PackGenome: Automatically Generating Robust YARA Rules for
Accurate Malware Packer Detection

Shijia Li Jiang Ming
Nankai University Tulane University
Tianjin, China New Orleans, USA

sjli@mail.nankai.edu.cn jming@tulane.edu

Lanqing Liu
Nankai University ™
Tianjin, China
lqliu@mail.nankai.edu.cn

Huaifeng Bao
SKLOIS, IIE*
Beijing, China
baohuaifeng@iie.ac.cn

Abstract

Binary packing, a widely-used program obfuscation style, com-
presses or encrypts the original program and then recovers it at
runtime. Packed malware samples are pervasive—they conceal ar-
resting code features as unintelligible data to evade detection. To
rapidly respond to large-scale packed malware, security analysts
search specific binary patterns to identify corresponding packers.
The quality of such packer patterns or signatures is vital to malware
dissection. However, existing packer signature rules severely rely
on human analysts’ experience. In addition to expensive manual
efforts, these human-written rules (e.g., YARA) also suffer from
high false positives: as they are designed to search the pattern of
bytes rather than instructions, they are very likely to mismatch
with unexpected instructions.

In this paper, we look into the weakness of existing packer de-
tection signatures and propose a novel automatic YARA rule gen-
eration technique, called PackGenome. Inspired by the biological
concept of species-specific genes, we observe that packer-specific
genes can help determine whether a program is packed. Our frame-
work generates new YARA rules from packer-specific genes, which
are extracted from the unpacking routines reused in the same-
packer protected programs. To reduce false positives, we propose
a byte selection strategy to systematically evaluate the mismatch
possibility of bytes. We compare PackGenome with public-available
packer signature collections and a state-of-the-art automatic rule
generation tool. Our large-scale experiments with more than 640K
samples demonstrate that PackGenome can deliver robust YARA
rules to detect Windows and Linux packers, including emerging

“Corresponding author.

T College of Computer Science, Nankai University and the Tianjin Key Laboratory of
Network and Data Security Technology

*State Key Laboratory of Information Security, Institute of Information Engineering
and University of Chinese Academy of Sciences, Chinese Academy of Sciences

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3616625

Pengda Qiu
Nankai University ™
Tianjin, China
pdqiu@mail.nankai.edu.cn

Qiyuan Chen
Nankai University
Tianjin, China
nen9ma0@mail.nankai.edu.cn

Chunfu Jia*
Nankai University
Tianjin, China
cfjia@nankai.edu.cn

Qiang Wang
SKLOIS, TIE*
Beijing, China
wangqiang3113@iie.ac.cn

low-entropy packers. PackGenome outperforms existing work in all
cases with zero false negatives, low false positives, and a negligible
scanning overhead increase.

CCS Concepts

« Security and privacy — Software reverse engineering.

Keywords

Malware Analysis; Binary Packing; YARA rules; Unpacking Rou-
tines; Binary Similarity

ACM Reference Format:

Shijia Li, Jiang Ming, Pengda Qiu, Qiyuan Chen, Langing Liu, Huaifeng Bao,
Qiang Wang, and Chunfu Jia. 2023. PackGenome: Automatically Generating
Robust YARA Rules for Accurate Malware Packer Detection . In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS "23), November 26—30, 2023, Copenhagen, Denmark. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3616625

1 Introduction

Binary packing is recognized as one of the most popular software
protection techniques [1]. It was originally designed to reduce the
size of executable programs. Binary packers compress (or encrypt)
the code and other necessary assets of the input program to packed
data. It integrates an unpacking routine and packed data into the
packed version. The unpacking routine takes charge of recovering
and executing the original code at runtime. As a result, the orig-
inal program’s behaviors are hidden from static analysis. When
combined with other code obfuscation and anti-analysis methods,
packed programs can effectively impede reverse engineering at-
tempts [2, 3]. Therefore, binary packing is not only favored by
software developers but also has long been abused by malware
authors. Recent studies [4-6] show that nearly 50% of packed pro-
grams (collected in the wild within the last five years) are benign,
and 75% of malware samples are packed.

Intuitively, security analysts can dynamically monitor a packed
program’s execution to accurately discover the concealed behaviors.
Unfortunately, the various evasion techniques adopted by advanced
packers are significantly hindering dynamic analysis [7]. Security
analysts have to adopt highly customized dynamic analysis (e.g.,
stealthy instrumentation [8] or hardware-assisted tracing [9]) as
countermeasures. When processing large-scale programs, the cost

https://orcid.org/0000-0002-3527-1332
https://orcid.org/0000-0001-9682-0502
https://orcid.org/0009-0004-4073-1649
https://orcid.org/0009-0009-7165-2800
https://orcid.org/0009-0007-7838-7101
https://orcid.org/0000-0002-9657-3633
https://orcid.org/0000-0003-1115-2387
https://orcid.org/0000-0002-5588-9690
https://doi.org/10.1145/3576915.3616625
https://doi.org/10.1145/3576915.3616625

CCS *23, November 26-30, 2023, Copenhagen, Denmark.

of customized environments will become unacceptable [6]. There-
fore, malware researchers typically rely on efficient static analysis
to prioritize packed programs that are worthy of expensive dynamic
analysis [10]. For example, VirusTotal, the top malware online scan
service, processes more than 868K new files daily [11]. It relies
on several signature-based tools to identify the packer used by
malware samples, including YARA [12] and DIE [13].

