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ABSTRACT

Modern advances in unmanned aerial vehicle
(UAV) technology have widened the scope of
commercial and military applications. However,
the increased dependency on wireless commu-
nications exposes UAVs to potential attacks and
introduces new threats, especially from UAVs
designed with the malicious intent of targeting vital
infrastructures. Significant efforts have been made
from researchers and other United States (U.S.)
Department of Defense (DoD) agencies for devel-
oping countermeasures for detection, interception,
or destruction of the malicious UAVs. One prom-
ising countermeasure is the use of a counter UAV
(CUAV) swarm to detect, track, and neutralize
the malicious UAV. This article aims to recognize
the state-of-the-art swarm intelligence algorithms
for achieving cooperative capture of a mobile tar-
get UAV. The major design and implementation
challenges for swarm control, algorithm architec-
ture, and safety protocols are considered. A prime
challenge for UAV swarms is a robust communi-
cation infrastructure to enable accurate data trans-
fer between UAVs for efficient path planning. A
multi-agent deep reinforcement learning approach
is applied to train a group of CUAVs to intercept
a faster malicious UAV, while avoiding collisions
among other CUAVs and non-cooperating obsta-
cles (i.e., other aerial objects maneuvering in the
area). The impact of the latency incurred through
UAV-to-UAV communications is showcased and
discussed with preliminary numerical results.

INTRODUCTION

Although unmanned aerial vehicles (UAVs) offer
many positive benefits (e.g., surveillance [1] and
mobile infrastructure [2]), there is a significant rise
in UAVs used for malicious intent (such as flying
over high-profile locations or military compounds)
that poses threats to national security. According
to the testimony of Samantha Vinograd, Depart-
ment of Homeland Security (DHS), in 2022
before the U.S. Senate Committee on Homeland
Security & Government Affairs, “The Transporta-
tion Security Administration (TSA), since 2021,
has reported nearly 2,000 drone sightings near
U.S. airports, including incursions at major airports
nearly every day,” [3]. In addition, UAV technol-

ogy has been exploited to intercept communi-
cations, obtain/collect sensitive information or
intelligence, smuggling of substances, conduct
attacks by arming the UAV with small explosive
payloads, or used as one-way attackers.

Current counter UAV (CUAV) technologies, or
countermeasures, are divided into aerial or ground
based platforms that fall into three main categories:
detection and tracking, neutralization, and cyber-at-
tack [4]. Both platforms rely on precise sensing for
detection and estimation of the malicious UAV’s
trajectory using radar, radio frequency (RF), acous-
tic or optical sensors/detectors. However, most
of these techniques are short ranged, have a high
false positive rate (especially distinguishing micro
UAVs from birds), and are inefficient in noisy and
dynamic scenarios [5]. Neutralization solutions can
be divided into physical or non-physical systems
that may disable a UAV or disrupt its communi-
cation systems, respectively. Physical systems may
include launching a projectile or warfighter UAVs
or interceptors, firing a net to capture the UAV, or
using directional high-energy lasers or high-power
microwave devices to produce a high voltage and
current that destroys the main electronic circuity in
the UAV. Non-physical systems utilize RF jammers
or global positioning system (GPS) spoofers to dis-
rupt the control link and navigation of the UAV.
Cyber-attack methods involve obtaining control or
hijacking of the UAV.

Though many of these technologies have prov-
en to be very effective at the neutralization of large
UAVs, there are still several challenges when facing
small/micro UAVs, UAVs with weak emissions, or
weak radio signal reflection [6]. A multi-sensor net-
work may be required to improve the detection
capability. Moreover, most development efforts
place an emphasis on the neutralization of a single
target, not on the adaption to multiple targets or
swarms of targets which may overwhelm ground-
based solutions.

