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ABSTRACT

Neural Radiance Fields (NeRF) are recognized for their exceptional
photo-realism quality and superior modeling capabilities compared
to traditional methods. NeRF empowers a novel application, termed
NEeRF serving. It delivers data from a server to a mobile client and
renders 3D scenes on the client, facilitating a broad spectrum of mo-
bile immersive applications. Towards a satisfactory user experience,
we must serve NeRF with low latency while meeting constraints
of high visual quality and real-time smoothness. Existing NeRF
variants easily violate the constraints or cause an unnecessarily
high latency when the diverse applications, mobile devices, and 3D
scenes, termed the contexts, change in real life. In this paper, we
present NeRFHub, a novel context-aware NeRF serving framework
for mobile immersive applications. NeRFHub adeptly manages stor-
age and computation costs, scales to diverse contexts, and swiftly
navigates the vast design space inherent in NeRF serving. The eval-
uation results show that NeRFHub serves synthetic objects with
56%-66% reduced latency and realistic scenes with 26%-55% reduced
latency when compared to the baseline without compromising
quality or smoothness.
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1 INTRODUCTION

Neural Radiance Fields (NeRF) [35] is an emerging technology
for modeling 3D scenes. NeRF models a 3D scene with a multi-
layer perception (MLP) neural network. It involves two major steps:
training and rendering. Training turns images capturing the same
scene from different view angles and locations into a. Rendering
derives a 2D image based on the given viewport by evaluating
the MLP. This unique 3D scene modeling technology with neural
networks allows NeRF to outperform traditional methods based on
mesh and point clouds, with better photo-realism [19] and modeling
capability [11, 26, 27, 35, 45]. Due to the limitation of the original
version of NeRF [35], numerous variants [12, 18, 25, 37, 40-42]
emerges, which are specialized for the training and rendering speed,
and the dynamics of scenes.

NeRF has already seen adoption in various mobile immersive ap-
plications to provide immersive traveling, gaming, medical imaging,
and shopping experiences [13, 43, 48, 49, 53]. In these applications,
NeREF is created offline at a cloud server, delivered over the Inter-
net, and rendered at the mobile device. This process is referred to
as NeRF serving. Towards better user experience, NeRF serving is
assessed by metrics of quality [51, 59] (the closeness between the
rendered scene and the original scene), smoothness [4] (the speed
for a scene to be rendered), and latency [15] (the duration between
the time when a user requests a scene and the time the first frame
of the scene is rendered).

Specifically, we model NeRF serving as a problem that minimizes
the size of data representation with the constraints of quality and
smoothness. We term the user- or application-defined parameters
in NeRF serving, e.g., application, device, scenes, and NeRF vari-
ant types and constraints values, as the context. Given a specific
context, we define the configuration as the remaining configurable
parameters controlling how the data is transmitted and rendered
in NeRF, e.g., the training hyper-parameters and neural network
specifications. The set of configurations is the design space of NeRF
serving.

In realistic applications, the context varies easily in reality as the
application has diverse considerations and the user has varied pref-
erences. In contrast, the configuration for existing NeRF variants is
hardly configurable as any change in what is to be transmitted and
how the scene is rendered must be followed by a time-consuming
training process in NeRF. To make matters worse, NeRF variants
are mostly designed with no knowledge of the context. As a result,
there is often a mismatch between the actual context and the NeRF
variant, causing the violation of constraints or sub-optimal latency.

We present NeRFHub, a context-aware NeRF serving framework
for mobile immersive applications. NeRFHub first turns an off-
the-shelf NeRF variant and multi-view images through a special
training procedure into a unique NeRF data representation, whose
computation complexity and bitrate are flexibly configured. Based
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on the context of a request for a 3D scene, NeRFHub appropriately
configures this data representation to minimize latency without vio-
lating other constraints. Finally, the configured data representation
is delivered to the mobile device and rendered. Realizing NeRFHub
necessitates solving three challenges.

#1 Resource-intensive configuration adaptation. Optimizing
NeRF serving for a specific context requires adapting the configu-
ration of NeRF, which is resource-intensive. To adapt the computa-
tion overhead in rendering, a straightforward way is to derive data
representations with varying computation complexities. However,
the storage overhead would be prohibitive for a large number of
computation constraints. Regarding bitrate adaptation, we identify
two types of approaches for NeRF [47, 50]. One performs compres-
sion using a codebook, paired with a sophisticated MLP during
rendering to attain satisfactory quality [47]. The other introduces
computation-intensive operations like entropy decoding, inverse
quantization, and inverse 3D DCT in rendering. These approaches
introduce a significant computation overhead for rendering, making
it impractical for mobile devices.

#1 Solution. Our intuition is to realize lightweight adaptation
through proactive training. First, lightweight adaptation can be
realized through the adaptive removal of parameters in the data
representation, without performing intensive computation. For in-
stance, the computation can be adapted by adjusting the number
of hidden layer channels in the MLP, instead of storing multiple
copies of data representation. A potential problem of such light-
weight adaptation is that the adapted data representation is not
well-trained like the original data representation, which may cause
quality degradation after adaptation. Proactive training is designed
to overcome this issue by tailoring offline training based on possible
adaptations of the data representation. Specifically, for computa-
tion adaptation, we alternate the MLP’s number of hidden layer
channels in training, allowing the data representation with different
configurations of the MLP to be trained consistently. With proactive
training, we can adapt the configuration in a lightweight manner
while avoiding quality degradation.

#2 Limited serving scalability. A straightforward way for context-
aware serving is to exhaust configurations from the whole design
space and locate one that minimizes the downloading size without
violating constraints. However, for every context, we must repeat-
edly exhaust the whole design space, which makes it difficult to
scale the serving to a large number of contexts.

#2 Solution. We have two insights to improve the serving scalabil-
ity. First, we prove that the optimal configurations in the original
design space are the same as in a reduced design space, where the
MLP configuration is set to constant. Moreover, this MLP configu-
ration can be identified by building a lookup table in constant time,
which enables NeRF serving with reduced complexity. Second, we
notice that the problem of NeRF serving can be decoupled into an
offline multi-objective optimization (MOO) problem and an online
searching problem. By solving the MOO problem offline, online
searching can be performed with a much smaller design space than
the original one, which scales easily to more contexts.

