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ABSTRACT
Neural Radiance Fields (NeRF) are recognized for their exceptional
photo-realism quality and superior modeling capabilities compared
to traditional methods. NeRF empowers a novel application, termed
NeRF serving. It delivers data from a server to a mobile client and
renders 3D scenes on the client, facilitating a broad spectrum of mo-
bile immersive applications. Towards a satisfactory user experience,
we must serve NeRF with low latency while meeting constraints
of high visual quality and real-time smoothness. Existing NeRF
variants easily violate the constraints or cause an unnecessarily
high latency when the diverse applications, mobile devices, and 3D
scenes, termed the contexts, change in real life. In this paper, we
present NeRFHub, a novel context-aware NeRF serving framework
for mobile immersive applications.NeRFHub adeptly manages stor-
age and computation costs, scales to diverse contexts, and swiftly
navigates the vast design space inherent in NeRF serving. The eval-
uation results show that NeRFHub serves synthetic objects with
56%-66% reduced latency and realistic scenes with 26%-55% reduced
latency when compared to the baseline without compromising
quality or smoothness.

CCS CONCEPTS
•Human-centered computing!Ubiquitous andmobile com-
puting systems and tools; •Computingmethodologies!Ren-
dering; Neural networks; • Networks ! Network services.

KEYWORDS
Immersive Computing, Neural Rendering, Multi-Objective Opti-
mization, Model Training, Photo-realism

ACM Reference Format:
Bo Chen1, Zhisheng Yan2, Bo Han2, Klara Nahrstedt1, 1University of Illi-
nois at Urbana-Champaign, 2George Mason University . 2024. NeRFHub: A
Context-Aware NeRF Serving Framework for Mobile Immersive Applica-
tions. In The 22nd Annual International Conference on Mobile Systems, Appli-
cations and Services (MOBISYS ’24), June 3–7, 2024, Minato-ku, Tokyo, Japan.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3643832.3661879

ACM ISBN 979-8-4007-0581-6/24/06
https://doi.org/10.1145/3643832.3661879

1 INTRODUCTION
Neural Radiance Fields (NeRF) [35] is an emerging technology
for modeling 3D scenes. NeRF models a 3D scene with a multi-
layer perception (MLP) neural network. It involves two major steps:
training and rendering. Training turns images capturing the same
scene from di�erent view angles and locations into a. Rendering
derives a 2D image based on the given viewport by evaluating
the MLP. This unique 3D scene modeling technology with neural
networks allows NeRF to outperform traditional methods based on
mesh and point clouds, with better photo-realism [19] andmodeling
capability [11, 26, 27, 35, 45]. Due to the limitation of the original
version of NeRF [35], numerous variants [12, 18, 25, 37, 40–42]
emerges, which are specialized for the training and rendering speed,
and the dynamics of scenes.

NeRF has already seen adoption in various mobile immersive ap-
plications to provide immersive traveling, gaming, medical imaging,
and shopping experiences [13, 43, 48, 49, 53]. In these applications,
NeRF is created o�ine at a cloud server, delivered over the Inter-
net, and rendered at the mobile device. This process is referred to
as NeRF serving. Towards better user experience, NeRF serving is
assessed by metrics of quality [51, 59] (the closeness between the
rendered scene and the original scene), smoothness [4] (the speed
for a scene to be rendered), and latency [15] (the duration between
the time when a user requests a scene and the time the �rst frame
of the scene is rendered).

Speci�cally, we model NeRF serving as a problem that minimizes
the size of data representation with the constraints of quality and
smoothness. We term the user- or application-de�ned parameters
in NeRF serving, e.g., application, device, scenes, and NeRF vari-
ant types and constraints values, as the context. Given a speci�c
context, we de�ne the con�guration as the remaining con�gurable
parameters controlling how the data is transmitted and rendered
in NeRF, e.g., the training hyper-parameters and neural network
speci�cations. The set of con�gurations is the design space of NeRF
serving.

In realistic applications, the context varies easily in reality as the
application has diverse considerations and the user has varied pref-
erences. In contrast, the con�guration for existing NeRF variants is
hardly con�gurable as any change in what is to be transmitted and
how the scene is rendered must be followed by a time-consuming
training process in NeRF. To make matters worse, NeRF variants
are mostly designed with no knowledge of the context. As a result,
there is often a mismatch between the actual context and the NeRF
variant, causing the violation of constraints or sub-optimal latency.

We presentNeRFHub, a context-aware NeRF serving framework
for mobile immersive applications. NeRFHub �rst turns an o�-
the-shelf NeRF variant and multi-view images through a special
training procedure into a unique NeRF data representation, whose
computation complexity and bitrate are �exibly con�gured. Based
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on the context of a request for a 3D scene, NeRFHub appropriately
con�gures this data representation to minimize latency without vio-
lating other constraints. Finally, the con�gured data representation
is delivered to the mobile device and rendered. Realizing NeRFHub
necessitates solving three challenges.
#1 Resource-intensive con�guration adaptation. Optimizing
NeRF serving for a speci�c context requires adapting the con�gu-
ration of NeRF, which is resource-intensive. To adapt the computa-
tion overhead in rendering, a straightforward way is to derive data
representations with varying computation complexities. However,
the storage overhead would be prohibitive for a large number of
computation constraints. Regarding bitrate adaptation, we identify
two types of approaches for NeRF [47, 50]. One performs compres-
sion using a codebook, paired with a sophisticated MLP during
rendering to attain satisfactory quality [47]. The other introduces
computation-intensive operations like entropy decoding, inverse
quantization, and inverse 3D DCT in rendering. These approaches
introduce a signi�cant computation overhead for rendering, making
it impractical for mobile devices.
#1 Solution. Our intuition is to realize lightweight adaptation
through proactive training. First, lightweight adaptation can be
realized through the adaptive removal of parameters in the data
representation, without performing intensive computation. For in-
stance, the computation can be adapted by adjusting the number
of hidden layer channels in the MLP, instead of storing multiple
copies of data representation. A potential problem of such light-
weight adaptation is that the adapted data representation is not
well-trained like the original data representation, which may cause
quality degradation after adaptation. Proactive training is designed
to overcome this issue by tailoring o�ine training based on possible
adaptations of the data representation. Speci�cally, for computa-
tion adaptation, we alternate the MLP’s number of hidden layer
channels in training, allowing the data representation with di�erent
con�gurations of the MLP to be trained consistently. With proactive
training, we can adapt the con�guration in a lightweight manner
while avoiding quality degradation.
#2 Limited serving scalability.A straightforwardway for context-
aware serving is to exhaust con�gurations from the whole design
space and locate one that minimizes the downloading size without
violating constraints. However, for every context, we must repeat-
edly exhaust the whole design space, which makes it di�cult to
scale the serving to a large number of contexts.
#2 Solution. We have two insights to improve the serving scalabil-
ity. First, we prove that the optimal con�gurations in the original
design space are the same as in a reduced design space, where the
MLP con�guration is set to constant. Moreover, this MLP con�gu-
ration can be identi�ed by building a lookup table in constant time,
which enables NeRF serving with reduced complexity. Second, we
notice that the problem of NeRF serving can be decoupled into an
o�ine multi-objective optimization (MOO) problem and an online
searching problem. By solving the MOO problem o�ine, online
searching can be performed with a much smaller design space than
the original one, which scales easily to more contexts.
#3 Vast design space. Solving the o�ine MOO problem requires
evaluating a multitude of con�gurations, leading to a vast design
space of over a million possible con�gurations. Without existing
analytical models that map con�gurations to metrics, the reliable