The U.S. military has invested in the develop-
ment of defensive swarm tactics to detect, track,
and attack an enemy swarm, even one that has
evasive maneuvering capabilities. Swarming can be
defined as the coordination of multiple UAVs that
cooperate to achieve a common task. These UAVs
can be equipped with various sensors and collect/
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share information to enable the swarm to auton-
omously make decisions. Since 2017, Defense (a) Target-Oriented Scenario
Advanced Research Projects Agency (DARPA) & &
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ment, assume CUAVs have no communication 3¢ Counter UAV «%‘ Evader UAV ¢ : Sensing Area { : Evader Detected {! Heading Directions

infrastructure, etc.). To that end, there is a need

for understanding the limitations and challenges

of implementing a feasible cooperative solution.

Therefore, in this article, we incorporate the prac-

tical constraints into a deep reinforcement learning

(DRL) framework to demonstrate the effectiveness

of CUAV communication-enabled cooperation to

track and capture a target UAV. Thus, the contribu-
tions of this article are as follows:

+ We categorize the cooperative CUAV swarm
algorithms into three groups and identified the
common cooperative design challenges, espe-
cially related to communication, collision avoid-
ance, and scalability.

+ We identified the training/learning paradigms
and execution and efficient reward function
design in a multi-agent deep reinforcement
learning (MADRL) algorithm as the key technol-
ogies to incorporate the practical constraints in
a cooperative CUAV scenario.

+ We use the visualization of the CUAV trajec-
tories to evaluate the detection, tracking, and
neutralization behaviors and demonstrate the
effectiveness of MADRL in a practical setting.

+ We highlight the superiority of a communica-
tion-enabled scenario and numerically analyze
the impact of latency on the performance.

ALGORITHMS FOR COOPERATIVE CUAV SwARMS

The general structure of a swarm intelligence
algorithm [7] tasked with detection, localization,
and interception of mobile targets involves three
phases, which are graphically displayed in Fig. 1:
search, detection, and coordination. This is some-
times referred to in the literature as the “chas-
ertarget” or “pursuer-evader” problem, where the
CUAVs are the pursuers and the targets/enemy
UAVs are the evaders. “Pursuer-evader” problems
generally only consider that the evader is trying
to avoid capture. Here we also consider when
the evader is tasked with some mission to reach
a restricted zone while simultaneously avoiding
capture from pursuers.

In the search phase, the CUAVs utilize on-board
sensor readings to monitor the airspace within their
search area. In the detection phase, the CUAVs

FIGURE 1. Example scenarios for Cooperative CUAV Swarm Algorithms.

detect any aerial objects within their search area,
and must utilize a classification algorithm to dis-
tinguish between a target UAV and other aerial
obstacles, such as birds, planes, helicopters, weath-
er balloons, and so on. Finally, in the coordination
or converge phase, the CUAVs track the identified
target UAV to form a prediction of its flight path
and configure themselves based on the predefined
objective. The objective can fall into the categories
of: target-oriented, defense oriented, or air combat.

TARGET-ORIENTED ALGORITHMS

In swarm intelligence algorithms tasked with tar-
get-oriented coordination, a counter swarm traps/
captures an enemy swarm (e.g., by firing nets), or
disables the enemy swarm (e.g., by crashing into
it, firing projectiles, spoofed signals, or jammers)
and causes them to crash as shown in Fig. 1: 3a.
This scenario is most closely related to various
hunting strategies and predator-prey interactions.

The formation a CUAV swarm will take on
depends on the initial positions of the CUAVs,
the flight path of the target, and the speed of the
CUAVs and the target. The authors in [8] experi-
mented with three different formations to track a
target UAV: follow, surround (encirclement), and
cone. Initially, a swarm may exhibit follow behavior
as they try to catch up to a target. If the CUAVs
are able to communicate with each other, neigh-
boring CUAVs can attempt to surround the target
and bring it to a standstill or prohibit any further
movement, assuming the target also has some col-
lision avoidance protocol. However, if the priority
is to reduce the likelihood of CUAV collisions, the
swarm may take on a cone/triangle shape around
the target as they chase it.

