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The genome of an individual from an admixed population consists of segments
originated from different ancestral populations. Most existing ancestry inference
approaches focus on calling these segments for the extant individual. In this paper,
we present a general ancestry inference approach for inferring recent ancestors from an
extant genome. Given the genome of an individual from a recently admixed population,
our method can estimate the proportions of the genomes of the recent ancestors of
this individual that originated from some ancestral populations. The key step of our
method is the inference of ancestors (called founders) right after the formation of an
admixed population. The inferred founders can then be used to infer the ancestry of
recent ancestors of an extant individual. Our method is implemented in a computer
program called PedMix2. To the best of our knowledge, there is no existing method
that can practically infer ancestors beyond grandparents from an extant individual’s
genome. Results on both simulated and real data show that PedMix2 performs well in
ancestry inference.
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Ancestry inference from individual genomes has become a major component of
commercial genetic tests offered by companies including 23andMe and Ancestry.com.
These tests often produce reports about the ancestral origin of the genome under test.
One of the most popular reports is about admixture inference, which is usually in the
form of the so-called “chromosome painting.” The concept of chromosome painting
can be illustrated by considering an individual from an admixed population formed by
two or more ancestral populations. The genome of this individual can be divided into
segments, where each segment originated from an ancestral population. If we assign a
distinct color to each ancestral population, the genome can be colored (i.e., painted)
based on these segments. The painted chromosome can be used to calculate quantities
about ancestry, e.g., admixture proportion: the percentage of the genome that originated
from a specific ancestral population (i.e., painted in a specific color). In practice, segments
are not directly observable and need to be inferred. Therefore, chromosome painting is
a computational problem that aims at inferring the segments given the extant genome,
along with other population genetic data (e.g., allele frequencies) about the relevant
ancestral populations. The basic concept of chromosome painting is behind the seminal
STRUCTURE paper (1). Chromosome painting has been actively studied recently.
There exist several computational methods (e.g., refs. 2-7) for performing chromosome
painting of extant genomes.

Chromosome painting has been performed extensively in consumer genetics. A natural
question is whether more information can be obtained from an extant genome. Most
existing approaches for admixture inference from extant genomes focus on extant
individuals and do not provide much information about the recent ancestors of extant
individuals. An emerging research problem on admixture inference is the inference of
recent ancestors of an extant individual from the genome of this individual. One of
the first approaches for this kind of ancestry inference is PedMix (8) (see also refs. 9
and 10). Unlike existing admixture inference approaches, PedMix aims at inferring the
ancestry of parents or grandparents of an extant individual (not the extant individual
him/herself) from an extant genome. For example, suppose we are given the genome of
an admixed individual with ancestry from two ancestral populations 4 and B. PedMix
can be used to answer questions such as “Are the two parents of this individual both 50 to
50 admixed, or is one 100% A and the other 100% B?”. Simulation shows PedMix can
provide a reasonably accurate estimate (with some variance) of admixture proportions of
parents and grandparents (8). One major downside of PedMix is that it can only infer
the ancestries of parents and grandparents.
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Another approach called PAPI (10) also aims at inferring
parental admixture proportions. One feature of PAPI is that it
can infer the time (the number of generations) since admixture.
However, PAPI can only infer parental admixture. More recently,
we developed another ancestry inference approach called parMix
(11), which can perform chromosome painting for parents given
genomes from multiple children. A main limit of parMix is that
parMix needs to have two or more children of the same parents.
Also, parMix can only work for parental inference.

Since PedMix can only estimate admixture proportions of
parents and grandparents of an extant individual, a natural
research question is inferring aspects of admixture for more
distantly related ancestors. Simple genetics principles indicate
that when only an extant genome is given, admixture inference of
distant ancestors of this individual does not seem easy. Suppose
we want to know the admixture proportions of ancestors ten
generations ago, where there are up to 1,024 distinct ancestors.
Recall that we only have one extant genome. The extant
individual inherits ﬁ genome of each of these 1,024 ancestors
on average. That is, only a tiny fraction of the genomes of the
1,024 distantly related ancestors can be found in the extant
genome. Moreover, these ancestors may be admixed themselves,
so different regions of an ancestor may originate from different
ancestral populations. When only one extant genome is given,
it seems unlikely that we can obtain any meaningful estimates
of the ancestries of distantly related ancestors. Therefore, it is
unsurprising that no methods exist in the literature (to the best of
our knowledge) that can perform admixture inference of distant
ancestors from a single extant genome. The existing method that
is closest to performing such inference is PedMix. PedMix is
based on a hidden Markov model built on the genetic process’s
parameters, including states of ancestry and recombination in
recent ancestors (e.g., parents and grandparents) at a specific site.
But PedMix is not applicable to more distantly related ancestors
due to computational complexity.

