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Abstract: Phylogenetic network is an evolutionary model that
uses a rooted directed acyclic graph (instead of a tree) to model an
evolutionary history of species in which reticulate events (e.g., hybrid
speciation or horizontal gene transfer) occurred. Tree-child network

is a kind of phylogenetic network with structural constraints. Existing
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approaches for tree-child network reconstruction can be slow for
large data. In this paper, we present several computational approaches
for bounding from below the number of reticulations in a tree-child
network that displays a given set of rooted binary phylogenetic trees.
In addition, we also present some theoretical results on bounding
from above the number of reticulations. Through simulation, we
demonstrate that the new lower bounds on the reticulation number
for tree-child networks can practically be computed for large tree
data. The bounds can provide estimates of reticulation for relatively

large data.

1 Introduction

Phylogenetic network is an emerging evolutionary model for several complex
evolutionary processes, including recombination, hybrid speciation, horizontal
gene transfer and other reticulate events (Gusfield, 2014; Huson et al., 2010).
On the high level, phylogenetic network is a leaf-labeled rooted acyclic digraph.
Different from phylogenetic tree model, a phylogenetic network can have nodes
(called reticulate nodes) with in-degrees of two or larger. The presence of
reticulate nodes greatly complicates the application of phylogenetic networks.
The number of possible phylogenetic networks even with a small number of
reticulate nodes is very large (Fuchs et al., 2021). A common computational task
related to an evolutionary model is the inference of the model (tree or network)
from data. A set of phylogenetic trees is a common data for phylogenetic
inference. An established research problem on phylogenetic networks is inferring
a phylogenetic network as the consensus of multiple phylogenetic trees where the
network satisfies certain optimality conditions (Elworth et al., 2019; Gunawan

et al., 2020). Each phylogenetic tree is somehow “contained” (or “displayed”)



in the network. The problem of inferring a phylogenetic network from a set
of phylogenetic trees is called the network reconstruction problem (also called
hybridization network problem in the literature). We refer to the recent surveys
(Steel, 2016; Zhang, 2019a) for the mathematical relation between trees and

networks.

The network reconstruction problem has been actively studied recently in
computational biology. There are two types of approaches for this problem:
unconstrained network reconstruction and constrained network reconstruction.
Unconstrained network reconstruction (Chen and Wang, 2012; Mirzaei and Wu,
2016; Wu, 2010, 2013) aims to reconstructing a network without additional
topological constraints. While such approaches infer more general networks,
they are often slow and difficult to scale to large data. Constrained network
reconstruction imposes some type of topological constraints on the inferred
network. Such constraints simplify the network structure and often lead to
more efficient algorithms. There are various kinds of constraints studied in
the literature. One popular constraint is requiring simplified cycle structure in

networks (e.g., so-called galled tree (Gusfield et al., 2004; Wang et al., 2001).

Another topological constraint, the so-called tree-child property (Cardona
et al., 2009), has been studied actively recently. A phylogenetic network is
tree-child if every non-leaf node has at least one child that is of in-degree one.
This property implies that every non-leaf node is connected to some leaf through
a path that is not affected by the removal of any reticulate edge (edge going
into a reticulate node; see Figure 1). A main benefit of tree-child network is
that it can have more complex structure than say galled trees, and is therefore
potentially more applicable. While tree-child networks have complex structure,
they can efficiently be enumerated and counted by a simple recurrence formula

(Pons and Batle, 2021; Zhang, 2019b) and so may likely allow faster computation
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Figure 1: An arbitrary phylogenetic network with four reticulate nodes (filled
circles) on taxa 1, 2, 3, 4 (left), a tree-child network (middle) and a phylogenetic
tree (right). Note: the tree on the right is displayed in the network to the left.

for other tasks. There is a parametric algorithm for determining whether a set
of multiple trees can be displayed in a tree-child network simultaneously (van

Tersel et al., 2022).

Given a phylogenetic network N, we say a phylogenetic tree T' (with the same
set of taxa as N) is displayed in N if T can be obtained by (i) first deleting all
but one incoming edges at each reticulate node of N (this leads to a tree), and
then (ii) removing the degree-two nodes so that the resulting tree becomes a
phylogenetic tree. As an example, in Figure 1, the tree on the right is displayed
in the network on the left. Given a set of phylogenetic trees 7, we want to
reconstruct a tree-child network such that it displays each tree T' € T and its
so-called reticulation number is the smallest among all such tree-child networks.
Here, reticulation number is equal to the number of reticulate edges minus the
number of reticulate nodes. The smallest reticulation number needed to display
a set of trees T is called the tree-child reticulation number of 7 and is denoted
as TCRyi,. Note that TCRy,i, depends on 7. To simplify notations, we drop
T from TCRy,;, and the following lower bounds on TCRy,;,. There exists no

known polynomial-time algorithm for computing the exact TCR i, for multiple



trees.

Since computing the exact tree-child reticulation number TCR i, of multiple
trees is challenging, heuristics for estimating the range of TCRy,;, have been
developed. Existing heuristics aim at finding a tree-child network with the
number of reticulation that is as close to TCR i, as possible. At present, the
best heuristics is ALTS (Zhang, et al, 2023). ALTS can construct near-parsimonious
tree-child networks for data that is infeasible for other existing methods. However,

a main downside of ALTS is that it is a heuristic and so how close a network
reconstructed by ALTS to the optimal one is unknown. Moreover, ALTS still
cannot work on large data (say 50 trees with 100 taxa, and with relatively large

number of reticulations).