DEFENSE-ORIENTED ALGORITHMS
A non-destructive approach of swarm intelligence
is to form a defensive barrier to prevent the target
from reaching the restricted zone, as shown in Fig.
1: 3b and restrict its flight path. The authors in [9]
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In a dynamic environ-
ment with continuous
mobility of CUAVs,
collision avoidance is
challenging. CUAVs
must maintain relative
observation information
of other CUAVs and
other aerial objects that
reside in its sensing
area.

proposed a CUAV system following a clustering
procedure to intercept and escort a target away
from a restricted zone. This is achieved through
a modular design consisting of the phases:
patrolling/deployment, clustering/formation for
interception, and chase/escort. The formation of
the swarm is governed by cluster heads (CHs) or
“parent” UAVs which have branches or “child”
UAVs. The type of action the swarm will take
on (chase/escort) is governed by the distance
between the CHs and the target. The authors
in [10] took a different defensive approach by
inserting a small number of CUAVs to infiltrate
a target swarm with the objective of misleading
the CUAVs from their original task. However, this
work assumes that the CUAVs are able to utilize
the targets’ communication channels.

AIR COMBAT-ORIENTED ALGORITHMS

In an environment where the CUAVs and the tar-
gets are equipped with tools for counter attacks,
an essential issue becomes modeling the air-com-
bat behavior, as depicted in Fig. 1: 3c. The CUAVs
need to exhibit offensive and defensive strate-
gies while simultaneously coordinating as a unit.
The authors in [11] developed a UAV swarm vs.
swarm combat system where each CUAV’s deci-
sion-making strategy to attack a target is guided
by a profit metric in the target-allocation decision
problem and the swarm motion decision problem.
Summary: CUAV control in each category of
cooperative swarm algorithms has its own set of for-
mation constraints and coordination strategy. How-
ever, there are some key considerations (discussed
below) that are common to the three groups.

LIMITATIONS AND CHALLENGES

In the literature, various challenges related to
enabling cooperative CUAV swarms with efficient
search, track, and capture of a mobile target have
been considered.

Communicarion AmoNg CUAVS

One common assumption in the pursuer-evader
problem is to assume that the pursuers do not
communicate or exchange information with other
pursuers. That is, the CUAVs can act independent-
ly based on their own acquired observation data,
but this may lead to a low target capture rate.
However, in the later sections, it will be shown
that by enabling communication, the behavior of
a CUAV has the potential to be influenced given
the context of other CUAVs’ observed sensor
data via some communication protocol. That is, a
CUAV can choose to make decisions based on its
own observations and the observations made by
other CUAVs. The CUAVs can share observation
data by broadcasting positional information of the
detected target. Enabling communication among
CUAVs is a crucial design consideration to enable
timely capture of a target, especially under noisy
conditions and a dynamic environment. In addi-
tion, the freshness and availability of the observa-
tion data is impacted by the latency incurred and
the communication range of the CUAVs.

COLLISION AVOIDANCE
One key challenge to achieve efficient swarm
coordination is designing a collision avoidance
safety protocol. In a dynamic environment with

continuous mobility of CUAVs, collision avoidance
is challenging. CUAVs must maintain relative obser-
vation information of other CUAVs and other aeri-
al objects that reside in its sensing area. The safe
distance protocol can be designed with a virtual
attractive-repulsive potential function to achieve
the various coordinated path-planning strategies
as discussed in the previous section. Optimizing
the design of the safety protocol becomes criti-
cal as it can effect the capture rate of the target,
especially in the target-oriented swarm algorithms.
For example, referring to Fig. 1: 3a, the designed
algorithm may choose to not allow the CUAVs to
proceed any closer to the targets or otherwise they
risk collision. Meanwhile, since the CUAVs come
to a standstill, the targets may be able to escape
between the CUAVs and reach the restricted zone.
In addition, the design protocol must be scalable
and require limited processing on the CUAV end
to achieve appropriate decision-making.