way to �nd the optimal con�guration is to exhaust all possible
con�gurations, which is time-consuming.
#3 Solution. We tackle this problem with an evolutionary algo-
rithm that e�ciently explores the design space. To further acceler-
ate it, we adopt parallelism and e�cient sampling techniques. The
parallelism technique leverages the �nding that it is unnecessary
to jointly explore all con�guration knobs. Instead, we can �x the
con�guration knob to a few values, creating several reduced de-
sign spaces, which can be solved in parallel, accelerating pro�ling.
The e�cient sampling technique utilizes the fact that the pro�ling
outcome is not sensitive to the number of evolutions and evalu-
ated views in pro�ling. Therefore, we can make pro�ling e�cient
by reducing these numbers, with minimal impact on the pro�ling
outcome.

We evaluate NeRFHub in a realistic setting serving synthetic 3D
objects and realistic 3D scenes. Targeting the mobile scenario, we
consider a baseline system implemented atop MobileNeRF [12], a
state-of-the-art approach for neural rendering on mobile devices
without context awareness. The results show that NeRFHub saves
the latency of synthetic objects by 56%-66% and realistic scenes by
26%-55%. The quality of NeRFHub is comparable to the baseline
with a di�erence of less than 1 dB in Peak Signal-to-Noise Ratio
(PSNR). Moreover, NeRFHub’s smoothness is at least real-time (30
fps) or as good as the baseline.

We summarize our contributions as follows.
(1) We design and implement NeRFHub, a context-aware NeRF

serving framework.
(2) We adapt computation and bitrate in a lightweight manner by

leveraging proactive training.
(3) We scale context-aware serving to a large number of contexts

with a lookup table and o�ine MOO.
(4) We make pro�ling e�cient via parallelism and e�cient sam-

pling techniques.
(5) We evaluate NeRFHub in a realistic setting, which shows a

signi�cant reduction in latency without compromising visual
quality and rendering speed when compared to the baseline.

2 BACKGROUND AND MOTIVATION
2.1 Neural Radiance Fields (NeRF)
3D scene representation. NeRF represents a 3D scene as a 5D
vector-valued function whose input is a 3D location ÆG 2 R3 and a
2D viewing direction Æ3 2 R2 and whose output is the RGB radiance
Æ2 2 R3 and opacity f 2 R, as shown.

(Æ2,f) = �⇥ (ÆG, Æ3), (1)

where �⇥ is a learned multi-layer perception (MLP) with trainable
weights ⇥.
Rendering. Given a ray ÆA (B) = Æ> + B Æ3 whose origin Æ> and direction
Æ3 are de�ned by the camera, the rendered colors of this ray Æ⇠ (ÆA )
on the camera is an integral of the opacity-weighted radiance over
the bounds, B= and B5 , of the volume, as described in Equation 2.

Æ⇠ (ÆA ) =
π B5

B=
) (B)f (ÆA (B))Æ2 (ÆA (B), Æ3)3B, (2)

where ) (B) = 4�
Ø B
B=

f (ÆA (B ) )3B is the accumulated opacity.
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Figure 1: Pipeline of NeRF serving.

Advantages. NeRF has two main advantages.

• Photo-realism. In contrast to traditional methods [22, 30], early
novel view synthesis methods [33, 34, 44] and neural 3D represen-
tation methods [20, 38, 39], NeRF attains better visual quality [19].

• Modeling capability. NeRF can model complex visual e�ects,
e.g., transparent or translucent objects [35], varying lighting
conditions [45], the human head [26], style transfer [11, 27] better
than traditional methods like mesh-based or point-cloud-based
approaches.

A multi-modal data representation. Due to the limitation of
the original NeRF [35], NeRF has evolved into numerous variants.
These NeRF variants present a multi-modal data representation
mainly consisting of MLP, geometry, and feature grids.

• MLP produces the RGB radiance and opacity at a 3D location,
which is shared by most NeRF variants [35, 40–42].

• Geometry is a data structure describing how the scene is occupied
with voxels [25] or faces [12], which accelerates rendering [12, 25]
and training [18] by skipping unoccupied area in computation.

• Feature grids are pre-computed feature vectors, which facilitate
faster training [18, 37] and rendering [12, 25] and variable bi-
trates [47, 50] by shifting computation-intensive MLP operations
from online to o�ine.

Applications. NeRF �nds utility in various domains due to its
multifold advantages.

• Travelling. NeRF has been introduced to Google Maps to accu-
rately recreate the full context of a place like its lighting and the
texture of materials [43].

• Gaming. A plugin is introduced by Luma AI to enhance the
gaming experience by importing and rendering volumetric NeRFs
inside Unreal Engine 5 in real time [49].

• Medical imaging. NeRF has been adopted in medical imaging to
generate accurate 3Dmodels of internal structures from 2D scans,
potentially enhancing the precision of procedures and improving
patient outcomes [13, 53].

• Shopping. NeRF has been integrated into Taobao, a shopping app,
to provide new shopping experiences like allowing customers to
place virtual goods in a house [48].

2.2 NeRF Serving
Figure 1 describes NeRF serving, a critical technology for the afore-
mentioned applications, which derives NeRF data representation
via model training from a set of images with di�erent views, up-
loads the NeRF data representation to the cloud, delivers the NeRF

data representation to mobile devices and renders the 3D scene in
immersive applications.
Metrics. The metrics of quality, smoothness, and latency assess
the user experience of NeRF serving.
• Quality measures the closeness between a remotely rendered
scene and a baseline high-quality scene, e.g., a scene without loss
in compression. The quality can be assessed by visual metrics of
PSNR, SSIM [51], and LPIPS [59]. A higher quality means better
preservation of the details of the scene.

• Smoothness measures the rendering speed of a particular view
in a scene, which can be quanti�ed by the number of frames
being rendered per second [4]. A higher smoothness means less
lagging when a user changes the view.

• Latency measures the time it takes for a scene to be completely
visible to a user, similar to the latency of a HTTP request [15]. It
involves network transmission of the data representation from a
remote server to the local device and rendering the �rst frame
using transmitted data. A low response time causes less waiting
for the user.