We can view the network reconstruction heuristics as providing an upper
bound to the reticulation number. In order to gain more information on the
reticulation number, a natural approach is computing a lower bound on the
reticulation number. Such lower bounds, if practically computable, can provide
information on the range of the reticulation number. In some cases, if a lower
bound matches the heuristically computed upper bound for some data, we can
actually know the exact reticulation number (Wu, 2010). Computing a tight
lower bound on reticulation number, however, is not easy: to derive a lower
bound one has to consider all possible networks that display a set of trees 7T in
contrast, computing an upper bound on reticulation number of 7 only requires
one feasible network. For unconstrained networks with multiple trees, the only
known non-trivial lower bound is the bound computed by PIRN (Wu, 2010).
While this bound performs well for relatively small data, it is computationally
intensive to compute for large data. For tree-child networks, we are not aware

of any published non-trivial lower bounds.

In this paper, we present several lower bounds on TCR ;. By simulation, we
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show that these lower bounds can be useful estimates of TCRy,;n. In addition,

we also present some theoretical results on upper bounds of TCR .

Background on tree-child network

Throughout this paper, when we say network, we refer to tree-child network in
which reticulate nodes can have two or more incoming reticulate edges (unless
otherwise stated), which may not be binary. Edges in the network that are not
reticulate edge are called tree edges. Trees are assumed to be rooted binary
trees on the same taxa.

The tree-child property A phylogenetic network is tree-child if every
nonleaf node has at least one child that is a tree node. In Figure 1, the middle
phylogenetic network is tree-child, whereas the left network is not in which both
the parent u of the leaf 4 and the parent v of the leaf 3 are reticulate and the
node right above u has v and v as its children. One important property about
tree-child network is that there is a directed path consisting of only tree edges
from any node to some leaf (see e.g. Zhang, et al (2023)).

Network decomposition Consider a phylogenetic network N with k reticulate
nodes. Let the root of N be ry and the k reticulate nodes be 71,79, -+ , 7. For
each ¢ from 0 to k, r; and its descendants that are connected to r; by a path
consisting of only tree edges induces a subtree of V. Such k+1 subtrees are called
the tree components of N (Gunawan et al., 2017). Note that the tree components
are disjoint and the node set of N is the union of the node sets of these tree
components (see Figure 2). Network decomposition is a powerful technique for
studying the tree-child networks (Cardona and Zhang, 2020; Fuchs et al., 2021)
and other network classes (Gambette et al., 2015) (see Zhang (2019a) for a
survey).

Path decomposition The network decomposition for a tree-child network



(a) Decompose into trees (b) Decompose into paths

Figure 2: Illustration of the decomposition of a phylogenetic network with k&
reticulate nodes and n leaves. In this example, k = 3 and n = 6. Part 2(a):
decompose into k + 1 disjoint tree components. The tree component rooted
at the network root is highlighted in green; other tree components rooted at
a recirculate node are in blue. Part 2(b): decompose into n paths (each path
appears in a tree component; ordered by the leaf labels). Reticulate edges:
dashed lines. Edges in paths: thick lines. Tree edges not on paths: thin lines.

leads to a set of trees, where the trees are connected by reticulate edges. We
can further decompose each tree component into paths as follows. Suppose a
tree component contains p leaves and these leaves are ordered in some way. We
create a path for each leaf sequentially. Let a be the current leaf. We create
a path of edges from a node as close to the root of the the tree as possible,
and down to a. We then remove all edges starting at a path and ending at
a different path. This procedure (called path decomposition) is illustrated in
Figure 2(b), where the path creation follows the numerical order of the leaves.
Note that path decomposition is a valid decomposition of a network IN: each
node in N belongs to a unique path after decomposition. This is because only
edges (not nodes) are removed during the above procedure. In addition, path
decomposition depends on the ordering on nodes: suppose we trace two paths
backward to the root; when two paths meet, the path ending at an earlier node

continues and the path to a later node ends. This implies that the ordering of
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leaves affect the outcome of the path decomposition. Moreover, a path starts
at either a reticulate node or a tree node in path decomposition. At least one
incoming edge is needed to connect the path to the rest of the network (unless
the path starts from the root of the network).

Displaying trees and path decomposition When a tree T is displayed
in N, there are edges in N that form a topologically equivalent tree (possibly
with degree-two nodes) as T'. Now, when N is decomposed into paths, to display
T, we need to connect the paths by using (either tree or reticulate) edges not
belonging to the paths. Intuitively, tree edges connect the paths in a fixed way
while reticulate edges lead to different topology of paths. That is, to display
different trees, we need to connect the paths using different reticulate edges.
This simple property is the foundation of the lower bounds we are to describe
in Section 2.

Recall that to display a tree, we need to make choices for each reticulate
edge whether to keep or discard. This choice is called the display choice for this

reticulate edge.

2 Lower bounds on the tree-child reticulation

number

In this section, we present several practically computable lower bounds for the
tree-child reticulation number for displaying a set of trees. These bounds are

derived based on the decomposition of tree-child networks.

2.1 TCLB;: a simple lower bound

Recall that any tree-child network with n taxa {1,2,...,n} can be decomposed

by path decomposition into n simple paths (possibly in different ways), where
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each path starts with some network node and ends at a taxon. Now we consider a
specific network N and a specific decomposition of N into n paths P; (1 <i < n).
Each P; starts from nodes in the network and ends at taxon ¢. We say P; and
P; are connected if some node within P; is connected by an edge to the start
node of P; or vice versa. We define a binary variable C; ; to indicate whether
or not P; and P; are connected for each pair of ¢ and j such that 1 <i < j < n.
Note that C; ; is for a specific network N and a specific path decomposition of

N. For an example, in the path decomposition in Figure 2(b), We have:
Ci2=C1a=C15=C1=023=024=0C25=C34=1

and C; ; = 0 for other index pairs. Note that each of these C; ; = 1 corresponds

to a specific (tree or reticulate) edge not inside paths.

