
In Search of the Dream Team:
Temporally Constrained Multi-Armed Bandits for

Identifying Effective Team Structures
Sharon Zhou, Melissa Valentine, Michael S. Bernstein

Stanford University
sharonz@cs.stanford.edu, mav@stanford.edu, msb@cs.stanford.edu

Figure 1. Each team succeeds under different roles, norms, and interaction patterns: there are no universally ideal team structures. The DreamTeam
system exposes teams to a series of different team structures over time to identify effective structures for each team, based on feedback. We introduce
multi-armed bandits with temporal constraints to guide this exploration without overwhelming teams in a deluge of simultaneous changes.

ABSTRACT
Team structures—roles, norms, and interaction patterns—
define how teams work. HCI researchers have theorized ideal
team structures and built systems nudging teams towards them,
such as those increasing turn-taking, deliberation, and knowl-
edge distribution. However, organizational behavior research
argues against the existence of universally ideal structures.
Teams are diverse and excel under different structures: while
one team might flourish under hierarchical leadership and a
critical culture, another will flounder. In this paper, we present
DreamTeam: a system that explores a large space of possible
team structures to identify effective structures for each team
based on observable feedback. To avoid overwhelming teams
with too many changes, DreamTeam introduces multi-armed
bandits with temporal constraints: an algorithm that manages
the timing of exploration–exploitation trade-offs across multi-
ple bandits simultaneously. A field experiment demonstrated
that DreamTeam teams outperformed self-managing teams
by 38%, manager-led teams by 46%, and teams with uncon-
strained bandits by 41%. This research advances computation
as a powerful partner in establishing effective teamwork.
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INTRODUCTION
Human-computer interaction research has featured a long line
of systems that influence teams’ roles, norms, and interac-
tion patterns. Roles, norms, and interaction patterns—known
collectively as team structures—define how a team works to-
gether [32]. For many years, HCI researchers have theorized
ideal team structures [1, 45] and built systems that nudge
teams toward those structures, such as by increasing shared
awareness [18, 20], adding channels of communication [65,
64, 70], and convening effective collaborators [38, 50]. The
result is a literature that empowers ideal team structures.

However, organizational behavior research denies the exis-
tence of universally ideal team structures [53, 3, 4, 26]. Struc-
tural contingency theory [17] has demonstrated that the best
team structures depend on the task, the members, and other
factors. This begs the question: when should a team favor
one team structure over another? Should the team have cen-
tralized or decentralized hierarchy? Should it enforce equal
participation from each member? Should members offer each
other more encouraging or critical feedback? The wrong de-
cisions can doom a team to dysfunction [32, 53, 3, 4]. Even
highly-paid experts—managers—struggle to pick effective
team structures [15]. They are hardly to blame, as the set
of possibilities is vast [29], with lengthy volumes, dedicated
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handbooks, and multi-page diagrams created to tame even just
one dimension of this unwieldy space [39].

In this paper, we introduce DreamTeam, a system that identi-
fies effective team structures for each team by adapting teams
to different structures and evaluating each fit. DreamTeam
explores over time, experimenting with values along many
dimensions of team structures such as hierarchy, interaction
patterns, and norms. The system utilizes feedback, such as
team performance or satisfaction, to iteratively identify the
team structures that best fit each team.

Unfortunately, the state-of-the-art technical approach for this
exploration results in so much simultaneous change that teams
become quickly overwhelmed. Multi-armed bandits (hereafter,
bandits) are a common approach for efficiently exploring dif-
ferent options, called arms, and exploiting the best arms over
time. A network of bandits allows multiple bandits to each
represent a different independent dimension (e.g., hierarchy,
interaction patterns, norms for providing feedback), for which
each bandit will find an optimal strategy [23, 13, 12]. The
challenge is that each bandit independently explores different
values of its dimension, exposing teams to changes across
several dimensions at once. While theoretically optimal, this
amount of change overwhelms teams, as they are not always
ready to adapt rapidly [44, 41] or are only prepared to change
certain dimensions at specific times [41]. DreamTeam re-
quires an approach that manages a network of bandits so that
both its overall change rate and dimensional change rate are
sufficiently low for teams to adapt.

The core technical contribution of this paper is an algorithm for
multi-armed bandits with temporal constraints. This algorithm
models (A) along which dimensions and (B) how quickly a
network of bandits can explore. The algorithm redistributes
the probabilities of reward estimated with Thompson sam-
pling [2] so that (A) the expected change within each dimen-
sion (e.g. from centralized to decentralized hierarchy) respects
a constraint on when that dimension can change, and (B) the
expected total number of changes respects a constraint on how
many dimensions can change simultaneously. By renormaliz-
ing the probabilities from Thompson sampling, bandits with
temporal constraints control the expected number of changes
at each time step dimensionally and globally.

We evaluated DreamTeam by convening teams to complete
intellective tasks—a series of complex collaborative puzzles—
across several hours. We randomized teams into five condi-
tions: teams that chose their structures each round without
instruction, collectively with instructions, with a manager,
with unconstrained bandits, or with DreamTeam (bandits un-
der temporal constraints). Across ten rounds, we collected
teams’ scores as a measure of performance. DreamTeam teams
significantly outperformed all other conditions, by 38%–46%
on average per round.

This paper contributes: (1) the concept of computationally-
empowered identification of effective team structures; (2) a
system manifesting this concept; (3) a network of bandits with
temporal constraints, which regulates exploration timing; and

(4) an evaluation demonstrating improvements on a complex
intellective task.

RELATED WORK
This paper draws together HCI research with organizational
behavior and multi-armed bandit literature.