As it turns out, it is a little surprising that estimating admixture
proportions of recent ancestors (e.g., parents) of an extant
individual can be obtained by considering ancestors that are much
more distantly related to this extant individual than parents.
We consider a particular type of ancestor: founding ancestors.
Founding ancestors (or simply founders) are the ancestors of
an extant individual at the time of population admixture. That
is, founders are individuals who originated from an ancestral
population. A simple but important fact is that founders are not
admixed. Different from ancestors who are not founders, each
genomic region of a founder originated from the same ancestral
population. Now suppose we know which founder originated
from which ancestral population. Why are these founders helpful
in knowing the ancestry of recent ancestors? We denote the frac-
tion of all founders who are from a specific ancestral population
A and are ancestral to an individual as the founder ratio of this
individual for A. The founder ratio is related (but not identical)
to admixture proportion. A crucial empirical observation is that
as the number of single nucleotide polymorphism (SNP) sites
increases, the founder ratio and the admixture proportion of an
individual converge. That is, founders can provide an estimate
of admixture proportions of an individual if the ancestry of the
founders for this individual is known.

Founders are not directly observable and need to be inferred
from an extant genome. Assume that an admixed population
was founded g generations ago; then, each ancestor of an extant
individual from this population at g generations ago is assumed to
be a founder. This is due to the standard Wright—Fisher model.
We denote the ancestry of founders (i.e., a list of ancestral

2of 9 https://doi.org/10.1073/pnas.2316242120

populations, one for each founder, from which a founder
originated) as founder configuration (or simply configuration).
Founder configuration inference from an extant genome is more
straightforward than the inference of non-founders. Intuitively,
one may be able to infer the ancestry origin of a founder from
a small segment of the extant genome, assuming it is known
this segment is from this founder. Recall that different regions
of founders have the same ancestry. An important aspect here
is meiotic recombination. Due to recombination, an extant
genome consists of segments from multiple founders. Since an
admixed population is usually formed relatively recently (i.e., g
is relatively small), we expect a relatively long segment of a
founder’s genome to be passed to an extant individual. Therefore,
an extant genome, in principle, allows ancestry inference of
multiple (possibly all) founders. However, due to the stochastic
nature of recombination, a rigorous method is needed for ancestry
inference.

In this paper, we present a method for ancestry inference of
recent ancestors of an extant genome. A key step of this method
is inferring the founder configuration from an extant genome.
The inference of founder configuration is non-trivial. First, it is
unknown which part of an extant genome is from which founder
since recombination is stochastic. Moreover, the number of
possible founder configurations can be vast. Suppose there are two

ancestral populations. Then there are 21924 (which is astronomi-
cally large) possible founder configurations ten generations ago. A
main contribution of this paper is that we show that our method
can infer founder configuration reasonably accurately (with some
variance). Another significant contribution of our method is that
it can, in principle, provide estimates of admixture proportions
for all recent ancestors. Thus, it is a more general ancestry
inference approach than existing methods (e.g., PedMix). Also,
the method uses a computational approach that is fundamentally
different from that of PedMix. We have implemented this
method in the program PedMix2. Given an extant genome
and also relevant population genetic information about ancestral
populations (including allele frequencies and recombination
fractions), PedMix2 can perform the following inference.

1. Founder configuration inference: infer from which ancestral
population each founder originated. Our experience shows
that PedMix2 can infer founder configuration with reasonable
accuracy (with some variance).

2. Estimating ancestral proportions of recent ancestors: estimate
the percentage of alleles of all ancestors (at certain generations
ago) of an extant individual that is from a specific ancestral
population. While existing tools (e.g., PedMix) can perform
inference for parents or grandparents, our simulation shows
that PedMix2 can give more accurate estimates of admixture
proportions for parents and grandparents than PedMix.
Moreover, PedMix2 can, in principle, provide admixture
proportion estimate for all ancestors up to the founders. Note
that accuracy may be lower for estimates of more distantly
related ancestors.

PedMix2 is available for download at https://github.com/
biotoolscoders/PedMix2.