Static packer detection has evolved into several variations. One
heuristic method is to measure entropy: the compressed or en-
crypted data typically reveal higher entropy than the compiled
code. Many research papers [4, 14-17] and industrial tools [13]
regard the high entropy of sections as a sign of packed programs.
However, Mantovani et al. [18] find that more than 30% of their
50K Windows malware datasets are low-entropy packed samples.
These packed samples adopt multiple data encoding tricks to evade
entropy-based detection. Another direction identifies packed pro-
grams based on the features extracted from executable binaries,
such as PE header metadata, disassembly instructions, or the labels
provided by VirusTotal [19-23]. The security community mainly
uses these arresting static features to create signature rules or train
machine learning models. However, Aghakhani et al. [6] point out
that the machine-learning classifiers are not robust enough to detect
packed malware variants in the wild.

As the most popular technique adopted by the security commu-
nity, signature-based packer detection matches packers with prede-
fined textual or binary patterns. The representative tool, YARA [12],
has become the industry de facto standard to express malware char-
acteristics. In academia, we surveyed the papers published in 12
major cyber security conference venues (e.g., IEEE S&P, USENIX
Security, ACM CCS, and NDSS) over the past 16 years. There are 26
papers (12 of them are published in the top four venues) that rely
on signature-based tools to identify packed programs in their exper-
iments. According to whether directly using the signature-based
tools in their experiments, these papers can be divided into two cate-
gories: (i) 24 papers directly use signature-based tools. For example,
Ugarte-Pedrero et al’s SoK paper [4] uses PEiD [24], Sigbuster, and
F-Prot to classify off-the-shelf and custom packers. (ii) Two papers
indirectly use signature-based tools. Downing et al. [25] and Park et
al. [26] use unipacker [27] to unpack the samples of their datasets,
while unipacker relies on YARA rules to detect packed programs.

The quality of the rules that describe packer features is the key to
the effectiveness of signature-based detection. As research papers
widely use signature-based detection tools to prepare ground-truth
datasets [4], problematic rules might unintentionally pollute the
dataset and lead to biased results. Unfortunately, the existing packer
signature rules are mostly written and maintained by human ana-
lysts. After examining 10,249 publicly-available packer detection
rules (detailed in Sec. 7), we find that the existing human-written
rules are confronted with the following three problems.

P1: The cost of manually writing and maintaining rules is
becoming unaffordable. To develop signature rules, security an-
alysts have to put great effort into analyzing packed programs
and summarizing common features. A recent study [28] shows
that experienced analysts spend several hours to weeks on reverse
engineering programs. When handling complex packers such as

Shijia Li, et al.

Themida [29], even skilled analysts need up to six months on under-
standing programs and developing unpackers [30]. Meanwhile, the
number of packers grows faster than the rule development process.
In addition to over 150 different off-the-shelf packers with multiple
versions [31, 32], there are also a great number of custom packers,
which are preferred by malware authors [4, 30]. Considering the
evolution of packers, security analysts also have to periodically
track packers’ new updates. Furthermore, 99.88% of packer detec-
tion rules are created from x86 instructions. To support x64 packed
program detection, security analysts have to repeat the tedious rule
development process.

P2: The development of packer rules severely relies on hu-
man analysts’ experience. Guided by reverse engineering experi-
ence, malware researchers manually extract the common patterns
of packed programs as rules. We observe that nearly 85% of rules
only describe the Portable Executable (PE) entry point’s instruc-
tions or section names. However, these features make the rules
vulnerable to adversary packers. For example, APT41 camouflages
VMProtect-packed programs by changing the section name from
“.vimp” to “.UPX” [33]. Furthermore, the choice of the rule lengths
and special constructions (e.g., wildcards) may bring more uncer-
tainty to the rule matching. For example, a YARA rule with eight
wildcards causes VirusTotal to mistakenly recognize the 7z.exe file
as the Armadillo-packed program [34].

P3: Packer rules reveal high false positives caused by mis-
matching with unexpected instructions. Human analysts de-
velop rules according to the bytes of expected instructions. How-
ever, signature-based detectors are based on the pattern matching,
which operates on byte strings, regardless of instruction formats.
Note that the byte length of an x86/x64 instruction varies from
1 to 15 [35]. As a result, human-written rules are very likely to
mistakenly match parts of an irrelevant instruction, leading to high
false positives (detailed in Sec. 2.3).