Lemma 1. Let T be a set of trees.

(1) If N is a network that displays T, C(N,D) = 21§i<j§n o)

ij T+
1 < TCR(N), where Ci()?) is obtained from the path decomposition constructed
according to an arbitrary ordering D on the taza of the trees. Here, TCR(N) is
the reticulation number of the network N.

(2) For any ordering D on the taza of T, we have the following lower bound
on TCRuyin -

TCLB 2 minyC(N, D) —n + 1 < TCRun.

Proof. (1) Assume TCR(N) = k. Let D be an arbitrary ordering on the taxa
X of T. The path decomposition constructed according to D contains n paths
Py, Py, | P,. Here, C’i()?) = 1if P; and P; are connected by an edge that goes
from P; to P;. That is, F; is obtained prior to P;.

If P; starts from a tree node u; rather than the root of IV, there is a unique

path P; such that C{”) =1 and Cf”) = 0 for any ¢/ # i. This implies that
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di<i<n Ci(’lj)) =1 = d;n(u;). Here, d;,(u) is the in-degree of the node u. If u;
is the root of N, then >, ., Ci(,lj)) = d;in(u;) = 0: no path exists that is prior
to P; with regard to D.

If P; starts from a reticulate node wu;, there are d;,(u;) reticulate edges
entering ;. Therefore, P; is connected with at most d,,,(u;) paths. Therefore,

D
Z1g¢§n Ci(,j) < din(uy).

Summing these terms together, we obtain:

CN,D)—n+1= 3 3 P —n+1< 3 dinlu;) —n+1=TCRuin.
1<j<n 1<i<n 1<j<n

(2) Let O be a tree-child network with the smallest reticulate number

TCRuyin that displays 7. For any ordering D on the taxa, we have that

C(0,D) < TCRuin and thus TCLB = minyC(N, D) < C(O,D) < TCRuin.

O

TCLB is a lower bound because it may underestimate TCR i, because C; ;
are binary and there can be more than one edges connecting two paths in a path
decomposition of the optimal network. While Lemma 1 leads to a lower bound,
TCLB is hard to compute because it needs to consider all possible networks N
that displays the given trees 7. We now show that we can practically compute
a weaker bound TCLB{, which bounds from below TCLB and thus TCRin.

We consider a binary tree T € T. (Our bounds can be generalized to
non-binary trees.) The following lemma illustrates one structural property of
tree-child network when displaying a subtree Ty of T. Assume T; is rooted at
node v. Let S(v) be the set of taxa under the node v. Since T3 is also displayed
in N, there exists some non-path edges (i.e., edges not on the paths in the path
decomposition) which connects the paths, one path for each leaf in S(v), that

displays T. Let v(N) be the node in NV that is the root of the displayed subtree
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in N. We say T; is displayed at node v(N).

Lemma 2. Let N be a tree-child network displaying T and let Ty be a subtree
rooted at v of T and be displayed at a node v(N). Then, for any path decomposition,
v(N) is on some path. That is, we can always trace from a taxon from S(v)

upwards in N and reach v(N) by following only path edges for the path decomposition.

Proof. By the tree-child property, there is a leaf a that can be reached from
v(N) following only tree edges. Thus, v(N) and a must be inside the same tree
component (recall path component is obtained by further decomposition of some
network decomposition into trees). Therefore, no matter how path composition
is performed, there is always a leaf a’ where v(NN) is on the path ending at

a'. O

Lemma 3. Let v be an internal node of T € T with vi and vy as its children.

In a tree-child network N displaying T, for any path decomposition of N,

> D Gzl

i€S(v1) jES(v2)

Proof. First T' € T is displayed in N. Then there exist edges of N that connect
the paths in a path decomposition to form 7' (otherwise T' cannot be displayed
in N). So suppose we trace these edges to locate the two subtrees rooted at
v; and ve. By Lemma 2, there are nodes v1(N) and vo(N) in N where the
two subtrees are displayed at, and are on some paths (denoted as P and P;
respectively). Here, j is a taxon and j € S(v2). When there are multiple such
nodes for displaying an identical subtree, we choose the one that is closest to
the root of N.

Now there is a node v(N) in the network where the subtree of T rooted at
v is displayed. Again by Lemma 2, v(NN) is on a path P; for some leaf ¢. This

implies either v1(N) or va(N) is on P; too. Without loss of generality, suppose
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v1(N) is on P;. Then there must exist an edge between the path to ¢ and P;
and ¢ € S(v1). This is because (i) there exists a path in NV from v(N) to va(N)
that is taken to display 7" in NV; (ii) this path can have only a single edge; if
not, then there exists at least a node vs not on P or P; (recall v2(N) is the one
closest to the root among all choices for vo(N)); (iii) let v3 be on a decomposed
path Py (which connects to a leaf k; but this violates the assumption that v; (V)
and v2(IV) display two subtrees of v. This implies C; ; = 1. We don’t know
which ¢ and j for the network N. Nonetheless, there exists some i € S(v1) and

j € S(v2) where C; ; = 1. O

Lemma 3 leads to the following lower bound TCLB;.

Proposition 1. Let C; ; be binary variables for 1 <i < j < n. Let TCLB; =
min(ZlSKan Ci;) —n+ 1 where C; ; satisfies the following constraint: for
any internal node v of a tree T € T with two children v and vy, the condition
stated in Lemma 3 is satisfied. Then TCLB1 is a lower bound on the tree-child

reticulation number.

As an example, consider the tree on the right in Figure 1. We have the
following constraints: Co 4 > 1,C13 > 1,012+ C1a+ Co3+ Cs4 > 1. When
there are multiple trees, we create such constraints for each tree. TCLB; takes

the minimum over all choices of C; ; that satisfy all the constraints.

