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ABSTRACT: Perovskite oxides are gaining significant attention for use in next-generation magnetic and ferroelectric devices due to
their exceptional charge transport properties and the opportunity to tune the charge, spin, lattice, and orbital degrees of freedom.
Interfaces between perovskite oxides, exemplified by La,_,Sr,CoO;_s/La,_,Sr,MnO;_5 (LSCO/LSMO) bilayers, exhibit
unconventional magnetic exchange switching behavior, offering a pathway for innovative designs in perovskite oxide-based devices.
However, the precise atomic-level stoichiometric compositions and chemophysical properties of these interfaces remain elusive,
hindering the establishment of surrogate design principles. We leverage first-principles simulations, evolutionary algorithms, and
neural network searches with on-the-fly uncertainty quantification to design deep learning model ensembles to investigate over
50,000 LSCO/LSMO bilayer structures as a function of oxygen deficiency (§) and strontium concentration (x). Structural analysis
of the low-energy interface structures reveals that preferential segregation of oxygen vacancies toward the interfacial La,,Sry3;CoO5_;
layers causes distortion of the CoO, polyhedra and the emergence of magnetically active Co* ions. At the same time, an increase in
the Sr concentration and a decrease in oxygen vacancies in the La,;Sro;MnO;_; layers tend to retain MnOg4 octahedra and promote
the formation of Mn*" ions. Electronic structure analysis reveals that the nonuniform distributions of Sr ions and oxygen vacancies
on both sides of the interface can alter the local magnetization at the interface, showing a transition from ferromagnetic (FM) to
local antiferromagnetic (AFM) or ferrimagnetic regions. Therefore, the exotic properties of La;_,Sr,CoO;_s/La;_,Sr,MnO;_; are
strongly coupled to the presence of hard/soft magnetic layers, as well as the FM to AFM transition at the interface, and can be tuned
by changing the Sr concentration and oxygen partial pressure during growth. These insights provide valuable guidance for the precise
design of perovskite oxide multilayers, enabling tailoring of their functional properties to meet specific requirements for various
device applications.
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Bl INTRODUCTION LaMnO;, SrCoO;/Lay,Sr;3;MnO;, CaRuO;/CaMnO;, and

Perovskite oxides with tunable charge and spin states are
promising materials for use in next-generation magnetic and
ferroelectric devices, such as neuromorphic devices, spin-
tronics, and magnetoelectric sensors.””” Interfaces between
such perovskite oxides offer an added degree of freedom to
tune interfacial charge transfer and magnetization switching
behavior.”* For example, in the past few years, there has been a
surge in interest in coupling two or more perovskite
oxides,” ™ "® such as Lag,Sry3C00;/Lay,Sry;MnOs,
Lag ¢7S1.33Mn0O;/SrRu0O;, SrRuO;/SrMnO;, LaNiO;/
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[Co/Pd,];/Co0O/[Co/Pd,]; to design exchange spring mag-
nets, which consists of a magnetically hard material (low

saturation magnetization) in contact with a magnetically soft

EEIAPPLIED,

Received: December 14, 2023
Revised:  April 18, 2024
Accepted: May 3, 2024

Published: May 23, 2024

https://doi.org/10.1021/acsami.3c18773
ACS Appl. Mater. Interfaces 2024, 16, 30166—30175


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hong+Sun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vincenzo+Lordi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yayoi+Takamura"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amit+Samanta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsami.3c18773&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c18773?ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c18773?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c18773?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c18773?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c18773?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c18773?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c18773?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c18773?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/aamick/16/23?ref=pdf
https://pubs.acs.org/toc/aamick/16/23?ref=pdf
https://pubs.acs.org/toc/aamick/16/23?ref=pdf
https://pubs.acs.org/toc/aamick/16/23?ref=pdf
www.acsami.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsami.3c18773?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.acsami.org?ref=pdf
https://www.acsami.org?ref=pdf

ACS Applied Materials & Interfaces

Research Article

www.acsami.org

LSCO/LSMO Database
DFT (Q
\-, —)
Evolutionary ;
Algorithm - SOAP descriptors

Automated Neural Network
Architecture Search

Model ensembles

@ vodel 1
@ vocel2 -
Final
— . Model 3 prediction|

L(x,y;6) = —logpe *
@ vodeln

Figure 1. Schematic illustration of the interface structure search of perovskite oxides using evolutionary algorithms, automated design of deep

learning models, and active learning with uncertainty quantification (UQ).

material (with high saturation magnetization) or a ferromag-
netic (FM) material in contact with an antiferromagnetic
(AFM) material.'*™"® Exchange interactions at interfaces
between such materials lead to coupling between magnetic
moments in the soft and hard materials and enhanced average
magnetization in comparison to the hard magnetic material,
thereby providing additional flexibility in designing magnets
with tunable properties. In addition, it has been suggested that
magnetic anisotropy can also be controlled by tailoring the
distribution of oxygen vacancies in the interfacial layers, with
potential applications in miniaturized high-switching speed
magnetic random-access memory."’