Human-computer interaction and groups
Computation can convene on-demand, computationally-aided
groups to achieve crisis mapping [40], interface prototyp-
ing [47], research [74, 62], writing [34, 7], sensemaking [30],
and design [14, 55, 72]. These works manipulate the group’s
collaboration structures. Their strategies vary widely, in-
cluding agile methodology [74], workflows [47], summariza-
tion [73, 36], and external idea influence [55, 72]. DreamTeam
builds on them by acknowledging that each such structure is
appropriate for some groups and goals but not others, lending
an adaptive layer to these contributions.

Foundational research in HCI and CSCW demonstrated that
technological mediation affects teamwork. Remote teams
underperform in-person teams [45], communicate less flu-
idly [56], and struggle with conflict as size grows [35]. To
counter these effects, researchers introduced systems to am-
plify the unique benefits of computer-mediated teamwork [31],
such as improving group awareness [18, 20, 28] or design-
ing alternative communication channels [65, 64]. This work
has generally advocated particular team structures as ideal,
e.g., that more transparency and more awareness is desirable.
DreamTeam recognizes that the appropriate team structures
vary by team and task, and proposes an approach that allows
each team to find the right structures for the job.

Convening appropriate collaborators is a structure of partic-
ular importance. Team dating [38] exposes participants to
each other before deciding who to work with. Like with
DreamTeam, participants’ post-dating selections depend on
specific factors of the people and task. Other approaches match
team members based on prior familiarity [50]. Automated ap-
proaches, however, prompt criticism and dispute over how and
why the system has grouped certain people [33]. DreamTeam
focuses instead on what happens after the team is convened:
how do members identify effective collaboration structures?

Organizational behavior: structural contingency theory
An early aim of organizational research was to understand
why organizations are structured in particular ways [57, 27,
60], and researchers quickly found that different organiza-
tional structures were more or less effective under different
conditions. For example, formalized vertical structures are
efficient in fairly stable environments, but fail in tumultuous
environments, where organizations with more organic, emer-
gent structures are better able to adapt [37]. Organizational
structures are contingent on many factors including size, scale,
technology, geography, national or cultural differences, scope,
individual predispositions, resource dependency, and organiza-
tional life cycles [25, 54]. This perspective is often referred to
as structural contingency theory [37, 11]. The intuition behind
structural contingency theory extends to team-level analysis as
well. For example, structures promoting autonomy are useful
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when teams’ process interdependence is low [58], and struc-
tures that align with team members’ values are most likely to
be effective [67]. Team structures include roles, specialization,
and hierarchy [10, 32, 68]. They are contingent on team size,
task complexity, national or cultural differences, member pref-
erences, and many other factors [66, 59, 51]. They matter for
team performance because they influence information sharing,
recognition of expertise and responsibilities, effectiveness of
decision-making processes, and levels of conflict [10, 46, 9].

DreamTeam is designed around the recognition that team struc-
tures are malleable. Intervening once is neither sufficient nor
the limit [53]: teams respond better to interventions during a
task than before they assemble and begin [22]. Adapting team
structures can improve team performance [41], but the timing
of these changes is critical. Different structures are malleable
at different times [41, 53]: some (a) when the team first forms
its identity, in the first half of the task; others (b) when the
team focuses on performance, under the deadline in the second
half; and still others (c) when the team is working through
interpersonal dynamics throughout the entire duration. Teams
are vulnerable when they develop maladaptive processes dur-
ing these phases, and lock themselves into poor strategies [32,
49, 5]. DreamTeam draws on this literature to determine when
the system allows a given dimension to change.

Multi-armed bandits
Multi-armed bandit algorithms are used to explore a wide array
of options and identify the best one, comparable to A/B testing.
Algorithms for multiple simultaneous bandits—known as a
network of bandits—examine the strategy that each bandit pro-
duces or the differences between independent groups, such as
treatments for patient subpopulations [23]. A network of ban-
dits may be used to find a globally optimal configuration for
the network, in which the bandits are able to share information
about their response and contexts, but are otherwise indepen-
dent of each other [13, 12]. Following these approaches, we
model each structural dimension as a bandit, constructing a
network of bandits that operate cohesively together. We in-
troduce temporal constraints to identify the best arm for each
bandit (dimension), under a global strategy.

The multi-armed bandit literature examines constrained explo-
ration with risk-averse bandits and budgeted bandits, as well as
dynamic bandits for adaptive environments. These constraints
so far are not temporal, but include identifying the least risky
arm to select using the mean-variance metric [52, 24, 63], or
an overall budget to expend over fixed or stochastic costs on
the arms [71]. While dynamic bandits adapt to varying reward
distributions over time [8], they do not constrain exploration.
Our work is the first to add global constraints across a network
of bandits, required by the realities of human teamwork. We
contribute a renormalization technique to reweigh sampled
values from the posterior distribution of Thompson sampling
to enforce these constraints.

DREAMTEAM
DreamTeam aids teams in identifying the structures that are
most effective for them by experimenting with different struc-
tures over time on multi-armed bandits. DreamTeam takes in a

DIMENSION

Hierarchy
Early constraint

Norms of
Engagement
Late constraint

Decision-making
Norms
Late constraint

Interaction
patterns
Ongoing constraint

Feedback Norms
Ongoing constraint

None: no structure enforced, teams can do anything
Centralized: elect a leader
Decentralized: majority-led vote to determine responses

None: no structure enforced, teams can do anything
Professional: use professional language with each other
Informal: get to know your teammates and add fun to the task

None: no structure enforced, teams can do anything
Divergent: think of diverse ideas
Convergent: generate consensus and use compromise
Informed: make informed and thoughtful judgments
Rapid: make decisions as quickly as possible

Emergent: allow patterns to emerge organically
Round-robin: take turns making suggestions
Equally distributed: post in similar quantities as teammates

None: no structure enforced, teams can do anything
Encouraging: give positive encouraging comments to teammates
Critical: critique and play devil's advocate

VALUES
BANDIT ARMS

Table 1. DreamTeam’s dimensions, values, and temporal constraints,
drawn from organizational behavior literature (e.g., [32]).

set of dimensions representing team structures, such as hierar-
chy, along with values for each dimension, such as centralized
or decentralized. The system reacts based on feedback from
automatically collected metrics such as task performance, from
self-reported metrics such as member ratings on the team’s
collaboration, or on a mix. These metrics are represented in
a reward function. DreamTeam learns and selects what to
explore next based on this reward function, honing in on what
combination of values would optimize for maximum reward.
This combination represents the team structures that work well
for that team.