CUAV-10-TaRGET-UAV Ramio

When considering tracking and capturing a sin-
gle target, the main issue becomes combining
the time-varying observation measurements from
multiple CUAVs to improve the target tracking
accuracy. The work in [12] utilizes a DeepSet
Neural Network to process the collected obser-
vation data of CUAVs and extract relevant fea-
tures when they are available. When considering
multiple targets, a few challenges arise depending
on the ratio of the number of CUAVs to targets.
If multiple targets are detected within the sens-
ing area of a CUAV, observation data association
becomes a challenge and the CUAV must follow
some decision-making strategy on which target to
follow. When there are enough CUAVs to pur-
sue each target individually, then the problem
becomes an assignment and hand-off prob-
lem. That is, a CUAV may pursue a target,
but it may also hand-off this task to another
CUAV that is closer and has a better chance
of capturing the target. If there are not enough
CUAVs to track and capture all of the targets,
then a possible strategy is to enable some
CUAVs to pursue the center of densely pop-
ulated clusters of targets in order to spatially
divert them whereby they can be more easily
captured by other CUAVs.

COMPLEXITY OF AERIAL SPACE ENVIRONMENT

In this work, we are concerned with tracking and
capturing moving targets. Most work has focused
on mobile targets on a two-dimensional (2D)
plane. The reasoning for this assumption is that
the target will eventually descend to the same
altitude of the restricted zone it is trying to reach.
It is also assumed that the CUAVs are monitoring
the area at this same altitude for all time. In real
applications, the target may have maneuvering
capabilities or is combat equipped in which 2D
agility of the CUAVs would not be sufficient to
protect the restricted zone.

CUAV CooroiNATION AND CONTROL
The approaches for swarm control can be cate-
gorized into centralized and decentralized meth-
ods. Centralized coordination involves utilizing
a back-end system to perform all of the process-
ing of observation and state data from all of the
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CUAVs, after which point a control decision is
made and is distributed to the CUAVs. Although
centralized approaches can achieve a better
performance since the quality of the decision is
based on a global view of the CUAVs, they are
also limited in terms of scalability. Decentralized
approaches generate decisions using only the
information available to the CUAV regarding its
state. In this case, distributed methods scale, but
suffer from decision optimality, and are resource
constrained. Hybrid methods are currently being
investigated to combine the benefits offered by
both approaches to enable neighboring CUAVs
to exchange observation, state, and resource
information, but the computation regarding the
decision making is done on the back-end.

PRIOR KNOWLEDGE OF
TARGET UAV’S TRAJECTORY AND OPERATION

In tracking methods, the motion of a target UAV
can be categorized as deterministic or random.
We may have some priori information about the
policy of the target such that we can estimate its
trajectory and reduce the search time. However,
in real-life this may not always be the case. The
trajectory of the target can be probabilistic or
completely unknown.

KEY TECHNOLOGIES TOWARD COOPERATIVE SWARMS

Currently in the existing literature, the control
framework for a cooperative UAV swarm is
carried out by successive convex optimization
or control theory methods. These methods are
generally ideal for simple scenarios since their
methodology requires precisely known model
dynamics of the environment, which is not eas-
ily attainable or scalable for complex stochastic
environments, and thus many of the practical
constraints mentioned in the previous section are
ignored in the algorithm design.

The thriving advances in DRL methods have
empowered them to handle the nonlinear dynam-
ics, uncertainties, and practical challenges associ-
ated with learning coordinated strategies among
multiple agents. In multi-agent DRL (MADRL), the
agents seek to maximize their own expected return
through interactions with the environment. Since
each agent is making sequential decisions in a
shared environment, their interests may or may not
be aligned. The algorithm must balance between
exploring and exploiting the different interests of
the CUAVs to see how they affect the overall per-
formance of the system.

In general, the training/learning paradigm and
execution can take on a centralized or distributed/
decentralized form. The authors in [13] discuss the
different training schemes, namely centralized train-
ing centralized execution (CTCE), distributed train-
ing distributed execution (DTDE), and centralized
training distributed execution (CTDE). CTDE meth-
ods have gained considerable attention in the recent
years since it leans more toward a practical scenario
where agents have access to information gained by
other agents that have the potential to influence
their decisions; however, the agents will act in a dis-
tributive manner based on their derived policies.