One such bilayer system that has attracted attention in
recent years is La,_,Sr,CoO;_s/La,_.Sr,MnO;_s5, which
consists of bulk-like hard FM La,_,Sr,CoO;_s layers and soft
FM La;_,Sr,CoO;_s layers (containing magnetically active
Co") in contact with the La,_,Sr,MnO,_; layers. Researchers
have leveraged advanced experimental techniques to measure
changes in magnetization, oxygen vacancy concentration, and
valence states of transition metal ions at interfaces in
Lay,Sry;Co0;_5/Lay,Sr;Mn0O;_s bilayer systems,””"** and
it has been argued that interfacial charge transfer leads to the
emergence of Co?* and Mn** ions (concluded by Kane et al.*
from luminescence yield detection of soft X-ray magnetic
spectroscopy measurements) on both sides of the interface,
and that magnetically active Co*" ions and oxygen vacancy
concentration determine interfacial magnetization. In addition,
Feng et al.” have shown that magnetocrystalline anisotropy and
the magnitude of exchange bias shift can be tuned by changing
the thickness of the Lay,Sry3;CoO;_s layers. However, in spite
of the increased interest in perovskite oxide heterostructures,
many questions remain unanswered: (a) Since AFM ordering
has been reported in other perovskites (e.g, LaMnO,,
CaMnO;) and also in Lay,Sry;C00;, is an AFM layer also
present in Lagy,Sry3C005_5/Lag,SrysMnO;_s? (b) Is it
possible to tune the Sr ions or oxygen vacancy concentration
and change the magnetic behavior of this bilayer system? (c) Is
there a correlation between the distribution of Sr ions and the
oxygen vacancies close to the interface? (d) How does charge
transfer occur between Co and Mn ions in samples with
thicker Lay,Sry3;Co0O;_s layers? Therefore, systematic atom-
istic analysis is needed to fully reveal the effect of the interface
structure on the physical, electronic, and magnetic properties.

Experimentally studying the effects of dopant and oxygen
vacancy concentrations on the interface structure, as well as
resolving the interface structure, usually requires using a
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combination of multiple techniques such as transmission
electron microscopy, polarized neutron reflectometry, and X-
ray absorption spectroscopy, which have limited availability
and are time-consuming and expensive, prohibiting exploration
of a large phase space of composition and structure. Similarly,
the greatest obstacle in using atomistic simulations is the
absence of eflicient ways to sample the enormous space of
possible interface structures and the distributions of dopants
and oxygen vacancies. First-principles simulations using density
functional theory (DFT) coupled with advanced structure
searching methods, such as random structure search and
evolutionary structure search,” ' have been extensively used
to study structural transitions and properties of interfa-
ces.”*7?%273 Gince DFT calculations for systems containing
lanthanides and transition metals are resource-intensive, using
these automated interface structure schemes with DFT to
explore interface structures at different compositions is
computationally challenging and often impractical. Therefore,
the lack of robust computational tools to predict probable
interface structures in these complex oxides suggests that many
interesting properties can be overlooked simply due to
restrictive simulation capabilities and over-simplified models.
Recently, neural network-based deep learning (DL) models
mapping structure to properties, e.g., total energy or structural
stability, have received increasing attention as they exhibit
remarkable flexibility and excellent scalability, and are
computationally more efficient compared to brute force DFT
calculations.**~** Therefore, by combining a structure search
scheme with DL methods, atomic structures of interfaces and
their energies (for a wide range of compositions) can be
determined efliciently, and this combined scheme can
remarkably accelerate the exploration of phase space and
allow for screening of materials with fewer computing
resources.”®*® However, most neural network models
proposed in the literature use a single neural network
architecture, and this lack of model optimization, especially
of neural network architecture, can induce systematic errors
and lead to overfitting or underfitting issues. To mitigate this
problem, we propose a framework (see Figure 1) that
combines an efficient, genetic algorithm-based interface
structure scheme with a state-of-the-art neural architecture
search method to design ML models by optimizing neural
network architectures and their hyperparameters over a wide
variety of neural network ensembles. By using this prescription,
we examined over 50,000 interface structures of
La,_,Sr,CoO;_s/La,_,Sr,MnO;_s bilayers across 25 distinct
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compositions, spanning oxygen vacancy concentrations, Vg
(Vo = 6 /3), between 0 and 16.7% and Sr concentrations, dg,
(dg, = x), between 20.8 and 62.5%. Our in-depth analyses of
the distribution of O and Sr ions, structural transformations at
and away from the interface, and variations in charge and spin
densities show that apart from the presence of soft and hard
magnetic layers of La, .Sr,CoO;_; small pockets of AFM
domains are formed at the interface. The size of this AFM
region can be controlled by changing the concentration of
oxygen vacancies. This transition from FM to AFM behavior in
the hard and soft magnetic layers close to the interface results
in an exchange bias shift in the La,_,Sr,CoO;_;/
La,_ Sr,MnO;_; bilayers. In addition, there is preferential
segregation of Sr ions on the La; ,Sr,MnO;_; side of the
interface, and the Mn*" ions in the layers close to the interface
are stabilized by the cooperative arrangement of Sr ions and
oxygen vacancies. On the other hand, there is a low
concentration of Sr ions and a high concentration of oxygen
vacancies on the La;_,Sr,CoO;_s side of the interface, which
distorts the CoOg octahedral building units and stabilizes the
magnetically active Co* ions. These insights provide valuable
guidance for the precise design of perovskite oxide multilayers,
enabling the tailoring of their functional properties to meet
specific requirements for various device applications.