#3 Vast design space. Solving the offline MOO problem requires
evaluating a multitude of configurations, leading to a vast design
space of over a million possible configurations. Without existing
analytical models that map configurations to metrics, the reliable
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way to find the optimal configuration is to exhaust all possible
configurations, which is time-consuming.

#3 Solution. We tackle this problem with an evolutionary algo-
rithm that efficiently explores the design space. To further acceler-
ate it, we adopt parallelism and efficient sampling techniques. The
parallelism technique leverages the finding that it is unnecessary
to jointly explore all configuration knobs. Instead, we can fix the
configuration knob to a few values, creating several reduced de-
sign spaces, which can be solved in parallel, accelerating profiling.
The efficient sampling technique utilizes the fact that the profiling
outcome is not sensitive to the number of evolutions and evalu-
ated views in profiling. Therefore, we can make profiling efficient
by reducing these numbers, with minimal impact on the profiling
outcome.

We evaluate NeRFHub in a realistic setting serving synthetic 3D
objects and realistic 3D scenes. Targeting the mobile scenario, we
consider a baseline system implemented atop MobileNeRF [12], a
state-of-the-art approach for neural rendering on mobile devices
without context awareness. The results show that NeRFHub saves
the latency of synthetic objects by 56%-66% and realistic scenes by
26%-55%. The quality of NeRFHub is comparable to the baseline
with a difference of less than 1 dB in Peak Signal-to-Noise Ratio
(PSNR). Moreover, NeRFHub’s smoothness is at least real-time (30
fps) or as good as the baseline.

We summarize our contributions as follows.

(1) We design and implement NeRFHub, a context-aware NeRF
serving framework.

(2) We adapt computation and bitrate in a lightweight manner by
leveraging proactive training.

(3) We scale context-aware serving to a large number of contexts
with a lookup table and offline MOO.

(4) We make profiling efficient via parallelism and efficient sam-
pling techniques.

(5) We evaluate NeRFHub in a realistic setting, which shows a
significant reduction in latency without compromising visual
quality and rendering speed when compared to the baseline.

2 BACKGROUND AND MOTIVATION
2.1 Neural Radiance Fields (NeRF)

3D scene representation. NeRF represents a 3D scene as a 5D
vector-valued function whose input is a 3D location ¥ € R? and a
2D viewing direction d € R? and whose output is the RGB radiance
¢ € R? and opacity o € R, as shown.

(%0) = Fo(% d), (1)

where Fg is a learned multi-layer perception (MLP) with trainable
weights ©.

Rendering. Given a ray 7(s) = 6+ sd whose origin ¢ and direction
d are defined by the camera, the rendered colors of this ray C(7)
on the camera is an integral of the opacity-weighted radiance over
the bounds, s, and s £ of the volume, as described in Equation 2.

& = / L T (5)o(7(5))E(R(s). d)ds, )

[ o(F(s))ds

where T(s) = e is the accumulated opacity.
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Figure 1: Pipeline of NeRF serving,.

Advantages. NeRF has two main advantages.

o Photo-realism. In contrast to traditional methods [22, 30], early
novel view synthesis methods [33, 34, 44] and neural 3D represen-
tation methods [20, 38, 39], NeRF attains better visual quality [19].

e Modeling capability. NeRF can model complex visual effects,
e.g., transparent or translucent objects [35], varying lighting
conditions [45], the human head [26], style transfer [11, 27] better
than traditional methods like mesh-based or point-cloud-based
approaches.

A multi-modal data representation. Due to the limitation of
the original NeRF [35], NeRF has evolved into numerous variants.
These NeRF variants present a multi-modal data representation
mainly consisting of MLP, geometry, and feature grids.

e MLP produces the RGB radiance and opacity at a 3D location,
which is shared by most NeRF variants [35, 40-42].

e Geometry is a data structure describing how the scene is occupied
with voxels [25] or faces [12], which accelerates rendering [12, 25]
and training [18] by skipping unoccupied area in computation.

e Feature grids are pre-computed feature vectors, which facilitate
faster training [18, 37] and rendering [12, 25] and variable bi-
trates [47, 50] by shifting computation-intensive MLP operations
from online to offline.

Applications. NeRF finds utility in various domains due to its
multifold advantages.

e Travelling. NeRF has been introduced to Google Maps to accu-
rately recreate the full context of a place like its lighting and the
texture of materials [43].

e Gaming. A plugin is introduced by Luma AI to enhance the
gaming experience by importing and rendering volumetric NeRFs
inside Unreal Engine 5 in real time [49].

e Medical imaging. NeRF has been adopted in medical imaging to
generate accurate 3D models of internal structures from 2D scans,
potentially enhancing the precision of procedures and improving
patient outcomes [13, 53].

o Shopping. NeRF has been integrated into Taobao, a shopping app,
to provide new shopping experiences like allowing customers to
place virtual goods in a house [48].

2.2 NeRF Serving

Figure 1 describes NeRF serving, a critical technology for the afore-
mentioned applications, which derives NeRF data representation
via model training from a set of images with different views, up-
loads the NeRF data representation to the cloud, delivers the NeRF
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data representation to mobile devices and renders the 3D scene in
immersive applications.

Metrics. The metrics of quality, smoothness, and latency assess
the user experience of NeRF serving.

e Quality measures the closeness between a remotely rendered
scene and a baseline high-quality scene, e.g., a scene without loss
in compression. The quality can be assessed by visual metrics of
PSNR, SSIM [51], and LPIPS [59]. A higher quality means better
preservation of the details of the scene.

e Smoothness measures the rendering speed of a particular view
in a scene, which can be quantified by the number of frames
being rendered per second [4]. A higher smoothness means less
lagging when a user changes the view.

e Latency measures the time it takes for a scene to be completely
visible to a user, similar to the latency of a HTTP request [15]. It
involves network transmission of the data representation from a
remote server to the local device and rendering the first frame
using transmitted data. A low response time causes less waiting
for the user.

Problem formulation. High quality, better smoothness, and low
latency are generic goals for NeRF serving. Because of the im-
portance of latency in multiple mainstream applications, we par-
ticularly focus on minimizing latency in this paper, with smooth-
ness and quality constraints. Still, our framework generalizes to
other utility functions as discussed in §7. Intuitively, the latency
is positively correlated with the size S of the data representation.
Therefore, we formulate an optimization problem, as shown.

0" = argmax S(0)
fe¥y

Q(@) 2 Qmin
R(Q) 2 Rmin

®)

s.t.