For many real-world scenarios, MADRL
approaches face a challenge with sparse, delayed,
and dense rewards [14]. Sparse rewards are
rewards that are received rarely, which can

impede the learning for an agent, as it may not
have enough feedback from the environment to
converge to an optimal policy. Delayed rewards
imply the agent must wait for some period before
it learns the impact from its actions. Dense rewards
occur frequently which can speed up the learning,
but may lead to a sub-optimal policy. Thus, a key
problem in MADRL is developing a well-designed
reward function for promoting cooperative behav-
ior among the agents.

DRL ARCHITECTURE FOR
TARGET-ORIENTED CUAV SwARM

To evaluate the design challenges, particularly in
communications, collision avoidance, CUAV-to-
target ratio, coordination and control, we consid-
er a target-oriented CUAV swarm scenario as a
paradigm. Notably, the developed DRL architec-
ture can also be adapted to the other two CUAV
swarm strategies, namely defense-oriented and
air combat-oriented, with a few modifications to
the observation space, reward function design,
and associated formation constraints. The simula-
tion environment is set up as a multi-agent system
where each CUAV is considered an agent i, for
i € [1, NI, tasked with determining the best
actions to take based on it’s current state and
available observation data in order to capture the
target UAV before it reaches a restricted zone. In
addition, the agents must avoid collisions with a
number of non-cooperating obstacles. The consid-
ered 2D topology is shown in Fig. 2.

The target follows its own virtual attractive/
repulsive force policy to derive the optimal linear
and angular velocity to reach the restricted zone
quickly while avoiding capture or collisions with
agents or obstacles.

In real-world scenarios, it may be possible that
the target UAV is traveling at a higher velocity
than the agents. Thus, we consider the problem of
optimizing the linear and angular velocity for each
agent to minimize the expectation of the euclid-
ean distance between the agent and the target
every time-step in order to achieve timely capture.
The agents are subject to collision avoidance con-
straints and range of linear/angular velocity values.

In addition to the non-communication con-
figurations studied in our previous works in [12]
and [15], we investigate the performance when
the agents are enabled to communicate with each
other to share their observation data via a wireless
link. However, this CUAV-to-CUAV link may suffer
from network latency and thus we must analyze
the performance of the models when considering
the sharing of outdated sensing information.

REINFORCEMENT LEARNING (RL) FRAMEWORK

The CUAV swarm control is formulated as a
MADRL problem following a CTDE paradigm and
the partially observable Markov decision process
(MDP), which is characterized by states, observa-
tions, actions, rewards, and associated transition
and observation probabilities. At each step, the
agent receives an interpretation of the environ-
ment (the state) and takes an action by follow-
ing a certain policy. As a consequence, one step
later, the agent receives a numerical reward and
transitions to a new state where it receives an
observation. The goal for each agent is to follow

To evaluate the design
challenges, particularly
in communications,
collision avoidance,
CUAV-to-target ratio,
coordination and
control, we consider a
target-oriented CUAV
swarm scenario as a
paradigm. Notably, the
developed DRL archi-
tecture can also be
adapted to the other
two CUAV swarm
strategies, namely
defense-oriented and
air combat-oriented,
with a few modifica-
tions to the observation
space, reward function
design. and associated
formation constraints.
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polices that maximize its discounted expected

return (essentially a cumulative sum of rewards

the agent expects to receive following a policy).

State Space: The state of an agent is a tuple
composed of its current: 2D location, heading
angle, linear and angular velocity, and the distance
and angle between the agent and the center of the
restricted zone.

Observation Space: The observation of an
agent is a nested tuple composed of multiple
elements that capture the observation data (i.e.,
distance and angular information) relative to the
target, other agents, and the obstacles. When
assuming the CUAVs do not communicate with
each other, the observation is only populated
when a target, other UAV(s), or obstacle enters its
sensing area. If the CUAVs are able to share infor-
mation, then the time-varying observation is pop-
ulated depending on the communication latency.
Note: if in the current time-step t an agent i senses
the target, its observation is populated with the cur-
rent information at time t. In this work, we consider
three scenarios:

* Instantaneous communication: once the tar-
get enters the sensing area of any UAV, the
observation of all UAVs is populated with the
derived information at time t.

