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Abstract
Modern advances in unmanned aerial vehicle 

(UAV) technology have widened the scope of 
commercial and military applications. However, 
the increased dependency on wireless commu-
nications exposes UAVs to potential attacks and 
introduces new threats, especially from UAVs 
designed with the malicious intent of targeting vital 
infrastructures. Significant efforts have been made 
from researchers and other United States (U.S.) 
Department of Defense (DoD) agencies for devel-
oping countermeasures for detection, interception, 
or destruction of the malicious UAVs. One prom-
ising countermeasure is the use of a counter UAV 
(CUAV) swarm to detect, track, and neutralize 
the malicious UAV. This article aims to recognize 
the state-of-the-art swarm intelligence algorithms 
for achieving cooperative capture of a mobile tar-
get UAV. The major design and implementation 
challenges for swarm control, algorithm architec-
ture, and safety protocols are considered. A prime 
challenge for UAV swarms is a robust communi-
cation infrastructure to enable accurate data trans-
fer between UAVs for efficient path planning. A 
multi-agent deep reinforcement learning approach 
is applied to train a group of CUAVs to intercept 
a faster malicious UAV, while avoiding collisions 
among other CUAVs and non-cooperating obsta-
cles (i.e., other aerial objects maneuvering in the 
area). The impact of the latency incurred through 
UAV-to-UAV communications is showcased and 
discussed with preliminary numerical results.

Introduction
Although unmanned aerial vehicles (UAVs) offer 
many positive benefits (e.g., surveillance [1] and 
mobile infrastructure [2]), there is a significant rise 
in UAVs used for malicious intent (such as flying 
over high-profile locations or military compounds) 
that poses threats to national security. According 
to the testimony of Samantha Vinograd, Depart-
ment of Homeland Security (DHS), in 2022 
before the U.S. Senate Committee on Homeland 
Security & Government Affairs, “The Transporta-
tion Security Administration (TSA), since 2021, 
has reported nearly 2,000 drone sightings near 
U.S. airports, including incursions at major airports 
nearly every day,” [3]. In addition, UAV technol-

ogy has been exploited to intercept communi-
cations, obtain/collect sensitive information or 
intelligence, smuggling of substances, conduct 
attacks by arming the UAV with small explosive 
payloads, or used as one-way attackers.

Current counter UAV (CUAV) technologies, or 
countermeasures, are divided into aerial or ground 
based platforms that fall into three main categories: 
detection and tracking, neutralization, and cyber-at-
tack [4]. Both platforms rely on precise sensing for 
detection and estimation of the malicious UAV’s 
trajectory using radar, radio frequency (RF), acous-
tic or optical sensors/detectors. However, most 
of these techniques are short ranged, have a high 
false positive rate (especially distinguishing micro 
UAVs from birds), and are inefficient in noisy and 
dynamic scenarios [5]. Neutralization solutions can 
be divided into physical or non-physical systems 
that may disable a UAV or disrupt its communi-
cation systems, respectively. Physical systems may 
include launching a projectile or warfighter UAVs 
or interceptors, firing a net to capture the UAV, or 
using directional high-energy lasers or high-power 
microwave devices to produce a high voltage and 
current that destroys the main electronic circuity in 
the UAV. Non-physical systems utilize RF jammers 
or global positioning system (GPS) spoofers to dis-
rupt the control link and navigation of the UAV. 
Cyber-attack methods involve obtaining control or 
hijacking of the UAV.

Though many of these technologies have prov-
en to be very effective at the neutralization of large 
UAVs, there are still several challenges when facing 
small/micro UAVs, UAVs with weak emissions, or 
weak radio signal reflection [6]. A multi-sensor net-
work may be required to improve the detection 
capability. Moreover, most development efforts 
place an emphasis on the neutralization of a single 
target, not on the adaption to multiple targets or 
swarms of targets which may overwhelm ground-
based solutions.

The U.S. military has invested in the develop-
ment of defensive swarm tactics to detect, track, 
and attack an enemy swarm, even one that has 
evasive maneuvering capabilities. Swarming can be 
defined as the coordination of multiple UAVs that 
cooperate to achieve a common task. These UAVs 
can be equipped with various sensors and collect/
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share information to enable the swarm to auton-
omously make decisions. Since 2017, Defense 
Advanced Research Projects Agency (DARPA) 
has conducted several field experiments to evalu-
ate the effectiveness and integration ability of the 
developed swarm tactics in both physical and vir-
tual environments. The emerging development of 
swarm intelligence has led to the increased adop-
tion of machine learning to detect and deter/cap-
ture enemy entities more rapidly.