Results

The main result of this paper is an ancestry inference approach.
In the following, we first describe this approach. Some details of
this method are provided in S/ Appendix, Text. We then provide
empirical results of our method on simulated and real data.
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Inference of Founder Configuration: Concepts and Assump-
tions. We first give an introduction to the perfect pedigree model,
which is the foundation of PedMix (8) and also our method.
Suppose we have a haplotype from an extant individual who is
from an admixed population formed by K ancestral populations.
Throughout the paper, we assume haplotypes are phased properly
without phasing errors (see the Discussion section for the issue of
phasing errors). An allele of this haplotype is passed from one of
the two parents, which in turn is passed from their parents. We
trace this allele until the founding generation of this admixed
population when the population was formed by the admixture of
K ancestral populations. This genetic process leads to a pedigree,
where an extant allele follows a path (called inheritance path)
from the extant haplotype to one of the founders of the pedigree.
Here, the founders of the pedigree are the haplotypes (called
founding haplotypes) from founders of this extant individual
at the time (g generations ago) of population admixture. Recall
that founding haplotypes are not admixed. Due to meiotic
recombination, different alleles of a haplotype may come from
different parents. That is, different alleles of the extant haplotype
can take different inheritance paths in the pedigree. By the
standard Wright—Fisher model, all founding haplotypes of
the pedigree are at ¢ generations ago. That is, an inheritance
path in the pedigree from the (single) extant haplotype to a
founding haplotype always has the same length (¢ generations).
This pedigree is called the perfect pedigree (8, 12). A founder
configuration C can be represented as a length-2¢ vector,
where each value of C is a population label representing from
which ancestral population one founder originated. See Fig. 1
for an illustration of the perfect pedigree model and founder
configuration.

Founder configuration is an essential aspect of the genetic
ancestry of an extant haplotype. A central computational problem
addressed in this paper is that given a set of (un-linked) haplotypes
from an extant admixed individual along with relevant genetic
information about ancestral populations, infer the founder
configuration of this individual. We assume the following
information is given:

1. A set of haplotypes from an extant individual, which are
assumed to be phased correctly. Haplotypes from different
chromosomes are assumed to be un-linked.

2. Allele frequencies of ancestral populations and recombination
fractions between single nucleotide polymorphisms (SNPs).

3. g: the number of generations since admixture. We assume
population admixture is relatively recent: ¢ is assumed to be
less than 15.

Foudr A B BB CA AC BACBCACB

Fig. 1. Example of a perfect pedigree with K = 3 ancestral populations with
four generations (g = 4). The founders are on the top. At each generation
(viewing upward), the number of ancestors doubles. The red lines show an
inheritance path for a site. A single extant haplotype Hpgq is at the bottom.
Each founder is labeled by one of three ancestral populations (A, B, and C)
that form the admixed population. The list of these labels forms the founder
configuration.

mmm e

Time
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The High-Level Approach. In order to infer the founder con-
figuration from the given extant haplotypes, we consider the
inheritance paths that determine the relationships between
founders and extant haplotypes. An inheritance path specifies
the sequence of ancestors (from a founder down to the extant
individual) along which ancestral alleles pass along at a specific
site. See Fig. 1 for an illustration of the inheritance path. The
inheritance path cannot be fully determined from an extant
genome due to the stochastic nature of recombination. To infer
the founder configuration C from a set of extant haplotypes
'H, we want to compute the likelihood P(H|C) of the extant
haplotypes H. Recall that due to recombination, two nearby
SNPs may follow different inheritance paths. We denote the set
of inheritance paths at each SNP site as an inheritance path set.
This likelihood can be viewed as a sum of probabilities over all
possible inheritance path sets I1 (which specifies an inheritance
path € II for each SNP position):

P(HIC) =[] D_ P(HI|x, C)P(x). 1]

HeH zell

In principle, we can infer C by maximizing the likelihood
computed by Eq. 1. However, direct computation of the
likelihood P(H|C) using Eq. 1 is infeasible even for moderate-
sized data since the size of IT can be very large. We use several
techniques to make the likelihood computation practical. First,
we divide a haplotype into a relatively small number of blocks
where recombinations are assumed to occur only between blocks.
The key component of our method is an efficient algorithm
that calculates P(H|C) approximately for a single haplotype H
by integrating over all inheritance paths of blocks of A. This
algorithm is practical for use in inference when the number of
blocks 7, and g are modest (say 7, < 50 and g < 15). See
SI Appendix for details.

Maximum likelihood estimate of founder configuration. Now,
given a set of haplotypes H, we infer the most likely founder
configuration C by maximum likelihood:

Copr = argmaxc 1—[ P(H|C). [2]
HeH

It is not practical to enumerate all possible founder configu-
rations C when g and K (the number of ancestral populations)
are large: There are K% possible founder configurations. To find
Cyps practically, we use a local search heuristic to find C,;. The
details of the local search are given in ST Appendix.

Ancestry Inference from the Inferred Founder Configuration.
Suppose we have inferred the optimal founder configuration Cyy,
for an extant individual. We denote the percentage of founders
from a specific ancestral population as the founder ratio of this
individual for this population. Under the perfect pedigree model,
the notion of the founder ratio can also be generalized to any
ancestor (starting from the extant individual up to the founders)
of this individual. This is because the perfect pedigree of this
ancestor is contained inside the perfect pedigree of the extant
individual as a sub-graph (called sub-pedigree). For example, we
can break C,; (the configuration for the entire pedigree) into two
halves. Each half is for one parent of the extant individual. Then,
we can calculate the founder ratios of the two parents from the
two halves.