Network of bandits
Following bandit literature on modeling several dimen-
sions [23, 13, 12], we equip our system with multiple bandits,
each representing one dimension of team structures (Table 1).
We construct a network of five bandits spanning the dimen-
sions of hierarchy, interaction patterns, norms of engagement,
decision-making norms, and feedback norms. While many
different dimensions and values are possible, we generated
these dimensions and values based on their prominence in the
literature on team structures [32, 68]. Each dimension maps
onto a set of values (Table 1).

A bandit encodes the values of the dimension that it represents
as arms. For example, the hierarchy dimension has values of
centralized, decentralized, or none (i.e. laissez-faire hierarchy)
represented by a three-armed bandit. Together, these bandits
represent the space of team structures that teams are able to
explore. Across five dimensions each with three to five values
(arms), there exist 405 combinations and thus 405 possible
team structures to which a team can adapt on DreamTeam.
As the team works together over time, each bandit collects
feedback from the team, such as their performance, and consid-
ers which arm to select next. The next round’s arm selection
leverages a technique called Thompson sampling, a bandit
algorithm that (a) uses past rewards to update every arm’s
Bayesian probability distribution, an arm’s likelihood of re-
turning the highest reward, and then (b) samples an arm from
these probability distributions for the next round [2]. Should
every bandit pick the same arm as it had in the previous round,
each dimension’s value would remain constant and the overall

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 108 Page 3



ROUNDS
T

CH
A

N
G

ES
E[

]

TOTAL CHANGES

LATEEARLY ONGOING

ROUNDS
TTT

1

0

0

𝛿

Figure 2. Temporal constraints. Top: dimensional temporal constraints
apply to individual bandits, depicting the times at which each is free
to explore: early, late, and ongoing. Bottom: the global temporal con-
straint depicts the expected allowed changes across all dimensions.

structures of the team would remain the same. Every bandit
that selects a different arm from its last introduces an addi-
tional change to the structures—an explorative probe in the
bandit’s dimension.

While a network of bandits using Thompson sampling results
in an efficient scan over the different possible combinations,
it also results in an overwhelming number of changes that
teams cannot process. With each bandit individually suggest-
ing changes, the entire network may together suggest many
changes at each round—especially early on, when bandits
prefer exploration over exploitation. Teams cannot adapt to so
many changes to their team structures at once, nor to changes
in all dimensions at once [41]. Motivated by prior work in or-
ganizational behavior [44, 41], we next construct algorithmic
models that (a) pace changes by dimension and (b) pace the
number of changes that bandits introduce together.

Posterior renormalization procedure
In order to change structures without overwhelming the team,
we introduce an algorithm for temporal constraints in bandit
exploration. These temporal constraints reshape how many
dimensions, and which dimensions, can change at each time
step. Leveraging work on when teams are most receptive to
changes and when they are least receptive [44], we model the
total number of changes to which a team is expected to adapt,
called the global temporal constraint (Figure 2). Based on
Marks et al.’s temporality framework of when certain dimen-
sions of team structures can adapt [41], we also model the
adaptability of each dimension, which we call dimensional
temporal constraints, by classifying each dimension to an apt
time for them to change: early, late, and ongoing (Figure 2).

To model global and dimensional temporal constraints, we
must develop a procedure that renormalizes the probabilities

𝛿 = .25𝛿 = .25

.4(1-𝛿)=.3
.3

𝛿p = .4

p = .4

p = .2

BEFORE AFTER

p = .1

p = .1

p = .8CURRENT
ARM

Figure 3. Posterior renormalization shifts the bandit’s probabilities to
make it less likely that a dimension changes. Here δ = .25, so the bandit
becomes one-quarter as likely to explore a non-active arm.

sampled with Thompson sampling. At a high level, this pro-
cedure of posterior renormalization normalizes and shifts the
sampled probabilities away from inactive arms and toward the
current (selected) arm in order to lower the probability of a
change. This procedure can be applied to a single dimension to
control when it is allowed to change, or across all dimensions
to enforce the expected number of simultaneous changes.

Thompson sampling calculates a probability distribution over
the observed rewards thus far (up until time t). It then samples
θi(t) from this distribution for each arm i, which represents
the likelihood that arm i could be the best arm (i.e., return-
ing the highest reward). The arm sampled with the highest
believed reward payout is selected as the next arm. Once the
bandit observes a reward for the current arm c, such as a score
measuring the team’s performance, the observed reward rate
updates the probability distribution, from which θi(t) values
are resampled for each arm. Selecting a different arm from c at
the next time step t+1 means exploring a different value in the
dimension and introducing a change to the team’s structures.
To describe the procedure, we will fix the time step to t and
represent the sampled value for arm i as θi.

Our procedure normalizes the sampled θi from Thompson
sampling such that the samples reflect relative probabilities,
and shifts the cumulative probability of selecting inactive arms
{i : i , c} onto the current active arm c by a value δ ∈ [0,1].
This value δ represents the discounted probability of selecting
an inactive arm that remains on those inactive arms, consistent
with discount factors in utility discounting for Markov decision
processes, of which bandits are a subset. In other words,
it is the fraction of the expected value of changes from c
that is needed to achieve the temporal constraint. If there is
no constraint, then no shifting is necessary, δ = 0, and the
bandit explores without modification to Thompson sampling.
If δ = 1, then all probabilities of selecting an inactive arm
are shifted to c, resulting in θc = 1 while θi = 0, i , c, which
restricts exploration entirely.