The existing literature in CUAV swarms primari-
ly focus on three types of cooperative formations: 
target-oriented (e.g., CUAVs track and capture an 
enemy UAV), defense-oriented (e.g., CUAVs form 
defensive boundaries to prevent an enemy from 
entering), and air-combat (e.g., CUAVs engage 
with the enemy swarm). The majority utilize opti-
mization methods or deep learning strategies to 
improve the tracking efficiency but lack in scal-
ability or do not consider practical scenarios (e.g., 
assuming no collisions will take place, CUAVs have 
higher speeds than the target UAV for faster cap-
ture, CUAVs have a global view of the environ-
ment, assume CUAVs have no communication 
infrastructure, etc.). To that end, there is a need 
for understanding the limitations and challenges 
of implementing a feasible cooperative solution. 
Therefore, in this article, we incorporate the prac-
tical constraints into a deep reinforcement learning 
(DRL) framework to demonstrate the effectiveness 
of CUAV communication-enabled cooperation to 
track and capture a target UAV. Thus, the contribu-
tions of this article are as follows:
•	 We categorize the cooperative CUAV swarm 

algorithms into three groups and identified the 
common cooperative design challenges, espe-
cially related to communication, collision avoid-
ance, and scalability.

•	 We identified the training/learning paradigms 
and execution and efficient reward function 
design in a multi-agent deep reinforcement 
learning (MADRL) algorithm as the key technol-
ogies to incorporate the practical constraints in 
a cooperative CUAV scenario.

•	 We use the visualization of the CUAV trajec-
tories to evaluate the detection, tracking, and 
neutralization behaviors and demonstrate the 
effectiveness of MADRL in a practical setting.

•	 We highlight the superiority of a communica-
tion-enabled scenario and numerically analyze 
the impact of latency on the performance.

Algorithms for Cooperative CUAV Swarms
The general structure of a swarm intelligence 
algorithm [7] tasked with detection, localization, 
and interception of mobile targets involves three 
phases, which are graphically displayed in Fig. 1: 
search, detection, and coordination. This is some-
times referred to in the literature as the “chas-
er-target” or “pursuer-evader” problem, where the 
CUAVs are the pursuers and the targets/enemy 
UAVs are the evaders. “Pursuer-evader” problems 
generally only consider that the evader is trying 
to avoid capture. Here we also consider when 
the evader is tasked with some mission to reach 
a restricted zone while simultaneously avoiding 
capture from pursuers.

In the search phase, the CUAVs utilize on-board 
sensor readings to monitor the airspace within their 
search area. In the detection phase, the CUAVs 

detect any aerial objects within their search area, 
and must utilize a classification algorithm to dis-
tinguish between a target UAV and other aerial 
obstacles, such as birds, planes, helicopters, weath-
er balloons, and so on. Finally, in the coordination 
or converge phase, the CUAVs track the identified 
target UAV to form a prediction of its flight path 
and configure themselves based on the predefined 
objective. The objective can fall into the categories 
of: target-oriented, defense oriented, or air combat.

Target-Oriented Algorithms
In swarm intelligence algorithms tasked with tar-
get-oriented coordination, a counter swarm traps/
captures an enemy swarm (e.g., by firing nets), or 
disables the enemy swarm (e.g., by crashing into 
it, firing projectiles, spoofed signals, or jammers) 
and causes them to crash as shown in Fig. 1: 3a. 
This scenario is most closely related to various 
hunting strategies and predator-prey interactions.

The formation a CUAV swarm will take on 
depends on the initial positions of the CUAVs, 
the flight path of the target, and the speed of the 
CUAVs and the target. The authors in [8] experi-
mented with three different formations to track a 
target UAV: follow, surround (encirclement), and 
cone. Initially, a swarm may exhibit follow behavior 
as they try to catch up to a target. If the CUAVs 
are able to communicate with each other, neigh-
boring CUAVs can attempt to surround the target 
and bring it to a standstill or prohibit any further 
movement, assuming the target also has some col-
lision avoidance protocol. However, if the priority 
is to reduce the likelihood of CUAV collisions, the 
swarm may take on a cone/triangle shape around 
the target as they chase it.