B METHODS

First-Principles Simulation. All supercell models of the LSCO/
LSMO bilayers are constructed in two steps. (1) We begin with the
bulk structure (240 atoms) of perovskite LaCoQ; with R3¢ space-
group symmetry*’ obtained from the Materials Project™ as the
template model, replacing the Co atoms located in the lower half of
the LaCoOj structure with Mn atoms to create a LaCoO5/LaMnO,
bilayer. The choice of 240 atoms strikes a balance between model
accuracy and computational efficiency, given the resource-intensive
nature of DFT calculations. In addition, the selection of the 6-unit-cell
layer thickness for each component (LSCO and LSMO) is motivated
by simulation supercells adopted in various frior first-principles
simulation studies of perovskite materials.”***~*® (2) Subsequently,
we use a genetic algorithm (GA) (detailed in the Evolutionary
Structure Search Using Genetic Algorithm section) to iteratively
remove a fixed portion of oxygen atoms and replace a specific number
of La atoms with Sr atoms to generate a wide range of
La,_,Sr,CoO;3_s/La,_ Sr,MnO;_s structures with distinct oxygen
vacancy concentrations (Vo) and strontium concentrations (dg,).

We conducted DFT calculations using the Vienna Ab initio
Simulation Package (VASP).*"** To accurately account for the inner-
core and valence electrons, we employed the projector augmented
wave (PAW)* method with pseudopotentials treating the following
numbers of outer electrons as valence: 11 for La, 10 for Sr, 9 for Co, 7
for Mn, and 6 for O. To expand the wave functions, a plane-wave
energy cutoff of 450 eV was utilized. For the exchange-correlation
energy, we employed the Perdew—Burke—Ernzerhof (PBE)®°
generalized-gradient approximation (GGA) functional. During the
structure optimization within the genetic algorithm, DFT calculations
were performed with Gaussian smearing with a width of 0.10 eV and a
1 X 1 X 1 Monkhorst—Pack mesh for Brillouin zone integrations.
Structural optimizations were performed until the forces on all atoms
were below 0.05 eV/A. Subsequently, for the analysis of the interface
structure and electron and spin density distributions of the identified
low-energy structures, we conducted DFT calculations using a 3 X 2
X 1 Monkhorst—Pack mesh, and structural optimizations were
performed until the forces on all atoms were below 0.005 eV/A.

Evolutionary Structure Search Using Genetic Algorithm. A
genetic algorithm is often used as a global optimization method to
optimize hyperparameters in a space of high dimensionality. Here, we
employ an evolutionary algorithm to search for low-energy interface
structures by mimicking the natural selection process of mutation,

crossover, and selection.’””>* We select the distribution of the O and

Sr atoms as the two structural variables and use a genetic algorithm to
optimize their spatial distribution over several generations of
simulations. In the first generation, 20 structures are generated by
randomly removing a fixed portion of oxygen ions and replacing a
certain number of La>* ions with Sr** ions in a LaCoO;/LaMnO;
bilayer. These structures are optimized using first-principles
simulations, and their optimized DFT energies are ranked in the
ascending order. Then, 40% of the structures with lower energy and
10% of “lucky” structures by random selection are used to breed the
next-generation structures by applying the crossover operation, and
the offspring structures are generated by combining the structural
variables of oxygen and strontium ions from each pair of parent
structures. Specifically, in a child structure, the spatial distribution of
oxygen vacancies is inherited from the positions of oxygen vacancies
in parent A, while the distribution of strontium ions is obtained from
the positions of strontium ions in parent B. This approach ensures
that the offspring structures inherit the characteristics of both parents
and promotes the exploration of new structural features. The
mutation operation is applied to 40% of the total number of offspring
structures. In the mutation operation, the spatial distribution of the
oxygen vacancies and strontium ions in the selected child structures is
randomized. This introduces additional diversity into the population
and helps to prevent premature convergence to suboptimal solutions.
The hyperparameters, including the selection rate of low-energy
structures and the crossover, and mutation rates, were determined
based on multiple trials to achieve a balance between the exploration
of diverse offspring structures and exploiting the refinement of
existing low-energy structures in each generation. The process of
crossover, mutation, and selection is repeated for ~10 generations.
The interface structure search for a particular composition ceases
when the best fitness value (lowest energy) of each generation
remains unchanged for the final two or three iterations. Note that
such an evolutionary search with a stopping criterion of fewer than 10
generations is not guaranteed to find the interface structure with
global minimum energy. However, the structures generated during
evolutionary structure search can provide a valuable training data set
to guide deep learning models in the discovery of energetically
favorable structures.