Problem formulation. High quality, better smoothness, and low
latency are generic goals for NeRF serving. Because of the im-
portance of latency in multiple mainstream applications, we par-
ticularly focus on minimizing latency in this paper, with smooth-
ness and quality constraints. Still, our framework generalizes to
other utility functions as discussed in §7. Intuitively, the latency
is positively correlated with the size ( of the data representation.
Therefore, we formulate an optimization problem, as shown.

\⇤ = argmax
\ 2 

( (\ )

s.t. & (\ ) � &min

'(\ ) � 'min

(3)

 is the set of all feasible con�gurations.&min,'min are constraints
of quality and smoothness, respectively.
Signi�cance of contexts. The context of NeRF serving involves
the immersive application, mobile device, and 3D scene, altering
the trade-o�s between quality, smoothness, and size.

Firstly, immersive applications have di�erent constraints for each
metric, which alters hyper-parameters (&min,'min) in Equation 3.
For instance, the low quality can be tolerated in particular pixelized
games, e.g., Minecraft [1], Undertale [3], and Terraria [2], but not
in medical imaging where high quality is crucial for the precision
of procedures. In terms of smoothness, it is highly demanded in
gaming toward immersive gaming experiences [36] while it is less
important in non-urgent travel planning.
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Figure 3: The impact of mobile device and 3D scene on
smoothness, size, and quality.

To study the impact of mobile device and 3D scene, we measure
di�erent metrics on MacBook Pro (MBP), iPhone 12 (iPhone), Dell
Precision 5510 laptop (Dell), and Microsoft Surface (Surface) us-
ing MobileNeRF [12] with synthetic [35] and realistic [34] scene
datasets. Figure 3 shows smoothness (average), size (CDF), and
quality (CDF).

Secondly, mobile devices cause varying smoothness of the same
data representation and the impact of mobile devices varies in
di�erent scenes. A powerful device like MBP can render roughly
3⇥ faster than a less powerful one, Dell, on realistic scenes. While
Surface has better smoothness than Dell on synthetic scenes, Dell
demonstrates better smoothness on realistic scenes, which is likely a
cause of di�erent acceleration strategies for rendering with WebGL
in MobileNeRF.

Thirdly, 3D scenes have diverse smoothness, sizes, and quality.
As shown in Figure 3(a), the rendering speed is generally faster
on synthetic scenes. In Figure 3(b), synthetic scenes are generally
smaller in size than realistic scenes, and the size of scenes of the
same type (realistic or synthetic) can vary by one magnitude. Fig-
ure 3(c) illustrates synthetic scenes generally have higher quality
than realistic scenes, and the quality of scenes of the same type
(realistic or synthetic) can vary by at most 11 dB.

The context is crucial as the solution of Equation 3 derived for
one context might violate the constraints or achieve sub-optimal la-
tency when the context varies, which occurs easily under a realistic
setting.

2.3 Challenges
The varying contexts require a context-aware design to optimally
solve Equation 3, involving three challenges.

(1) Resource-intensive con�guration adaptation: existing solutions
for computation and bitrate adaptation of NeRF require signif-
icant storage costs and extra computation overheads on the
rendering device.

(2) Limited serving scalability: context-aware serving requires re-
peatedly searching the con�guration that best �ts a speci�c
context, which scales poorly to a large number of contexts.

(3) Vast design space: the data representation for NeRF rendering
has multiple con�guration knobs covering the geometry and
feature grids, which involve over a million possible con�gura-
tions.

3 NeRFHub DESIGN
Figure 2 provides an overview ofNeRFHub.NeRFHub �rst converts
an o�-the-shelf NeRF representation into one data con�gurable rep-
resentation via a proactive training process (§3.1). Here, the data
components like geometry, feature grids, and MLP can be con�g-
ured to meet diverse computation demands for mobile rendering
(§3.1.1) and bandwidth demands for downloading (§3.1.2). More im-
portantly, the adaptation of con�guration is lightweight, incurring
minimal storage and computation overheads.

Then,NeRFHub leverages a context-aware serving module (§3.2)
that con�gures NeRF representation according to the context sent
with the user’s request. Then, the con�gured data representation is
delivered to the mobile device and rendered. It scales to multiple
contexts via the reduction of the con�guration dimension using a
lookup table (§3.2.1) and a decoupled serving process (§3.2.2).

The pro�ling optimizer (§3.3) improves the o�ine pro�ling in
decoupled serving with an evolutionary algorithm. It further accel-
erates this algorithm via parallelism (§3.3.1) and e�cient sampling
techniques (§3.3.2).

3.1 Proactive Training
Proactive training prepares the NeRF representation to enable light-
weight adaptation strategies for computation and bitrate. For com-
putation, we achieve storage-e�cient adaptation by training multi-
ple MLP channels (§3.1.1). Regarding bitrate, we attain computation-
e�cient adaptation through �ne-tuning for various bit depths
(§3.1.2).

3.1.1 Shrinking-Based Computation Adaptation. A straightforward
idea for storage-e�cient computation adaptation is to have a single
data representation and adapt to di�erent computation demands
by rendering a portion of this data representation. As the MLP
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mainly accounts for the computation demands, we can meet dif-
ferent computation demands by “shrinking” the number of hidden
layer channels in the MLP. The shrinking is determined by a ratio
A 2 (0, 1), termed the model width. A “shrunk” MLP has the same
input and output shapes and the same number of layers as the orig-
inal MLP. The di�erence is that a shrunk MLP with model width
A 2 (0, 1) keeps the most important A ⇥ ! channels of hidden layers,
where ! represents the number of channels in each hidden layer.
As such, we meet various computation demands with a single data
representation.
Challenge. An issue with this adaptation strategy is the shrunk
MLP is not well-trained like the original MLP. Hence, the rendering
quality may degrade after adaptation. One possible solution to
this problem is the progressive training technique [7, 54, 55]. First,
it trains one MLP until convergence. Second, it jointly trains the
existing MLP and a shrunk MLP until convergence by randomly
sampling one of them in each training iteration. It progressively
performs the above steps to incorporate as many shrunk MLPs with
smaller model widths as needed. With this approach, we can jointly
train an MLP with multiple shrunk MLPs.

Aiming at �exibility in computation adaptation, it is natural
to optimize MLPs in NeRF with a wide range and a dense set of
model widths, e.g., 1, 2, . . . , 100 channels in hidden layers. Unfor-
tunately, this choice degrades the quality of NeRF, e.g., 1-2 dB in
PSNR, compared to the same MLP trained individually. The reason
is that MLPs of di�erent model widths operate at di�erent sets of
parameters when optimized individually. Although they achieve
reasonable performance when optimized together, they a�ect each
other and compromise the performance, which becomes more no-
ticeable when we optimize a large number of MLPs simultaneously.
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Figure 4: The traditional MLP has a �xed computation com-
plexity. Constrained progressive training allows one MLP to
adapt to di�erent computation complexities.