In this paper, we aim to mitigate the above problems by propos-
ing PackGenome, an automatic YARA rule generation technique to
advance packer detection. PackGenome is inspired by a biological
fact that species-specific genes make humans different from chim-
panzees [36]. PackGenome creates rules from packer-specific genes,
which are the instructions that make the packed programs distin-
guished from the non-packed programs. We extract packer-specific
genes from the unpacking routine instructions, because the unpack-
ing routine is reused in the same-packer protected programs and
does not exist in non-packed programs.

In particular, we first collect the unpacking routine instructions
from packed binaries using a hybrid static-dynamic analysis. Since
signature-based tools only scan programs statically, we dynami-
cally extract the high-frequency instructions that are also visible
to static analysis. Then, we identify packer-specific genes by cal-
culating statistical similarity [37] of unpacking routines reused in
the same-packer protected programs. At last, we propose a byte
selection strategy to generate YARA rules. Our approach evaluates
the mismatch probability of the generated rules when matching
with unexpected instructions. This mismatch probability guides us
to select appropriate bytes as rules.

PackGenome: Automatically Generating Robust YARA Rules for Accurate Malware Packer Detection

We have conducted a set of experiments to evaluate the effi
of PackGenome. We first apply PackGenome to automatically
erate new YARA rules for popular off-the-shelf and custom pac
Our evaluation of over 640K samples shows that our generated
outperform existing work, including public-available YARA 1
the YARA rules generated by the state-of-the-art automatic
generation tool AutoYara [22], and sophisticated JavaScript
rules from Detect it Easy [13]. Compared with these repres
tive tools, our approach exhibits zero false negatives, much k
false positives, and a negligible scanning overhead increase
also evaluate the scalability of PackGenome in real-world sc
ios. The results show that PackGenome-generated rules are rc
to recognize x86/x64 Windows and Linux packed programs,
the custom packers such as low-entropy versions modified :
standard packers.

Contributions Our key contribution is to free security pr
sionals from the burden of manually piecing together the tec
steps of packer signature generation. In fact, malware researc
utilizing PackGenome will enjoy a simpler and more streaml]
YARA rules development process than ever before. In summary,
this paper makes the following technical contributions:

o Our key observation is that packer-specific genes, extracted
from unpacking routines, are ideal candidates as packer signif-
icant features. We develop a hybrid static-dynamic extraction
method to obtain these genes from the same-packer protected
programs.

e We propose an automatic YARA rules generation technique
for packer detection. The generated rules are robust to detect
off-the-shelf packers, even the custom versions.

o We design a novel byte selection strategy, which evaluates the
mismatch probability of the given byte rules. It can guide both
automatic rule generation tools and human analysts to reduce
false positives significantly.

Open Source We release PackGenome’s source code and generated
YARA rules to facilitate reproduction and reuse, as all found at
https://github.com/packgenome.

2 Background and Motivations

In this section, we provide the background information needed
to understand our work’s motivation. We first introduce binary
packing and signature-based packer detection techniques. Then,
we discuss the limitations of existing human-written rules and
the challenges of developing robust packer detection rules, which
motivate us to propose PackGenome.

2.1 Binary Packing

As shown in Fig. 1, the original program is statically rewritten by a
packer and then gets self-unpacked at runtime. The packer treats
instructions and other resources (e.g., “. data” section) of the input
program as data. It compresses or encrypts these data and rewrites
the input program. Meanwhile, the packers can modify (or remove)
any parts of the original program that are not required for normal
execution. For example, the UPX-packed programs use the section
name “.UPX” instead of “. text”. The generated packed program
typically contains the packed data and an unpacking routine.

[N T

[SIENIE-N

CCS ’23. November 26-30. 2023. Cobenhagen. Denmark.

. Single Multiple — > Unpacking
Original Program Packed Program Unpacking Layer Unpacking Layers
Program
Original , Modified Modified Modified ~ "7 Entrypoint
“ Header -~ Header Header Header
———————————— S S
i i : i Lo |
\‘?‘ text | Packing | Executing } text f‘_| } text v "'k
—_—! —_ | | Inpacking
‘ } i } I } IS~ Layern
} data | : Packed i .data } | | data } Gl
| . A
I ! i I
} .rdata } ‘| } rdata } | } rdata } - | N
| Inpacking
[J i o T 7
4 Unpacking Unpacking] Unpacking s g2

Generated at
Runtime

Routines Routines

eLayer 1

Figure 1: An illustration of the unpacking process.

rule UPX {
strings:

$a = "UPX"

$b = {60 E8 00 00 00 00 58 83 E8 3D}

$c = {EB ?? ?? 7?7 7?7 7?7 8A 06 46 88 07 47 01 DB 75 07 8B

1E 83 EE FC 11 DB}

$d = {60 E8 [4] 58 83 E8 3D 50 8D B8 [4] (57|87) 8D BO}
condition:

$a and ($b at pe.entry_point or $d at pe.entry_point)

and $c

}

Figure 2: A YARA rule to detect UPX-packed programs.