¥ is the set of all feasible configurations. Quin, Rmin are constraints
of quality and smoothness, respectively.

Significance of contexts. The context of NeRF serving involves
the immersive application, mobile device, and 3D scene, altering
the trade-offs between quality, smoothness, and size.

Firstly, immersive applications have different constraints for each
metric, which alters hyper-parameters (Qpin, Rmin) in Equation 3.
For instance, the low quality can be tolerated in particular pixelized
games, e.g., Minecraft [1], Undertale [3], and Terraria [2], but not
in medical imaging where high quality is crucial for the precision
of procedures. In terms of smoothness, it is highly demanded in
gaming toward immersive gaming experiences [36] while it is less
important in non-urgent travel planning.
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Figure 3: The impact of mobile device and 3D scene on
smoothness, size, and quality.

To study the impact of mobile device and 3D scene, we measure
different metrics on MacBook Pro (MBP), iPhone 12 (iPhone), Dell
Precision 5510 laptop (Dell), and Microsoft Surface (Surface) us-
ing MobileNeRF [12] with synthetic [35] and realistic [34] scene
datasets. Figure 3 shows smoothness (average), size (CDF), and
quality (CDF).

Secondly, mobile devices cause varying smoothness of the same
data representation and the impact of mobile devices varies in
different scenes. A powerful device like MBP can render roughly
3x faster than a less powerful one, Dell, on realistic scenes. While
Surface has better smoothness than Dell on synthetic scenes, Dell
demonstrates better smoothness on realistic scenes, which is likely a
cause of different acceleration strategies for rendering with WebGL
in MobileNeRF.

Thirdly, 3D scenes have diverse smoothness, sizes, and quality.
As shown in Figure 3(a), the rendering speed is generally faster
on synthetic scenes. In Figure 3(b), synthetic scenes are generally
smaller in size than realistic scenes, and the size of scenes of the
same type (realistic or synthetic) can vary by one magnitude. Fig-
ure 3(c) illustrates synthetic scenes generally have higher quality
than realistic scenes, and the quality of scenes of the same type
(realistic or synthetic) can vary by at most 11 dB.

The context is crucial as the solution of Equation 3 derived for
one context might violate the constraints or achieve sub-optimal la-
tency when the context varies, which occurs easily under a realistic
setting.

2.3 Challenges

The varying contexts require a context-aware design to optimally
solve Equation 3, involving three challenges.

88

(3) Vast design space: the data representation for NeRF rendering
has multiple configuration knobs covering the geometry and
feature grids, which involve over a million possible configura-
tions.

3 NeRFHub DESIGN

Figure 2 provides an overview of NeRFHub. NeRFHub first converts
an off-the-shelf NeRF representation into one data configurable rep-
resentation via a proactive training process (§3.1). Here, the data
components like geometry, feature grids, and MLP can be config-
ured to meet diverse computation demands for mobile rendering
(§3.1.1) and bandwidth demands for downloading (§3.1.2). More im-
portantly, the adaptation of configuration is lightweight, incurring
minimal storage and computation overheads.

Then, NeRFHub leverages a context-aware serving module (§3.2)
that configures NeRF representation according to the context sent
with the user’s request. Then, the configured data representation is
delivered to the mobile device and rendered. It scales to multiple
contexts via the reduction of the configuration dimension using a
lookup table (§3.2.1) and a decoupled serving process (§3.2.2).

The profiling optimizer (§3.3) improves the offline profiling in
decoupled serving with an evolutionary algorithm. It further accel-
erates this algorithm via parallelism (§3.3.1) and efficient sampling
techniques (§3.3.2).

3.1 Proactive Training

Proactive training prepares the NeRF representation to enable light-
weight adaptation strategies for computation and bitrate. For com-
putation, we achieve storage-efficient adaptation by training multi-
ple MLP channels (§3.1.1). Regarding bitrate, we attain computation-
efficient adaptation through fine-tuning for various bit depths

(§3.1.2).

3.1.1  Shrinking-Based Computation Adaptation. A straightforward
idea for storage-efficient computation adaptation is to have a single
data representation and adapt to different computation demands
by rendering a portion of this data representation. As the MLP
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mainly accounts for the computation demands, we can meet dif-
ferent computation demands by “shrinking” the number of hidden
layer channels in the MLP. The shrinking is determined by a ratio
r € (0, 1), termed the model width. A “shrunk” MLP has the same
input and output shapes and the same number of layers as the orig-
inal MLP. The difference is that a shrunk MLP with model width
r € (0,1) keeps the most important r X L channels of hidden layers,
where L represents the number of channels in each hidden layer.
As such, we meet various computation demands with a single data
representation.

Challenge. An issue with this adaptation strategy is the shrunk
MLP is not well-trained like the original MLP. Hence, the rendering
quality may degrade after adaptation. One possible solution to
this problem is the progressive training technique [7, 54, 55]. First,
it trains one MLP until convergence. Second, it jointly trains the
existing MLP and a shrunk MLP until convergence by randomly
sampling one of them in each training iteration. It progressively
performs the above steps to incorporate as many shrunk MLPs with
smaller model widths as needed. With this approach, we can jointly
train an MLP with multiple shrunk MLPs.

Aiming at flexibility in computation adaptation, it is natural
to optimize MLPs in NeRF with a wide range and a dense set of
model widths, e.g., 1,2,..., 100 channels in hidden layers. Unfor-
tunately, this choice degrades the quality of NeRF, e.g., 1-2 dB in
PSNR, compared to the same MLP trained individually. The reason
is that MLPs of different model widths operate at different sets of
parameters when optimized individually. Although they achieve
reasonable performance when optimized together, they affect each
other and compromise the performance, which becomes more no-
ticeable when we optimize a large number of MLPs simultaneously.

AN
E z 0‘ \70
g & (W) : /\ :
< E . O
s 5
g g oN)
:

O
Width=1 Width=2/M Width=1/M
#Channels=MN #Channels=2N #Channels=N
MLP with Constrained Progressive Training
#Channels=1,2,..., MN

Traditional MLP
#Channels=N

Figure 4: The traditional MLP has a fixed computation com-
plexity. Constrained progressive training allows one MLP to
adapt to different computation complexities.