+ Fixed Latency: assumes all UAVs have the same

communication delay. At time t, if UAV i has

not observed a target, then the observation is

populated with the corresponding data that was
derived some t delay ago as long as the target

was sensed by at least one UAV j (s.t. j = i).

+ Variable Latency: assumes each UAV has a dif-
ferent backoff delay t; for i € [1, NI. At time ¢,
the observation for UAV i is populated with the
corresponding data if the target was sensed T;
ago by any UAV j (s.t. j \# ).

Action Space: At each step, the action of an
agent corresponds to adjusting its linear and angu-
lar velocity. The actions derived from the proxi-
mal policy optimization (PPO) actor network are
then mapped to feasible actions subject to collision
avoidance constraints.

Reward Function: The immediate reward func-
tion for each agent is characterized by six condi-
tionals. A positive reward is assigned if the agent
captures the malicious UAV. Penalties are assigned
if the agent enters the restricted zone or collides
with other agents or obstacles. Otherwise, if the
malicious UAV enters the sensing area of the agent,
a weighted negative penalty is assigned depending
on the euclidean distance between the two entities.

DEEP REINFORCEMENT LEARNING ARCHITECTURE

The DRL architecture, shown in Fig. 3, is com-

posed of three elements to solve the RL problem:

+ A DeepSet network which comprises four net-
works to pre-process the dynamic observation
tuple relative to other agents and to obstacles.

* A PPO algorithm is implemented to maximize
the expected discounted future return. PPO is
an on-policy based method which is comprised
of two neural networks: a critic network, which
evaluates the state-value function for a given
policy (probability distribution of selecting each
action), which is derived by an actor network.

+ A safety algorithm designed to map the derived
actions from the PPO actor network to a fea-
sible action that will meet collision and search
boundary constraints. Through numerous inter-
actions with the environment, the CUAVs learn
an optimal policy with the aim of maximizing
the target capture rate when subject to colli-
sion safety constraints.

NUMERICAL RESULTS AND
PERFORMANCE EVALUATION

The performance of the MADRL PPO-based
CUAV Swarm control algorithm while considering
cooperative agents is characterized by the conver-
gence of the target UAV capture rate. Table 1 lists
the main simulation setup and algorithm hyper-
parameters. During training, CUAVs are tasked
with capturing the target UAV while avoiding col-
lisions with each other or other aerial obstacles,
as shown in Fig. 2. At the start of each episode,
the positions of the aerial obstacles is randomly
initialized within the X x Y grid area. The CUAVs
are randomly initialized somewhere between the
circular restricted zone and the search area. The
location of the target UAV is randomly initialized
somewhere outside of the X x Y grid area. An epi-
sode terminates if the maximum allotted time is
reached, the target UAV is captured, or a CUAV
enters the restricted zone. An iteration of train-
ing is defined as the collection and storage of up
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to 65,536 transitions in a replay buffer, whereby
mini-batches of size 4,096 are utilized to update
the DeepSet, Actor, and Critic networks. Here,
we investigate the impact of enabling CUAV-to-
CUAV communications on the capture rate per-
formance of the malicious UAV and analyzing the
impact of communication latency.

NO COMMUNICATION VS. INSTANTANEOUS
CUAV-1o-CUAV Communication

We compare the performance of the instan-
taneous  communication-enabled ~ MADRL
PPO-based algorithm versus a baseline non-com-
munication system where the CUAVs know only
their local environment state information. Figure
4 compares these algorithms for the mean target
UAV capture rate in a training iteration, which is
characterized as the number of episodes where
the malicious UAV is captured over the number
of episodes in a training iteration. The simulation
considers the cases when there are N = 4 and
N =8 CUAVs.