Constrained progressive training. Our insight is that a wide
range and a dense set of channels are not necessary in practice
for two reasons. First, real-world devices’ computation capacity is
discrete and sparse. Second, the performance of an MLP marginally
improves with the model width when its number of hidden layer
channels exceeds a threshold, which is validated in Figure 23.

Therefore, we propose to perform progressive training in a con-
strained way which includes only a sparse set of MLPs with a
limited number of channels in hidden layers. Given the channel
number of MLP # in an o�-the-shelf NeRF representation, we opti-
mize MLPs shrunk to<# channels, where< = 1, 2, ...," ." and #

#Channels=16
Width=0.25

PSNR: 32.2dB
SSIM: 0.9612
LPIPS: 0.0189

#Channels=64
Width=1

PSNR: 33.46dB
SSIM: 0.9685
LPIPS: 0.0142

Figure 5: Constrained progressive training allows one MLP
to adapt computation for di�erent qualities.

are con�gurable parameters. Figure 4 compares a traditional MLP
and how an MLP with constrained progressive training adapts to
di�erent computation complexities and saves storage costs. Figure 5
illustrates how constrained progressive training allows the adapta-
tion of the MLP to achieve di�erent visual quality with signi�cant
improvement in the green bounding box.

Feature Vector
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0 1 0 1
1 0 1 0
0 0 1 1

Vector Dimension

Texture Grids
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MLP
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Feature Vector

1 0 1 1
0 1 0 1
1 0 1 0
0 0 0 0 Texture Grids

with Bit Depth (3)
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10 4 11 13 10 4 10 12
MSB
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Figure 6: Truncation-based bitrate adaptation involves trun-
cating values in the feature grids according to di�erent bit
depth and �ne-tuning MLP.

3.1.2 Truncation-Based Bitrate Adaptation. Bitrate adaptation in-
volves MLP, geometry, and feature grids. MLP is less signi�cant
for bitrate adaptation in the mobile scenario as it is typically light-
weight to support a real-time frame rate [12]. For instance, the
MLP is around four orders of magnitudes smaller than the total
size of the data representation of MobileNeRF [12] (Figure 20(c)).
Regarding the adaptation of the size of geometry, it can be achieved
by popular methods like Draco [21]. Hence, we focus on feature
grids.

While it is possible to apply traditional or neural compression
approaches [9, 10, 46, 50, 52] to the compression of feature grids,
they would incur computation-intensive operations at the render-
ing side. Aiming at computation-e�cient bitrate adaptation, we
draw insights from a previous study [12]. This study shows quan-
tizing the �oating point feature values in the feature grids to 8 bits
minimally a�ects rendering quality. Hence, a natural thought is to
adapt the bitrate via the truncation of the bit depth. Speci�cally,
given a bit depth 3 , we keep the top-3 most signi�cant bits (MSB)
of the binary representation of each feature value while iteratively
replacing the least signi�cant bits (LSB) with zeros, which will not
be transmitted over the network to reduce bitrates, as shown in
Figure 6. For example, a binary representation of 1011 becomes
1010 after truncation based on the bit depth 3. In this way, we can
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e�ectively adapt the bitrate without causing additional computa-
tion on the rendering side while maintaining reasonable rendering
quality.
Challenge. Nevertheless, truncation introduces errors in feature
values, which result in visible glitches in the rendered image, as
shown in Figure 7 (left). The glitch getsmore noticeable with smaller
bit depths, which introduces more errors. Although we can train
data representations with di�erent con�gurations of bit depths in
truncation, there would be a signi�cant training cost and storage
cost.

Without fine-tuning
PSNR: 16.77dB
SSIM: 0.5023
LPIPS: 0.3342

With fine-tuning
PSNR: 21.8dB
SSIM: 0.5992
LPIPS: 0.2597

Figure 7: Selected MLP �ne-tuning improves quality.

Selected MLP �ne-tuning. The key intuition is that the loss in
visual quality caused by truncation can be e�ectively mitigated by
�ne-tuning. As illustrated in Figure 7, �ne-tuning theMLP improves
the quality in PSNR from 16.77 dB to 21.8 dB with noticeable visual
improvement within the purple rectangle. More importantly, as
mentioned earlier the MLP in NeRF for mobile rendering is typically
lightweight, �ne-tuning the MLP and storing it for all possible bit
depths would have only a small impact on the training time and
storage.

Moreover, we notice that the impact of �ne-tuning diminishes
(less than 0.1 dB gain in PSNR) when the bit depth gets large enough.
This is reasonable as a larger bit depth tends to introduce fewer
errors in truncation, which makes the glitch less visible and �ne-
tuning less necessary. In our approach, we selectively �ne-tune for
smaller bit widths between 1 and ⇡ , which further reduces the time
and storage cost of �ne-tuning. Here, ⇡ is a con�gurable parameter.

3.2 Context-Aware Serving
Context-aware serving aims to properly con�gure the NeRF repre-
sentation depending on the user’s context. It scales serving by �rst
reducing the con�guration dimension (§3.2.1) and then decoupling
the serving process (§3.2.2).

3.2.1 Configuration Dimension Reduction. We reduce the con�gu-
ration dimension by �xing a few con�guration knobs to constant.
As such, the original problem (Equation 3) can be solved more e�-
ciently in a smaller design space, i.e., the set of all feasible con�gu-
rations. To illustrate, we represent the design space of the original
problem  in Equation 4.

 = {\ | \ = (\1, \2, . . . , \=)}, (4)

where \ represents a con�guration,= is the number of con�guration
knobs, and \8 , 8 = 1, 2, . . . ,= is one of the knobs. Equation 5 illus-
trates the reduced design space  81,82,...,8: after �xing con�guration
knobs indexed by 81, 82, ..., 8: to constant.

 81,82,...,8: = {(\1, \2, . . . , \=) 2  | (\81 , \82 , . . . , \8: ) = const}. (5)

Challenge.While con�guration dimension reduction is straight-
forward, the choice of the reduced design space is crucial and non-
trivial. The reduced design space must ensure the solution derived
from it is optimal, even with fewer possible con�gurations. In other
words, the solution derived from the reduced design space, i.e., the
local solution, must be the same as that derived from the original de-
sign space, i.e., the global solution. Otherwise, we might serve NeRF
with the sub-optimal con�guration, compromising the latency.
Smoothness lookup table.We �nd two properties of the model
width that allow us to determine a reduced design space. Firstly,
the model width is negatively correlated with the smoothness (Fig-
ure 21). Secondly, a wider MLP improves quality while minimally
increasing the total size of the NeRF data representation, which is
dominated by the size of geometry and feature grids, as discussed
in §3.1.2. Put di�erently, a more complex MLP tends to have a better
trade-o� between quality and size, as illustrated in Figure 22(b).