The unpacking routine takes care of recovering the original
code and driving the packed program to execute (i.e., the “written-
then-executed” procedure [38]). To avoid breaking the functionality
of the original program, the unpacking routine places unpacked
original instructions and related resources at the original virtual
addresses instead of arbitrary memory areas [39]. The reason is
that the compiler-generated instructions access memory contents
via specific address offsets, but recognizing and relocating memory
addresses is still unsolved for static binary rewriting [40]. Further-
more, to complicate reverse engineering, the unpacking process
may contain layers of “written-then-executed” code [2, 4] (@) in
Fig. 1). However, no matter how many unpacking layers exist, each
packed program needs the first layer of the unpacking routine to re-
lease other layers, which means that part of the unpacking routine
is always visible to static analysis (@ in Fig. 1).

The core of the unpacking routine is the compression or decryp-
tion algorithm, which is typically reused from mature third-party
libraries [41, 42]. For example, packed malware widely adopts the
aPLib compression library [43]. Due to the performance concern,
we observe that unpacking routines are usually protected by light-
weight (or even no) obfuscation (detailed in Sec. 7.3).

2.2 Signature-based Packer Detection

Signature-based packer detectors search the predefined textual
or binary patterns using their own pattern matching grammars.
VirusTotal’s open-source project YARA [12] is the most widely used
tool for specifying malware signatures and performing searches.
DIE [13] is another popular signature detector in the security com-
munity, which uses the JavaScript-like language rule written and
maintained by domain experts. Unfortunately, it is poorly docu-
mented and provides less functionality than YARA. Hereinafter, we
focus on YARA. Each YARA rule consists of two essential parts:
strings and condition. A YARA rule to detect UPX-packed pro-
grams is shown in Fig. 2. The contents below the strings key-
words are the expressions to be matched in binary code. YARA sup-
ports four types of strings, including text strings ($a), text strings

https://github.com/packgenome

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Obsidium’s unpacking routine

with control flow obfuscation
ves 03 D3

A EB ..
/

add edx, ebx
4 Bytes Single Instruction jmp ©x41e258
Jump In\sl.ltructlon /,/ l
7/
2 Bytes Single Instruction
Jump Instruction

Splitted Basic Blocks

Single Yara Hexadecimal String Rule
$rule={ 03 D3 EB } m)

Shijia Li, et al.

Normal Instructions Normal Instructions

Mismatched Bytes

Matched Bytes

mov cro@, ebx
shr ebx, cl

OF 22 e3
D3 EB

3 D3 add edx, ebx
EB .. jmp ©x475BDO

(a) Correctly Matched (b) Misplace Matching

Figure 3: Comparison of different results matched by the YARA hexadecimal string rule: $rule={03 D3 EB}.

Table 1: Categorized public-available YARA and DIE rules
for packer detection after removing duplicates. “Packers”
means supported packers. “Meta” means the rules created
from the PE header information [44] and text strings. “SC
Bytes” means the rules use special constructions such as wild
cards.

Sources 4Packers Search Scope Search Content “Total
Address-Based Full-Binary Meta Bytes SC Bytes

YARA[45-50] 492 9,582 667 31 6,672 3,549 10,249

DIE 324 1,074 30 201 321 650 1,104

with regular expression, hexadecimal strings ($b), and hexadecimal
strings with special constructions (i.e., wildcard (?7 in $c), jumps
([4] in $d), and alternatives ((5787) in $d)).

To produce appropriate rules of the strings, security analysts
need to examine enormous packed programs and find the com-
mon salient expressions. They typically extract byte features of
relevant instructions rather than textual features to develop packer
detection rules, because binary packing can easily conceal or cam-
ouflage text strings of the packed program. As signature-based
detection directly scans binary code instead of disassembly instruc-
tions, security analysts write hexadecimal rules based on the bytes
of expected instructions. The contents of condition define two
scopes to perform pattern matching: address-based vs. full-binary
matching.

Address-Based Matching In this scenario, signature-based detec-
tors only search given rules at specific addresses. For example, the
rules $b and $d in Fig. 2 will only be searched at the entry point
of PE files. We notice that more than 90% of packer detection rules
only perform searches at specific addresses. However, the packer
developers and malware authors can easily change the instructions
at the entry point to bypass the address-based matching.
Full-Binary Matching To increase the robustness of rules, ana-
lysts can let signature-based detectors search through the entire
binary (e.g., rule $a and $c in Fig. 2). However, signature-based
detectors match the format of bytes regardless of the instruction
encoding. Problematic whole-binary matching rules will introduce
high false positives.