Constrained progressive training. Our insight is that a wide
range and a dense set of channels are not necessary in practice
for two reasons. First, real-world devices’ computation capacity is
discrete and sparse. Second, the performance of an MLP marginally
improves with the model width when its number of hidden layer
channels exceeds a threshold, which is validated in Figure 23.
Therefore, we propose to perform progressive training in a con-
strained way which includes only a sparse set of MLPs with a
limited number of channels in hidden layers. Given the channel
number of MLP N in an off-the-shelf NeRF representation, we opti-
mize MLPs shrunk to mN channels, where m = 1,2, ..., M. M and N
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#Channels=16 #Channels=64

Width=0.25 Width=1
PSNR: 32.2dB PSNR: 33.46dB
SSIM: 0.9612 SSIM: 0.9685

LPIPS: 0.0189 LPIPS: 0.0142

Figure 5: Constrained progressive training allows one MLP
to adapt computation for different qualities.

are configurable parameters. Figure 4 compares a traditional MLP
and how an MLP with constrained progressive training adapts to
different computation complexities and saves storage costs. Figure 5
illustrates how constrained progressive training allows the adapta-
tion of the MLP to achieve different visual quality with significant
improvement in the green bounding box.

Vector Dimension Fine-tuning
10 4 11 13 10 4 10 12
' I| : '|

LPE

Finetuned
0 ﬂﬂﬂ

Feature Vect Texture Grids MLP
cature Veclor ith Bit Depth (3)

LSB 0 0 Texture Grids
Feature Vector with Bit Depth 4)

Truncatlon

Figure 6: Truncation-based bitrate adaptation involves trun-
cating values in the feature grids according to different bit
depth and fine-tuning MLP.

3.1.2  Truncation-Based Bitrate Adaptation. Bitrate adaptation in-
volves MLP, geometry, and feature grids. MLP is less significant
for bitrate adaptation in the mobile scenario as it is typically light-
weight to support a real-time frame rate [12]. For instance, the
MLP is around four orders of magnitudes smaller than the total
size of the data representation of MobileNeRF [12] (Figure 20(c)).
Regarding the adaptation of the size of geometry, it can be achieved
by popular methods like Draco [21]. Hence, we focus on feature
grids.

While it is possible to apply traditional or neural compression
approaches [9, 10, 46, 50, 52] to the compression of feature grids,
they would incur computation-intensive operations at the render-
ing side. Aiming at computation-efficient bitrate adaptation, we
draw insights from a previous study [12]. This study shows quan-
tizing the floating point feature values in the feature grids to 8 bits
minimally affects rendering quality. Hence, a natural thought is to
adapt the bitrate via the truncation of the bit depth. Specifically,
given a bit depth d, we keep the top-d most significant bits (MSB)
of the binary representation of each feature value while iteratively
replacing the least significant bits (LSB) with zeros, which will not
be transmitted over the network to reduce bitrates, as shown in
Figure 6. For example, a binary representation of 1011 becomes
1010 after truncation based on the bit depth 3. In this way, we can
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effectively adapt the bitrate without causing additional computa-
tion on the rendering side while maintaining reasonable rendering
quality.

Challenge. Nevertheless, truncation introduces errors in feature
values, which result in visible glitches in the rendered image, as
shown in Figure 7 (left). The glitch gets more noticeable with smaller
bit depths, which introduces more errors. Although we can train
data representations with different configurations of bit depths in
truncation, there would be a significant training cost and storage
cost.

fWith\k ﬁgﬁ—mnin g
PSNR:21.8dB
SSIM: ,5992°%

 LPIPS: 02597

SSIM: 0.5023
_LPIPS: 0:3342¢.

N As<e .- e

Figure 7: Selected MLP fine-tuning improves quality.

Selected MLP fine-tuning. The key intuition is that the loss in
visual quality caused by truncation can be effectively mitigated by
fine-tuning. As illustrated in Figure 7, fine-tuning the MLP improves
the quality in PSNR from 16.77 dB to 21.8 dB with noticeable visual
improvement within the purple rectangle. More importantly, as
mentioned earlier the MLP in NeRF for mobile rendering is typically
lightweight, fine-tuning the MLP and storing it for all possible bit
depths would have only a small impact on the training time and
storage.

Moreover, we notice that the impact of fine-tuning diminishes
(less than 0.1 dB gain in PSNR) when the bit depth gets large enough.
This is reasonable as a larger bit depth tends to introduce fewer
errors in truncation, which makes the glitch less visible and fine-
tuning less necessary. In our approach, we selectively fine-tune for
smaller bit widths between 1 and D, which further reduces the time
and storage cost of fine-tuning. Here, D is a configurable parameter.

3.2 Context-Aware Serving

Context-aware serving aims to properly configure the NeRF repre-
sentation depending on the user’s context. It scales serving by first
reducing the configuration dimension (§3.2.1) and then decoupling
the serving process (§3.2.2).

3.2.1 Configuration Dimension Reduction. We reduce the configu-
ration dimension by fixing a few configuration knobs to constant.
As such, the original problem (Equation 3) can be solved more effi-
ciently in a smaller design space, i.e., the set of all feasible configu-
rations. To illustrate, we represent the design space of the original
problem ¥ in Equation 4.

Y={0|0=1(61,02,....0n)}, 4)

where 6 represents a configuration, n is the number of configuration
knobs, and 6;,i = 1,2,...,n is one of the knobs. Equation 5 illus-
trates the reduced design space ¥;, ;, . ;, after fixing configuration
knobs indexed by iy, iz, ..., if. to constant.

Yiinnix = 1(01,00,...,0,) € ¥ | (0;,0i,,...,0;) = const}. (5)
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Challenge. While configuration dimension reduction is straight-
forward, the choice of the reduced design space is crucial and non-
trivial. The reduced design space must ensure the solution derived
from it is optimal, even with fewer possible configurations. In other
words, the solution derived from the reduced design space, i.e., the
local solution, must be the same as that derived from the original de-
sign space, i.e., the global solution. Otherwise, we might serve NeRF
with the sub-optimal configuration, compromising the latency.
Smoothness lookup table. We find two properties of the model
width that allow us to determine a reduced design space. Firstly,
the model width is negatively correlated with the smoothness (Fig-
ure 21). Secondly, a wider MLP improves quality while minimally
increasing the total size of the NeRF data representation, which is
dominated by the size of geometry and feature grids, as discussed
in §3.1.2. Put differently, a more complex MLP tends to have a better
trade-off between quality and size, as illustrated in Figure 22(b).