Based on these observations, we can prove the optimality of the
MLP-based reduced design space: if the model width of the MLP is set
to the largest value without violating the smoothness constraint, i.e.
the critical model width, the local solution derived with the critical
model width, i.e., the critical local solution, is the same as the global
solution.

P����. Assume there exists a con�guration in the global solu-
tion with a model width unequal to the critical model width. If the
global solution has a larger model width, given the �rst observation,
it would violate the smoothness constraint. If the global solution
has a smaller model width, based on the second observation, it will
have a worse quality-size trade-o� than that of the local solution,
making it sub-optimal. Therefore, the model widths of con�gura-
tions in the global solution must equal the critical model width. By
the de�nition of the reduced design space, we can prove the critical
local solution is the same as the global solution. ⇤

According to the above proof, we can create the reduced design
space with the model width. In particular, we devise a smoothness
lookup table that maps the model width of the MLP to the smooth-
ness. Then, the con�guration dimension can be reduced by �xing
the value of the model width that maps to the smoothness closest
to the constraint. If there are multiple model widths mapped to
the same smoothness, we only keep the largest one for the best
quality-size trade-o�. For context-awareness in serving, given a
smoothness constraint, we con�gure the model width that maps to
a smoothness closest to the constraint. The lookup table is created
per device and per scene type. However, its creation is lightweight,
taking less than one minute for each device.

Table 1: The con�gurable knobs and their ranges.
Approach Knobs with Ranges

PNG BD (1-8), CF (0-10), CS (0-4), PNG-CL (0-9)
Draco QP (6-14), QT (10-14), Draco-CL (0-6)

3.2.2 Decoupled Serving. After reducing the con�guration space,
this part focuses on balancing the quality and size with the re-
maining con�gurations, involving feature grids and geometry. The
feature grids are compressed by a widely used lossless image com-
pression algorithm, Portable Network Graphics (PNG) [5]. PNG is
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(a) Quality vs. Knobs
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(b) Size vs. Knobs

Figure 8: Modeling the correlation between multiple knobs
and metrics is complex. The size and quality tend to increase
with BW, QP, and QT but have no clear correlation with CF,
CS, PNG-CL, and Draco-CL.

con�gurable by the bit depth (BD), compression �lter (CF), compres-
sion strategy (CS), and compression level (PNG-CL). The geometry
is compressed by an open-source library for 3D data compression,
Draco [21], which can be adapted via the quantization bits for
the position attribute (QP), the quantization bits for the texture
coordinate attribute (QT), and the compression level (Draco-CL).

The name and range of con�gurable knobs are summarized in
Table 1, where the ranges are chosen to ensure the change of a knob
value does a�ect quality or size and does not produce signi�cant
artifacts. For the upper limits of QP and QT, we set them to the same
value 14, a value beyond which does not a�ect quality or size. To
prevent perceivable artifacts, we con�gure the lower limits of QP
and QT to 6 and 10, respectively. For the upper limit of Draco-CL,
we set it to 6, a value beyond which has no impact on quality or
size. Other con�gurations in Draco like the quantization bits for
the normal vector attribute (QN) and any generic attribute (QG) are
ignored as they have no impact on the compression of geometry.
Challenge. The mapping from values of con�gurable knobs to
quality and size is complex to model, as shown in Figure 8.While we
can derive the optimal con�guration for Equation 3 by exhausting
all possible combinations of con�guration knobs in Table 1, these
con�guration knobs result in a vast design space of 1.38646 possible
con�gurations. Such an exhaustive approach fails to scale to a large
number of contexts a server may encounter online.
Quality-size pro�le. Our insight is to decouple the problem in
Equation 3 into an o�ine MOO problem and an online searching
problem. Instead of exhausting the original design space, solving
the o�ine MOO problem allows us to avoid a large number of sub-
optimal con�gurations in the original design space. With a reduced
design space, online searching scales more easily to a large number
of contexts.

Speci�cally, we formulate the MOO problem in Equation 6.

argmax
\ 2 

f (\ ) = (51 (\ ), 52 (\ )) = (& (\ ),�( (\ )), (6)

where  represents the set of feasible con�gurations as described
in Table 1. The MOO problem jointly optimizes metrics of quality
(&) and size (() over all feasible con�gurations. The solution to the
MOO problem is a set of Pareto optimal con�gurations, which is
also termed the quality-size pro�le. Here, Pareto optimal means the
con�guration is not outperformed by another con�guration in one
of quality and size metrics without compromising the other metric.

To formally de�ne the quality-size pro�le, we introduce the
dominance relation � that compares the goodness of di�erent con-
�gurations as shown.

\ � \
0
=
⇢

58 (\ )  58 (\
0 ) 88 = 1, 2

58 (\ ) < 58 (\
0 ) 98 = 1, 2

(7)

Based on the dominance relation, the quality-size pro�le ⌦ can be
formally expressed as shown.

⌦ = {\ |¬9\ 0
B .C .\ � \

0
, \

0 2  }. (8)

Figure 9 illustrates the Pareto optimal con�gurations (red stars)
in contrast to sub-optimal ones (black circles). The optimal con�g-
uration for di�erent contexts (blue, orange, and green lines) can be
e�ciently searched by skipping sub-optimal con�gurations.
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Figure 9: MOO reduces con-
�gurations by �nding the
Pareto optimal con�gura-
tions o�line.
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Figure 10: The decoupled ap-
proach scales better than re-
peatedly exploring con�gu-
rations.

Figure 10 compares the number of con�gurations to be explored
with and without decoupled serving. Decoupled serving explores
1.38646 total con�gurations o�ine, which result into 50 Pareto op-
timal con�gurations (detailed in §3.3). Therefore, when the number
of contexts is zero, decoupled serving explores more con�gurations
than serving without decoupling, which involves no o�ine cost.
However, when the number of contexts increases, the number of
con�gurations that serving without decoupling requires drastically
increases. In contrast, decoupled serving only needs to explore 50
con�gurations for each additional context, which scales better than
serving without decoupling.

3.3 Pro�ling Optimizer
The pro�ling optimizer aims to make o�ine pro�ling in §3.2.2 e�-
cient. As the relation between the design space and the metrics is
complex, we leverage evolutionary algorithms that make pro�ling
e�cient with fewer evaluations of con�gurations. In particular, we
utilize the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [14], one of the most adopted evolutionary algorithms. NSGA-II
starts by generating an initial population of con�gurations, rep-
resenting a potential solution to the MOO problem. Then, these
con�gurations are evaluated to derive objectives. Based on the eval-
uation, these con�gurations will be sorted, selected, mutated, and
recombined to form the next generation of con�gurations, which
balances exploration (the diversity of all objective space) and ex-
ploitation (the re�nement of the existing Pareto front). As NSGA-II
iteratively evolves more generations, the new generation better
approximates the Pareto front. To further accelerate NSGA-II, we
adopt two approaches: parallelism (§3.3.1) and e�cient sampling
(§3.3.2).
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(b) N=10
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(c) N=20

Figure 11: More generations improve pro�ling.