The founder ratio concerns the composition of founders of an
(extant or not) individual. The founder ratio can be computed
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when the founder configuration is known for this individual.
Recall that admixture proportion is of main interest in ancestry
inference. Admixture proportion concerns the composition of
alleles of an individual (who is often an extant individual but can
be an ancestor in the pedigree). While conceptually different,
these two quantities are correlated. It is obvious that the more
founders from a specific ancestral population (say A), the higher
the admixture proportion of the extant individual for 4 tends to
be, and vice versa. We now investigate the relationship between
founder ratio and admixture proportion in a more formal way.
Suppose we focus on the extant individual (the cases of
other individuals in the pedigree are almost the same). We fix
the founder configuration in the perfect pedigree (and so the
founder ratio for this individual is also fixed). Under this setting,
the genome of the extant individual is composed of segments
from founders. The process of the extant genome formulation
is a stochastic process, where the randomness is due to meiotic
recombination and also genetic inheritance (i.e., from which side
of parents an un-linked allele originates). Admixture proportion
is determined by this stochastic process within the pedigree. That
is, an admixture proportion can be viewed as a random variable,
which depends on the founder configuration, recombination, and
inheritance choices. We have the following simple observation.

Proposition 1. Admixture proportion is an unbiased estimator of
Sfounder ratio. That is, the expectation of admixture proportion is
equal to founder ratio.

Proof: Let C be the fixed founder configuration. Let f(C) be
the founder ratio for an ancestral population 4 (i.e., the fraction
of founders from A) as specified by C. We consider a single site
5. The probability P;(A) that 5’s allele originates from A is equal
to f(C). This is because s has a random inheritance path, and
so s’s allele is from a random founder which is from A with
probability £(C). We define an indicator variable Z;(A4) for a site
5 (1 <5 < n) that 5’s allele is from A (i.e., [;(A) = 1 if the site s
has the ancestry A). Note that £(Z;(4)) = P;(A4). Let n(A) be the
number of sites that are from 4 among data with 7 sites. Then,
the expectation of 7(A4) is:

E(n(A)) = E(Y_1(A) = ) E((4))
s=1

s=1

= Y R(A) = 3 F(C) = wf(C).

s=1 s=1

The above follows by the well-known fact of linearity of
expectations. Therefore, the expected admixture proportion is

equal to Ed)) _ #() =f(C).

n n

O

Proposition 1 implies that founder ratio can be approximated
by admixture proportion. But note that we already know the
founder ratio for the individual (from the inferred founder
configuration) and we want to estimate the admixture proportion
of this individual instead. To estimate admixture proportion,
we apply Proposition 1 in the opposite direction. That is, we
use the founder ratio computed from the inferred configuration
as an estimate of the admixture proportion. In the Resuls, we
use simulation to validate that founder ratios and admixture
proportions converge when the data size reaches a level similar to
the whole genome in humans.

Since we have the inferred founder configuration G, for the
entire pedigree, this provides estimates for admixture proportions
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for all the individuals in the pedigree, from the extant individual
to founders. That is, for each ancestor in the pedigree, we use
the sub-pedigree rooted at this ancestor to obtain the inferred
configuration for this ancestor from C, which allows us
to estimate the admixture proportion for this ancestor. Note,
however, a sub-pedigree rooted at an ancestor that is closer
to founders has a smaller size. This can lead to higher bias in
admixture proportion estimates for such ancestors.

The algorithms for founder configuration inference and
admixture proportion estimate are implemented in the program
PedMix2. We now evaluate the performance of PedMix2 on
simulated and real data.

Empirical Results on Simulated Data. We use simulated data
to evaluate the performance of PedMix2. We first simulate 7,
haplotypes using msprime (13) from two ancestral populations
which diverged from one ancestral population at 4/V,# gener-
ations in the past. Then, an admixed population is formed
by admixing these two ancestral populations. This admixed
population has % diploid individuals (75 haplotypes). That is,
the admixture ratio is 0.5. We then simulate forward in time the
genetic process starting from the time of admixture for additional
g generations. The process includes random mating, genetic drift,
and recombination using a diploid Wright—Fisher model. The
varying recombination rates from the 1000 Genomes Project
(14) are used in the simulation. The length of each chromosome
is based on human data.

We assume that haplotypes are properly phased. The number
of SNPs for the first chromosome simulated by msprime is
~149,000 under the default settings. We divide each chro-
mosome into 7, blocks. Table 1 shows the parameters (with
explanations and their default values) used in the simulations.
Here, the number of blocks is due to the “block assumption” for
efficient likelihood computation. See ST Appendix for details. For
accuracy evaluation, we benchmark PedMix2 in several aspects.
Admixture proportion accuracy. Recall that we use the founder
ratios calculated from the inferred founder configuration as the
estimates of admixture proportions of recent ancestors. The
founder ratio can be calculated from the inferred founder con-
figuration as follows. For example, if the inferred configuration
is “ABCBABCC,” the ancestry ratio of population “A,” “B,”
and “C” will be 25%, 37.5%, and 37.5%, respectively. The
accuracy of admixture proportion estimates (or simply proportion
accuracy) rate can be defined as follows.