Defense-Oriented Algorithms
A non-destructive approach of swarm intelligence 
is to form a defensive barrier to prevent the target 
from reaching the restricted zone, as shown in Fig. 
1: 3b and restrict its flight path. The authors in [9] 

FIGURE 1. Example scenarios for Cooperative CUAV Swarm Algorithms.
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proposed a CUAV system following a clustering 
procedure to intercept and escort a target away 
from a restricted zone. This is achieved through 
a modular design consisting of the phases: 
patrolling/deployment, clustering/formation for 
interception, and chase/escort. The formation of 
the swarm is governed by cluster heads (CHs) or 
“parent” UAVs which have branches or “child” 
UAVs. The type of action the swarm will take 
on (chase/escort) is governed by the distance 
between the CHs and the target. The authors 
in [10] took a different defensive approach by 
inserting a small number of CUAVs to infiltrate 
a target swarm with the objective of misleading 
the CUAVs from their original task. However, this 
work assumes that the CUAVs are able to utilize 
the targets’ communication channels.

Air Combat-Oriented Algorithms
In an environment where the CUAVs and the tar-
gets are equipped with tools for counter attacks, 
an essential issue becomes modeling the air-com-
bat behavior, as depicted in Fig. 1: 3c. The CUAVs 
need to exhibit offensive and defensive strate-
gies while simultaneously coordinating as a unit. 
The authors in [11] developed a UAV swarm vs. 
swarm combat system where each CUAV’s deci-
sion-making strategy to attack a target is guided 
by a profit metric in the target-allocation decision 
problem and the swarm motion decision problem.

Summary: CUAV control in each category of 
cooperative swarm algorithms has its own set of for-
mation constraints and coordination strategy. How-
ever, there are some key considerations (discussed 
below) that are common to the three groups.

Limitations and Challenges
In the literature, various challenges related to 
enabling cooperative CUAV swarms with efficient 
search, track, and capture of a mobile target have 
been considered.

Communication Among CUAVs
One common assumption in the pursuer-evader 
problem is to assume that the pursuers do not 
communicate or exchange information with other 
pursuers. That is, the CUAVs can act independent-
ly based on their own acquired observation data, 
but this may lead to a low target capture rate. 
However, in the later sections, it will be shown 
that by enabling communication, the behavior of 
a CUAV has the potential to be influenced given 
the context of other CUAVs’ observed sensor 
data via some communication protocol. That is, a 
CUAV can choose to make decisions based on its 
own observations and the observations made by 
other CUAVs. The CUAVs can share observation 
data by broadcasting positional information of the 
detected target. Enabling communication among 
CUAVs is a crucial design consideration to enable 
timely capture of a target, especially under noisy 
conditions and a dynamic environment. In addi-
tion, the freshness and availability of the observa-
tion data is impacted by the latency incurred and 
the communication range of the CUAVs.

Collision Avoidance
One key challenge to achieve efficient swarm 
coordination is designing a collision avoidance 
safety protocol. In a dynamic environment with 

continuous mobility of CUAVs, collision avoidance 
is challenging. CUAVs must maintain relative obser-
vation information of other CUAVs and other aeri-
al objects that reside in its sensing area. The safe 
distance protocol can be designed with a virtual 
attractive-repulsive potential function to achieve 
the various coordinated path-planning strategies 
as discussed in the previous section. Optimizing 
the design of the safety protocol becomes criti-
cal as it can effect the capture rate of the target, 
especially in the target-oriented swarm algorithms. 
For example, referring to Fig. 1: 3a, the designed 
algorithm may choose to not allow the CUAVs to 
proceed any closer to the targets or otherwise they 
risk collision. Meanwhile, since the CUAVs come 
to a standstill, the targets may be able to escape 
between the CUAVs and reach the restricted zone. 
In addition, the design protocol must be scalable 
and require limited processing on the CUAV end 
to achieve appropriate decision-making.

