experiment used a sampling method

Fig.1 SAR with attached sensor collar
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Fig.2 Sensor collar

known as EMA to collect real-time data on interactions
occurring between the robot pet and the participants [7],
based on an approach previously developed specifically for
use in HRI studies [10]. The EMA app was set to send notifi-
cation prompts to users through their smartphones each day
roughly 5-7 times, dividing the day (9 a.m. to 9 p.m.) into two
hour segments, with the notification arriving randomly within
a given time segment (or not at all). The aim was to capture
realistic human behavior data with robots. Data were col-
lected over a 16-day period, with pre- and post-questionnaires
taking place in the days preceding the experiment and after.
The full questionnaires, EMA prompts, and protocol can be
found in [10].

The EMA prompts collected data about interaction behav-
iors (activity type) and proximity (whether the interaction
occurred close to or far from the robot) over a 15-min
period. Behavior modalities queried included direct inter-
actions with the robot (petting, talking, playing) and indi-
rect interactions (moving the robot, watching/listening to
TV/YouTube/Radio, eating/cooking). Approximately 2/3 of
the time though, users reported no interaction behavior to
be occurring, which is to be expected in real-world settings
where users are not forced to interact with the robot.

This resulted in 364 samples of interactions across all
modalities: petting, playing, moving the robot (from one
location to another), talking, watching TV/radio (or other
media such as YouTube), and eating/cooking. As each
interaction represents a 15-min time period, the dataset rep-
resented roughly 91h of total interaction time. As can be in
Table 1, the modality data were imbalanced, so the training
data were re-balanced using SMOTE [35]. These modalities
represent the target class for modeling. A cleaned-up version
of the dataset has been made publicly available in the Dryad
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Table 1 Interaction modality

Petti Talki TV i M i Playi Eati ki
counts and percentage etting alking /radio oved it aying ating/cooking
Count 116 39 118 27 15 16
Percentage 35.05% 11.78% 35.65% 8.16% 4.53% 4.83%
Table 2 Feature list
Category Features Description
Accelerometer accX, accY, accZ Motion amount from accelerometer in x, y (lateral)
and z (up/down) directions
Rotation Arc Average amount of rotation motion during
interaction
Light sensor Full Raw two-byte value reading from light sensor

Air quality sensor
breathVocEquivalent

Environmental sensor rawTemp
Environmental sensor Pressure
Environmental sensor rawHumidity

Indoor Air Quality Category

AudioLevel
Loud, Moderate, Quiet

Sound sensor

Sound category

Orientation Landscape Left Back, Landscape
Left Front, Landscape Right
Back, Landscape Right Front,
Portrait Down Back, Portrait
Down Front, Portrait Up Back,

Portrait Up Front

Iagq, staticlaq, gasResistance, co2Equivalent,

Good, Average, Little Bad, Bad, Worse, Very Bad

(visible + infrared)

Raw average readings from air quality sensor

Raw average readings from air quality sensor (range:
—45t085°C)

Raw average readings from air quality sensor (range:
300 to 1100 hpa)

Raw average readings from air quality sensor (range:
0 to 100%)

Percentage of time that specific laq categories were
detected, using IAQ index manufacturer specified
thresholds

Raw average readings from sound sensors

Percentage of time that specific sound categories
were detected, using sound sensor manufacturer
specified thresholds

Percentage of time that specific
orientation categories were
detected, using accelerometer
manufacturer specified thresholds

Repository, both the Korean data used here and US dataset
we collected using an identical procedure: https://doi.org/10.
5061/dryad.tb2rbp078.

The features in our dataset were derived from the sen-
sor collar, shown in Table 2. That included movement in the
x/y/z direction, rotational motion (arc), light/sound values,
orientation of the robot, indoor air quality metrics, tempera-
ture, air pressure, humidity, CO, value, and volatile organic
compound (VOC) rates related to human activities such as
cooking.

The sensor data could not be used in its raw form because
it was a continuous temporal sequence. To address this, a slid-
ing time window was applied to divide the data into several
short windows (see Sect. 2.2). The collar data for each inter-
action (a 15-min period) were split into 5-s windows with
50% overlapping (similar to [36]). This allowed each win-
dow to cover roughly 50 rows of sensor data, then move to the
next, while still overlapping 50% with the prior window. That
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is to say, 25 rows of sensor data covered in the previous win-
dow are utilized again in the current window. Additionally,
we applied some smoothing to the dataset via winsorization
to eliminate any outliers or random deviations within individ-
ual features. As shown in Fig. 3, the final pre-processed input
data took the form of a tensor (a multi-dimensional matrix)
consisting of the set of features included in the collected
sensor data (X -axis), with 50 data rows for each window (Y -
axis), grouped into a series of 5-s overlapping time windows
(Z-axis), similar to [12].