Automated Design of DL Models with Uncertainty
Quantification. DL models are extensively used as predictive
methods for material discovery and design. The neural network
models proposed in the literature are typically designed with a
particular neural network architecture. The selection of hyper-
parameters usually involves an intensive intuition-based trial-and-
error process, which is time-consuming and can induce systematic
errors. Here, we employ an automated deep learning method by
optimizing the network architectures and hyperparameters over a
variety of neural network ensembles. We used DeepHyper,*® an open-
source AutoML package, that simultaneously performs joint neural
architecture and hyperparameter searches. The performance of the
neural network ensemble models is evaluated based on the
uncertainty quantification. Specifically, DeepHyper uses aging
evolution with Bayesian optimization (AgEBO),”* which combines
aging evolution (AgE), a parallel neural architecture search (NAS)*®
method, for searching over the neural network architecture space,*®
and asynchronous Bayesian optimization (BO) for tuning the training
hyperparameters. Instead of outputting a single predicted value and
optimizing the parameters with the mean squared error (MSE), which
is commonly adopted in regression models, we added a probabilistic
neural network layer that outputs the predicted mean uy(x) and
variance oy(x) of the observed data sampled from a Gaussian
distribution. The model parameters are then optimized to minimize
the negative log-likelihood loss, L, as expressed in eq 1, where y is the
target value (ie., free energy) and cst denotes a constant value.” The
variance of the mean prediction of each model in the ensemble & with
K-optimized models is calculated as the epistemic uncertainty o, (eq
2). The performance of the neural network ensemble is evaluated by
the combination of aleatoric uncertainty o, and epistemic uncertainty
0, expressed in eq 3.3
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The atomic SOAP descriptor’' is used to encode the local
microscopic atomic geometries using the local expansion of a
Gaussian-smeared atomic density with orthonormal functions based
on spherical harmonics and a radial basis function. We obtained
SOAP descriptors with a dimensionality of 7380 for each structure.
These descriptors were calculated using a radius cutoff of S A, a
maximum number of radial basis functions set to 8, and a maximum
degree of spherical harmonics set to 8. Then, we applied standard
scalar preprocessing to the atomic features and energy labels, which
subtracted the mean of features/labels and scaled them to a unit
variance between 0 and 1. To remove redundant information from the
generated SOAP features, we employed principal component analysis
(PCA), which is a well-known linear dimension reduction technique,
to drastically reduce the dimensions of the feature space. Our analysis
suggests that about 100 principal components are sufficient to encode
all of the necessary information (up to an explained variance ratio of
2.70 X 107%).

We adopted an active learning approach to train our DL model on
the fly. Specifically, we first performed automated DL with the existing
DFT simulation data set. It includes 520 Lag,Sry3;CoO;_s/
Lay,Srg3MnO;_5 configurations obtained from an evolutionary
structure search. These structures with oxygen vacancy concentrations
of 0, 4, 8, 12.5, and 16.7% are optimized by first-principles
simulations. An additional set of 239 training configurations are
randomly generated for the LSCO/LSMO system with a combination
of strontium doping concentrations of 37.5 and 50% and oxygen
vacancy concentrations of 0, 4, 8, 12.5, 16.7, and 20.8%. These 759
total configurations are randomly split into training and testing data
sets with a testing ratio of 33%. Then, we performed a joint neural
architecture and hyperparameter search using DeepHyper and
obtained an optimized DL ensemble with uncertainty quantification.
We used the trained model to predict the relaxed DFT free energy of
randomly generated 50,000 LSCO/LSMO interface structures, with
oxygen vacancy concentrations ranging from 0 to 16.7% and
strontium concentrations ranging from 20.8 to 62.5%.

We examine the aleatoric and epistemic uncertainties of the free
energy predicted for each composition. Six compositions with
(ds, Vo) pairs of (20.8%,12.5%), (20.8%,16.7%), (62.5%,12.5%),
(62.5%,12.5%), (20%.8,0%), and (20.8%,8%) showed large variance
in uncertainty quantification after the first iteration. We employed an
active learning framework to enhance model predictions and reduce
uncertainty variance. Specifically, we calculated the predicted mean
and uncertainty variance for the 30 low-energy structures for each of
the six compositions. In each iteration, we selected 20 structures with
uncertainty variances greater than 2 eV for DFT simulations, and the
structures and their DFT energy values were added to the training
database. After four rounds of iteratively selecting high-variance data,
performing DFT simulations, updating the database, and retraining
the model, the final model exhibited a median absolute error of 0.74
eV (approximately 3 meV per atom) and a root-mean-square error of
1.7 eV (around 7 meV per atom) when the energy labels of the testing
structures were compared to their predicted mean energy values from
the best model ensembles.