As in Figure 3, take the example where three quarters of explo-
ration is to be constrained (δ = 0.25) because behavioral re-
search says not to tinker with this dimension—say, hierarchy—
late in a team’s lifetime. Suppose the distribution of Thompson
sampling probabilities was θ1 = 0.4,θ2 = 0.4,θ3 = 0.2 and
the current arm is c = 3. The procedure shifts 1−δ = 0.75 of
the exploration originally on the other arms θ1 and θ2, such
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that θ ′1 = δθ1 = 0.1 and θ ′2 = δθ2 = 0.1. The amount that
was shifted away from them was moved onto the current arm
θ ′3 = θ3+(1−δ )θ1+(1−δ )θ2 = 0.2+0.3+0.3= 0.8. Thus,
the probability of exploring inactive arms is constrained to a
quarter of its original amount while exploitation of the current
arm is increased to compensate.

We detail the formal equation below. Let c specify the current
arm in play, θi represent the sampled probabilities on arm i
of the bandit after Thompson sampling, and δ be the shift
amount. Below, θ ′i is the resulting probability of selecting
each arm from the procedure:

θ
′
i =

{
θiδ , if i , c
θi +∑ j,c θ j(1−δ ), if i = c

We discuss below how we arrive at δ for global and dimen-
sional temporal constraints.

Dimensional temporal constraints
Dimensional temporal constraints model when a given di-
mension is amenable to change. Following Marks et al.’s
temporality framework of team structures [41], we map each
dimension onto one of three opportunities to change it: early
(hierarchy), late (interaction patterns, decision-making norms),
and ongoing (norms of engagement, feedback norms). For
example, teams are ready to adapt to hierarchical changes like
determining whether they need a leader early on, but the same
changes become disruptive to their ability to collaborate later.

In order to model dimensional temporal constraints,
DreamTeam considers the time step t at which the system
receives feedback from the team, e.g. a score of their perfor-
mance, in relation to the overall time horizon T . If t/T is
small, the team is early in its process, and early dimensions
will be more able to change, but late dimensions should not
explore as freely, and vice versa if t/T is close to 1.

We construct the following algorithmic models for each dimen-
sional constraint (Figure 2), in which T is the time horizon
of the task, t is the current time step, and δ is the fractional
expected value of changing the arm from the current one:

1. Early: Teams are most prepared for changes to these dimen-
sions early along their progress on T as they begin to form
their identity, becoming less adaptable to them as time pro-
gresses [41]. For example, teams are resilient to exploring
different hierarchical structures early on, but less resilient
to changing them later. We model early dimensions as a
sigmoid, that has nearly unconstrained exploration early on
(δ is high, near 1) and that becomes constrained (δ is low,
near 0) after the team is halfway through their progress, i.e.
δ = 1 / ( 1 + et−T/2)

2. Late: Teams are most prepared for changes to these dimen-
sions later in their progress on T , at first less receptive to
them and becoming more so over time, as they focus on
performance over forming a team identity [41]. We model
late dimensions as a sigmoid similar to early dimensions’,
as a reflection across the midpoint parallel to the y-axis, i.e.
δ = 1 / ( 1 + eT/2−t )

3. Ongoing: Teams are prepared for changes in these dimen-
sions throughout the duration of the task. Such dimensions
engage with interpersonal dynamics that can help teams
at all times [41]. We model ongoing dimensions without
constraints on exploration with δ = 1.

This process produces a value for δ , allowing us to now lever-
age posterior renormalization to restrict exploration. With
these δ values, the model adjusts the probabilities of each arm
to fit the constraints, using the posterior renormalization pro-
cedure above. This is done for every bandit, thus constraining
exploration for each dimension based on time. The resulting
values from all dimensions are then renormalized across the
bandit network.

Global temporal constraint
While dimensional temporal constraints dictate when an indi-
vidual dimension (bandit) should be changing, this does not
address the global problem of too many bandits changing at
once. For this global constraint, we will use the posterior
renormalization procedure again across bandits.

In order to model a global constraint on all dimensions, we
consider the expected value of the total number of arm changes
at a given time step, and constrain that value to restrict overall
exploration. We choose to use an expected value framework
instead of capping the maximum because this affords bandits
the opportunity to explore several extremely good arms even if
these arms number above the desired constraint. We draw on
prior work [44] to model the progression of a team’s adaptabil-
ity that suggests teams are open to more changes closer to the
midpoint of their work. We thus model the global constraint
as a downward-facing parabola from 0 to the time horizon
T , with its highest value at T / 2, the midpoint of the team’s
progression. The mathematical model is as follows, where y
is the expected number of allowed changes (Figure 2):

y ∝ (t−T/2)2

Using the probabilities adjusted to fit dimensional constraints,
the model calculates the expected number of changes that are
allowed, y, from the above equation, as well as the expected
number of changes that the bandits anticipate having together
z. If the number of allowed changes y is greater than the
number of those anticipated z, we do not force the algorithm
to explore more: this would force teams to change to arms that
do not work for them and would render Thompson sampling
ineffective.

On the other hand, should the anticipated number of changes
z exceed the expected number allowed y, the model will shift
probabilities such that the expected value is equal to the de-
sired threshold. The model takes the excess amount z− y
and distributes the burden of reducing this amount across all
dimensions. The posterior renormalization procedure then
distributes this reduction within each bandit, preserving any
relative probabilities from Thompson sampling and dimen-
sional constraints. The equation for finding δ on each bandit
is as follows, where D is the number of dimensions and zd is
the expected value of change for the given dimension d:

δ = 1− z−y
zdD
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Figure 4. Posterior renormalization on the global temporal constraint
reduces the expected number of changes across the network of bandits.