2.3 Challenges of Generating Packer Detection
Rules

Developing high-quality packer detection rules is a long-standing
problem. We collect DIE rules and 10,249 public-available YARA
rules after removing duplicated ones, and we categorize them in
Table 1. A notable trend is that, as the number of packers continues
to grow, the cost of manually developing and maintaining rules is

becoming unaffordable. Generating robust packer detection rules
is faced with the following two challenges.

First, the guidelines to generate packer detection rules are miss-
ing. Human analysts rely on their experience to select features and
develop signature rules. Table 1 presents that DIE’s rules heavily
rely on the meta-information of programs such as section names
and text strings at specific offset, which can be easily bypassed
by modifying the unique strings. Meanwhile, 93.3% of YARA rules
only consider the bytes of packed programs’ entry point, while
these rules can be easily bypassed via modifying the entry point in-
structions. An alternative way is to expand the search scopes to the
whole binary, but the hexadecimal string rules with few bytes will
result in high false positives. To counteract false positives, security
analysts tend to create rules with long-length bytes—80% of rules
in Table 1 are longer than 25 bytes. These rules contain multiple
control transfer instructions such as jmp and call. Unfortunately,
they can still be easily thwarted by control-flow obfuscations such
as basic block splitting.

The second obstacle is that packer rules mismatching with irrele-
vant instructions occurred often. The reason is that signature-based
detection matches bytes without considering the format of instruc-
tions. This design shortcoming would lead to misplace matching, in
which the matched bytes belong to parts of unexpected instructions.
Fig. 3(b) shows an example of a hexadecimal string rule mismatch-
ing with parts of two sequential instructions; the matched instruc-
tions have different formats and semantics from the expected ones.
Intuitively, the signature-based detection can support instruction
matching based on static disassembly results, but performing disas-
sembly for every program will incur extra overhead. As a result, the
accumulated slowdowns of scanning large-scale packed programs
will become unacceptable.

To migrate the aforementioned challenges, a promising direc-
tion is generating signature rules for packed programs automati-
cally. However, the existing automated rule generators focus on
automating the signature generation for malware payload rather
than packers. YaraGenerator [51] generates rules based on the most
common textual features (e.g., strings) shared across malware fami-
lies. yabin [52] uses the fixed-length bytes of function prologues
to generate rules. yarGen [53] creates rules from salient text and
hexadecimal strings, which are filtered from several pre-built “good
string” databases. AutoYara [22] is the state-of-the-art automatic
rule generation tool, which combines heuristics and biclustering
algorithms to create high-quality rules from the generally frequent
large N-gram bytes of limited samples. It outperforms the afore-
mentioned rule generators (detailed in Sec. 7.5) and even skilled
analysts. However, as admitted by AutoYara’s authors [22], binary

PackGenome: Automatically Generating Robust YARA Rules for Accurate Malware Packer Detection

packing can impede all of the above YARA automation tools, be-
cause they create rules from common textual strings or bytes of the
malware payload.

3 Overview

Our research aims to solve the challenge discussed in Sec. 2.3 and
make packer detection rules generation less burdensome. In par-
ticular, we develop a new packer analysis framework to extract
packer-specific genes and automatically generate YARA rules. The
insight behind our approach is that the reused unpacking routine
instructions are ideal candidates for packer-specific genes, because
they recur in the same-packer protected programs. Furthermore,
we propose a novel byte selection strategy to reduce the mismatch
probability of generated YARA rules. PackGenome is effective in
processing both Windows and Linux packers on x86/x64 platforms.
As shown in Fig. 4, the workflow of PackGenome involves the
following four steps.

@ Packed Program Preprocessing This step prepares multiple
same-packer protected programs for packer-specific gene extrac-
tion. By proactively interacting with packer tools, we traverse ob-
fuscation configurations of packers to synthesize diversified packed
programs with different unpacking routines. Then, we statically
extract the section information from packed programs.

@ Packer-specific Gene Extraction We first record the packed
program’s runtime information using dynamic instrumentation.
Guided by the extracted section information, we adopt control flow
analysis to discover unpacking routine instructions that are also
visible to static analysis. Then, we find similar unpacking routine
instructions that are reused in the same-packer protected programs.
These instructions are candidates for packer-specific genes.

© Rule Generation At last, our framework automatically gener-
ates YARA rules from our extracted packer-specific genes. Accord-
ing to the information provided by the similarity analysis, it can
adopt appropriate special constructions (e.g., wildcards) into YARA
rules. In addition, the generation step interacts with a byte selection
strategy to select the rules with a lower mismatch probability.

@ Byte Selection Unlike existing packer rule development that
relies on human analysts’ experience, we systematically evaluate
the misplace matching possibility to guide byte selection. We first
convert the given bytes to possible mismatched instructions based
on our predicting disassembly technique. Then, we use an N-gram
technique to calculate the possibility that the converted instructions
appear in real-world programs. It helps us to filter out the byte
strings exhibiting a high mismatch probability.