Table 1. List of parameters and their default values in
the simulation data generation and testing
Symbol Default Description
ny 1,000 Number of haplotypes
Ne 10,000 Effective population size
t 0.15  Ancestral populations splitting time
U 1 x 1072 Mutation rate (per generation per bp)
p 1 x 108 Recombination rate (per generation per bp)
N¢ 22 Number of chromosomes
g 9 Number of generations since admixture
adp 0.5  Admixture ratio
ng 10 Number of individuals in testing for
each setting
ny 20 Number of blocks per chromosome

The top part shows the values in simulation data generation, and the bottom part shows
the values in testing.

pnas.org
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_ Z]J |Rp - Rp'

R,=1 e

, (3]

where R, is the inferred admixture proportion of reference

/
population p, and R, is the true admixture proportion of an

ancestral population p. K is the number of ancestral populations.
Configuration accuracy. We evaluate the accuracy of inferred
founder configurations with the true simulated founder con-
figuration. The metric we use is called “configuration accuracy.”
Configuration accuracy is the accuracy of the inferred founder
configuration C,,, compared with the true founder configuration
Co. Founder configuration has the symmetry property: Two
configurations can be equivalent by “rotating” the pedigree (see
SI Appendix for details). To compare two configurations with
symmetry allowed, we apply the so-called “maximum accuracy
algorithm” or MAA. The MAA is given in S/ Appendix.
Comparing with existing methods. There are no existing methods
for founder inference. There are existing methods that can
infer admixture proportions of extant individuals and their
recent ancestors (especially parents or grandparents). To evaluate
the proportion accuracy of PedMix2, we compare it with the
following alternative approaches that can estimate admixture
proportions.

1. RFMix. We can use RFMix to estimate the admixture
proportion of an individual whose genome is given. Note
that RFMix is not applicable to individuals (e.g., ancestors)
whose genomes are not given. REMix uses “Random Forest”
and “Decision Tree” methods to perform ancestry inference
for the extant individual.

2. PedMix. PedMix can estimate admixture proportions of
recent ancestors (i.e., parents or grandparents) of an extant
individual. However, PedMix becomes very slow for ancestors
that are more distant than grandparents. Moreover, the
current PedMix implementation only allows two ancestral
populations.

Empirical validation of the convergence of admixture proportion
and founder ratio. A key aspect of PedMix2 is using the founder
ratio to estimate the admixture proportion for an ancestor. One
justification is Proposition 1, which shows that the expectation
of admixture proportion is equal to founder ratio. We designed a
large-scale experiment about admixture proportions and founder
ratios to provide empirical justification for this approach. First,
100 individuals from two simulated populations are used as the
founders of an admixed population. The admixture ratio 4, is
0.5. Then, for the first chromosome, we simulate 100 individuals
based on the Wright—Fisher model for 10 generations. This leads
to a founder configuration for the 100 extant individuals. We
then use the same ancestors in the pedigree to generate 99 more
chromosomes for these 100 individuals.

We calculate the accumulated admixture proportions of the
first £ chromosomes. The absolute mean differences between the
ground truth of admixture proportion for the first # chromosomes
and the ground truth of founder ratio (which does not depend
on k) are shown in Fig. 24. We can see that the absolute mean
difference decreases when more chromosomes are used. The
difference is less than 1% if there are 100 chromosomes and 2.3%
if there are 22 chromosomes (the whole genome for humans).
Therefore, founder ratio can provide a reasonable estimate of
admixture proportions when the data are large.

To benchmark the proportion accuracy of PedMix2, we use
the estimated founder ratio as the admixture proportion of the

PNAS 2024 Vol. 121 No.2 2316242120
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Fig. 2. Empirical investigation of the relationship between founder ratio
and admixture proportion. Part 2 (A): absolute mean differences between
the true admixture proportions and the true founder ratios with varying
numbers of chromosomes (under 95% Cl). The differences converge to 1%
when there were 100 chromosomes, which provides empirical justification of
Proposition 1. Part 2 (B): comparison of PedMix2 with RFMix in the accuracy of
admixture proportion and founder ratio accuracy of PedMix2 with different
numbers of chromosomes. The default settings in Table 1 are used. “red +":
the mean value.