Based on these observations, we can prove the optimality of the
MLP-based reduced design space: if the model width of the MLP is set
to the largest value without violating the smoothness constraint, i.e.
the critical model width, the local solution derived with the critical
model width, i.e., the critical local solution, is the same as the global
solution.

Proor. Assume there exists a configuration in the global solu-
tion with a model width unequal to the critical model width. If the
global solution has a larger model width, given the first observation,
it would violate the smoothness constraint. If the global solution
has a smaller model width, based on the second observation, it will
have a worse quality-size trade-off than that of the local solution,
making it sub-optimal. Therefore, the model widths of configura-
tions in the global solution must equal the critical model width. By
the definition of the reduced design space, we can prove the critical
local solution is the same as the global solution. O

According to the above proof, we can create the reduced design
space with the model width. In particular, we devise a smoothness
lookup table that maps the model width of the MLP to the smooth-
ness. Then, the configuration dimension can be reduced by fixing
the value of the model width that maps to the smoothness closest
to the constraint. If there are multiple model widths mapped to
the same smoothness, we only keep the largest one for the best
quality-size trade-off. For context-awareness in serving, given a
smoothness constraint, we configure the model width that maps to
a smoothness closest to the constraint. The lookup table is created
per device and per scene type. However, its creation is lightweight,
taking less than one minute for each device.

Table 1: The configurable knobs and their ranges.

Approach Knobs with Ranges
PNG | BD (1-8), CF (0-10), CS (0-4), PNG-CL (0-9)
Draco QP (6-14), QT (10-14), Draco-CL (0-6)

3.2.2  Decoupled Serving. After reducing the configuration space,
this part focuses on balancing the quality and size with the re-
maining configurations, involving feature grids and geometry. The
feature grids are compressed by a widely used lossless image com-
pression algorithm, Portable Network Graphics (PNG) [5]. PNG is
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Figure 8: Modeling the correlation between multiple knobs
and metrics is complex. The size and quality tend to increase
with BW, QP, and QT but have no clear correlation with CF,
CS, PNG-CL, and Draco-CL.

configurable by the bit depth (BD), compression filter (CF), compres-
sion strategy (CS), and compression level (PNG-CL). The geometry
is compressed by an open-source library for 3D data compression,
Draco [21], which can be adapted via the quantization bits for
the position attribute (QP), the quantization bits for the texture
coordinate attribute (QT), and the compression level (Draco-CL).

The name and range of configurable knobs are summarized in
Table 1, where the ranges are chosen to ensure the change of a knob
value does affect quality or size and does not produce significant
artifacts. For the upper limits of QP and QT, we set them to the same
value 14, a value beyond which does not affect quality or size. To
prevent perceivable artifacts, we configure the lower limits of QP
and QT to 6 and 10, respectively. For the upper limit of Draco-CL,
we set it to 6, a value beyond which has no impact on quality or
size. Other configurations in Draco like the quantization bits for
the normal vector attribute (QN) and any generic attribute (QG) are
ignored as they have no impact on the compression of geometry.
Challenge. The mapping from values of configurable knobs to
quality and size is complex to model, as shown in Figure 8. While we
can derive the optimal configuration for Equation 3 by exhausting
all possible combinations of configuration knobs in Table 1, these
configuration knobs result in a vast design space of 1.386e® possible
configurations. Such an exhaustive approach fails to scale to a large
number of contexts a server may encounter online.
Quality-size profile. Our insight is to decouple the problem in
Equation 3 into an offline MOO problem and an online searching
problem. Instead of exhausting the original design space, solving
the offline MOO problem allows us to avoid a large number of sub-
optimal configurations in the original design space. With a reduced
design space, online searching scales more easily to a large number
of contexts.

Specifically, we formulate the MOO problem in Equation 6.

argmax f(6) = (f1(0), f2(0)) = (Q(6),-5(0)),

fe¥

(6)

where ¥ represents the set of feasible configurations as described
in Table 1. The MOO problem jointly optimizes metrics of quality
(Q) and size (S) over all feasible configurations. The solution to the
MOO problem is a set of Pareto optimal configurations, which is
also termed the quality-size profile. Here, Pareto optimal means the
configuration is not outperformed by another configuration in one
of quality and size metrics without compromising the other metric.
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To formally define the quality-size profile, we introduce the
dominance relation < that compares the goodness of different con-
figurations as shown.

fi(® < fi(0) Vi=1.2
fi(0) < f£i(0) Fi=1,2
Based on the dominance relation, the quality-size profile Q can be
formally expressed as shown.

Q={0]-30's.t.0<0,6 €¥}. (8)

Figure 9 illustrates the Pareto optimal configurations (red stars)
in contrast to sub-optimal ones (black circles). The optimal config-
uration for different contexts (blue, orange, and green lines) can be
efficiently searched by skipping sub-optimal configurations.
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Figure 10: The decoupled ap-
proach scales better than re-
peatedly exploring configu-
rations.

Figure 9: MOO reduces con-
figurations by finding the
Pareto optimal configura-
tions offline.

Figure 10 compares the number of configurations to be explored
with and without decoupled serving. Decoupled serving explores
1.386€° total configurations offline, which result into 50 Pareto op-
timal configurations (detailed in §3.3). Therefore, when the number
of contexts is zero, decoupled serving explores more configurations
than serving without decoupling, which involves no offline cost.
However, when the number of contexts increases, the number of
configurations that serving without decoupling requires drastically
increases. In contrast, decoupled serving only needs to explore 50
configurations for each additional context, which scales better than
serving without decoupling.

3.3 Profiling Optimizer

The profiling optimizer aims to make offline profiling in §3.2.2 effi-
cient. As the relation between the design space and the metrics is
complex, we leverage evolutionary algorithms that make profiling
efficient with fewer evaluations of configurations. In particular, we
utilize the Non-dominated Sorting Genetic Algorithm II (NSGA-
1I) [14], one of the most adopted evolutionary algorithms. NSGA-II
starts by generating an initial population of configurations, rep-
resenting a potential solution to the MOO problem. Then, these
configurations are evaluated to derive objectives. Based on the eval-
uation, these configurations will be sorted, selected, mutated, and
recombined to form the next generation of configurations, which
balances exploration (the diversity of all objective space) and ex-
ploitation (the refinement of the existing Pareto front). As NSGA-II
iteratively evolves more generations, the new generation better
approximates the Pareto front. To further accelerate NSGA-II, we
adopt two approaches: parallelism (§3.3.1) and efficient sampling

(§3.3.2).
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Figure 11: More generations improve profiling.