Note that zd represents the probability that a dimension will
change, and is calculated by adding together the probabili-
ties of the inactive arms zd = ∑i,c θi, while z represents the
global expected number of changes, calculated by totaling the
expected values of change on all dimensions z = ∑zd .

As illustrated in Figure 4, consider the case where the global
expected number of changes is 3 across DreamTeam’s five
bandits, but the allowed expected value is currently 2. The
excess is 1, so each bandit needs to constrain its expected
number of changes by reducing the probabilities of selecting
inactive arms by 1 / 5 = .2. In order to distribute this reduction
proportionally across each bandit’s arms, we calculate δ for
each bandit using the equation above and renormalize the
probabilities to fit the constraint.

The model thus constrains exploration when the expected num-
ber of changes overreaches the amount desired. Applying to
both dimensional and global temporal constraints, the core
of our technical approach is to redistribute the probabilities
from Thompson sampling such that they meet the temporal
constraints. After accounting for both sets of temporal con-
straints, the system proceeds to sample arms based on their
new probabilities.

Integration
We integrate DreamTeam with Slack (www.slack.com), a
chat platform, using a Slack bot named coordination-robot.
Coordination-robot is the user interface of DreamTeam. It
joins teams in a Slack channel and offers guidance to their
team structures. As team members post messages and com-
plete tasks together, coordination-robot draws feedback from
the channel’s posts, automatically taking in salient features
from the team—such as their performance on a task or self-
reported satisfaction. For example, after a team completes
a task and their score is posted to the channel, coordination-
robot reads this score as feedback.

Using temporally constrained bandits, coordination-robot de-
cides which changes in team structures to introduce to the
team at any given point. For instance, after receiving a low
score on the team’s performance, coordination-robot might
adapt the team’s hierarchical structure, or after receiving a
high score, coordination-robot might still adapt hierarchy in
an effort to help the team explore better viable options.

Coordination-robot communicates with the team through mes-
sages in the channel (Figure 5). For example, if coordination-
robot were to decentralize a team’s hierarchy, it would post

Figure 5. Team experience within the Slack interface. Left: mem-
ber nickbstack submits an answer to the system. Meanwhile, the user
anne_turker does not feel psychologically safe. Right: coordination-
robot changes the team to adopt an encouraging feedback norm struc-
ture in a message to the channel. Upon completion, anne_turker tells the
team (not pictured): “You guys were the best team ever! Thank you.”
This particular team experienced the greatest improvement in perfor-
mance in our study.

to the channel: “You’re a democracy. Vote on what to submit
and respect the majority vote.”

EVALUATION
We evaluated our system by convening teams of workers, re-
cruited on Amazon Mechanical Turk (AMT), following recent
social computing systems work on teams [50, 38, 40]. We
used Slack to develop a platform for collaborative conversa-
tion and integrated tasks, again following prior work [50].
These design decisions made it easier to modulate, monitor,
and measure teams’ progress.

Task design
We designed a collaborative intellective [43] task to evaluate
our system. According to McGrath’s classification of group
tasks, intellective tasks are cognitive activities focused on
solving problems with a correct answer, spanning traditional
science tasks in which a correct answer exists, is corroborated
by data, or is supported by a jury of experts, as in a peer re-
viewed journal [43]. We evaluated DreamTeam on the domain
of intellective tasks to demonstrate increased performance for
collaboration on complex intellectual assignments.

To design our task, we first piloted several tasks from other
studies [50], including creating comic strip lines, Facebook
ads, or marketing headlines. These tasks allowed us to observe
upvotes or click-through rates from online audiences, but we
sought a more rapid and robust feedback cycle, in which feed-
back would not be delayed and for which we did not have
to identify appropriate feedback timing. Other considered
tasks included puzzles (e.g., crosswords), but these were not
selected because common answers were available online, and
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because teammates frequently switched contexts away from
the chat, reducing the collaborative nature of the task.

We adapted the popular board game Codenames for the Slack
interface. The game includes a set of clue words, each of
which corresponds to a group of words shown together on
a game board. A team works together to determine which
words on the board refer to clues that they are given. Each
clue word also comes with a number. This number tallies the
exact number of words on the game board that the clue refers
to. In our adaptation, teams did not play competitively with
each other, instead collaborating to maximize their team score.

We generated the clues and boards automatically with Em-
path [21], which uses vector space models to identify similar
words to an input word. We took clue words from a random
word generator and inputted them into Empath to produce the
corresponding board words. We pre-tested all boards to ensure
roughly equivalent difficulty.

Method
We recruited 135 workers from AMT and randomized
each worker into one of five conditions based on how the
team structures were chosen: control, collectively-chosen,
manager-chosen, bandit-chosen, and DreamTeam-chosen. We
arranged participants into teams of three. We compen-
sated workers $12-$23 because the task took 1–2 hours
(http://guidelines.wearedynamo.org), and awarded a $1 bonus
for each round performed above the average. Teams first had
two practice rounds to learn the game with no team structures
imposed. Teams then engaged in ten rounds of the task, each
of which had a time limit of 15 minutes.

We organized workers into teams following methodology from
prior literature [50, 40, 42], inviting workers to a staging area
until there are enough workers to separate them into teams
of three who shared the same condition. All workers had
previously received AMT qualifications for completing an
individual version of the task.

Teams worked together in their dedicated channels on Slack.
They used the interface to interact with their teammates, to
submit answers, and to adapt to changes in their team struc-
tures. The system gave teams a board as a formatted list of
words. Next, teams engaged in a 3-step cycle: (1) the system
gave the team a clue, (2) the team submitted an answer, e.g.
“!submit processor, encode” in Figure 5, and (3) the system
showed the team their score on that answer. Each round of
the game included four such cycles. Thus, across ten evalua-
tion rounds, teams experienced 40 cycles. At the end of each
round, the system gave the team their final performance. At
the start of a new evaluation round, coordination-robot posted
the relevant changes to the team’s structures.