extant individual for PedMix2. We then compare PedMix2’s
estimates of founder ratios and admixture proportions with the
ground truth of founder ratio and admixture proportion of extant
individuals. Note that the two estimates by PedMix2 are the
same; the two comparisons are against different ground trutch.
We also compare RFMix’s estimates of admixture proportions
with the ground truth of admixture proportion. We vary the
number of chromosomes from one to twenty-two (i.e., increase
the data size). The results are shown in Fig. 2B. When data
are small, founder ratio estimate is not very accurate. However,
the estimated founder ratio can still serve as a good estimate of
admixture proportion even with small data. This may be due to
the large variance with small data. When data size increases,
founder ratio estimate becomes more accurate. Overall, the
founder ratio calculated by PedMix2 provides a good estimate of
admixture proportion when data are large.
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Proportion accuracy on simulated data. We compare PedMix2
with several existing methods on admixture proportion accuracy.
RFMix can estimate admixture proportions for individuals with
given genomes. PedMix can infer the admixture proportions of
recent ancestors from an extant genome. PedMix2 can do both
and also work for more distant ancestors (up to the founder
generation). Therefore, we compare PedMix2 with RFMix for
the extant individuals’ inference. We compare PedMix2 with
PedMix for both parents’ and grandparents’ inference. We then
evaluate the accuracy for “all-generations” ancestors’ inference.
Note that symmetry in pedigrees should be accommodated
when calculating the admixture proportion accuracy of ancestors.
Admixture proportion accuracy is calculated from the best match
between the inferred and the true proportions. This best-match
algorithm is given in S/ Appendix.

In this experiment, the data were simulated forward in time
for 11 generations. We evaluate the accuracy for each of the
11 generation’s inference. As shown in Fig. 3, the admixture
proportion accuracy by PedMix2 for the extant individuals is
about 99%, which is only slightly lower than the RFMix’s result.
The comparison between PedMix and PedMix2 shows that
PedMix2 provides more accurate estimates of admixture pro-
portions for parents and grandparents. For great-grandparents,
the admixture proportion accuracy is 93%. Even for great-great-
grandparents, the admixture proportion accuracy is still higher
than 90%. Our results show that PedMix2 can provide reasonably
accurate estimates of the admixture proportion of all ancestors in
a pedigree. As expected, proportion accuracy for more distantly
related ancestors is lower. Nonetheless, the accuracy for founders
10 generations ago is still above 75%.

Robustness tests for proportion accuracy: varying parameters.
Our experiments so far are for simulation data under the default
parameter settings. There are a number of parameters that may

0 <« extant ﬁ‘
11 < parent ﬂ_‘
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Fig. 3. Comparison of PedMix2 with RFMix and PedMix on admixture
proportion accuracy for the extant individual and all 10 generations of
ancestors. Data simulated under the default settings in Table 1. g = 11,
“red +": the mean value.
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affect the inference accuracy. To evaluate the performance of
PedMix2 under different settings, we have performed extensive
experiments for the following settings:

1. Three important parameters in simulations may influence
the performance of PedMix2: p (recombination rate), u
(mutation rate), and # (splitting time of ancestral populations).
In addition, 7, the number of blocks, may also influence the
performance of PedMix2 in inference.

2. Varying the number of generations g since the formation of
the admixed population.

3. Mis-specifying the number of generations g since admixture.
So far, we assume g is known. In practice, the true value
of ¢ may not be known exactly. We evaluate the effect on
inference if g is mis-specified.

4. Varying the number of ancestral populations. By default, there
are two ancestral populations. We now test the case of more
than two ancestral populations.

5. Phasing errors. We evaluate the accuracy of admixture
g y
proportion estimates on data with phasing errors.

6. Complex admixture where admixture occurs in more than one
generations during the formation of the admixed population.

7. Unbalanced admixture where the admixture ratio is different
from the default value 0.5.

Fig. 4 shows the results for several robustness tests. In Fig. 44,
we can see that very low p values may reduce proportion accuracy.
However, the difference in proportion accuracy with different p
values is not very significant. In Fig. 4B, we evaluate the effects of
the splitting time of ancestral populations. There appears to be
no very strong correlation between population splitting time and
accuracy. Fig. 4C shows that the effect of y values on proportion
accuracy is also not very significant. This may be due to the fact
that the number of SNPs is usually very large within each block.
On the other hand, Fig. 4D shows that the value of 7, has larger
impact on proportion accuracy than other parameters. The larger
ny is, the higher proportion accuracy is. The reason is that when
the chromosome is divided into more blocks, recombination is
more likely to be placed at the true position. A larger number
of blocks inside a haplotype leads to a longer running time. To
speed up computation, we use 20 as the default value for 7; in
the experiments. Overall, proportion accuracy is not significantly
affected by the parameters we tested. We note that there may
be variance in simulation experiments. Nonetheless, the average
proportion accuracy is in the range of 90% and above for the
extant individuals under most settings. This shows that PedMix2
may be applicable for data with different settings. Other results
are given in ST Appendix.