4 Packed Program Preprocessing

This preprocessing step prepares packed programs and collects
necessary information from synthesized programs to assist the
packer-specific gene extraction process.

Inspired by the chosen-instruction attack [54] learning knowl-
edge through interaction with code virtualization obfuscators, we
cover different unpacking routines of packers by proactively synthe-
sizing packed programs. Note that the unpacking routine attached
to the packed program is irrelevant to the semantics of the input
program’s instructions. The input program only needs to meet the

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

requirements of the packing tool such as file size. The major fac-
tor determining the unpacking routine’s diversity is the packer’s
obfuscation configurations, because the specific compression or de-
cryption algorithm—the core of the unpacking routine, is controlled
by the obfuscation configurations. To cover different unpacking
routines, we traverse every configuration combination provided by
the packer and synthesize corresponding packed programs.

To assist the discovery of statically visible unpacking routine
instructions at runtime, we first collect the section information (i.e.,
name and address) of the packed programs. Because a notable fea-
ture of unpacking routines is that they need to place the unpacked
original instructions and data back at the original virtual address.
For example, the unpacked instructions have to be placed at the vir-
tual address of the original non-packed program’s “. text” section
at runtime. With the help of the collected section information, we
monitor the regions of packed program that are written then get
executed by the statically visible, unpacking routine instructions;
we also assign labels to these instructions during dynamic analysis.

5 Packer-specific Gene Extraction

In this section, we describe how to extract packer-specific genes
from the unpacking routine instructions reused in the same-packer
protected programs. We first record the execution trace of the
first unpacking layer and assign labels to instructions. To discover
unpacking routine instructions, we propagate the labels among the
recorded basic blocks guided by the control-flow information and
the execution numbers. At last, we extract packer-specific genes
from similar instructions reused in unpacking routines.

5.1 Recording the First Unpacking Layer
Execution Trace

Sophisticated packers usually adopt obfuscation (e.g., self-modifying
code) to frustrate static disassembly [55]. It is difficult for static anal-
ysis to correctly extract unpacking routine instructions from the
obfuscated binary. Therefore, we adopt the Intel Pin [56] framework
to record the runtime information of the unpacking routine instruc-
tions that are visible to static analysis (i.e., the first unpacking layer).
The reason is that YARA and other signature-based detectors only
search patterns from the programs statically.

Our Pintool records the statically visible instructions that exist
in the main executable and collects runtime information at the basic
block level. The recorded trace information includes the memory
address, the length of instruction bytes, the basic block’s execution
numbers, instruction bytes of basic blocks, and labels. To monitor
the “written-then-executed” behaviors of instructions, we employ
the runtime monitoring techniques used in Deep Packer Inspec-
tor [4]. During dynamic analysis, our Pintool assigns labels to in-
structions according to their runtime behaviors. If an instruction
I writes unpacked instructions I’ to the original code section and
I’ gets executed at runtime, this instruction I will be assigned a
label. Note that sophisticated packed programs may adopt multi-
ple unpacking layers [4], which iterate the procedure of writing
to allocated memory and then executing the written memory. We
need to monitor the “written-then-executed” region written by the
instructions of the first unpacking layer (e.g., “Unpacking Layer 1”
in Fig. 1) and assign labels to these instructions.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

o a Packer-Specific Gene
Proiram D D Preprocessed Info

T [posooos >
\ \

'

'

'

Packer | Different Obfuscation | |
o0 Configurations E >

'

'

'

'

'

'

'

i

Extractor

Trace Recorder

Unpacking Routine
Discover

\ \

Similar Instruction
Extractor

Binary
Packed Programs g [Vl | . >
o(P) {

Shijia Li, et al.

3
O | o ligara

A YARA Rules
|
|
H

.
Check |
A\

Bytes Selection Rules Information

’ Misplace Match Detector ‘ (Corresponding Disassembly
x T Instructions of YARA rules;
Packer-Specific Genes;

Predicting Disassembly Unpacking Routines;)

Figure 4: The overall workflow of PackGenome framework.

Furthermore, to circumvent potential anti-instrumentation tech-
niques used in packed programs, we integrate our Pintool with the
anti-evasion framework ARANCINO [8].

5.2 Discovering Unpacking Routine
Instructions

Note that our Pintool only assigns labels to the instructions that
are directly written to the monitored address such as the “written-
then-executed” region. It ignores other parts of unpacking routine
instructions that only decode unpacked data without writing to the
monitored address at runtime. To find complete unpacking routine
instructions, we propagate labels of instructions to related basic
block B based on control flow analysis.