B RESULTS AND DISCUSSION

Since variations in oxygen vacancies (Vo) and Sr doping (dg,)
dictate changes in the structure, charge transfer, and magnetic
properties of the LSCO/LSMO bilayer system, we use our
trained DL models to explore the stability of over 50,000

interface structures corresponding to 25 distinct (Vo, d,) value
pairs for Vg, € [0, 16.7%] and dg, € [20.8, 62.5%], as shown in
Figure 2. The total energy of the most energetically favorable

_— 3\DLpredictionj
a O DFT validation |
4800 @ /\ GA+DFT |

Figure 2. Free energy map of the LSCO/LSMO bilayer system as a
function of oxygen vacancy concentrations (Vo) and strontium
concentrations (dg,).

interface structure identified for each (Vy, dg,) point in the
two-dimensional composition space predicted by our DL
models is marked by a blue sphere in Figure 2 (see SI Figure
S1 for atomic configurations of three representative compo-
sitions; a detailed comparison of total energies is presented in
Table S1). Due to the structural and chemical heterogeneities
in this system, we validated our model predictions using two
different schemes: (a) We compared the predicted lowest
energy with DFT simulations at 16 randomly selected (V¢ ds,)
points (out of the 25 points explored in this study), denoted by
square symbols. At each of the 16 (V,, dg,) points (marked
with a square in Figure 2), DFT validation calculations were
performed for the 30 most energetically favorable interface
structures obtained from the DL models to check for
variabilities between the model predictions and DFT. (b)
Additionally, we compared the predicted lowest energy
interface structures with the structures obtained from the
converged evolutionary structure search, marked by triangular
symbols. The agreement between DFT and evolutionary
structure search confirms that DL models can reliably explore
diverse sets of interface structures and predict their relative
stabilities, without requiring computationally expensive DFT
simulations. As shown in Table S2 in SI, the test set includes
LSCO/LSMO compositions with Vi, = 4%, dg, = 20.8% and
Vo = 8%, dg, = 62.5%, which are absent from the compositions
used in the training data sets. This demonstrates the generality
of the DL model for simulating unseen LSCO/LSMO
compositions.

A Lay,Sry;C00;_s/Lay,Sry;MnO;,_s bilayer with dg, = 30%
is one of the most extensively studied compositions by
experiments.”’”>’ We consider it as a model system to
investigate the spatial distribution of oxygen vacancies and
strontium ions with varying oxygen vacancies in the LSCO/
LSMO system. As illustrated in Figure 3a, our supercell model
consists of thin films of LSCO and LSMO stitched together to
form a bilayer system. In this interface model, significant
structural changes occur in the seven middle layers across the
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Figure 3. (a) Supercell model of the Lay;Sry3;Co05_s/Lay,Sry3MnO;_s bilayer containing two interfacial layers. The model is viewed along the
[100] direction (a-axis), and the [001] direction (c-axis) is perpendicular to the interface plane. The five elements are color-coded as follows: blue:
Co, magenta: Mn, green: La, orange: Sr, and red: O. Distribution of the number of oxygen vacancies (b) and strontium ions (c) in seven labeled
atomic layers (in (a)) along the c-axis. Different colors denote the different oxygen vacancy concentrations (Vo). Each bar represents the average
value for five energetically favorable structures of each composition, and error bars denote their standard deviations.

LSCO/LSMO interface along the c-axis, as indicated in Figure
3a. We illustrate the spatial distribution of oxygen vacancies
across the seven layers in LSCO/LSMO with Vo = 16.7%
(Figure 3b) and Vi = 12.5% (Figure S2). Note that only the
distribution of oxygen vacancies in compositions with high
oxygen vacancy concentrations is presented, as the distribution
of oxygen vacancies is not readily apparent in structures with
small Vi (e.g, 4, 8%) due to the size limitations of the
simulation model. From Figure 3b, we observe that the spatial
distribution of oxygen vacancies across the LSCO/LSMO
interface is heterogeneous with a higher concentration of
oxygen vacancies on the LSCO side than in the LSMO layers.
This preferential segregation of oxygen vacancies in the LSCO
layer over the LSMO layer suggests greater tunability of
oxygen vacancies and stoichiometry in LSCO. This closely
aligns with experimental observations,">™"® which reported
that the oxygen vacancies in the LSCO layer could be largely
tuned by ionic-liquid gating, while the stoichiometry of the
LSMO layer remained unchanged. This differential modulation
of the oxygen vacancy concentrations across the interface
provides insights into the distinct susceptibilities of the LSCO
and LSMO layers to ionic gating and highlights the potential
for tailoring the properties of these complex oxide hetero-
structures through controlled oxygen vacancy engineering. The
distribution plot of strontium ions across the seven layers in
Figure 3c reveals that more strontium ions reside in the LSMO
layers, especially in the region close to the interface. We
acknowledge the presence of noticeable uncertainty (i.e., large
deviations) due to structural disparities among energetically
favorable structures. Due to the small supercells accessible in
the DFT calculations, there are only a few O or Sr ions in each
layer parallel to the interface. Therefore, these large errors are
induced by minor deviations in the atomic densities of planes
parallel to the interface, due to fluctuations in the number of O
or Sr ions in a layer among the low-energy structures
(identified from the genetic algorithm or DL-aided structure
search). To address this deviation issue, we validated the
statistical significance of the distribution results in Figure 3b,c
by performing standard statistical tests. Specifically, we
conducted (i) analysis of variance (ANOVA)>"** and (ii) t-
tests,”” as shown in SI Table S3. Both tests yielded the same