Teams were asked to complete two training rounds of increas-
ing difficulty prior to the evaluation rounds, to review the
instructions and learn the Slack interface. The first training
round was individualized for learning the game and interface.
The second training round, “Round 0”, was in a team, with all
dimensions set to “None” or “Emergent”. Round 0 was used
as a covariate in our analysis and as a baseline input to the

network of bandits for DreamTeam and bandit-led teams. Af-
ter concluding the practice rounds, the system posted the first
evaluation round of the task, including the board and the initial
clue. As evaluation rounds progressed, the design differed by
condition:

1. Control: No explicit structures were given. Coordination-
robot did not appear.

2. Collectively-chosen: Teams received a list of every message
that coordination-robot could use to change the team struc-
tures (i.e., every value across all dimensions). The team
was instructed to post any number of these messages (none,
one, or many) at the beginning of each round and, if so,
these would need to be followed for that round. All team
members could see the list and post. Coordination-robot
did not appear.

3. Manager-chosen: One member of the team became the man-
ager whose instructions the team had to follow at the begin-
ning of each subsequent round. The manager alone had ac-
cess the list of possible structural changes that coordination-
robot could make. Only the manager could post a change.
Managers were additionally incentivized to receive an ad-
ditional bonus of $1 for every two rounds that their team’s
scores exceeded the average. Coordination-robot did not
appear.

4. Bandit-chosen: Coordination-robot posted changes, if any,
to the start of each round, powered by a network of bandits
with Thompson sampling, without temporal constraints.

5. DreamTeam-chosen: Identical to the bandit-chosen condi-
tion, except for temporal constraints were imposed on the
bandit algorithm powering coordination-robot.

For DreamTeam and bandit-chosen teams, coordination-robot
was the front-end interface. The network of bandits decided
what coordination-robot would post next, and evaluated the
team and its current structures based on their scores on the
task. At the end of the final round (ten) of all conditions, team
members answered whether they would work with each other
again.

Results
Thirty-five teams completed the task with seven teams per
condition. We measured the average performance of teams on
all ten evaluation rounds by condition (Figure 6). DreamTeam-
chosen teams (µ = 6.6, σ = 1.3) outperformed control teams
by 38% (µ = 4.8, σ = 2.1), outperformed manager-chosen
by 46% (µ = 4.5, σ = 2.0), outperformed collectively-chosen
teams by 45% (µ = 4.5, σ = 2.2), and outperformed bandit-
chosen teams by 41% (µ = 4.7, σ = 2.2).

To analyze the distinction in performance across conditions,
we conducted a repeated measures ANCOVA. We used each
team’s final training round (non-intervention) score as a covari-
ate, to control for a team’s initial performance before they expe-
rienced any interventions. There was a significant main effect
of performance across conditions: F(4,40) = 5.66, p < 0.01.
We performed post hoc Tukey tests to examine pairwise differ-
ences between conditions. DreamTeam significantly outper-
formed all other conditions (all p < .05). No other conditions
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Figure 6. DreamTeam-chosen teams had higher performance than teams
in any other condition on a complex intellective task: ANCOVA p< 0.05,
all pairwise comparisons to Dreamteam-chosen p < 0.05. N = 45.

were significantly different from each other. Taken together,
these results indicate that DreamTeam teams outperformed all
other conditions, including bandit-chosen teams that had no
temporal constraints.

Teams’ most effective structures varied substantially
What can we learn about the team structures that were most ap-
propriate for this task? We inspected the final team structures
for teams in the DreamTeam-chosen condition (Figure 7). No
two teams had the same final team structures. These results
lend support to structural contingency theory: the right set of
team structures depends on each team, even for teams working
on the exact same task. Strikingly, for each dimension, an
average of 4.2 teams (of nine total) diverged from the most
frequently chosen value. We evaluated each dimension’s vari-
ation by taking the probability distributions of their values
and calculating their entropy, where 1 means a uniform distri-
bution with no leading candidate, and 0 means a completely
predictable distribution with one option most effective for ev-
ery team. The dimensions’ entropy measurements: hierarchy
(.97), interaction patterns (.88), norms of engagement (.88),
decision-making norms (.53), and feedback norms (.58). Over-
all, dimensions had either moderate or high entropy, and most
had high entropy—suggesting high variation across teams
along those dimensions.

The dimensions with lower entropy suggest some patterns
work well for this task. Of the six teams, none had a final
configuration with a critical feedback norm, and most had an
encouraging feedback norm. Only one team was effective with
round-robin interaction patterns, while the others were divided
evenly into equally distributed and emergent interaction pat-
terns. Most teams wound up with no explicit decision-making
norm: just one team was effective under an informed norm,
two teams converging on a divergent norm, and no teams were
found to be effective with convergent or rapid decision-making
norms. Along the dimension of hierarchy, teams were fairly
scattered: decentralized (4), centralized (2), and none (3).

Teams adhered to altered structures unless overwhelmed
Teams on the whole followed and listened to coordination-
robot without complaint, taking the changes seriously. All
DreamTeam teams adhered to the suggestions despite no real-
time enforcement. However, about half of the teams in the
bandit-chosen condition began to ignore coordination-robot
over time. Without temporal constraints, bandit-chosen teams
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Figure 7. The final team structures varied across DreamTeam teams: no
values were effective for all teams. Colors refer to specific values shown
in Table 1 and Figure 1.

had too much to absorb at once, and eventually teams lost trust
in the suggested changes. In fact, the strongest performing
teams in the bandit-chosen condition ultimately ignored the
suggestions, even with the same wording of the messages.