In particular, we only propagate labels among the B with sim-
ilar execution numbers to avoid propagating labels to the entry
point instructions, which can be easily diversified by packers. The
reason is that the instructions pertaining to the decompression (or
decryption) function are executed considerably more times than
other instructions. Since the execution numbers of the recorded
basic block Np are mainly decided by the size of packed data, the
Np of different packed programs could vary greatly. Therefore, we
compare the relative execution numbers of Ng. Formally, we define
the relative execution numbers REN (B;) of the given basic block

B; as follows:
Np,
<o oy

REN(B;) =
j=1 NB;

where m is the total number of B, and B; belongs to recorded ba-
sic blocks {Bi,...B;,} of a single trace. We use REN(B;) to find
high-frequency labeled basic blocks B;. Then, we strip off the self-
modified instructions from the labeled B by comparing the recorded
bytes of instructions with the bytes statically extracted from the
same address. The rest of the statically visible unpacking routine
instructions are candidates for packer-specific genes.

5.3 Extracting Packer-specific Genes

To extract the packer-specific genes from the unpacking routines
instructions, we find similar instructions from the reused unpacking
routines. We first calculate the similarity of labeled basic blocks
B from multiple same-packer protected programs. Then, we use
the similarity of 5 to guide the selection of packer-specific genes,
and prepare the similarity information (e.g., the offset of different
bytes) of syntactically similar instructions for our rule generator.
Given two packed programs P, and P, we first collect the la-
beled basic blocks: {Bg1, ..., Ban} and {Bpq, ..., Bp, }, respectively.

To discover the B reused in packed programs, we compare the
similarity of different B using the following two steps.
Bytes Given B,; and By, we first directly compare their bytes.
If their bytes are identical, we will skip the following comparison.
Otherwise, we compare them at the slice level.
Slice To overcome the obfuscations adopted by the sophisticated
packers, we compare the slices extracted from the B. We first de-
compose B into slices S by performing the backward slicing starting
from the outputs of 3. Then, we calculate the statistical similari-
ties [37] of slices and lift slices’ similarity into the similarity between
B. We define the similarity of slice pairs as follows:
n
SimSlice(Sa, Sp) = Z

k=1,l=1
I €Sa,11€S

Simlns(Ik,Il)/n @)

where S, and Sj, have the same output operands, n is the maximum
instruction number of S, and Sy, and the SimIns(Ii, I;) is used to
compare the similarity of instructions, which will return 1 when
the instruction format (i.e., mnemonic and operand types such as
REG) of I} and I; are the same, otherwise return 0. Then, we lift the
slices’ similarity into the similarity of 3 by the calculation defined
as follows:
n
SimBS(Ba, By) = |
i=1,j=1
Si€Ba,Sj€By

SimSlice(Si,Sj)/n 3)

where n is the maximum slice number of B, and ;. If each slice
group of the given two B is syntactically similar, the 3, and By, are
highly similar at the slice level.

According to the similarity of B, we collect BB as packer-specific
genes to generate rules. The results of the above comparison can
be divided into the following two equivalent scenarios.

Completely Equivalent If the bytes of given recorded basic blocks
Bai and By, ; are identical, we consider Bg; and By, ; are completely
equivalent. For example, the compression packers (e.g., UPX) are
reusing exactly the same unpacking routine instructions in each
packed program (detailed in Sec. 7.3). The completely equivalent
bytes can be directly used to generate YARA rules for packer detec-
tion.

Partially Equivalent When packers adopt obfuscation to pro-
tect unpacking routine instructions, we may find By; is only par-
tially equivalent to By;. It means that they have similar slices but
different bytes. For example, the two slices “mov ecx, 0x579;
dec ecx;” and “mov ecx, 0x586; dec ecx;” extracted from

PackGenome: Automatically Generating Robust YARA Rules for Accurate Malware Packer Detection

rule Packer_vl1 {
strings:
$a = {a4 eb} //P,=0.7
$b = {21 41 3c e8 74} //Pp, =05
$c = {8b 96 8c 00 00 00 8b c8 cl e9 10 33 db 8a 1c 11

8b d3 eb} //P.=0

condition:
$a and $b and $c
rule Packer_v2 {
strings:
$a = {a4 eb} //P,=0.7
$b = {21 41 3c e8 74} //P, =05
condition:
$a and $b

}

Figure 5: The example of YARA rules with calculated mis-
place matching probability.

Enigma-packed programs are similar but have different bytes due
to two different operand values of mov instructions. The B with a
higher SimBS(B,, Bp,) are preferred candidates for packer-specific
genes.

6 YARA Rule Generation

Given packer-specific genes, we first generate hexadecimal string
rules (HSR) from each basic block of the packer-specific genes based
on the similarity information. If the bytes of packer-specfic genes
are completely equivalent, we directly convert these bytes to the
HSR. Otherwise, we locate different bytes from the partially equiv-
alent bytes, replace them with the elaborated special constructions
(e.g., wildcards), and construct HSR. The minimum length of HSR is
two. Next, we take a byte selection strategy to minimize misplace
matching errors for the generated YARA rules. To calculate the mis-
matching probability of HSR, we propose the predicting disassem-
bly technique to convert each HSR to possible misplace-matched
instructions. Specifically, the predicting disassembly collects and
searches the combinations of opcode, prefix, and operand from XED
rules that can be mismatched by the HSR. It synthesizes possible
mismatched instructions and calculates the occurrence probabil-
ity of each instruction. Then, we perform the byte selection based
on the mismatching probability of HSR, which is the maximum
occurrence probability of synthesized instructions.