3.3.1 Parallelism. Offline profiling involves evaluating a design
space consisting of all possible combinations of configuration knobs.
For each scene, an intuitive way is to have a single thread of NSGA-
II to explore all configuration knobs of its representation jointly.
Challenge. However, even with NSGA-II, it is time-consuming to
explore this design space. The most computation-intensive part is
the evaluation of configurations. While the size resulting from each
configuration can be measured easily, the quality must be evaluated
by rendering the scene multiple times on the mobile device and
comparing it with the ground truth, which is slow. To make matters
worse, the profiling duration increases linearly with more possible
configurations of MLPs.

MLP-based parallelism. The analysis in §3.2.1 shows that the
profile can be generated from a single reduced design space based
on MLP. Therefore, it is not necessary to explore all configura-
tion knobs jointly. Instead, we can parallelize the profiling with
multiple threads, each of which has a unique configuration of the
MLP, which greatly speeds up profiling and scales to multiple MLP
configurations.

3.3.2 Efficient Sampling. Following common practice, we set the
population size of NSGA-II to 50. Figure 11 illustrates how the
number of generations N = 1, 10, 20 improves profiling using the
MobileNeRF model [12] using the “chair” scene from the realistic
scene dataset [35]. Every point represents the size (x-axis) and
the quality (y-axis) of one evaluated configuration. The quality is
measured by PSNR across all training views between the evaluated
configuration and the best-quality configuration. The best-quality
configuration adopts default lossless PNG and Draco compression
with the largest model width. For reference purposes, we use the
profile derived after a large number of generations, 50 in our case, as
the groundtruth profile (GP). Then, we can identify configurations
explored in different generations that are Pareto-optimal (denoted
by stars), i.e., existing on GP, or sub-optimal (denoted by circles), i.e.,
not in GP. For comparison, the baseline (the default implementation
of MobileNeRF) is illustrated by a triangle.
Challenge. While more evolutions improve profiling by finding
more Pareto-optimal configurations on the GP, it linearly increases
the profiling time. In addition, to comprehensively assess the visual
quality, it is natural to consider as many views as possible. However,
this would create a substantial computation cost in evaluation and
prolong profiling.
Early stopping and view selection. We adopt early stopping and
view sampling to reduce the profiling duration.

The intuition for early stopping is that the profiling stops im-
proving, i.e., converges, after a certain number of generations. We
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Figure 13: No need to sample a large number of views.

use several performance indicators to illustrate the convergence
from different perspectives as follows.

e Hypervolume calculates the area, which is dominated by the ex-
plored Pareto-optimal configurations with respect to a reference
point. In our case, we set the x-axis and y-axis of the reference
point to the size of baseline and zero. The grey area in Figure 11
illustrates the hypervolume.

e Max/min visual quality measures the maximal and minimal visual
quality in explored configurations.

e Max/min size measures the maximal and minimal downloading
size in explored configurations.

o Cluster number measures the number of clusters in the profile, se-
lected based on the observation that the profile tends to group in
several clusters (Figure 11). It is derived using the Density-Based
Spatial Clustering of Applications with Noise algorithm [16] by
setting the maximum distance between two neighborhood sam-
ples to 1 and the minimum number of samples per cluster to
1.

Figure 12 exemplifies how the above performance indicators sta-
bilize when the number of generations increases, with the same
experimental setup as Figure 11. Empirically, we find 20 to be a
sufficient number of generations for profiling to converge, which
prevents prolonged profiling duration on generations that mini-
mally affect the profile.

The key observation for view sampling is that the number of
views does not affect the profiling result significantly as long as it is
above a threshold. Figure 13(a) shows the hypervolume of profiles
evaluated using all test views of the “chair” scene but derived from
different numbers of training views, with other setups the same
as Figure 11. We empirically find that 10 views are sufficient to
get approximately the same profile as using all views for different
scenes. Figure 13(b) demonstrates 10 views and 100 views produce
similar profiles for the “chair”. Therefore, we can sample a small
number of views, e.g., 10, in profiling without compromising the
performance.
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4 IMPLEMENTATION

Model and training. Aiming at rendering NeRF on mobile devices
and demonstrating NeRFHub’s capability to handle a complex data
representation, we adopt MobileNeRF [12] as the basic model, which
runs on most mobile devices in real-time consisting of geometry,
feature grids, and MLP. The model is implemented and trained
based on Jax [6]. The original training procedure of MobileNeRF
consisted of continuous training (using continuous opacity), bi-
narized training (using quantized opacity), and post-processing
(removing triangles with zero opacity) [12]. We apply shrinking-
based computation adaptation (§3.1.1) with M = 4 and N = 16
to the continuous training stage, continuing the last phase of pro-
gressive training that randomly samples model width in binarized
training, and apply truncation-based bitrate adaptation (§3.1.2) with
D = 4 in the post-processing stage. Here, the values of M and N are
empirically chosen to ensure (1) sufficient performance differences
between different MLP configurations and (2) a slight impact of a
progressive training procedure on each configuration, compared
to a separate training procedure. The value of D is set to 4 as the
quality drop is negligible when the bit depth is greater than 4.
Serving. The server is implemented with Flask on a Linux desk-
top featuring dual NVIDIA Geforce RTX 3090 Ti GPUs and an
AMD Ryzen 9 CPU running at 4.95GHz. We implement the neural
renderer in an HTML file using Javascript and WebGL with the
THREE js library. The renderer is fetched by the client from the
server and runs on a Chrome browser.

Profiling. The client runs on the same desktop as the server. To
assess the visual quality on the Chrome browser using a server
without a display, we utilize the web driver from the Selenium
library in Python, which can simulate the Chrome browser with
the headless mode in the background.

5 EVALUATION

Dataset. We evaluate two datasets: the 8 synthetic 360-degree
scenes from NeRF [35], and the 8 forward-facing realistic scenes
from LLFF [34]. The rendering resolutions are 800x800 for synthetic
and 1008x756 for realistic.