Teams did not equally welcome all suggested structures—even
structures that were the most effective for those teams. The
encouraging feedback norm in particular was met with some
derision, with some teams jokingly overemphasizing their
positivity. However, while some members may not have taken
the norm seriously at first, the norm had positive effects for
other teammates, who increased their participation afterwards.
Most teams in the DreamTeam-chosen condition ultimately
converged on the encouraging feedback norm.

DreamTeam has limited insight into each team’s existing dy-
namics and no principled understanding of each team struc-
ture, so occasionally it would make recommendations that
were redundant and in effect, explore needlessly. For instance,
the algorithm would suggest an encouraging feedback norm,
but the team was already practicing an encouraging feedback
norm that emerged implicitly. These occurrences were rare,
provided the large space of options, but could decrease trust in
the algorithm. It is also possible that the system might choose
the wrong arm for the sake of exploration. This could actively
hurt the team and cause them to engage in unpredictable con-
flicts. While we did not observe this, we note that there is a
possibility, for example, that a team with a hostile environ-
ment could be told to change their team structure to include a
critical feedback norm.

Would you work with your team again?
Upon completion of the game, we asked teams if they would
work with the same team again, and that we would use this
data to match them together in the future. The majority of
teams across conditions said that they would work with their
teammates again. While every team in the DreamTeam-chosen
condition was eager to collaborate again on their team, a minor-
ity of teams across the other conditions did not echo the same
enthusiasm. Some expressed neutrality, and others spouted
unpleasant comments about their teammates.

Conditions’ strengths and weaknesses
Control teams varied in performance. A handful of teams nat-
urally collaborated or grew to collaborate. However, in many
instances, there was little dialogue or effort to collaborate.
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Collectively-chosen teams also had variation in how teams
organized themselves. One team had a member rise up to a
leadership position and delegate roles, assuming the task of
organizing information around halfway through the team’s
progress. In most, however, despite the nominal collective
decision on which team structures to use, there was no coordi-
nation and lack of organization. Some teammates exhibited
and justified unchecked chaotic behavior, which became the
norm. For instance, in response to “he submits them before i
can read them”, another teammates retorted “it works well in
WoW [World of Warcraft], gotta spam those keys”.

Manager-chosen teams would demonstrate relatively higher
performance levels when the manager chose team structures
that the team agreed to include, but most managers were hes-
itant to explore, using at most three different structural com-
binations and choosing one, or in a couple cases two, team
structures at a time. Managers generally appeared to be loss-
averse: in one team, the manager explored two options across
two rounds, stuck with the one that showed a marginally better
score, and decided to stop exploring for the rest of the game.
The team ultimately had no discussion on the game, submit-
ting in a round-robin. There was variation in management
styles: while some managers relied on the team for feedback,
asking questions like “Do you like the first way better?”, and
went with the popular vote, others decided firmly without ask-
ing for feedback and observing the team as they went. Some
managers even chose and maintained certain team structures
that their teammates did not like.

Bandit-chosen teams demonstrated polarizing performance
levels. Some teams did very poorly, among the poorest across
all teams. Yet, others exhibited performance levels similar
to teams in DreamTeam, but these teams had begun ignoring
the changes halfway throughout the task. For example, when
coordination-robot changed the team’s structure to have cen-
tralized hierarchy on one team, one teammate asked “who
want[s] to be the leader?” to which no one replied as the team
continued submitting answers and the game pressed forward.

The most striking difference between DreamTeam-chosen
teams from those in other conditions was the consistency with
which they synchronized, mobilized collectively, and engaged
with the exploration of novel structures. Several structures,
such as round-robin participation or electing a leader, requires
collective involvement from all members of the team. Al-
though unconstrained bandits exposed bandit-chosen teams to
a greater number of structural configurations (9.89 on average,
as opposed to 8.56 on DreamTeam), these teams ignored the
suggestions more than a third of the time. Often, only a single
member was willing to partake in the structural change, and
could not galvanize others to engage in a collective effort. As
a result, DreamTeam teams explored more structures by over
30%. Comparably, all manager-chosen teams experienced min-
imal explicit exploration (2.04 on average), because managers
did not expose their teams to more than three configurations.

Limitations
DreamTeam-chosen teams exhibited higher performance than
any other condition, and all other conditions were indistin-
guishable from the control. How generalizable is this result?

One limitation is that we evaluated our system on an intellec-
tive task, and did not investigate other task categories within
McGrath’s framework of group tasks, such as generating tasks
that involve making a plan or brainstorming ideas together [43].
We cannot yet generalize beyond the collaborative intellective-
style task that we examined.

While our task could be adapted for real world applications,
this task is inherently not one that existing teams typically
tackle. Moreover, some tasks (e.g., creative tasks) may have
high variance in performance. If variance is high, DreamTeam
would still succeed, but take longer to converge. Other tasks
may have rewards that are either impossible to measure or are
made known over very long time periods. In these cases, we
envision that a reward function could be driven by feedback
from team members or from peer teams.

Our task took most teams one to two hours. A few hours is con-
sistent with prior work and appropriate for many crowd-based
teams (e.g,. [40, 50, 38]), but many teams in organizations
work together for months; we cannot generalize far beyond
this short-term task. Manager-chosen teams, for example, may
need more time for the manager to find the right team struc-
tures, and would eventually match or outperform DreamTeam.

Additionally, while we measured performance as teams’ scores
on the task, we did not examine how other factors, particularly
qualitative ones like self-reported team satisfaction, or com-
binations of factors, could impact the reward function of the
bandits and take them in a different direction. These features
may introduce additional variation; for example, self-reported
satisfaction may vary as different team members have different
opinions, making it more difficult for bandits to identify team
structures that give high reported team satisfaction.