Configuration accuracy on simulated data. We test the accuracy
of PedMix2 for inferring founder configuration, which is a
main technical aspect of PedMix2. Under the default settings in
Table 1, the configuration accuracy of PedMix2 is 74.9%. Note
that with ¢ = 9 generations, there are 2°1? possible configura-
tions. While PedMix2 may not infer the exact configuration, its
inferred configuration is reasonably accurate, especially consider-
ing the vast space of possible configurations for relatively large g.

We also evaluate the performance of PedMix2 on data
generated by varying several simulation parameters (similar to
the proportion accuracy robustness test). The results are given in
SI Appendix. Overall, configuration accuracy is acceptable under
various settings of parameters.
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Running time. We evaluate the running time of PedMix2 under
different numbers of generations ¢ and numbers of blocks 7.
Among all the simulation parameters, ¢ and 7, greatly impact
the running time. Our experiments are run on a machine with
Linux and an Intel(R) Core(TM) i9-9900K CPU (3.60 GHz).
Each data point in Fig. 5 represents the running time (in natural
logs) for a single local search starting point. For example, the total
running time of PedMix2 under the default settings is around 9
h (9 generations, 20 blocks per chromosome, 22 chromosomes,
2 ancestral populations, and 10 local search starting points).

In comparison, REMix is very fast. PedMix is also faster
than PedMix2 for parental and grandparental inference. While
PedMix2 is slower than the two existing methods, one advantage
of PedMix2 is that it can perform ancestry inference of all
ancestors at once. The main time-consuming part of PedMix2
is the inference of the optimal configuration, but estimating
the admixture proportion of each ancestor from an inferred
configuration is trivial. In contrast, PedMix needs to run
separately for parental and grandparental inference.

Results on Real Data. We now test PedMix2 on phased haplo-
types of the trios from the 1000 Genomes Project. We use the
genotypes from CEU (Utah residents with Northern and Western
European ancestry) and YRI (Yoruba in Ibadan, Nigeria) as
ancestral populations. The test samples are haplotypes of ten trios
from the ASW (African Ancestry in Southwest US) population.
In these ten trios, phased genotypes of the parents are available,
while children’s genotypes are unphased. We use Beagle (15)
to phase children’s genotypes from the phased haplotypes of
parents. All parents’ genotypes and reference populations are
from the 1000 Genomes Project phase 3 data (https://www.
internationalgenome.org/data-portal/population/).

We choose to use trio data so that the genomes of parents are
given. We do not have the ground truth of admixture proportions
and founder configurations. So we use RFMix to estimate

PNAS 2024 Vol. 121 No.2 2316242120

the admixture proportions for the extant individuals and their
parents. The estimated admixture proportions are then treated as
the ground truth for the extant individuals and their parents.

Fig. 6 A and B show the results of PedMix2 for estimating the
admixture proportions of extant individuals and their parents.
Here, we use ¢ = 9 and n, = 20. The mean admixture
proportion accuracy of PedMix2 is ~97% for extant individuals
(the 10 children in the trios) and ~95.8% for their parents.
Phasing errors may influence the accuracy of PedMix2, although
our results show that PedMix2 still performs well on real data
which may contain phasing errors.

For comparison, we run PedMix on the same data to estimate
the admixture proportions of the parents and the grandparents.
Note, however, the performance of PedMix is affected by its data-

10 10 blocks
20 blocks
—=— 30 blocks

8 —+— 3 references /

Running time (s) - log
o

5 6 7 8 9
Generations

Fig. 5. Running time (in natural log) of PedMix2 under varying the number
of generations in the pedigree and the number of blocks per chromosome.
For the experiments with three reference populations, the number of blocks
per chromosome (ny) is set to 20.
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Fig. 6. Admixture proportion accuracy of extant individuals and their par-
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Project. (A) Accuracy of PedMix2 for extant individual inference. (B) (parents)
and (C) (grandparents): compare PedMix2 and PedMix with data that are
trimmed for estimating parental and grandparental admixture proportion
accuracy. “red +": the mean value.

trimming approach, which discards some SNPs from the data
based on specific criteria such as linkage disequilibrium or allele
frequencies. It is known that using certain trimming approaches
can improve the accuracy of PedMix (8). The results by PedMix
in Fig. 6B are the proportion accuracy of PedMix when data
trimming is applied. Details on data trimming are provided
in SI Appendix. If data are not trimmed, PedMix’s proportion
accuracy is significantly lower (e.g., ~92% for parental inference).
Nonetheless, it is often unclear how to apply data trimming
in real data analysis. PedMix2 does not need to perform data
trimming and still gets accurate inferences. For grandparents, we
cannot use RFMix to estimate the true admixture proportions of
grandparents since the genomes of grandparents are unavailable.
So we estimate the parental admixture proportions inferred
by PedMix2 from the genomes of parents and treat these as
the ground truth for grandparents. Alternatively, we can use
the parental results from PedMix. But this leads to higher
grandparental inference errors for both methods. Fig. 6C shows
that PedMix2 is more accurate than PedMix in grandparental
inference. This is consistent with the results on simulated data.