Hardware and networking. We consider Microsoft Surface, Dell
Precision 5510 laptop, iPhone 12, and MacBook Pro for the client
hardware in our experiments. The server is wired to the campus net-
work via a 1Gb cable with 1000 Mbps NIC. The client is connected
to on-campus WiFi with 550 Mbps download speed, measured by
GoogleFiber [17].

Baseline. We compare our system to a baseline system that trains
NeRF according to the original training procedure of MobileN-
eRF [12] and fetches the default NeRF representations with lossless
PNG compression (for feature grids) and lossless DRACO compres-
sion (for geometry).

Metrics. Performance metrics are measured as follows. For clarity,
we use the up arrow T to denote the metric whose higher value
means better and the down arrow | otherwise.

e The latency measures the time duration between the moment
a user requests a scene from the web page and the moment the
scene is fully rendered, which is averaged over five requests per
scene.
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o The quality of a scene is measured between a view and the same
view sampled from a scene fetched using the highest-quality
setting: lossless PNG and Draco compression with the most com-
plex MLP averaged over all test views specified by NeRF [35] and
LLFF [34] datasets.

e The smoothness is quantified by the number of times WebGLRenderer ()

from THREE js can be called in a second, which is averaged over
five seconds after rendered.

Constraints. We configure the quality constraint via a quality
tolerance value, the acceptable amount of quality drop compared
to the baseline, and the smoothness constraint via a configured
smoothness value, a targeted smoothness to attain. The quality
constraint and smoothness constraints are defaulted to zero and 30
fps in §5.1, but adapted in §5.2.

5.1 Overall Performance

Latency. Figure 14 reports the latency of NeRFHub, compared to
the default configuration, is effectively reduced on different mobile
devices by 56%-66% on synthetic scenes and 26%-55% on realistic
scenes. We observe a more significant reduction in 1) synthetic
scenes than realistic scenes and 2) more powerful devices, e.g., Mac-
Book Pro, than less powerful ones, e.g., Surface. The reason is that
synthetic scenes involve less data to render a scene than realistic
scenes (Figure 3(b)) and a more powerful device can perform ray-
marching computation at a faster rate (Figure 21). Therefore, we
can render using a more complex MLP with synthetic scenes or
more powerful devices without violating smoothness constraints,
which has better trade-offs of quality and size (Figure 22).

Size and quality. Figure 16 shows the size and quality (measured
by PSNR, SSIM, and LPIPS) of NeRFHub on different mobile devices
and the baseline. The size is reduced by 70%-75% on synthetic scenes
and 11%-57% on realistic scenes, where more reduction is shown
on more powerful mobile devices. The quality in PSNR is similar
between ours and baseline with less than a 1dB difference. Although
NeRFHub does not explicitly use the SSIM and LPIPS metrics, the
quality degradation is less than 0.02 in SSIM and 0.01 in LPIPS.
Smoothness. Figure 15 shows the rendering speed of NeRFHub
on different mobile devices. The rendering speed of NeRFHub is
nearly real-time (higher than 30 fps) or as good as the baseline.
This result demonstrates that our design effectively adapts the
rendering speed to a value close to the constraint (30 fps). Such a
capability allows NeRFHub to gain better trade-offs of quality and
size without violating the smoothness constraint. Note that some
less powerful devices like the Surface do not support a rendering
speed of 30 fps even with the most lightweight configuration of
MLP. In this case, NeRFHub maintains the same rendering speed
as the baseline.

5.2 Varying Experiment Environments

Vary smoothness requirements. We evaluate how NeRFHub
adapts to different configured smoothness of 15, 30, 45, and 60
fps. For illustration purposes, we fix the mobile device to iPhone
12 as it covers a wide range of frame rates from 10 fps to 60 fps
within our design space. However, the observed trend in Figure 17
should apply to all mobile devices. Figure 17 shows the increase in
configured smoothness increases the latency (Figure 17(a)), actual
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Figure 14: NeRFHub saves the latency by 56%-66% on synthetic
scenes and 26%-55% on realistic scenes.
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Figure 16: NeRFHub reduces the size on synthetic (70%-75%) and realistic (11%-57% ) scenes with similar quality.

smoothness (Figure 17(b)), and size (Figure 17(d)) while minimally
affecting quality (Figure 17(c)). The intuition for increased latency
is that a higher smoothness demands a less computation-intensive
MLP, which must be paired with a larger size to render the scene
at the same quality.

Vary visual quality requirements. We show NeRFHub adapts
to different quality requirements by changing the quality tolerance
from 0 to 2 dB. Figure 18 shows a higher quality tolerance reduces
the latency (Figure 18(a)), the visual quality (Figure 18(b)), and the
downloading size (Figure 18(c)). The intuition behind this is that
the reduced quality requirement allows smaller data representation,
which reduces the downloading size and the latency. It is worth
noting that the quality tolerance has no impact on the rendering
speed.

Vary network conditions. We vary the network conditions be-
tween a high-speed WiFi network: on-campus WiFi with 550 Mbps
download speed and a normal-speed WiFi network: off-campus
WiFi with 220Mbps download speed. The speed is measured by
GoogleFiber [17]. Figure 19 shows 65%-71% latency reduction for
the synthetic scene and 55% latency reduction for the realistic scene.
A more noticeable reduction is found in the normal-speed WiFi
network, as the latency is more dominated by the network trans-
mission latency, which benefits more from a smaller size. We do not
report results on slower network speeds, e.g., 4G and 3G LTE, be-
cause the latency, usually tens of seconds or minutes, is unrealistic
even though the reduced latency would be more prominent.

5.3 Analysis

Computation and storage cost. Figure 20(a) compares the train-
ing duration of MobileNeRF (Default) and NeRFHub (Ours), aver-
aged over all scenes. NeRFHub spends three times the duration
in continuous training (CT) than MobileNeRF due to constrained
progressive training (§3.1.1), almost the same duration in binarized
training (BT), and twice the duration in post-processing (PP) due
to selected MLP fine-tuning (§3.1.2). Overall, NeRFHub requires
almost twice the training duration of MobileNeRF.

Figure 20(b) shows the profiling duration for different hidden
layer channels of MLP, averaged over all scenes. The profiling dura-
tion is between 7 to 11 hours per MLP per scene. The profiling of a
larger model width is more time-consuming because the rendering
with them during profiling involves more computation.