3.2 Generative replay models

In this study, both multi-class and binary classification were
performed using generative replay models (aka “deep gen-
erative models”). Generative models make use of a strategy
that attempts to learn resilient patterns of some phenomenon
by approximating the distribution or characteristics of the
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Fig.3 Input data example

original dataset, then transferring those patterns to a small
amount of data (“generator” or encoder) which can in turn
be used to generate new data with small perturbations to pre-
vent what is known as catastrophic forgetting during further
training/testing as additional sensor input data arrives (“dis-
criminator” or decoder) [37]. An example can be seen in
Fig. 4, demonstrating how the process mirrors proposed hip-
pocampus learning mechanisms in the human brain [16]. The
aim is to increase the flexibility of learned patterns in data
by creating variations of the same experience, which would
allow us to learn more with less data. It is thought that this
is similar to what the human brain is doing when dreaming
(possibly explaining why dreams can seem so weird), and
thus why the brain is so efficient at learning without needing
millions of examples of something. Through that process,
a trained generative model’s generator and discriminator
should hypothetically improve classification performance.
Three different types of generative models are explored in this
study: variable autoencoders (VAE) [38], generative adver-
sarial networks (GAN) [39], and semi-supervised GANs
(SGAN) [40].

In case of using VAE and GAN, they lack functionality for
classification by themselves, so it is necessary to use a sep-
arate classification model structure for training the encoder
and discriminator (i.e., transfer learning). Conversely, SGAN
does not require transfer learning because classification train-
ing is possible within the SGAN itself. In this study, the
training structure of the encoder and discriminator for VAE
and GAN was approached into two ways. One was based on
the architecture we have utilized in prior HRI studies [10, 12],
which we henceforth refer to as the “CRNN-based” model.
The other approach was based on a different architecture
proposed by other researchers originally intended to clas-
sify human activities using data from wearable devices [13],
which we will refer to as the “RCNN-based” model.

For comparison, we also used deep learning (DL) mod-
els in this study as a baseline model, which were drawn
from our prior studies with a similar dataset [10, 12]. These
were constructed using both convolutional neural networks
(CNN) and recurrent neural networks (RNN) based on long-
short term memory (LSTM) or gated recurrent units (GRU).
The CNN and RNN layers were “stacked” to create DL
architectures. The idea is that CNNs can characterize invari-
ant representations of sensor data patterns that occur at any
time during interactions, while RNNs can detect important
sequences of those patterns over time. The CRNN-based
and RCNN-based encoder/decoder training for the gener-
ative replay models mentioned in the previous paragraph is
based on the same idea, except instead of training a model
we are training the encoder/decoder. The primary difference
between the CRNN-based and RCNN-based models above
is whether the CNN or RNN layers occur first (i.e., the order
of the layers). In other words, the primary difference relates
to whether we should first try to detect invariant representa-
tions of sensor patterns that recur at different points in time,
or whether we should first try to detect patterns across time.

Modeling in this study used Tensorflow via Keras (https://
keras.io/), aPython-based deep learning library. In the case of
multi-class classification, the six modalities described above
were classified simultaneously, while for binary classifica-
tion those six modalities were classified as a series of parallel
binary predictions (e.g., petting or not petting). To evaluate
the performance of the models, 20% of the data was held out
from training as a test set.

4 Results
4.1 Baseline model

Table 3 shows the result of binary classification using deep
learning models developed on a similar dataset (reported in
our prior studies [10, 12]), applied to our new dataset here.
Those models were based on combining RNN and CNN
layers in a more traditional deep learning architecture, and
obtained near 80% accuracy for predicting the same set of
modalities (AUC 0.82). As mentioned in Sect. 3.2, we take
this as our baseline model to compare with various generative
replay models.