While we don’t know how to efficiently compute TCLB., it is straightforward
to apply integer linear programming formulation (ILP) to compute TCLB;. Our
experience in using ILP modelling shows that TCLB; can usually be computed
efficiently (in practice) even for large data: for 100 binary trees with 100 taxa,

it usually takes less than one second even using a very basic ILP solver.
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2.2 TCLBj: a stronger lower bound

We now present techniques to strengthen it to obtain a stronger lower bound
called TCLB,. We start with a stronger version of Lemma 3. We need a special
kind of path decomposition, called “ordered path decomposition”, of a network
N. An ordered path decomposition is a path decomposition where its paths
can be arranged in a total order, and all reticulate and non-path tree edges
are oriented in one direction relative to this total order. Such ordered path
decomposition always exists. To see this, recall that NV is a digraph. Thus,
all components of N obtained by network decomposition can be arranged in
a total order. Then we can obtain a tree decomposition by decomposing each
component into paths. This leads to a tree decomposition where paths are
linearly ordered from left to right and all reticulate edges and all non-path tree

edges are oriented from left to right.

We now consider an ordered path decomposition. We let f(v) be the taxon
in S(v) that is ordered the first among all the taxa in S(v). That is, f(v) is the
taxon under node v that is ordered the first among all the taxa (leaves) under

.

Lemma 4. Let vy and vy be the two children of node v of some tree. Then,

Cron) flv) =1

Proof. Recall the proof of Lemma 3. When we trace the subtree rooted at v,
the root of this subtree must be located within the simple path for f(v;). This is
because the network is acyclic and the simple paths are ordered as in the specific
path decomposition. Recall that all reticulate and non-path edges are oriented
from left to right. So when we trace edges in a bottom up order (starting from

leaves), we must reach the node (i.e. f(v1)) that is ordered the first (i.e., the



142 LOWER BOUNDS ON THE TREE-CHILD RETICULATION NUMBER

leftmost). The situation for vy is similar. Thus, by the same reason as in Lemma

3, Pt(v,) and Py(,,) must be connected. O

Lemma 4 leads to a stronger lower bound TCLB,. This is because if C; ;
values satisfy the conditions in Lemma 4, they also satisfy the conditions in
Lemma 3.

Let O* be the total order of the n taxa in an ordered path decomposition.
We let B(O*) = >_, ; C; j, where C; ; = 1 if Lemma 4 specifies which two taxa i
and j must have C; ; = 1, when we consider all internal nodes of each tree in 7.
If ¢ and j are not forced by Lemma 4, C; ; = 0. That is, B(O*) is fully decided
if O* is given. By Lemma 4, B(O*) —n + 1 is a lower bound on TCR;,. One
technical difficulty is that we don’t know O* for N. Nonetheless, we can derive
a lower bound on TCR,;, by taking the minimum over all possible O. Thus,

we have the following observation.

Proposition 2. TCLBy 2 mino(B(O) — n + 1) is a lower bound on the

tree-child reticulation number.

Naively, to compute TCLBg, we have to consider all possible total orders of
the taxa. Enumerating all possible total orders of n taxa is infeasible even for
relatively small n value. To develop a practically computable bound, we again
apply ILP. We only provide a brief description of the ILP formulation.

We define binary variable A;; for all 1 < 4,5 < n where A; ; = 1 if taxon
1 is ordered earlier than taxon j. We need to enforce the ordering implied by
A; ; is valid. That is, if taxon ¢ is earlier than j and j is earlier than %, then i
is earlier than k. This can be enforced in ILP as: for all 1 < 4,7,k < n where

1,7,k are distinct:

Air+1>A;,;+A;% (1)
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We enforce the condition in Lemma 4 by considering each taxon i € S(v1)

and taxon j € S(vq):

S At D A <G+ IS +1S(v) -3
pES(v1),p#i q€S(v2),q#j

This constraint enforces that C; ; = 1 if ¢ (respectively j) is the first taxon
among S(v1) (respectively S(vz)). Under these constraints, we use ILP to
compute the TCLB; by minimizing >, ., ;<, Ci,;-

The number of variables in this ILP formulation is O(n?), while the the
number of constraints is O(n®) (n is the number of taxa). The number of
constraints (which is dominated by Equation 1) can be large when n increases.
Note that since ILP formulation computes a lower bound, even if we skip some
constraints in Equation 1, the ILP still computes a lower bound. Empirical
results appear to show that discarding some constraints often does not lead to

a much weaker lower bound.

3 Cherry bound: analytical lower bound in terms
of the number of distinct cherries in the given

trees

There is no known polynomial time algorithm for computing the lower bounds in
Section 2. A natural research question is developing good lower bounds that are
polynomial time computable. In the following, we describe an analytical lower
bound (called cherry bound) on tree-child reticulation number. Compared with
the ILP-computed bounds in Section 2, cherry bound is much easier to compute.
However, experience shows that cherry bound tends to be weaker than the

ILP-computed bounds. Cherry bound is expressed in terms of the number of
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distinct cherries in given trees 7. Here, a cherry is a two-leaf subtree in some
T € T. We let C be the number of distinct cherries in the given trees 7.

Consider a tree-child network N with r reticulate nodes that displays T,
where |T| > 2. Note that a reticulate node in N has two or more incoming
edges. We let ni be the total number of reticulate edges of N. That is, ng is
equal to the sum of in-degrees of each reticulate node. The reticulation number
R of N is equal to ng — 7.