While we convened virtual teams for our evaluation, we did
not examine in-person teams or hybrid virtual/in-person teams.
We also recruited workers on AMT who could accomplish
the qualification task on their own, controlling for a thresh-
old of ability and understanding of the task. Finally, for the
manager-chosen condition, we did not recruit professional
managers. While this is more similar to prior work in crowd
teams (e.g., [47]), comparing against professional managers
will be a clear avenue for future work.

The dimensions and values that we chose to adapt do not nec-
essarily suit all teams, nor encompass all possible dimensions
of team structures. As we expand the decision space, it will
take longer for DreamTeam to identify the most effective struc-
tures. Furthermore, while DreamTeam searches for a resulting
set of team structures that is effective, the right approach may
be to instead determine an effective policy—the process and
path along which they should navigate and explore the space.

Finally, there are limits to the causal claims that we can make
from our experiment. Control teams have their team structures
emerge implicitly, but the act of having teams decide by a col-
lective effort, by an individual manager, or by a bot can itself
affect how teams view their team identity. Nevertheless, we
chose these comparisons, because they are the current modus
operandi of self-managing and manager-led teams today.
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DISCUSSION
DreamTeam teams succeeded because they consistently took
exploration to heart and engaged with the experimental pro-
cess. Organization behavior literature corroborates the final
converged values. For instance, one team had a member who
felt psychologically unsafe to contribute, but the system intro-
duced an encouraging feedback norm, drastically improving
the member’s participation [19]. Another had fairly equal
participation at the outset, fitting the system’s ultimate recom-
mendation of equally distributed interaction patterns [16]. A
third team had trouble engaging in discussion, but the intro-
duction of informal norms of engagement reduced tensions
around debate [61].

In contrast, bandit-chosen teams were deluged with informa-
tion and as a result, ignored coordination-robot’s suggestions
to help them coordinate their joint efforts [6]. The varia-
tion in performance among the other conditions also reveals
that some teams found success, but that several teams in-
stead became bound to dysfunctional structures, failing to ex-
plore further. This was in spite of the fact that bandit-chosen,
manager-chosen, and collectively-chosen teams explicitly re-
ceived more structural options. This is consistent with the
literature, in that teams will often fall into poor structures that
doom them to continual failure if left uninterrupted, because
the inertia to maintain the status quo overpowers the effort to
initiate change [32, 49, 5].

DreamTeam teams had substantially different team structures
from one another, yet still outperformed teams in other con-
ditions. This result reinforces structural contingency theory:
the most effective team structures depend on the members
composing the team and how they interact. But how do we
converge on those rapidly or make our best first guess? Tech-
nical approaches such as contextual bandits, which blend gen-
eralization capabilities from machine learning classifiers with
multi-armed bandits, may allow the system to learn the answer
to this question over time, allowing DreamTeam to identify
which team structures are worth exploring first.

A core theoretical tenet of structural contingency theory is
that groups must continuously evolve their structures to re-
act to changes in the environment [17]. As described here,
DreamTeam is focused on identifying an initially appropri-
ate set of structures. Even as it gains confidence, Thompson
sampling on bandits nevertheless retains some probability
of experimenting with other arms, so over time DreamTeam
would identify if the team needs to evolve. Exogenous events
like new team members might prompt the system or team to
re-trigger exploration. However, we suggest that it would be
more powerful to give users greater control over resetting the
system after a major exogenous event. This would allow the
system to retain some agency in exploring and avoid pigeon-
holing, but keep users in control of some of its behaviors.

We observe three main avenues for future work. First, while
we followed methodologies from prior work on studying short-
term deployments in organizational behavior experiments [69]
and crowd teams for organization [50], we also hope to ex-
amine teams in the real world on their actual tasks that might
consume a larger time horizon. To do this, we can expand

DreamTeam to represent a set of team structures that matches
the variation seen within the organization. Specifically, we
would like to examine which structures real organizations are
interested in exploring, over structures that they would like
to remain fixed based on their corporate culture, e.g. many
organizations have instituted a centralized hierarchy. We aim
to extend the system to partner with managers in exploring and
identifying what collaborative structures work well for their
teams. DreamTeam represents a step towards computationally
augmenting human managers and self-managed teams.

Second, we hope to run DreamTeam on teams that have either
identified themselves or have been externally identified as dys-
functional to observe whether we can unfreeze their current
environment and adapt them to a more effective team envi-
ronment. An open question is whether DreamTeam will be
more effective for teams that are moderately functional—and
are thus more open to experimentation—or for teams that are
known to be dysfunctional.

Third, the set of team structures included in the system is far
from complete. Our goal was to demonstrate the approach for
a set of team structures that the organizational behavior litera-
ture identified as particularly salient. However, we must now
consider the broader space of team structures. A rich literature
of handbooks and literature reviews provides a vocabulary
for this larger set of dimensions and values (e.g., [39]). With
a larger space to explore, the DreamTeam system will take
longer to identify an effective structure. It may be possible
to guide the system toward identifying some dimensions as
principal components first, and then iterate from there.

CONCLUSION
Effective teamwork is a wicked problem [48]: it cannot be
planned in advance, and requires adaptation to the people,
task, and environment. Prior work focused on pre-selecting
effective structures, such as convening the right members or
using the right collaborative system. Acknowledging that this
correct identification is impossible in the limit, we introduce
a system that helps teams adaptively identify a set of roles,
norms, and interaction patterns that is effective for them. To
enable DreamTeam, we contribute a model for multi-armed
bandits with temporal constraints, which ensures that these
structures evolve at a feasible pace and at the right period in
a team’s overall arc. Evidence from our evaluation suggests
that teams using DreamTeam can be far more effective than
existing modes of organizing for these rapidly convened teams.

We envision computation as a partner in helping groups
achieve their goals. It can aid us when we exhibit biases
or limited self-knowledge—such as identifying effective team
structures—and it will help us re-plan when the environment
shifts. DreamTeam represents a step toward this future of
computationally augmented teams and organizations.
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