3.3.1 Parallelism. O�ine pro�ling involves evaluating a design
space consisting of all possible combinations of con�guration knobs.
For each scene, an intuitive way is to have a single thread of NSGA-
II to explore all con�guration knobs of its representation jointly.
Challenge. However, even with NSGA-II, it is time-consuming to
explore this design space. The most computation-intensive part is
the evaluation of con�gurations. While the size resulting from each
con�guration can be measured easily, the quality must be evaluated
by rendering the scene multiple times on the mobile device and
comparing it with the ground truth, which is slow. To make matters
worse, the pro�ling duration increases linearly with more possible
con�gurations of MLPs.
MLP-based parallelism. The analysis in §3.2.1 shows that the
pro�le can be generated from a single reduced design space based
on MLP. Therefore, it is not necessary to explore all con�gura-
tion knobs jointly. Instead, we can parallelize the pro�ling with
multiple threads, each of which has a unique con�guration of the
MLP, which greatly speeds up pro�ling and scales to multiple MLP
con�gurations.

3.3.2 E�icient Sampling. Following common practice, we set the
population size of NSGA-II to 50. Figure 11 illustrates how the
number of generations # = 1, 10, 20 improves pro�ling using the
MobileNeRF model [12] using the “chair” scene from the realistic
scene dataset [35]. Every point represents the size (x-axis) and
the quality (y-axis) of one evaluated con�guration. The quality is
measured by PSNR across all training views between the evaluated
con�guration and the best-quality con�guration. The best-quality
con�guration adopts default lossless PNG and Draco compression
with the largest model width. For reference purposes, we use the
pro�le derived after a large number of generations, 50 in our case, as
the groundtruth pro�le (GP). Then, we can identify con�gurations
explored in di�erent generations that are Pareto-optimal (denoted
by stars), i.e., existing on GP, or sub-optimal (denoted by circles), i.e.,
not in GP. For comparison, the baseline (the default implementation
of MobileNeRF) is illustrated by a triangle.
Challenge. While more evolutions improve pro�ling by �nding
more Pareto-optimal con�gurations on the GP, it linearly increases
the pro�ling time. In addition, to comprehensively assess the visual
quality, it is natural to consider as many views as possible. However,
this would create a substantial computation cost in evaluation and
prolong pro�ling.
Early stopping and view selection.We adopt early stopping and
view sampling to reduce the pro�ling duration.

The intuition for early stopping is that the pro�ling stops im-
proving, i.e., converges, after a certain number of generations. We
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(d) # of Clusters

Figure 12: Impact of generations on di�erent metrics.
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(b) Pro�les with di�erent #view.

Figure 13: No need to sample a large number of views.

use several performance indicators to illustrate the convergence
from di�erent perspectives as follows.
• Hypervolume calculates the area, which is dominated by the ex-
plored Pareto-optimal con�gurations with respect to a reference
point. In our case, we set the x-axis and y-axis of the reference
point to the size of baseline and zero. The grey area in Figure 11
illustrates the hypervolume.

• Max/min visual quality measures themaximal andminimal visual
quality in explored con�gurations.

• Max/min size measures the maximal and minimal downloading
size in explored con�gurations.

• Cluster number measures the number of clusters in the pro�le, se-
lected based on the observation that the pro�le tends to group in
several clusters (Figure 11). It is derived using the Density-Based
Spatial Clustering of Applications with Noise algorithm [16] by
setting the maximum distance between two neighborhood sam-
ples to 1 and the minimum number of samples per cluster to
1.

Figure 12 exempli�es how the above performance indicators sta-
bilize when the number of generations increases, with the same
experimental setup as Figure 11. Empirically, we �nd 20 to be a
su�cient number of generations for pro�ling to converge, which
prevents prolonged pro�ling duration on generations that mini-
mally a�ect the pro�le.

The key observation for view sampling is that the number of
views does not a�ect the pro�ling result signi�cantly as long as it is
above a threshold. Figure 13(a) shows the hypervolume of pro�les
evaluated using all test views of the “chair” scene but derived from
di�erent numbers of training views, with other setups the same
as Figure 11. We empirically �nd that 10 views are su�cient to
get approximately the same pro�le as using all views for di�erent
scenes. Figure 13(b) demonstrates 10 views and 100 views produce
similar pro�les for the “chair”. Therefore, we can sample a small
number of views, e.g., 10, in pro�ling without compromising the
performance.
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4 IMPLEMENTATION
Model and training. Aiming at rendering NeRF on mobile devices
and demonstrating NeRFHub’s capability to handle a complex data
representation, we adoptMobileNeRF [12] as the basicmodel, which
runs on most mobile devices in real-time consisting of geometry,
feature grids, and MLP. The model is implemented and trained
based on Jax [6]. The original training procedure of MobileNeRF
consisted of continuous training (using continuous opacity), bi-
narized training (using quantized opacity), and post-processing
(removing triangles with zero opacity) [12]. We apply shrinking-
based computation adaptation (§3.1.1) with " = 4 and # = 16
to the continuous training stage, continuing the last phase of pro-
gressive training that randomly samples model width in binarized
training, and apply truncation-based bitrate adaptation (§3.1.2) with
⇡ = 4 in the post-processing stage. Here, the values of" and # are
empirically chosen to ensure (1) su�cient performance di�erences
between di�erent MLP con�gurations and (2) a slight impact of a
progressive training procedure on each con�guration, compared
to a separate training procedure. The value of ⇡ is set to 4 as the
quality drop is negligible when the bit depth is greater than 4.
Serving. The server is implemented with Flask on a Linux desk-
top featuring dual NVIDIA Geforce RTX 3090 Ti GPUs and an
AMD Ryzen 9 CPU running at 4.95GHz. We implement the neural
renderer in an HTML �le using Javascript and WebGL with the
THREE.js library. The renderer is fetched by the client from the
server and runs on a Chrome browser.
Pro�ling. The client runs on the same desktop as the server. To
assess the visual quality on the Chrome browser using a server
without a display, we utilize the web driver from the Selenium
library in Python, which can simulate the Chrome browser with
the headless mode in the background.

5 EVALUATION
Dataset. We evaluate two datasets: the 8 synthetic 360-degree
scenes from NeRF [35], and the 8 forward-facing realistic scenes
from LLFF [34]. The rendering resolutions are 800×800 for synthetic
and 1008×756 for realistic.
Hardware and networking. We consider Microsoft Surface, Dell
Precision 5510 laptop, iPhone 12, and MacBook Pro for the client
hardware in our experiments. The server is wired to the campus net-
work via a 1Gb cable with 1000 Mbps NIC. The client is connected
to on-campus WiFi with 550 Mbps download speed, measured by
GoogleFiber [17].
Baseline. We compare our system to a baseline system that trains
NeRF according to the original training procedure of MobileN-
eRF [12] and fetches the default NeRF representations with lossless
PNG compression (for feature grids) and lossless DRACO compres-
sion (for geometry).
Metrics. Performance metrics are measured as follows. For clarity,
we use the up arrow " to denote the metric whose higher value
means better and the down arrow # otherwise.