Now suppose we collapse common cherries in 7. Here, a common cherry is
present in each of the trees in 7. We collapse such common cherry into a single
(new) taxon and repeat until there is no common cherry left. Note that this
step is identical to common subtree collapsing, which is a preprocessing step
commonly practiced in phylogenetic network construction. Collapsing identical
subtrees in given set of trees is a common practice for computing R, (see,
e.g., Huson et al. (2010); Zhang, et al (2023)). So in the following, we assume
there is no common cherry in 7.

Since cherry is a subtree of two leaves in T, each cherry needs to be displayed
in N by obtaining a tree T' (through making display choices for reticulate
edges) where T displays this cherry. One can view the process of obtaining

T is traversing certain nodes of N. We have the following observation.

Lemma 5. To obtain a cherry in T, we need to traverse either the tail or the
head of some reticulate edge in N. That is, displaying a cherry must depend on

the choices we make about which reticulate edges to keep for displaying a tree.

Proof. Suppose displaying a cherry in N can be achieved by following a path
that doesn’t contain either the head or the tail of some reticulate edge. Then
for any display choice (keep or discard) we make for reticulate edges, such path
leading to the cherry that is always present. So, this cherry is a common cherry

in 7, which contradicts our assumption of no common cherry. O
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By Lemma 5, each cherry in the given phylogenetic trees is related to the
display choices in V. It is obvious that a cherry displayed in a tree must also be
displayed in the network N. Therefore we consider the cherries displayed in the
network. Suppose we add reticulate edges one by one to the network. Adding
a reticulate edge can lead to new cherries to be displayed in the network. The
more distinct cherries there are, the more reticulation is needed. We now make
this more precise by establishing an upper bound on the number of distinct
cherries that can be displayed by adding a single reticulate edge, which is an
edge entering a reticulate node. Note that displaying a cherry can involve more
than one reticulate edge. Suppose there are R reticulations and so there are at

least 2R reticulate edges.

Lemma 6. Selecting a reticulate edge e, to display a tree in a network N can

add at most 2 distinct cherries.

Proof. Recall a cherry is a size-two subtree and is so displayed in the network
N. To display a cherry in N, there are a set of tree or reticulate edges of N
that connect the two taxa of the cherry when displaying choices are made. We
refer these edges as the cherry display of this cherry. We classify the cherries

into two cases based on the types of edges in a cherry display.

Type 1. The cherry display contains at least one reticulate edge. That

is, keeping a reticulate edge can only generate a type-1 cherry.

Type-2. The cherry display contains only tree edges. That is, a type-2
cherry is only related to discarding (but not keeping) some

reticulate edges.

We now argue that keeping a reticulate edge e, can only generate at most
one type-1 cherry and at most one type-2 cherry. To see this, we first consider

the case of keeping e,. We call a taxon a a tree-taxon under an ancestor node
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v if a can be reached from v by following a simple path with only tree edges,
i.e. a is a descendant of v in the tree component containing v. Due to the
property of tree-child network, at most one type-1 cherry can be obtained by
keeping e,: there must be only one tree-taxon a below the destination of e,
and one tree-taxon b below the other child of the source of e,, and keeping e,
can only create a single distinct cherry (a,b). Note that otherwise, no cherry
can be formed by keeping e,.. If e, is kept, we have to remove its twin reticulate
edges e, this may display another cherry in the tree component containing the

source node of e/, which is of type-2.

Therefore, we conclude that at most two distinct cherries can be associated

with a reticulate edge. O

By Lemma 5, each distinct cherry in 7T is associated with the display choices
of some reticulate edge. By Lemma 6, one reticulate edge can lead to at most
two distinct cherries. So 2np > C. Note that reticulation number R = ng —r
and ng > 2r (there are at least two reticulate edges per reticulate node). So,

R=mngr—1r> " So,

nR
R> -2 >
> 5z

=~ Q

Proposition 3. [Cherry bound two on reduced trees] Let C be the number of
distinct cherries in a set of trees T which have no common cherries. We let

TCLBg = % (called the cherry bound). Then TCRuyi, > TCLBy (i.e., TCLBg

is a lower bound).

Note that cherry bound is also valid when we restrict to binary tree-child

networks.
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3.1 Another cherry-based lower bound

We now present another efficiently computable lower bounds based the number
of distinct cherries.

Let N be a tree-child network displaying a set 7 of trees on n taxa. Let C
be the number of distinct cherries in the trees 7. Let N have r reticulations
and R denote the hybridization number of N. Then, the total in-degree of the
r reticulate nodes is R 4+ r. Then there are (n —r— 1)+ (R+7r)=n—1+ R
internal tree nodes.

Let ¢ and ¢5 be two leaves of a cherry Ch in a tree T € T. Then, (¢1,p) €
E(T) and (l2,p) € E(T) for some p € V(T). In the display of Ch in N, p is
mapped a tree node ¢(p), (¢1,p) and (¢2,p) mapped to two node-disjoint paths
P, and P,. There are two possibilities: (i) ¢; and ¢ belong to one tree-node
component and (ii) ¢; and ¢5 are two different tree-node components.

If ¢; and ¢5 belong to a tree-node component, ¢(p) is also in the same
tree-node component. In this case, there are no other leaves below ¢(p). Thus,
@(p) is uniquely determined by the two leaves.

If ¢; and ¢5 are in two different tree-node components, ¢(p) and ¢; are in the
same tree-node component, or ¢(p) and £ are in the same tree-node component.
Without loss of generality, we may assume the former holds. In this case, one
child of ¢(p) is the reticulate node on the top of the tree-node component P
containing ¢5. Furthermore, ¢5 is the only leaf in P. Therefore, ¢(p) is also
determined by the two leaves.

In summary, we have proved the following property.