From the plots, we can see that the communi-
cation enabled scenarios achieved a significantly
better performance compared to the no commu-
nication scenarios. In fact, it was observed that the
no communication scenarios seem to experience
the lazy agent problem. Agents do not have direct
access to global information which limits their ability
to explore and converge to an optimal joint policy.
Alternatively, when enabling CUAV-to-CUAV com-
munication, we can achieve a significantly higher
capture rate for both N cases due to the positional
information exchange between the CUAVs once
the target has reached the sensing area of a CUAV.
However, these results assume that the informa-
tion exchange is instantaneous. In the next two
sections, we investigate the performance of the
learning algorithm when there is communication
delay caused by wireless contention.

CUAV-10-CUAV CoMMUNICATION WiTH FIXED LATENCY

Here, we analyze the effect of fixed delayed infor-
mation exchange between CUAVs. Figure 5a
shows the mean target UAV capture rate for laten-
cy T = 0.03 sec. (equivalent to a delay of three time-
steps) and t = 0.1 sec. (equivalent to a delay of ten
time-steps) when N = 8 CUAVs. We can see that
the impact of the additional latency has a slightly
reduced performance in both cases compared to
when the CUAVs have instantaneous communica-
tion. The reason is because, once a CUAV detect-
ed a target, then after some 7t time later, the other
CUAVs will start chasing the tail of the target’s flight
path since their decisions are derived from outdat-
ed information. As the delay increases, it is more
likely that CUAVs are too late to capture the target
before it reaches the restricted zone.

CUAV-10-CUAV CoMMUNICATION WITH VARIABLE LATENCY

Figure 5b compares the target capture rate per-
formance for fixed latency and variable latency,
where the communication delay for each CUAV
i is given by t; such that the total average delay is
0.1 sec. among the N = 8 CUAVs per time-step.
We can see that when considering the variable
delay among the CUAVs, the capture rate is
slightly reduced compared to the fixed latency
results, since not all CUAVs will receive the noti-
fication that a target was detected at the same

Parameter Value
Geographical Area X x Y 160 m x 120 m
Number of CUAVs (N) 8
Number of Obstacles (O) 5
Search Area Radius (ps) 60 m
Restricted Zone Radius (p7) 5m
CUAV Sensing Radius (r) 20 m
Collision Safety Distance (g) 1.5m
Maximum Length of Episode 40 sec.
Time-step size (t;) 0.01 sec.
Replay Buffer Size 65536
Mini-batch Size 4096
Learning Rate for Actor & Critic () 8.4856 x 107>

TABLE 1. Simulation parameter values.
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FIGURE 4. Target UAV capture rate training performance
considering cooperative and non-cooperative CUAVs
and assuming no communication latency.

time. We note that even with the impact of the
variable latency, the performance results are still
significantly better than when the CUAVs act
independently and are not equipped for CUAV-
to-CUAV communication.

CONCLUSION AND FUTURE DIRECTION

The control framework design challenges that are
common to difference cooperative CUAV swarm
strategies are related to communication, collision
avoidance, complexity of the environment, and
scalability. DRL can effectively incorporate the
practical constraints into non-convex optimization
problems through CTDE MADRL architecture and
a well-structured reward function. The target UAV
capture rate can be significantly enhanced by
enabling sensing information exchange between
CUAVs, at the expense of reduced performance
as the average latency incurred between CUAVs
increases. The communication latency incurred
will exacerbate with a larger number of CUAVs
and ultimately impair the swarm’s ability to effec-
tively coordinate and lead to sub-optimal poli-
cies. One of the future directions is to investigate
delay-aware DRL architectures for managing the
different delays associated with CUAV swarm
control. For example, the communication and
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FIGURE 5. Target UAV capture rate training performance considering cooperative CUAVs with: a) fixed communication
latency; b) variable communication latency T, i € [1, N (see the attached supplementary media for a demonstration of the
trained algorithm when the delay is fixed for t; = 0.03 sec. Vi),

processing delays associated with data transmis-
sion, which impact the freshness of an agent’s
absolute and relative observation(s) of the envi-
ronment, and the delays associated with the con-
trol (action feedback and actuation delay), which
will impact the reaction time of the agents and
the learning process.
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