results, indicating that the differences in the distribution of Sr
ions and O vacancies between the LSCO and LSMO sides
presented in Figure 3b,c are statistically significant and unlikely
to have occurred by chance.

In the LSCO/LSMO bilayer with V5 = 0%, each Co and Mn
ion is surrounded by six oxygen ions, forming CoO4 and MnOgy
octahedra. The presence of oxygen vacancies leads to the
transformation of CoOg4 and MnQy octahedra into distorted
CoO, and MnO, polyhedra with a reduced number of
surrounding O atoms. In the Lay,;Sr;;Co0;_ s/
Lay,Sry3MnO;_s model, the higher concentration of oxygen
vacancies in the LSCO layers may result in more significant
structural distortion and rotation in the CoO, octahedral
polyhedra compared to the MnO, octahedra in the LSMO
layers (a detailed examination of the structural changes in the
Co/MnO, polyhedra is presented in the following paragraphs).
Since Co and Mn ijons have multiple valence and magnet-
ization states,’ this heterogeneous distribution of oxygen
vacancies and the accompanying structural distortion of Co/
MnO, polyhedra also affect the valence charge of the transition
metal (TM) ions.

To further understand the multivalency of Co and Mn in
these bilayers, we rely on the theory of magnetisméz’63
proposed by Goodenough and Zener, which states that
double-exchange interactions may arise between TM ions
with different valence states through electron hopping between
the outermost orbitals of the TM ions (e,* orbital) and oxygen
ions (2p orbital). Specifically, in the LSCO layer, Co* and
Co’" ions with low saturation magnetization coexist and their
double-exchange interactions result in hard ferromagnetic
coupling.””** On the other hand, LSMO layers present a soft
ferromagnetic coupling dominated by the exchange interaction
between Mn** and Mn*" ions with higher saturation
magnetization.”””* Due to the electrostatic interactions and
strong hybridization of the 3d states of Co and Mn ions with
the nearest 2p orbitals of the O ions, the valence states of Co
and Mn ions in the LSCO/LSMO layers are directly related to
the concentration of oxygen vacancies. As shown in Figure 3b,
the preferential segregation of oxygen vacancies into layer $
within the LSCO layers can contribute to the deoxidation of
Co ions from Co*" and Co®* to Co*" around the interface.
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Figure 4. (a) Atomic configurations of the LSCO/LSMO supercell with dg, = 30% and V, = 16.7%. (b) Comparison of CoO4 and MnOj, octahedra
counts. Error bars denote standard deviations. (c) Distribution of standard deviation of Co—O and Mn—O bond lengths in their octahedral units.
(d) Spin density isosurfaces of the LSCO/LSMO model with Vi, = 8% (left) and V,, = 16.7% (right). Yellow and blue isosurfaces correspond to the

spin-up and spin-down densities, respectively. The isosurface value of the spin-charge is 0.001 e/A%.

Meanwhile, the increase of strontium ions in the LSMO layers
near the interface in Figure 3¢ can promote the formation of
Mn*" ions, as the oxidation of Mn** to Mn*" can compensate
for the reduced positive valence caused by the substitution of
Sr** ions for La** ions. We note that these observations, i.e.,
the change in the valence states of Co ions and the increase in
the number of Mn*" ions at the interface agree well with the
recent experimental observations.” This phenomenon may give
rise to potential charge transfer between Co®* and Mn*" ions at
the interface, consequently leading to modifications in the
interfacial magnetic interactions.

Next, we analyze the relationship between the structural
changes in the Co—O and Mn—O polyhedra and the local spin
density distribution. In the LSCO/LSMO supercell with dg, =
30%, with an increase in the oxygen vacancy concentration, the
number of CoO4 and MnQg octahedra decreases, and their
structures are distorted in different ways. Here, we take the
supercell of LSCO/LSMO with V5 = 16.7% as a model system
to study the structural changes of CoO, and MnO,, polyhedra
due to the presence of oxygen vacancies and the atomic
structure at the interface. In Figure 4a, we show the spatial
distribution of CoO, polyhedra (blue) and MnO, polyhedra

(magenta) in the La,,;Sry3C00,s/Lay,Sre3MnO, s supercell.
Generally, more structural deformations of the octahedral unit
are observed in LSCO layers than in LSMO layers. The
accumulation of oxygen vacancies in the LSCO layers near the
interface disrupts the connections between the neighboring
CoOy4 octahedra. The resulting disconnection between
neighboring CoOy octahedra causes displacement and rotation
of the CoO, polyhedra, and one such instance is shown in
Figure 4a.