Proposition 4. Let v be a tree node of N where a cherry in T is displayed at.
Then, there are at most two leaves below v in its tree-node component. If there
are only two leaves ¢1 and £y below v in the tree-node component containing v,

only the cherry consisting of £1 and {5 can be displayed at v. If there is only
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one leaf ¢ below v in its tree-node component, then at most one cherry can be
displayed at v under the condition that there is a unique leaf below the tree-node

component rooted at the reticulate child of v.

By the above proposition, distinct cherries are displayed at different tree
nodes in N, Therefore,

n—1+R>C.

or

R>C—-n+1.

Experiments show that while this bound is easily computable, it is often not

as strong as T'C' LBy especially when n is relatively large.

4 On upper bounds on tree-child reticulation
number

So far we have focused on lower bounds on tree-child reticulation number
TCRuin- A natural research question is developing sharp upper bounds on
TCRuin. Existing methods (e.g., Zhang, et al (2023)) can compute an upper
bound for a given set of trees. However, little theoretical results are known for
the computed bounds. In this section, we provide some theoretical results on
upper TCRyin-

We consider a set of K trees 7. We consider a pair of trees T1,T» € T.
We let the tree-child reticulation number of T and T5. It is known that for
two trees, tree-child reticulation number is equal to unconstrained reticulation
number (which is also called hybridization number in the literature) (Linz
and Semple, 2019). Hybridization number for two trees have been studied

actively in the literature (see, e.g., Bordewich et al. (2007); Wu and Wang
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A ® ® ©
Figure 3: Two trees T} (left), 7o (middle) on four taxa (left) and the tree-child
network (right), which displays the 77 and 75 simultaneously. In Ty (resp. T5),
the red (resp. blue) edges connect different paths of its decomposition. In each
of the five tree components (vertical paths) of the network, the first node is its
reticulate node; the unshaded vertices form the non-trivial paths appearing
in the decomposition of T;, while the shaded vertices form the non-trivial
paths appearing in the decomposition of T5. The red and blue reticulate edges

correspond with the edges connecting different paths in the decomposition of
Ty and T5, respectively.

(2010); Linz and Semple (2019), among others). There are algorithms that can
practically compute the hybridization number for two trees (see, for example,
Bordewich et al. (2007); Wu and Wang (2010) among others). So we assume
the hybridization number of T} and 75 is known. We now describe an upper
bound on TCR,;, that uses the pairwise hybridization number. First, we need
the following lemma, which is based on a result in Wu and Zhang (2022) (also

in Zhang, et al (2023)). The proof is based on a related proof in Wu and Zhang
(2022).

Lemma 7. [Wu and Zhang (2022)] For any two rooted binary phylogenetic
trees Ty and Ty (over the same n taxa), there exists a tree-child network N
that displays Ty and Ty with at most n — 2 reticulations. Moreover, for any
ordering of path components, there exists such an N with this ordering of the

path components in N.

Proof. Let T} and T, be two trees on n taxa from 1 to n. Without loss of
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generality, we order these n taxa as 1,2,...,n. We first decompose T; into

disjoints paths P (1 < k <n) for i = 1,2 as follows.

1. P;; is the path consisting of the ancestors of leaf 1, together with

the edges between them.

2. For k = 2,--- ,n, Py is the the direct path consisting of the

ancestors of leaf k that do not belong to UlelPij together with the

edges between them.

Let p;(k) be the parent of leaf k in T;. Note that P;; starts from the root of T; to
pi(1). For k > 2, Py, is empty if p;(k) is in U?;%Pij and non-empty otherwise.
For example, for 77 in Figure 3, P;; is a 2-node path; Pjs is empty; Pi3 is a
2-node path; and P4 and P;5 are both empty. We construct a tree-child network
N on 1-n with n — 1 reticulate nodes (i.e. n non-complex tree components) as
follows.

The first component Q1 of N is obtained by connecting P;1, P1 and leaf 1
by edges (Figure 3). For k > 1, the k-th component @}, is the concatenation of
a reticulate node ri, Py, Por and leaf k. Moreover, we connect the node that
corresponds with the parent of the first node of Py or p;(k) (if Py is empty)
to 7 using (red or blue) edges for ¢ = 1 and 2. In Figure 3, the red and blue
reticulate edges are added according to the path decomposition of 77 and T5,
respectively.

Since the edges not within a tree component are oriented from a node of
a tree component containing a leaf ¢ to the reticulate node of another tree
component containing a leaf j such that ¢ < j, the resulting network is acyclic.
It is easy to see that the network is also tree-child. Moreover, T} is obtained
from N if blue edges are removed and T5 if red edges are removed.

The number of reticulations in N is equal to the edges added in the algorithm

above to connect T5. Note that the first tree can be viewed as the “tree part”
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of N. Thus, the number of reticulations is n — 1. Since there is no other taxa
between taxa 1 and 2, we can only keep a single edge from 1 to 2 (i.e., merge

the two edges between 1 and 2 in Fig. 3). This leads to n — 2 reticulations. O
We now have the following upper bound on TCRp.

Theorem 5. For K phylogenetic trees T where there are two trees with d as

their pairwise hybridization number, then:

TCRuin < (K —2)(n—2) +d

Proof. We first observe that Lemma 7 can be naturally extended to K trees.
Intuitively, we can “stack” one tree after another using the constructive procedure
in Lemma 7. Here, we use the same order of paths for the path decomposition
of all trees in 7. This implies there is a tree-child network for the K trees in 7
with at most (K — 1)(n — 2) reticulations.