CUAV-to-Target-UAV Ratio
When considering tracking and capturing a sin-
gle target, the main issue becomes combining 
the time-varying observation measurements from 
multiple CUAVs to improve the target tracking 
accuracy. The work in [12] utilizes a DeepSet 
Neural Network to process the collected obser-
vation data of CUAVs and extract relevant fea-
tures when they are available. When considering 
multiple targets, a few challenges arise depending 
on the ratio of the number of CUAVs to targets. 
If multiple targets are detected within the sens-
ing area of a CUAV, observation data association 
becomes a challenge and the CUAV must follow 
some decision-making strategy on which target to 
follow. When there are enough CUAVs to pur-
sue each target individually, then the problem 
becomes an assignment and hand-off prob-
lem. That is, a CUAV may pursue a target, 
but it may also hand-off this task to another 
CUAV that is closer and has a better chance 
of capturing the target. If there are not enough 
CUAVs to track and capture all of the targets, 
then a possible strategy is to enable some 
CUAVs to pursue the center of densely pop-
ulated clusters of targets in order to spatially 
divert them whereby they can be more easily 
captured by other CUAVs. 

Complexity of Aerial Space Environment
In this work, we are concerned with tracking and 
capturing moving targets. Most work has focused 
on mobile targets on a two-dimensional (2D) 
plane. The reasoning for this assumption is that 
the target will eventually descend to the same 
altitude of the restricted zone it is trying to reach. 
It is also assumed that the CUAVs are monitoring 
the area at this same altitude for all time. In real 
applications, the target may have maneuvering 
capabilities or is combat equipped in which 2D 
agility of the CUAVs would not be sufficient to 
protect the restricted zone.

CUAV Coordination and Control
The approaches for swarm control can be cate-
gorized into centralized and decentralized meth-
ods. Centralized coordination involves utilizing 
a back-end system to perform all of the process-
ing of observation and state data from all of the 

In a dynamic environ-
ment with continuous 
mobility of CUAVs, 
collision avoidance is 
challenging. CUAVs 
must maintain relative 
observation information 
of other CUAVs and 
other aerial objects that 
reside in its sensing 
area. 
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CUAVs, after which point a control decision is 
made and is distributed to the CUAVs. Although 
centralized approaches can achieve a better 
performance since the quality of the decision is 
based on a global view of the CUAVs, they are 
also limited in terms of scalability. Decentralized 
approaches generate decisions using only the 
information available to the CUAV regarding its 
state. In this case, distributed methods scale, but 
suffer from decision optimality, and are resource 
constrained. Hybrid methods are currently being 
investigated to combine the benefits offered by 
both approaches to enable neighboring CUAVs 
to exchange observation, state, and resource 
information, but the computation regarding the 
decision making is done on the back-end.

Prior Knowledge of  
Target UAV’s Trajectory and Operation

In tracking methods, the motion of a target UAV 
can be categorized as deterministic or random. 
We may have some priori information about the 
policy of the target such that we can estimate its 
trajectory and reduce the search time. However, 
in real-life this may not always be the case. The 
trajectory of the target can be probabilistic or 
completely unknown.

Key Technologies Toward Cooperative Swarms
Currently in the existing literature, the control 
framework for a cooperative UAV swarm is 
carried out by successive convex optimization 
or control theory methods. These methods are 
generally ideal for simple scenarios since their 
methodology requires precisely known model 
dynamics of the environment, which is not eas-
ily attainable or scalable for complex stochastic 
environments, and thus many of the practical 
constraints mentioned in the previous section are 
ignored in the algorithm design.

The thriving advances in DRL methods have 
empowered them to handle the nonlinear dynam-
ics, uncertainties, and practical challenges associ-
ated with learning coordinated strategies among 
multiple agents. In multi-agent DRL (MADRL), the 
agents seek to maximize their own expected return 
through interactions with the environment. Since 
each agent is making sequential decisions in a 
shared environment, their interests may or may not 
be aligned. The algorithm must balance between 
exploring and exploiting the different interests of 
the CUAVs to see how they affect the overall per-
formance of the system.

In general, the training/learning paradigm and 
execution can take on a centralized or distributed/
decentralized form. The authors in [13] discuss the 
different training schemes, namely centralized train-
ing centralized execution (CTCE), distributed train-
ing distributed execution (DTDE), and centralized 
training distributed execution (CTDE). CTDE meth-
ods have gained considerable attention in the recent 
years since it leans more toward a practical scenario 
where agents have access to information gained by 
other agents that have the potential to influence 
their decisions; however, the agents will act in a dis-
tributive manner based on their derived policies.