To establish a baseline for multi-class classification, we
adapted the above model for multi-class prediction then re-
ran it. The results are shown in Table 4 with an accuracy of
only about 8 to 8.5%, which lower than the random chance
probability of 16.7% (1/6) that could be obtained just by
“guessing” the answer without any model. We also ran the
baseline multi-classification using LSTM and GRU layers
for the RNN portion as a check, but there was no signifi-
cant difference in the baseline. A closer analysis revealed
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Fig.4 Generate replay (GR) Generator
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Table 3 Baseline binary classification results Table 5 Multi-class classification results of CRNN-based models
Modality Accuracy (%) AUC Model RNN type Accuracy AUC Fl1
Petting 88.89 0.9406 VAE GRU 17.54 0.5941 0.1183
Talking 79.57 0.8390 LSTM 20.55 0.6264 0.1303
Playing 71.60 0.7827 GAN GRU 19.73 0.6113 0.1375
TV/radio 63.79 0.6723 LSTM 23.02 0.5389 0.1409
Eating/cooking 75.76 0.7782 SGAN GRU 18.91 0.4606 0.0993
Moving it 88.56 09184 LSTM 21.65 0.5777 0.1462
Average 78.03 0.8219
. . . GRU on average in this case, which as we will see later was
Table 4 Baseline multi-class classification results K K
completely opposite with RCNN-based models.
RNN model Accuracy (%) AUC F1
GRU 8.12 0.1244 0.0429  4.2.2 Binary classification
LSTM 8.57 0.1472 0.0379

that the multi-class models struggled with the imbalanced
distribution of the target class, which is a common problem
in multi-class classification [41].

4.2 CRNN-based generative replay
4.2.1 Multi-class classification

We first evaluated generative replay using the CRNN-based
model (see Sect. 3.2). Table 5 shows the results of multi-class
classification. In general, all models showed a significant
improvement over the baseline model in Table 4, with accu-
racies and other performance scores improved by a factor of
about 2.5. However, the performance values are still sub-
optimal, and not really practical for real-world use with
robotic pets. We do note that LSTM was slightly better than
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Tables 6, 7, and 8 show the results of binary classification
for the CRNN-based generative replay approach, using VAE,
GAN, and SGAN models, respectively. Averse to multi-class
classification above, it can be seen that the performance
decreased in all cases compared to the baseline (Table 3). In
particular, similar to baseline, there were certain modalities
(Eating/Cooking, Listening to TV/Radio) which all models
struggled with. More than likely, that is a “data issue” related
to having the appropriate sensor suite onboard the robot to
detect relevant modalities, rather than a modeling issue [10].
We return to this topic in the Discussion section.

4.3 RCNN-based generative replay
4.3.1 Multi-class classification

We next evaluated generative replay using the RCNN-based
model (see Sect. 3.2). Results for multi-classification are
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Table 6 Binary classification .
) Modality GRU LSTM

results of CRNN-based VAE Accuracy (%) AUC Accuracy (%) AUC
Petting 85.80 0.9351 82.61 0.9102
Talking 69.68 0.6958 82.26 0.8117
Playing 57.41 0.6256 59.26 0.6255
TV/radio 55.86 0.5790 51.72 0.5354
Eating/cooking 76.06 0.8151 87.88 0.9118
Moving it 73.73 0.7764 86.57 0.8657
Average 69.76 0.7378 75.05 0.7824

Table 7 Binary classification .
Modality GRU LSTM

results of CRNN-based GAN Accuracy (%) AUC Accuracy (%) AUC
Petting 79.42 0.8716 80.87 0.8992
Talking 75.81 0.8121 70.97 0.7486
Playing 64.44 0.6563 72.22 0.7580
TV/radio 68.97 0.7186 58.97 0.6572
Eating/cooking 66.67 0.7306 63.94 0.6633
Moving it 71.04 0.7683 77.31 0.8220
Average 71.06 0.7596 70.71 0.7580

Table 8 Binary classification .
Modality GRU LSTM

results of CRNN-based SGAN Accuracy (%) AUC Accuracy (%) AUC
Petting 81.81 0.8077 80.87 0.8872
Talking 77.58 0.8104 78.06 0.8359
Playing 64.07 0.6569 60.00 0.6382
TV/radio 62.76 0.6129 70.34 0.7245
Eating/cooking 79.24 0.8298 75.46 0.8085
Moving it 77.99 0.7981 81.79 0.8451
Average 73.91 0.7526 74.42 0.7899

shown in Table 9. Performance metrics were improved in
all model types compared to baseline (Table 4). Averse to
the CRNN multi-classification in Sect. 4.2.1, we note there
was much greater variation in the results across models here,
with accuracies ranging from 16 to 34%. Additionally, GRU
seemed to perform better than LSTM with RCNN-based
models, in contrast to the CRNN-based models where LSTM
models performed better.