Figure 20(c) contrasts the storage size of different data repre-
sentation components and in total for MobileNeRF (Default) and
NeRFHub (Ours). There is a substantial increase in the size of MLPs
due to the storing of MLPs for selected MLP fine-tuning (§3.1.2).
However, as the size of MLP is negligible compared to other com-
ponents, the impact on the total size is insignificant. The sizes of
the feature grids and geometry, in particular, are slightly increased
due to the constrained progressive training procedure (§3.1.1).

Overall, NeRFHub incurs an additional time and storage cost
than a default NeRF implementation like MobileNeRF. However,
the cost can be amortized by NeRFHub’s capability to serve a wide
range of mobile devices and diverse rendering speed and visual
quality requirements.

Profiles. Figure 21 presents the smoothness on different devices,
scenes, and numbers of channels, which is saved in the LUT for
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Figure 20: The cost for context-aware NeRF serving.

smoothness adaptation (§3.2.1). Figure 22(a) shows the quality-size
profile for a single model width (0.5) where the oval characterizes
the distribution of the profiles and the point represents the baseline
without any adaptation, which is used for quality adaptation (§3.2.2).
Figure 22(b) zooms in the profile of “leaves”, which describes the
profile for MLPs with hidden layer channels of 16, 32, 48, and 64.
Benefits of constrained progressive training. Figure 23 demon-
strates the increased quality in PSNR of NeRFHub compared to that
of the baseline. We notice that the loss of visual quality is negligible
with the same hidden layer channels (16). There is also a substantial
increase in the quality as the model width increases, which shows
that constrained progressive training (§3.1.1) effectively adapts the
quality.

Benefits of selected MLP fine-tuning (SMF). Figure 24 illustrates
the visual quality with and without SMF at different bit depths.
SMF significantly improves the visual quality at most by 5 dB. The
benefits diminish as the bit depth increases, validating the design
of SMF (§3.1.2).
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tages (§2.1). Still, we believe the existing system optimizations on
volumetric data would be complementary to ours.

Resource allocation. Resource allocation for images and video
analytics has been well-studied [8, 9, 23, 28, 31, 57, 58]. Typically,
existing works first generate a profile between the resource, e.g.,
GPU time, CPU time, or a utility function, e.g., F1 score or accuracy.
This process, referred to as profiling, explores the combinations
of various control knobs, e.g., resolution, sampling rate, and an-
alytical model, and find Pareto optimal configurations. Profiling
be accelerated with various techniques including parallelism [57],
pruning [8], heuristics [58], and Bayesian optimization [9, 23, 28].
These techniques are considered complementary to our profiling
optimizer (§3.3). Based on the profile, proper configurations are cho-
sen to maximize the utility with constraints. In contrast, we focus
on the resource allocation of a novel problem, which involves di-
verse knobs (MLP, feature grids, and geometry) and targets (latency,
smoothness, and quality).

7 DISCUSSION

Cost for determining hyper-parameters. We heuristically deter-
mine the hyper-parameters M, N, and D in NeRFHub. The values
of M and N are decided after heuristically evaluating different
combinations of M and N, e.g., a grid search, each of which takes
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roughly 20 hours. While this process may seem time-consuming,
the values of M and N are shared among similar types of scenes
with the same NeRF variant. The choice of D is determined via
bit truncation at different depths and rendering at various angles,
which is lightweight by taking less than one minute.
Generalizability to other NeRF variants. In this work, we focus
on a specific variant of NeRF optimized for mobile rendering, i.e.,
MobileNeRF, to demonstrate the effectiveness of our framework.
Still, we aim NeRFHub as a general-purpose framework that gener-
ally applies to NeRF variants that (1) employ a neural network for
rendering and (2) have a multi-modal data representation. While
the values of hyper-parameters, e.g., M, N, and D, are specific to the
NeRF variant, e.g., MobileNeRF [12], which might not directly apply
to other variants, the intuitions for choosing them are generally
applicable.

Limitations of NeRF and the positioning of NeRFHub. NeRF
at its current stage has several inherent limitations such as the
long training duration, the large size of data representation, and
the significant computation overhead for rendering. By applying
NeRFHub to one of the NeRF variants, we are likely to experience its
inherent limitations. However, eliminating the inherent limitations
of NeRF is not our focus. Instead, NeRFHub aims to serve NeRF
to clients with the optimal trade-offs of various metrics of interest
and reliably meet the constraints set by clients.

Storage cost. Aiming at a low-latency experience, the data repre-
sentations in NeRFHub with different configurations are generated
before serving. Although this strategy potentially leads to a large
storage space, the profile can be pruned to mitigate the storage cost.
As shown in Figure 22, a certain amount of configurations have

96

Bo Chen!, Zhisheng Yan?, Bo Han?, Klara Nahrstedt!
University of Illinois at Urbana-Champaign, 2George Mason University

L || 60 ’
’l [ Baseline v
& 36110y < > & 50 S
. %
=34 l = e o o o
€32 " B 5B
%3 ’ 4 Profile (Scaled down 2 30 oo aﬁu
& ’ | I_for illustration) & Er 16 v
! b 32 *  Baseline
28 , B leaves 20 r
] 48
26 i u
0 50 100 150 200 50 100 150 200
Size (MB) Size (MB)
(a) All (b) Leaves

Figure 22: Quality-size profile.

similar performance in visual quality and size. These configurations
can be combined to reduce configurations on the profile, reducing
the storage cost. However, this is beyond our paper.

Utility function. While we focus on minimizing latency in this
paper, the optimization target in Equation 3 can generalize to other
utility functions, e.g., quality and smoothness, or a weighted sum
of them. NeRFHub can generalize to these utility functions easily
with the decoupled approach like §3.2.2 that builds a profile offline
and performs lightweight optimization online.

Quality metrics. NeRFHub focuses on the PSNR metric for quality.
While this achieves acceptable performance on SSIM and LPIPS,
we believe explicating adopting SSIM and LPIPS in profiling would
further advance the benefits of NeRFHub regarding these metrics.

8 CONCLUSION

We design NeRFHub, a context-aware NeRF serving framework
for mobile immersive applications. NeRFHub achieves context-
awareness with a proactive training module that flexibly recon-
figures computation and bitrate for NeRF, a context-aware serving
module that configures NeRF representation based on the context,
and a profiling optimizer that makes profiling for NeRF serving effi-
cient. The evaluation shows NeRFHub significantly reduces latency
of the baseline without compromising quality and smoothness,
which demonstrates the effectiveness of a context-aware design.
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