In contrast to the substantial structural distortion of the
CoO, polyhedra in LSCO layers, the MnO,, polyhedra remain
relatively stable and undergo minor positional and rotational
adjustments within the LSMO layers. The degree of structural
distortion of the CoO, and MnO, polyhedra can be
quantitatively assessed by calculating the number of existing
CoOg¢ and MnOyg octahedra, respectively, and by analyzing the
bond length distributions of these octahedra. In Figure 4b, we
plot the number of CoOg4 (blue bar) and MnOg (red bar)
octahedra averaged over five energetically favorable LSCO/
LSMO structures with ds, = 30% and V = 16.7%. The average
number of MnOy octahedra is ~40% higher than that of CoOy
octahedra, which is consistent with the observation of
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Figure 5. PDOS plots of 3d orbitals of all Co and Mn atoms and 2p orbitals of O atoms in LSCO/LSMO layers with 30% dg,, 0% V, (a) and 30%
dg,16.7% Vo (b). The Fermi energy is shifted to zero. Positive values represent the spin-up PDOS, while negative values denote the spin-down
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preferential segregation of oxygen vacancies in the interfacial
LSCO layers. The standard deviation of the bond lengths of
the MnOg and CoOg octahedra shown in Figure 4c reveals that
the bonding states of the MnOg polyhedra show larger
deviations than those of the CoOg polyhedra. While MnO,,
polyhedra undergo minor positional and rotational distortions
due to the smaller concentration of oxygen vacancies, the wider
range of bond lengths in the MnO, polyhedra suggests the
coexistence of distinct Mn—O bonding states within the
LSMO layers. This coexistence leads to either the contraction
or elongation of the bonds in one of the three 4-fold
symmetrical axes of the MnOg4 octahedra. This phenomenon is
also referred to as Jahn—Teller distortion.**

To assess the impact of structural distortions on the
magnetic characteristics of LSCO/LSMO bilayers, we perform
DFT simulations with spin polarization and analyze the spin
density isosurfaces of LSCO/LSMO bilayers. As shown in
Figure 4d, the spin-up magnetization density (yellow)
dominates the supercell, signifying a general ferromagnetic
(FM) coupling. On the other hand, the appearance of small
spin-down density pockets (blue) at the interface between the
LSCO/LSMO layers with 8% V, suggests the formation of
localized AFM regions. As the concentration of oxygen
vacancies increases to 16.7%, these AFM domains also begin
to emerge within the LSCO layers. Previous studies on
La,_,Sr,CoO;_s systems have also revealed a similar
phenomenon, where a local AFM state was reported in FM
LSCO materials and their formation was attributed to the
oxygen vacancies around the Co atoms.”® Tt is interesting to
note that the local AFM states at the interfacial layers are
absent in the LSCO/LSMO layers with 0% V,, (see Figure S3
in SI), which evinces the influence of oxygen vacancies in
altering the local magnetization of the LSCO/LSMO bilayers.
We note that there are marginal differences in the distributions
of the magnetic moments of Co and Mn ions (Figure S4 in the
SI) in the supercell. This can be a consequence of the small
cross-section of supercells accessible in DFT simulations or a
manifestation of the magnetic anisotropy and noncollinear
magnetism of Mn ions. Therefore, local AFM regions
(discussed above) may also manifest as local ferrimagnetic
regions.

To further understand changes in the valence states and spin
polarization of the Co—O and Mn—O polyhedra with different
oxygen vacancy concentrations, we analyzed the spin-polarized
electron density of states of two representative LSCO/LSMO
compositions. According to ligand field theory,”>” in typical
perovskite oxides, the interaction between TM ions and
oxygen ligands mainly involves o-bonding states, which result
from the hybridization of the ¢, level of the TM’s d-orbitals
with the 2p orbitals of oxygen ions. In addition, close to the
Fermi level, the 3d orbitals of the TM ions become degenerate
and form a t, triplet (d,,, d,,, and d,,) that contributes to both
nonbonding and antibonding states. An ¢,* doublet orbital
involving d,, and d,,_,, orbitals contributes to the antibonding
interactions.’>®’

Figure S shows the projected spin density of states (PDOS)
of the 3d orbitals of Co and Mn, as well as the 2p orbitals of O
ions, for the Lay;Sry;3C005/Lay,Sry;MnO; layers with 0%
oxygen vacancy concentration and Lay,Sr;;Co0, s/
Lay;Srg3sMnO, s with 16.7% oxygen vacancy concentration
(see SI Figures S4 and SS for the PDOS at other
compositions). The solid curves represent the average PDOS
values of all respective atoms, while the shaded regions denote
their standard deviations. As shown in Figure Sab, the
significant overlap between the TM 3d and O 2p orbitals at
energy levels below —4 eV (relative to the Fermi energy)
points to a strong d—p hybridization for o-bonding.