Let T7 and T3 be two trees in 7 whose hybridization number is d. By Linz
and Semple (2019), there exists a tree-child network N with d reticulations that
displays T7 and T>. We consider a topological order O of the path components
of N. Now we build N’ that displays all trees in 7 by “stacking” each T; into
N’ using the algorithm in Lemma 7. Here, we start with 77 and T as the first
two trees to add into N’. Also, all trees in T are decomposed into paths with
regarding to the order O. Therefore, we need d reticulations to “stack” T, on
top of T1. By Lemma 7, “stacking” each additional T; (3 < ¢ < K) needs at

most n — 2 reticulations. O

5 Results

We have implemented the lower bounds in the program PIRN, which is downloadable

from https://github.com/yufengwudcs/PIRN. To compute the TCLB; and
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Table 1: A list of parameters and their default values used in the simulation.

Description | Symbol | Simulated values (default: boldface)
Number of taxa n 10, 20, 50

Reticulation level r 1.0,3.0,5.0

Number of gene trees K 10,50

TCLBs bounds, PIRN uses GLPK, an open-source ILP solver by default. While
GLPK can practically compute TCLB; for most data we tested, it becomes
slow for computing TCLB;, for relatively large data. Our experience shows that
TCLB; can be practically computed using Gurobi, a more powerful ILP solver,
even the data becomes relatively large. However, Gurobi is not open-source. In
order to support Gurobi, PIRN outputs the ILP formulation in a file which can
be loaded into Gurobi so that TCLBy can be computed in an interactive way.
The results we presented below were computed using Gurobi in this interactive

approach.

5.1 Simulation data

To test the performance of lower bounds, we use the simulation data analyzed in
Zhang, et al (2023). The simulation data were generated using the approach first
developed in Wu (2010). Briefly, we first produced reticulate networks using a
simulation scheme similar to the well-known coalescent simulation backwards
in time. At each step, there are two possible events: (a) lineage merging
(which corresponds to speciation), and (b) lineage splitting (which corresponds
to reticulation). The relative frequency of these two events (denoted as r)
influences the level of reticulation in the simulated network: a larger r will lead
to more reticulation events in simulation. The following lists the simulation
parameters.

We used the average over ten replicate data for each simulation settings.
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The following three lower bounds (all developed in this paper) were evaluated:
1. TCLBy: the cherry bound
2. TCLB;: the practically computable bound by ILP.
3. TCLBs: slower to compute by ILP but usually more accurate bound.

In order to measure the accuracy of lower bounds, ideally we want to compare
with the exact tree-child reticulation number. However, these methods tend to
be slow for the data we tested. Therefore, we use the following two heuristic

upper bounds instead as a rough estimate on tree-child reticulation number.

1. ALTS. This method calculates a heuristic upper bound on tree-child reticulation

number.

2. PIRNs. Note: PIRNs outputs a unconstrained network. Since the output
network may not be optimal, its reticulation number can occasionally
be smaller than the computed lower bounds for tree-child reticulation

number. But this is rare.
We use the following statistics for benchmarking various methods.

1. Average value of the (lower/upper) bounds.

2. For each lower bound, the average percentage of differences between a

lower bound LB and the ALTS bound U B,: %.

3. Running time (in seconds).

Figure 4 shows the performance of the tree lower bounds, TCLBy, TCLB;
and TCLB; on relatively small data (ten gene trees over ten taxa). Our results
show that TCLBs clearly outperforms the other two lower bounds in terms of

accuracy. At lower reticulation level (r = 1), the gap between TCLB5 and ALTS
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Figure 4: Closeness of three lower bounds (TCLBgy, TCLB; and TCLB3) on
10 trees over 10 taxa under three reticulation levels r = 1,3,5. Two upper
bounds, ALTS and PIRNs, are used for comparison. Part 4(a) shows the average
lower/upper bound values. Part 4(b) shows the gap between each of the tree
lower bounds and the ALTS bound (divided by the ALTS bounds).

is only a little over 10%. At higher reticulation levels, the gap between TCLB,
and ALTS is larger but is still much smaller than the other two lower bounds.
Recall that ALTS is restricted to tree-child network while PIRNs works with

unconstrained networks.

We also examined the closeness of the lower bounds on larger data. We
simulated 50 gene trees with varying number of taxa: 10,20 and 50. Our results
(Figure 5) show that TCLB; still performs the best among the three lower

bounds in term of the accuracy.

Time to compute the bounds Figure 6 shows the running time to compute
the bounds. We vary the reticulation levels (which may lead to networks with
different number of reticulations), and also the number of taxa. Our results
show that computing TCLB; takes longer time than the other two bounds. All
lower bounds are faster to compute than the two upper bounds. ALTS is more
efficient than PIRNs, while the ALTS bounds tend to be larger than the PIRNs
bounds. PIRNs cannot be applied on large data (say n = 50). ALTS also

appears to be close to its practical range when n = 50: there is one instance
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Gap between lower bounds and ALTS

Average bound value (varying num of taxa) 0.9
35 08

30 07
0.6

2
0.5
20 0.4
15 0.3
10 0.2
5 I I 0.1
, M | | I 0

n=10

n=10 n=20 n=50 n=20 n=50

mTCLB0 mTCLB1 mTCLB2 =ALTS mPIRNs ETCLBO mTCLB1 TCLB2

(a) Average lower/upper bound values (b) Average gap between lower and
for larger data the ALTS bound (normalized by
ALTS)

Figure 5: Performance of three lower bounds (TCLBy, TCLB; and TCLB)
on larger data. Reticulation level: r = 3. 50 gene trees. Vary the number of
taxa (n): 10, 20 and 50. Two upper bounds, ALTS and PIRNs, are used for
comparison. PIRNs is too slow for n=>50, and no result is given for this setting.
Part 5(a) shows the average lower/upper bound values. Part 5(b) shows the
gap between each of the tree lower bounds and the ALTS bound (divided by
the ALTS bounds).

where ALTS failed to complete the computation by exhausting the memory in

a Linux machine with 64 G memory).