The SGAN using GRU was by far the best model of all
the different multi-class classification approaches attempted
in this study, achieving roughly 34% accuracy. That was an
increase of a factor of 4x over the baseline model, and an
increase of 2x over just random guessing. Regardless, our
interpretation is that multi-class classification of interaction
behaviors based on sensor data from in-home robotic pets is
still sub-optimal for real world at the present time, though
generative replay approaches do provide some significant
advantages over more traditional deep learning approaches.

Table 9 Multi-class classification results of RCNN-based models

Model RNN type Accuracy (%) AUC F1
VAE GRU 15.82 0.4740 0.1239
LSTM 20.69 0.4755 0.1713
GAN GRU 26.03 0.6169 0.1865
LSTM 15.53 0.5015 0.0925
SGAN GRU 33.79 0.6266 0.2588
LSTM 27.53 0.5628 0.1849

The challenge is likely more of a sensor data issue, which
will require experimentation with different sensor suites.

4.3.2 Binary classification

Tables 10, 11, and 12 show the results of binary classi-
fication for the RCNN-based generative replay approach,
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Table 10 Binary classification

results of RCNN-based VAE Modality i’fclimy D . I/;izé\facy D .
Petting 92.03 0.8733 91.39 0.9417
Talking 87.10 0.8565 80.00 0.8238
Playing 68.52 0.6772 63.89 0.7903
TV/radio 64.66 0.6791 57.76 0.5963
Eating/cooking 82.12 0.8626 75.00 0.7749
Moving it 74.10 0.7695 93.58 0.9321
Average 78.09 0.7863 76.94 0.8098

Table 11 Binary classification .

results of RCNN-based GAN Modality 2&gracy — S Iziichacy — —
Petting 92.75 0.9430 92.75 0.9533
Talking 84.95 0.8923 77.96 0.8278
Playing 66.05 0.6953 65.43 0.6914
TV/radio 64.94 0.6969 64.37 0.6809
Eating/cooking 83.84 0.8845 72.22 0.7942
Moving it 75.12 0.7836 82.59 0.8870
Average 77.94 0.8159 75.89 0.8058

Table 12 Binary classification .

results of RCNI\}I,—based SGAN Modality i?clljlracy @) AUC IlgicTLll\;[acy @) AUC
Petting 87.51 0.8475 81.16 0.5572
Talking 77.42 0.8469 88.71 0.4882
Playing 67.59 0.7765 66.67 0.7877
TV/radio 62.07 0.7029 52.59 0.7347
Eating/cooking 88.64 0.9138 83.33 0.4054
Moving it 91.79 0.8965 73.13 0.5949
Average 79.17 0.8307 74.27 0.5947

using VAE, GAN, and SGAN models, respectively. We note
that there was similar performance to the baseline model
(Table 3) in this case, and much higher than the CRNN-based
models. Similar to RCNN-based multi-class classification in
Sect. 4.3.1, GRU was generally better than LSTM and the
SGAN model type was the best performing of the generative
replay models.

Similar to what was seen with the baseline model and
CRNN-based models, there were particular modalities that
caused the RCNN-based models difficulties. As such, these
results concur with our previous point that that issue does not
appear to be amodeling challenge, but rather a hardware issue
related to the type of sensor data being collected onboard the
robot. That was a consistent theme across all the modeling
results.
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5 Discussion
5.1 Summary of results

This study focused on evaluating deep generative replay
models which could be applied to in-home robotic com-
panion pets (e.g., SARs) so that sensor data onboard the
robot could be used to recognize human activity in real time,
which could then subsequently serve as a data-driven method
for the robot to autonomously modulate its own interactive
behaviors. For real-time interaction in users” homes and work
environments, those are necessary capabilities for the cre-
ation of improved HRI systems [5, 10, 42]. Ideally, those
capabilities would entail multi-class classification of many
different types of interactions (e.g., playing, talking, eating),
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rather than only binary classification (e.g., talking vs. not
talking, petting vs. not petting). However, multi-class clas-
sification is generally a harder challenge for most machine
learning and deep learning modeling. In this study, we com-
pared generative replay models with more traditional deep
learning modeling approaches, using a dataset from 12 par-
ticipants interacting with a robotic pet over several weeks
in their home, comprising 91 h of total interaction time ran-
domly sampled across the time period to obtain naturalistic
interaction data.