Discussions

PedMix2 performs ancestral admixture inference from individual
genomes. We have shown that PedMix2 can be applied to simu-
lated genetic data to infer founders at 10 or more generations ago.
Then, the inferred founders can be used to estimate admixture
proportions of recent ancestors of an extant individual. A unique
advantage of PedMix2 is that it can, in principle, provide
admixture proportions of all recent ancestors whose genomes
are not available. The main contribution of this paper is that
we show it is feasible to infer useful aspects about the admixture
of distantly related ancestors of an extant individual when only
the genome of this extant individual is given. In contrast, most
existing methods (e.g., REMix) can only estimate admixture
proportions for individuals with given genomes. Experiments
on one real genetic data appear to suggest that PedMix2 can
infer aspects of ancestry from real genetic data, although we
acknowledge that a thorough validation on real data is not easy
due to the lack of ground truth in these real data. Our results show
that proportion estimates of extant individuals by PedMix2 and
RFMix have similar accuracy. Note that RFMix runs faster than
PedMix2 and can also perform chromosome painting. PedMix2
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performs better than PedMix in almost every scenario. PedMix2
is more generally applicable than PedMix, which works for only
parental and grandparental inference. PedMix2 allows more than
two reference populations, while the current implementation of
PedMix only allows two. However, PedMix allows genotypes
with some phasing errors, while PedMix2 does not explicitly
address phasing errors. Real data often have phasing errors. While
phasing errors are common in current genetic data, we expect
newer technologies in genotyping (e.g., long reads sequencing)
can lead to data with very low (or even no) phasing errors.
Moreover, our simulation shows that the effect of phasing errors
on accuracy appears to be relatively modest (see the results in
SI Appendix).

There are a number of parameters that may affect the
performance of PedMix2.

1. Recombination rate. PedMix2 uses the recombination rate
per base pair per generation in the inference. For humans, the
recombination rate is around 1.0¢~8. Our results show that
variation in recombination rate appears to have only a modest
effect on the performance of PedMix2.

2. Number of generations. The number of generations since
admixture plays an important role in PedMix2 inference
because it directly determines the number of founders of
an extant individual. Empirical results show that the current
implementation of PedMix2 runs reasonably fast for up to
12 generations. When using a larger number of generations,
The number of blocks per chromosome should also increase.
PedMix2 assumes the number of generations is known. In
some cases, the number of generations is unknown and
may need to be inferred, e.g., using the PAPI approach
(10). Simulation shows that mis-specifying the number of
generations does not significantly influence the proportion
accuracy of PedMix2. We note that using a larger generation
number than the true value does not necessarily lead to lower
accuracy (butinference time would be longer). This is because,
in this case, the founders of the perfect pedigree model are
still from an ancestral population (i.e., un-admixed). It can
be more problematic to use a number of generations that is
smaller than the true value.

3. Number of blocks. Allowing each SNP to have its own
inheritance path is the most accurate way to compute the
likelihood. However, this leads to a long computation time.
To obtain a practical method, PedMix2 divides a chromosome
into several blocks. Increasing the number of blocks can
significantly increase the running time of PedMix2.

4. Number of ancestral populations. PedMix2 allows multiple
ancestral populations. Our results show that the admixture
proportion accuracy rate does not decrease significantly with
a larger number of ancestral populations. However, running
time increases exponentially with the number of ancestral
populations.

5. Number of initial configurations in local search. PedMix2
uses local search that starts from some initial configurations
to search for the optimal founder configuration. To obtain
a more accurate inference, one can run PedMix2 with a
larger number of initial configurations. However, the running
time of PedMix2 increases when the number of initial
conﬁgurations increases.

There are several aspects of PedMix2 that need to be improved
in the future. First, it is desirable to further speed up for a
larger number of generations. Moreover, there may still be room
for improving the inference accuracy. As shown in Fig. 2, the
difference between admixture proportion and founder ratio may
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not be small unless the data size is large. Therefore, for smaller
data, PedMix2 may not give very accurate estimates of admixture
proportions especially for more distant ancestors. To obtain
more accurate inference, it is likely that more information (such
as linkage disequilibrium in the ancestral populations) needs to
be utilized in inference. However, more complex methods may
also increase computational time and there may be a trade-off
between accuracy and efficiency.

Overall, PedMix2 is currently the only general ancestry
inference approach that can infer aspects of admixture for
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