5.1.1 More on large data

TCLB( can be easily computed for large data because it is based on simple
properties of input trees and can be easily computed in polynomial time. While
we don’t have a polynomial time algorithm for computing TCLB1, our experience
shows that TCLB; can usually be easily computed even when only an open
source ILP solver such as GLPK is used. This can be seen from Figure 6.
TCLB; can be practically computed using a state-of-the-art ILP solver such
as Gurobi for moderately large data (e.g., 50 gene trees with 50 taxa). As an
example, on a dataset with 50 trees (each with 50 taxa), a lower bound of 16 is
computed within a few seconds using Gurobi. The TCLB; bound of 8 blue was
computed in a fraction of seconds even with an open source ILP solver. PIRNs

took 10 hours to compute a unconstrained network with 20 reticulations. ALTS
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Figure 6: Running time (in seconds) to compute three lower bounds (TCLB,
TCLB; and TCLB;). Two upper bounds, ALTS and PIRNs, are used for
comparison. Part 6(a) shows the average run time (in seconds) for on 10 trees
over 10 taxa under three reticulation levels r = 1,3,5. Part 6(b) shows the
average run time (in seconds) for varying numbers of taxa (n): 10, 20 and 50
(reticulation level fixed at r = 3 and 50 gene trees).

took over 10 minutes to find a tree-child network with 23 reticulations. While
the lower bound doesn’t match the best upper bound, the lower bound can
provide a range of the solution for large data. We note that Gurobi usually
computes TCLBy much faster than GLPK. Unless the data is small (say with
10 taxa or less), we recommend to use Gurobi.

To test its scalability, we simulated 50 gene trees with 100 taxa. TCLB;
can still be practically computed in less than one second even using GLPK.
TCLBs can be computed using Gurobi, but in a long time. As an example, it
took over 10 hours for obtaining TCLBs = 48 on a dataset with 50 simulated
tree over 100 taxa. In contrast, TCLB; = 37 and TCLBy = 15. Our experience
shows that for very large data, the difference between TCLB; and TCLB; is not
very large. Therefore, TCLB; can provide a quick estimate on the reticulation
number since it can be practically computed for large data, In fact, TCLB; is
perhaps the only practical method that can provide a reasonable strong estimate
on reticulation for large data. We are not aware of any other existing approaches

for estimating either a lower or upper bound that can be computed for the large
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simulated data we use here. Here, the large dataset mentioned here has 50 gene
trees, 100 taxa and is simulated using reticulation parameter r = 3.0 (which

can lead to a tree-child reticulation number of over 40).

5.2 Real biological data

To evaluate how well our bounds work for real biological data, we test our
methods on a grass dataset. The dataset was originally from the Grass Phylogeny
Working Group Grass Phylogeny Working Group (2001) and has been analyzed
by a number of papers on phylogenetic networks. There are some variations in
the exact form of data, depending on the preprocessing steps performed. The
grass data we analyze here have five trees over 14 taxa. Earlier analyses focus
on calculating the so-called subtree prune and regraft distances between pairs of
these trees Bordewich et al. (2007); Wu (2009); Wu and Wang (2010). The first
attempt for reconstructing phylogenetic network for all five trees is Wu (2010).
In Wu (2010), the (unconstrained) reticulation number of these fives tree are
known to be between 11 (lower bound) and 13 (upper bound). The upper bound
was improved to 12 by PIRNs (Mirzaei and Wu, 2016). Regarding to tree-child
reticulation number, ALTS found a tree-child network with 13 reticulations. No
non-trivial lower bounds for tree-child reticulation number for these five grass

trees are known before.

We compute the three lower bounds on the five grass trees. The cherry
bound TCLBy is 2, while the fast ILP bound TCLB; is 3. These two bounds
can be calculated very fast but obviously the bounds are not very precise. It
takes 75 seconds to compute TCLBy using Gurobi, which gives a lower bound of
11. This matches the lower bound in Wu (2010). Note that the lower bound in
Wu (2010) is based on pairwise distances between the five trees, and takes much

longer time to compute: when the number of tree increases, that bound becomes
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more difficult to compute. Although TCLB; just provides the same bound as
Wu (2010), it is close to the currently best upper bound (13). Our results
show that TCLBs can indeed produce good estimates on tree-child reticulation

number.

6 Conclusion

Our results show that the lower bounds (especially TCLBy and TCLBy) are
faster to compute than existing upper bounds (namely ALTS) on large data.
Our results show that there are trade-offs in accuracy and efficiency when
computing lower bounds. The TCLB, bound is the most accurate, but is also
the slowest to compute. The simple cherry bound is very easy to calculate but
usually is not very accurate. For large trees, the fast ILP-based TCLB; bound
may be a good choice to obtain quick estimate on tree-child reticulation number.
We note that upper bound heuristics such as ALTS can construct a plausible
phylogenetic network for the given gene trees, while lower bounds only provide
a range of the reticulation number. Still, our lower bounds can provide quick
estimate about the reticulation level of a set of phylogenetic trees for large data
which is beyond the current feasibility range of existing upper bound methods.

Regarding to upper bounds, Theorem 5 also gives an upper bound for
hybridization number of 7T, since a tree child network is a special case of
hybridization network. However, reticulation number (with or without the
tree-child condition) of three or more trees is still poorly understood. We are
not aware of stronger upper bound than the bound in Theorem 5 for three or
more trees.

The tree-child network model often allows faster computation. The lower
bounds on tree-child reticulation number are much faster to compute than lower

bounds (Wu, 2010) on the general reticulation number. There are a number
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of open questions about lower bounds for tree-child reticulation number. For
example, is there a polynomial time algorithm for computing the TCLB; bound?
Can one develop a new lower bound that has better (or similar) accuracy as

TCLB; and is faster to compute?
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