The main takeaway from the results here was that using
generative replay models for multi-class classification of
robot sensor data provided a 4x improvement in perfor-
mance over more traditional deep learning models. The
RCNN-based SGAN models (using GRU) were the maximal-
performing models. We can infer from that finding that
there appears to be some value in using generative replay
to emulate human dreaming via creating perturbations of
the same data beyond the classic deep-learning approach.
However, despite that, multi-class classification performance
of interaction behaviors based on sensor data from in-home
robotic pets was still sub-optimal for real-world use at the
present time, regardless of modeling method. Beyond that,
we also note that an RCNN-based architectures [13] outper-
formed the CRNN-based architectures. Initially, we thought
the CRNN approach would perform better in a theoretical
sense, i.e., first identifying invariant sensor patterns then
looking for temporal sequences of those patterns. However,
at least for our dataset here, it appears that first looking
for distinctive temporal sequences then afterward identify-
ing invariant patterns within those sequences (i.e., RCNN
approach) is advantageous. That may be of use for future
research on generative replay models in HRI.

Binary classification produced better results, though there
were challenges with particular interaction modalities across
all modeling types. More than likely, that is a "data issue"
related to not having the appropriate sensor suite onboard
the robot to detect relevant modalities [10, 12]. Without the
correct data, no modeling method can detect patterns, so we
think that it is more of a hardware issue at this point that will
require the evaluation of different sensor suites to collect dif-
ferent sensor datasets. Those datasets could then be evaluated
through a variety of feature selection and feature engineering
methods to uncover which features are most useful for par-
ticular interaction modalities with robotic pets, as has been
done with other types of interactive devices like smartphones
[9, 21].

This study demonstrates the possibility of using deep
generative replay models for recognizing specific human
activities during HRI, and also points the direction for future
research challenges.

5.2 Limitations and future work

There are number of limitations to the study here, mainly
related to the dataset used and modeling choices made. We
give some examples of those below.

In terms of the data, there were a number of issues with
particular interaction modalities, which we noted in Sect. 4.
For instance, prediction accuracy for TV/Radio behaviors
(including YouTube viewing and other media) were notably
lower than other modalities. A possible explanation for this
is that, in the past, people generally did not use headphones
when watching TV or other media. However, recently many
people have a tendency to use headphones when watch-
ing media at home or while taking public transport (e.g.,
subway). Moreover, those effects may be more noticeable
depending on location or population, e.g., urban vs. rural set-
tings, older adults vs. young adults. Indeed, we realized this
issue during a separate study comparing human participants
interacting with robotic pets in the United States and Korea
[12]. Those kinds of issues likely extend to other interaction
modalities as well. As such, it remains for future research
to evaluate other robotic sensor suites or types of data, or to
perhaps even re-define what we think of as human activities
given rapid technological changes in recent years [42, 43].

In terms of modeling choices, it is obviously necessary
when undertaking this kind of study for researchers to decide
on some set of parameters to explore, given that it is impos-
sible to explore every possible option in a single study. For
example, we note that the selected time window size (see
Sect. 3.1) here may not necessarily have been optimal. Some
prior studies have reported empirical results with a 1-2-s
interval time window size as optimal [31], though other stud-
ies have reported larger window sizes of 10s or more as
optimal [30, 32]. In our case, it was judged that the data used
in this study were complex and that the patterns underlying
the interactive behaviors would sometimes last longer than
just 1s, so an intermediate 5-s interval was used. However,
it is possible that window size was too large, or even too
small. Alternatively, it may be necessary to use an adaptive
time window rather than a fixed window size. Exploring the
effects of these kinds of modeling choices also remains a
challenge for future research.

In summary, real-time assessment of user activity using
EMA and robotic sensor data holds the potential to serve as
the basis for machine learning and deep learning models to
classify human activities in in-home settings during HRI, as
well as enable better interactive behaviors by social robots
and other forms of Al. Understanding what users “actually
do” with robots when researchers aren’t there would allow
the deployment of such models in order to allow robots like
SARs to adjust their interactions in real time without the need
to be “reprogrammed” by researchers or designers. Within in-
home settings, the ultimate aim of such research is to extend

@ Springer
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the use of robotic devices for purposes like healthcare, e.g.,
as part of broader “Internet of Healthcare Things (IoHT)”
ecosystems [44]. Work remains though to bring that concept
to fruition.
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