For many real-world scenarios, MADRL 
approaches face a challenge with sparse, delayed, 
and dense rewards [14]. Sparse rewards are 
rewards that are received rarely, which can 

impede the learning for an agent, as it may not 
have enough feedback from the environment to 
converge to an optimal policy. Delayed rewards 
imply the agent must wait for some period before 
it learns the impact from its actions. Dense rewards 
occur frequently which can speed up the learning, 
but may lead to a sub-optimal policy. Thus, a key 
problem in MADRL is developing a well-designed 
reward function for promoting cooperative behav-
ior among the agents.

DRL Architecture for  
Target-Oriented CUAV Swarm

To evaluate the design challenges, particularly in 
communications, collision avoidance, CUAV-to-
target ratio, coordination and control, we consid-
er a target-oriented CUAV swarm scenario as a 
paradigm. Notably, the developed DRL architec-
ture can also be adapted to the other two CUAV 
swarm strategies, namely defense-oriented and 
air combat-oriented, with a few modifications to 
the observation space, reward function design, 
and associated formation constraints. The simula-
tion environment is set up as a multi-agent system 
where each CUAV is considered an agent i, for  
i  [1, N], tasked with determining the best 
actions to take based on it’s current state and 
available observation data in order to capture the 
target UAV before it reaches a restricted zone. In 
addition, the agents must avoid collisions with a 
number of non-cooperating obstacles. The consid-
ered 2D topology is shown in Fig. 2. 

The target follows its own virtual attractive/
repulsive force policy to derive the optimal linear 
and angular velocity to reach the restricted zone 
quickly while avoiding capture or collisions with 
agents or obstacles.

In real-world scenarios, it may be possible that 
the target UAV is traveling at a higher velocity 
than the agents. Thus, we consider the problem of 
optimizing the linear and angular velocity for each 
agent to minimize the expectation of the euclid-
ean distance between the agent and the target 
every time-step in order to achieve timely capture. 
The agents are subject to collision avoidance con-
straints and range of linear/angular velocity values.

In addition to the non-communication con-
figurations studied in our previous works in [12] 
and [15], we investigate the performance when 
the agents are enabled to communicate with each 
other to share their observation data via a wireless 
link. However, this CUAV-to-CUAV link may suffer 
from network latency and thus we must analyze 
the performance of the models when considering 
the sharing of outdated sensing information.

Reinforcement Learning (RL) Framework
The CUAV swarm control is formulated as a 
MADRL problem following a CTDE paradigm and 
the partially observable Markov decision process 
(MDP), which is characterized by states, observa-
tions, actions, rewards, and associated transition 
and observation probabilities. At each step, the 
agent receives an interpretation of the environ-
ment (the state) and takes an action by follow-
ing a certain policy. As a consequence, one step 
later, the agent receives a numerical reward and 
transitions to a new state where it receives an 
observation. The goal for each agent is to follow 

To evaluate the design 
challenges, particularly 

in communications, 
collision avoidance, 

CUAV-to-target ratio, 
coordination and 

control, we consider a 
target-oriented CUAV 

swarm scenario as a 
paradigm. Notably, the 
developed DRL archi-

tecture can also be 
adapted to the other 

two CUAV swarm 
strategies, namely 

defense-oriented and 
air combat-oriented, 
with a few modifica-

tions to the observation 
space, reward function 
design, and associated 
formation constraints.
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polices that maximize its discounted expected 
return (essentially a cumulative sum of rewards 
the agent expects to receive following a policy).

State Space: The state of an agent is a tuple 
composed of its current: 2D location, heading 
angle, linear and angular velocity, and the distance 
and angle between the agent and the center of the 
restricted zone. 