• The latency measures the time duration between the moment
a user requests a scene from the web page and the moment the
scene is fully rendered, which is averaged over �ve requests per
scene.

• The quality of a scene is measured between a view and the same
view sampled from a scene fetched using the highest-quality
setting: lossless PNG and Draco compression with the most com-
plex MLP averaged over all test views speci�ed by NeRF [35] and
LLFF [34] datasets.

• The smoothness is quanti�ed by the number of times WebGLRenderer()
from THREE.js can be called in a second, which is averaged over
�ve seconds after rendered.

Constraints. We con�gure the quality constraint via a quality
tolerance value, the acceptable amount of quality drop compared
to the baseline, and the smoothness constraint via a con�gured
smoothness value, a targeted smoothness to attain. The quality
constraint and smoothness constraints are defaulted to zero and 30
fps in §5.1, but adapted in §5.2.

5.1 Overall Performance
Latency. Figure 14 reports the latency of NeRFHub, compared to
the default con�guration, is e�ectively reduced on di�erent mobile
devices by 56%-66% on synthetic scenes and 26%-55% on realistic
scenes. We observe a more signi�cant reduction in 1) synthetic
scenes than realistic scenes and 2) more powerful devices, e.g., Mac-
Book Pro, than less powerful ones, e.g., Surface. The reason is that
synthetic scenes involve less data to render a scene than realistic
scenes (Figure 3(b)) and a more powerful device can perform ray-
marching computation at a faster rate (Figure 21). Therefore, we
can render using a more complex MLP with synthetic scenes or
more powerful devices without violating smoothness constraints,
which has better trade-o�s of quality and size (Figure 22).
Size and quality. Figure 16 shows the size and quality (measured
by PSNR, SSIM, and LPIPS) ofNeRFHub on di�erent mobile devices
and the baseline. The size is reduced by 70%-75% on synthetic scenes
and 11%-57% on realistic scenes, where more reduction is shown
on more powerful mobile devices. The quality in PSNR is similar
between ours and baseline with less than a 1dB di�erence. Although
NeRFHub does not explicitly use the SSIM and LPIPS metrics, the
quality degradation is less than 0.02 in SSIM and 0.01 in LPIPS.
Smoothness. Figure 15 shows the rendering speed of NeRFHub
on di�erent mobile devices. The rendering speed of NeRFHub is
nearly real-time (higher than 30 fps) or as good as the baseline.
This result demonstrates that our design e�ectively adapts the
rendering speed to a value close to the constraint (30 fps). Such a
capability allows NeRFHub to gain better trade-o�s of quality and
size without violating the smoothness constraint. Note that some
less powerful devices like the Surface do not support a rendering
speed of 30 fps even with the most lightweight con�guration of
MLP. In this case, NeRFHub maintains the same rendering speed
as the baseline.

5.2 Varying Experiment Environments
Vary smoothness requirements. We evaluate how NeRFHub
adapts to di�erent con�gured smoothness of 15, 30, 45, and 60
fps. For illustration purposes, we �x the mobile device to iPhone
12 as it covers a wide range of frame rates from 10 fps to 60 fps
within our design space. However, the observed trend in Figure 17
should apply to all mobile devices. Figure 17 shows the increase in
con�gured smoothness increases the latency (Figure 17(a)), actual
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Figure 14: NeRFHub saves the latency by 56%-66% on synthetic
scenes and 26%-55% on realistic scenes.
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(a) Synthetic
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(b) Realistic

Figure 15: NeRFHub’s rendering speed is nearly real-time or as
good as the default con�guration on di�erent mobile devices.
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(a) Size (#)
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(b) Quality (PSNR")
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(c) Quality (SSIM")
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(d) Quality (LPIPS#)

Figure 16: NeRFHub reduces the size on synthetic (70%-75%) and realistic (11%-57% ) scenes with similar quality.

smoothness (Figure 17(b)), and size (Figure 17(d)) while minimally
a�ecting quality (Figure 17(c)). The intuition for increased latency
is that a higher smoothness demands a less computation-intensive
MLP, which must be paired with a larger size to render the scene
at the same quality.
Vary visual quality requirements. We show NeRFHub adapts
to di�erent quality requirements by changing the quality tolerance
from 0 to 2 dB. Figure 18 shows a higher quality tolerance reduces
the latency (Figure 18(a)), the visual quality (Figure 18(b)), and the
downloading size (Figure 18(c)). The intuition behind this is that
the reduced quality requirement allows smaller data representation,
which reduces the downloading size and the latency. It is worth
noting that the quality tolerance has no impact on the rendering
speed.
Vary network conditions. We vary the network conditions be-
tween a high-speed WiFi network: on-campus WiFi with 550 Mbps
download speed and a normal-speed WiFi network: o�-campus
WiFi with 220Mbps download speed. The speed is measured by
GoogleFiber [17]. Figure 19 shows 65%-71% latency reduction for
the synthetic scene and 55% latency reduction for the realistic scene.
A more noticeable reduction is found in the normal-speed WiFi
network, as the latency is more dominated by the network trans-
mission latency, which bene�ts more from a smaller size. We do not
report results on slower network speeds, e.g., 4G and 3G LTE, be-
cause the latency, usually tens of seconds or minutes, is unrealistic
even though the reduced latency would be more prominent.

5.3 Analysis
Computation and storage cost. Figure 20(a) compares the train-
ing duration of MobileNeRF (Default) and NeRFHub (Ours), aver-
aged over all scenes. NeRFHub spends three times the duration
in continuous training (CT) than MobileNeRF due to constrained
progressive training (§3.1.1), almost the same duration in binarized
training (BT), and twice the duration in post-processing (PP) due
to selected MLP �ne-tuning (§3.1.2). Overall, NeRFHub requires
almost twice the training duration of MobileNeRF.

Figure 20(b) shows the pro�ling duration for di�erent hidden
layer channels of MLP, averaged over all scenes. The pro�ling dura-
tion is between 7 to 11 hours per MLP per scene. The pro�ling of a
larger model width is more time-consuming because the rendering
with them during pro�ling involves more computation.

Figure 20(c) contrasts the storage size of di�erent data repre-
sentation components and in total for MobileNeRF (Default) and
NeRFHub (Ours). There is a substantial increase in the size of MLPs
due to the storing of MLPs for selected MLP �ne-tuning (§3.1.2).
However, as the size of MLP is negligible compared to other com-
ponents, the impact on the total size is insigni�cant. The sizes of
the feature grids and geometry, in particular, are slightly increased
due to the constrained progressive training procedure (§3.1.1).