Compared to the PDOS of the pristine LSCO/LSMO
system (Figure Sa), the highly oxygen-deficient LSCO/LSMO
layers (Figure Sb) exhibit a broadening of the spin-up PDOS
of the Co 3d orbitals within the energy range of —2 to 0 eV.
Concurrently, the spin-down PDOS of the Mn 3d orbitals is
broadened above the Fermi level. These broadenings signify
the dispersal of the electron density around the Fermi level,
indicating the emergence of mixed valence states for Co and
Mn ions associated with an increase in the oxygen vacancy
concentration. In the Co® state, the 3d orbitals are partially
filled, with an electronic configuration of 3d°. When Co** is
reduced to Co’*, an additional electron is incorporated into the
3d orbitals, resulting in an electronic configuration of 3d’. This
extra electron occupies the higher energy levels of the 3d
orbitals, leading to the observed broadening and shift in the
peaks corresponding to the ,, orbitals of the PDOS of the Co
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ions toward the Fermi level. Moreover, the observed
delocalization of the electron density may favor the occurrence
of a double-exchange interaction across Co—O—Mn ions at the
interface. Furthermore, according to ligand field theory,és’67
the additional splitting of the e, and t,, orbitals is associated
with structural distortions within the Mn and Co octahedra.
This distortion leads to heterogeneous changes in the Co—O/
Mn—O bond lengths, as illustrated in Figure 4. In summary,
electronic analysis provides further confirmation of the mixed
oxidation states of Co/Mn atoms, the delocalization of 3d
electrons, and the structural distortion of the TM-O polyhedra
in the LSCO/LSMO bilayer system. Atomistic understanding
provides valuable insights into the structural and compositional
design strategies required to produce perovskite oxide
multilayers with tunable functional properties.

B CONCLUSIONS

We leveraged a novel framework that combines the automated
design of deep learning models via neural architecture search
with genetic algorithm-aided interface structure search to
discover stable structures of La,_,Sr,CoO;_s/La,_ Sr,MnO;_s
(LSCO/LSMO) bilayer interfaces across a wide range of
compositions. Using our methodology, we successfully
screened over 50,000 different interface structures for 25
compositions of LSCO/LSMO bilayers, which is not feasible
via direct DFT simulations even with state-of-the-art computa-
tional resources. This method allows us to analyze the
properties of the interfaces in LSCO/LSMO bilayers with
unprecedented levels of sophistication and, therefore, opens
new avenues to efficiently screen multicomponent materials
with tunable properties for functional applications.

Structural analysis of the low-energy structures reveals
nonuniform distributions of Sr ions and O vacancies that
lead to different structural distortions across the interface:
preferential segregation of oxygen vacancies toward interfacial
La,;Sry3Co00;5_s layers causes rotational and displacive
distortion of the CoO, polyhedra and the emergence of
magnetically active Co>* ions. At the same time, an increase in
strontium concentrations and a decrease in oxygen vacancies in
the Lay,Sry;MnO;_s layers tend to retain MnOg octahedra and
promote the formation of Mn** ions. In addition, the
cooperative arrangement of strontium and oxygen vacancies
leaves most MnQOg octahedra undistorted. Electronic structure
calculations reveal the delocalization of the 3d electrons of TM
ions and confirms the mixed oxidation states of the Co and Mn
atoms. Magnetization density calculations of the
Lay;Sry3C00;_s/Lay;Sro3;MnO;_s compositions reveal that
the presence of oxygen vacancies may alter the local
magnetization at the interface, showing a transition from FM
to local AFM or ferrimagnetic regions. This magnetic
transition is a direct consequence of the segregation behavior
as well as the cooperative arrangement of strontium ions and
oxygen vacancies. Therefore, the exotic properties of
La, ,Sr,CoO;_s/La;_,Sr,MnO;_s are strongly coupled to the
presence of hard/soft magnetic layers as well as the FM to
AFM transition at the interface.

There is a depletion of oxygen vacancies on the LSMO side
of the interface, and excess oxygen vacancies are present on the
LSCO side of the interface; the thickness of the soft LSCO
layers can be modulated by selectively tuning the oxygen
partial pressure during growth. Since oxygen vacancies
significantly distort the LSCO layers close to the interface,
the concentration of magnetically active Co** ions, and hence

the interfacial magnetization, can also be tuned by changing
the oxygen partial pressure. Similarly, by tuning the overall Sr
concentration, the amount of excess Sr ions on the LSMO side
of the interface can also be varied. Consequently, both Sr and
oxygen vacancies affect the width of the local AFM or
ferrimagnetic region. These mechanistic details suggest
structural and compositional design strategies to promote
new avenues for perovskite oxide devices with tunable
functional properties. Additionally, the automated design of
the DL framework proposed in this work can be generally used
to explore chemical structures and stability, especially for
intricate multiphase models.
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