Observation Space: The observation of an 
agent is a nested tuple composed of multiple 
elements that capture the observation data (i.e., 
distance and angular information) relative to the 
target, other agents, and the obstacles. When 
assuming the CUAVs do not communicate with 
each other, the observation is only populated 
when a target, other UAV(s), or obstacle enters its 
sensing area. If the CUAVs are able to share infor-
mation, then the time-varying observation is pop-
ulated depending on the communication latency. 
Note: if in the current time-step t an agent i senses 
the target, its observation is populated with the cur-
rent information at time t. In this work, we consider 
three scenarios:
•	 Instantaneous communication: once the tar-

get enters the sensing area of any UAV, the 
observation of all UAVs is populated with the 
derived information at time t. 

•	 Fixed Latency: assumes all UAVs have the same 

communication delay. At time t, if UAV i has 
not observed a target, then the observation is 
populated with the corresponding data that was 
derived some t delay ago as long as the target 
was sensed by at least one UAV j (s.t. j ≠ i).

•	 Variable Latency: assumes each UAV has a dif-
ferent backoff delay ti for i  [1, N]. At time t, 
the observation for UAV i is populated with the 
corresponding data if the target was sensed ti 
ago by any UAV j (s.t. j \≠ i).
Action Space: At each step, the action of an 

agent corresponds to adjusting its linear and angu-
lar velocity. The actions derived from the proxi-
mal policy optimization (PPO) actor network are 
then mapped to feasible actions subject to collision 
avoidance constraints.

Reward Function: The immediate reward func-
tion for each agent is characterized by six condi-
tionals. A positive reward is assigned if the agent 
captures the malicious UAV. Penalties are assigned 
if the agent enters the restricted zone or collides 
with other agents or obstacles. Otherwise, if the 
malicious UAV enters the sensing area of the agent, 
a weighted negative penalty is assigned depending 
on the euclidean distance between the two entities. 

Deep Reinforcement Learning Architecture
The DRL architecture, shown in Fig. 3, is com-
posed of three elements to solve the RL problem:
•	 A DeepSet network which comprises four net-

works to pre-process the dynamic observation 
tuple relative to other agents and to obstacles.

•	 A PPO algorithm is implemented to maximize 
the expected discounted future return. PPO is 
an on-policy based method which is comprised 
of two neural networks: a critic network, which 
evaluates the state-value function for a given 
policy (probability distribution of selecting each 
action), which is derived by an actor network.

•	 A safety algorithm designed to map the derived 
actions from the PPO actor network to a fea-
sible action that will meet collision and search 
boundary constraints. Through numerous inter-
actions with the environment, the CUAVs learn 
an optimal policy with the aim of maximizing 
the target capture rate when subject to colli-
sion safety constraints. 

Numerical Results and  
Performance Evaluation

The performance of the MADRL PPO-based 
CUAV Swarm control algorithm while considering 
cooperative agents is characterized by the conver-
gence of the target UAV capture rate. Table 1 lists 
the main simulation setup and algorithm hyper-
parameters. During training, CUAVs are tasked 
with capturing the target UAV while avoiding col-
lisions with each other or other aerial obstacles, 
as shown in Fig. 2. At the start of each episode, 
the positions of the aerial obstacles is randomly 
initialized within the X  Y grid area. The CUAVs 
are randomly initialized somewhere between the 
circular restricted zone and the search area. The 
location of the target UAV is randomly initialized 
somewhere outside of the X  Y grid area. An epi-
sode terminates if the maximum allotted time is 
reached, the target UAV is captured, or a CUAV 
enters the restricted zone. An iteration of train-
ing is defined as the collection and storage of up 

FIGURE 2. Topology of the considered target-oriented 
CUAV Swarm.
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to 65,536 transitions in a replay buffer, whereby 
mini-batches of size 4,096 are utilized to update 
the DeepSet, Actor, and Critic networks. Here, 
we investigate the impact of enabling CUAV-to-
CUAV communications on the capture rate per-
formance of the malicious UAV and analyzing the 
impact of communication latency.

No Communication vs. Instantaneous  
CUAV-to-CUAV Communication

We compare the performance of the instan-
taneous communication-enabled MADRL 
PPO-based algorithm versus a baseline non-com-
munication system where the CUAVs know only 
their local environment state information. Figure 
4 compares these algorithms for the mean target 
UAV capture rate in a training iteration, which is 
characterized as the number of episodes where 
the malicious UAV is captured over the number 
of episodes in a training iteration. The simulation 
considers the cases when there are N = 4 and  
N = 8 CUAVs.