Overall, NeRFHub incurs an additional time and storage cost
than a default NeRF implementation like MobileNeRF. However,
the cost can be amortized by NeRFHub’s capability to serve a wide
range of mobile devices and diverse rendering speed and visual
quality requirements.
Pro�les. Figure 21 presents the smoothness on di�erent devices,
scenes, and numbers of channels, which is saved in the LUT for
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Figure 17: NeRFHub is adaptable to di�erent con�gured smoothness.
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Figure 18: NeRFHub is adaptable to di�erent di�erent quality tolerance values.
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Figure 19: NeRFHub’s re-
duction improves with a
slower network speed.
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(c) Storage

Figure 20: The cost for context-aware NeRF serving.

smoothness adaptation (§3.2.1). Figure 22(a) shows the quality-size
pro�le for a single model width (0.5) where the oval characterizes
the distribution of the pro�les and the point represents the baseline
without any adaptation, which is used for quality adaptation (§3.2.2).
Figure 22(b) zooms in the pro�le of “leaves”, which describes the
pro�le for MLPs with hidden layer channels of 16, 32, 48, and 64.
Bene�ts of constrained progressive training. Figure 23 demon-
strates the increased quality in PSNR ofNeRFHub compared to that
of the baseline. We notice that the loss of visual quality is negligible
with the same hidden layer channels (16). There is also a substantial
increase in the quality as the model width increases, which shows
that constrained progressive training (§3.1.1) e�ectively adapts the
quality.
Bene�ts of selectedMLP�ne-tuning (SMF). Figure 24 illustrates
the visual quality with and without SMF at di�erent bit depths.
SMF signi�cantly improves the visual quality at most by 5 dB. The
bene�ts diminish as the bit depth increases, validating the design
of SMF (§3.1.2).

6 RELATEDWORKS
Volumetric video streaming. Volumetric video streaming deliv-
ers point cloud data over the Internet, which is relevant to our work
by delivering immersive data. Numerous e�orts are proposed that
enhance volumetric video streaming via visibility-aware optimiza-
tion [24], super resolution [56], multiview transcoding [32], and
point cloud compression optimization [29]. Our work focuses on
NeRF, a novel immersive data representation with many advan-
tages (§2.1). Still, we believe the existing system optimizations on
volumetric data would be complementary to ours.
Resource allocation. Resource allocation for images and video
analytics has been well-studied [8, 9, 23, 28, 31, 57, 58]. Typically,
existing works �rst generate a pro�le between the resource, e.g.,
GPU time, CPU time, or a utility function, e.g., F1 score or accuracy.
This process, referred to as pro�ling, explores the combinations
of various control knobs, e.g., resolution, sampling rate, and an-
alytical model, and �nd Pareto optimal con�gurations. Pro�ling
be accelerated with various techniques including parallelism [57],
pruning [8], heuristics [58], and Bayesian optimization [9, 23, 28].
These techniques are considered complementary to our pro�ling
optimizer (§3.3). Based on the pro�le, proper con�gurations are cho-
sen to maximize the utility with constraints. In contrast, we focus
on the resource allocation of a novel problem, which involves di-
verse knobs (MLP, feature grids, and geometry) and targets (latency,
smoothness, and quality).

7 DISCUSSION
Cost for determining hyper-parameters.We heuristically deter-
mine the hyper-parameters" , # , and ⇡ in NeRFHub. The values
of " and # are decided after heuristically evaluating di�erent
combinations of" and # , e.g., a grid search, each of which takes
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(b) Realistic Scene

Figure 21: How smoothness varies based on context.
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(b) Leaves

Figure 22: Quality-size pro�le.
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Figure 23: NeRFHub mini-
mally a�ects the quality
with the same hidden layer
channels (16) and improves
the quality with more chan-
nels.
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Figure 24: NeRFHub’s qual-
ity gain is as high as 5 dB in
medium with the bit depth
of one and decreases with a
higher bit depth.

roughly 20 hours. While this process may seem time-consuming,
the values of " and # are shared among similar types of scenes
with the same NeRF variant. The choice of ⇡ is determined via
bit truncation at di�erent depths and rendering at various angles,
which is lightweight by taking less than one minute.
Generalizability to other NeRF variants. In this work, we focus
on a speci�c variant of NeRF optimized for mobile rendering, i.e.,
MobileNeRF, to demonstrate the e�ectiveness of our framework.
Still, we aim NeRFHub as a general-purpose framework that gener-
ally applies to NeRF variants that (1) employ a neural network for
rendering and (2) have a multi-modal data representation. While
the values of hyper-parameters, e.g.," , # , and⇡ , are speci�c to the
NeRF variant, e.g., MobileNeRF [12], which might not directly apply
to other variants, the intuitions for choosing them are generally
applicable.
Limitations of NeRF and the positioning of NeRFHub. NeRF
at its current stage has several inherent limitations such as the
long training duration, the large size of data representation, and
the signi�cant computation overhead for rendering. By applying
NeRFHub to one of the NeRF variants, we are likely to experience its
inherent limitations. However, eliminating the inherent limitations
of NeRF is not our focus. Instead, NeRFHub aims to serve NeRF
to clients with the optimal trade-o�s of various metrics of interest
and reliably meet the constraints set by clients.
Storage cost. Aiming at a low-latency experience, the data repre-
sentations in NeRFHub with di�erent con�gurations are generated
before serving. Although this strategy potentially leads to a large
storage space, the pro�le can be pruned to mitigate the storage cost.
As shown in Figure 22, a certain amount of con�gurations have

similar performance in visual quality and size. These con�gurations
can be combined to reduce con�gurations on the pro�le, reducing
the storage cost. However, this is beyond our paper.
Utility function. While we focus on minimizing latency in this
paper, the optimization target in Equation 3 can generalize to other
utility functions, e.g., quality and smoothness, or a weighted sum
of them. NeRFHub can generalize to these utility functions easily
with the decoupled approach like §3.2.2 that builds a pro�le o�ine
and performs lightweight optimization online.
Quality metrics.NeRFHub focuses on the PSNRmetric for quality.
While this achieves acceptable performance on SSIM and LPIPS,
we believe explicating adopting SSIM and LPIPS in pro�ling would
further advance the bene�ts of NeRFHub regarding these metrics.

8 CONCLUSION
We design NeRFHub, a context-aware NeRF serving framework
for mobile immersive applications. NeRFHub achieves context-
awareness with a proactive training module that �exibly recon-
�gures computation and bitrate for NeRF, a context-aware serving
module that con�gures NeRF representation based on the context,
and a pro�ling optimizer that makes pro�ling for NeRF serving e�-
cient. The evaluation showsNeRFHub signi�cantly reduces latency
of the baseline without compromising quality and smoothness,
which demonstrates the e�ectiveness of a context-aware design.
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