From the plots, we can see that the communi-
cation enabled scenarios achieved a significantly 
better performance compared to the no commu-
nication scenarios. In fact, it was observed that the 
no communication scenarios seem to experience 
the lazy agent problem. Agents do not have direct 
access to global information which limits their ability 
to explore and converge to an optimal joint policy. 
Alternatively, when enabling CUAV-to-CUAV com-
munication, we can achieve a significantly higher 
capture rate for both N cases due to the positional 
information exchange between the CUAVs once 
the target has reached the sensing area of a CUAV. 
However, these results assume that the informa-
tion exchange is instantaneous. In the next two 
sections, we investigate the performance of the 
learning algorithm when there is communication 
delay caused by wireless contention.

CUAV-to-CUAV Communication with Fixed Latency
Here, we analyze the effect of fixed delayed infor-
mation exchange between CUAVs. Figure 5a 
shows the mean target UAV capture rate for laten-
cy t = 0.03 sec. (equivalent to a delay of three time-
steps) and t = 0.1 sec. (equivalent to a delay of ten 
time-steps) when N = 8 CUAVs. We can see that 
the impact of the additional latency has a slightly 
reduced performance in both cases compared to 
when the CUAVs have instantaneous communica-
tion. The reason is because, once a CUAV detect-
ed a target, then after some t time later, the other 
CUAVs will start chasing the tail of the target’s flight 
path since their decisions are derived from outdat-
ed information. As the delay increases, it is more 
likely that CUAVs are too late to capture the target 
before it reaches the restricted zone.

CUAV-to-CUAV Communication with Variable Latency
Figure 5b compares the target capture rate per-
formance for fixed latency and variable latency, 
where the communication delay for each CUAV 
i is given by ti such that the total average delay is 
0.1 sec. among the N = 8 CUAVs per time-step. 
We can see that when considering the variable 
delay among the CUAVs, the capture rate is 
slightly reduced compared to the fixed latency 
results, since not all CUAVs will receive the noti-
fication that a target was detected at the same 

time. We note that even with the impact of the 
variable latency, the performance results are still 
significantly better than when the CUAVs act 
independently and are not equipped for CUAV-
to-CUAV communication. 

Conclusion and Future Direction
The control framework design challenges that are 
common to difference cooperative CUAV swarm 
strategies are related to communication, collision 
avoidance, complexity of the environment, and 
scalability. DRL can effectively incorporate the 
practical constraints into non-convex optimization 
problems through CTDE MADRL architecture and 
a well-structured reward function. The target UAV 
capture rate can be significantly enhanced by 
enabling sensing information exchange between 
CUAVs, at the expense of reduced performance 
as the average latency incurred between CUAVs 
increases. The communication latency incurred 
will exacerbate with a larger number of CUAVs 
and ultimately impair the swarm’s ability to effec-
tively coordinate and lead to sub-optimal poli-
cies. One of the future directions is to investigate 
delay-aware DRL architectures for managing the 
different delays associated with CUAV swarm 
control. For example, the communication and 

TABLE 1. Simulation parameter values.

Parameter Value

Geographical Area X  Y 160 m  120 m 

Number of CUAVs (N) 8 

Number of Obstacles (O) 5 

Search Area Radius (rS) 60 m 

Restricted Zone Radius (rT) 5 m

CUAV Sensing Radius (r) 20 m

Collision Safety Distance (e) 1.5 m 

Maximum Length of Episode 40 sec. 

Time-step size (ts) 0.01 sec. 

Replay Buffer Size 65536 

Mini-batch Size 4096

Learning Rate for Actor & Critic (ϑ) 8.4856  10–5 

FIGURE 4. Target UAV capture rate training performance 
considering cooperative and non-cooperative CUAVs 
and assuming no communication latency.
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processing delays associated with data transmis-
sion, which impact the freshness of an agent’s 
absolute and relative observation(s) of the envi-
ronment, and the delays associated with the con-
trol (action feedback and actuation delay), which 
will impact the reaction time of the agents and 
the learning process.
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FIGURE 5. Target UAV capture rate training performance considering cooperative CUAVs with: a) fixed communication 
latency; b) variable communication latency ti, i  [1, N] (see the attached supplementary media for a demonstration of the 
trained algorithm when the delay is fixed for ti = 0.03 sec. ∀i).
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