6.1 Byte Selection

Our byte selection strategy calculates the misplace matching prob-
ability of the input YARA rules and guides the selection of YARA
rules. Specifically, given an input YARA rule, we first calculate the
misplace matching probability of each hexadecimal string rule Pysg.
Thanks to our predicting disassembly technique, we transform the
mismatching probability into the occurrence probability of possible
mismatched instructions (detailed in Sec. 6.2). Then, we multiply
each Pysg to compute the mismatch probability of a single YARA
rule P, ., and filter out the rules with high mismatching probabil-
ity. Taking the rules in Fig. 5 as an example, the misplace matching
probability of the rule Packer_v1is Pp,cker o1 = Pa*Pp*Pe. Since
Pe =0, Ppacker o1 = 0, which means the rule Packer_v1 will not
lead to misplace matching errors. In contrast, the rule Packer_v2

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

has a higher misplace matching probability Ppycker vz = Pg * Pe =
0.35. Therefore, our strategy will only retain the rule Packer_v1.

6.2 Calculating Misplace Matching Probability

According to the mismatch type of HSR, Fig. 6 shows how we
calculate misplace matching probability of HSR Pgsg in two ways.

HSR entirely belongs to a single instruction. The Pggp is the
possibility of corresponding mismatched instruction I occurring in
real-world programs. In this scenario, the length of possible mis-
matched HSR is in the interval [2, 15], because the minimum length
of HSR is 2 and the maximum byte length of x86/x64 instruction
is 15. We first apply the predicting disassembly technique to find
possible mismatched instructions. It synthesizes a set of possible
mismatched instructions {I1, ..., I} from the given HSR (detailed in
Sec. 6.3). Then, we compute the occurrence probability of each in-
struction py in the instruction database!. The Pyysp is the maximal
probability of py. i.e., PHsg = max(pr,, ... pr,)-
HSR partially belongs to a single instruction. The Pygp is
the occurrence probability of all possible mismatched instruction
sequences IL that appear in real-world programs. In this scenario,
the given HSR consists of x bytes (x > 2), and only the first i (i €
[1,x—1],i < 15) bytes of HSR can be mismatched to the tail bytes of
one single instruction. We first adopt the predicting disassembly to
synthesize a set of possible mismatched instructions U = {I1, .., I }
from the first i bytes of HSR. Then, we combine each instruction
of U with the instruction sequences disassembled from the rest
x — i bytes as IL. To calculate the occurrence probability of possible
mismatched instruction sequences pyr, we apply a standard N-
gram analysis to process each IL. Then, we search converted IL
from our constructed N-gram database ! and calculate the Pysg =
max(prL,s - PIL,)-

Different from the prior N-gram based techniques (e.g., MutantX-
S [57]) that only extract the opcode of instructions, we use four com-
ponents (i.e., prefix, opcode, mnemonic, and the format of operands)
to represent an instruction during the N-gram analysis. The rea-
son is that the opcode may not fully represent the semantics of
instructions. The instructions with the same opcode could have
totally different semantics. For example, two semantically differ-
ent instructions “add eax, 0x41”and “or eax, 0x41” share the
same opcode 0x81.
Examples. The two-bytes HSR $a in Fig. 5 can be mismatched in
two ways. For the HSR $a entirely belonging to a single instruction,
we calculate the probability P, = 0.7. For the HSR $a partially
belonging to a single instruction, we calculate the probability P, =
0.3. Since the maximum P, = 0.7, the HSR $a should be combined
with the HSR that has a low misplace matching probability when
constructing YARA rules. Another example is the 19-bytes HSR
$c. It can only partially belongs to a single instruction. Since the
maximum P, = 0, the HSR $c can be directly used in any YARA
rules.

6.3 Predicting Disassembly
Please note that our goal is to find every possible instruction that

can be fully misplace-matched by HSR. Intuitively, the analysts can

!The instruction database and N-gram database are created from the dataset NPD,
including more than 20,000 samples collected in the real world (detailed in Sec. 7.1).

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Fully Mismatched to An Instruction

a4 eb

Predicting Disassembly
é

2-len HSR

1s-len HSR [N ...

o Type I Predicting from Operand

@49101@01@0 — Mod=10, Reg/Opcode=100, R/le@@}
leb—>11101011 —>[ebx + ebp*8] I

\LSear‘ching Intel XED Rules
I, add ah, byte ptr [ebx + ebp*8] mﬂ
==

e Type Il Predicting from Both Opcode and Operand

Shijia Li, et al.

Misplace Matched
Byte

Search in
Instruction Database

—> Py = maX(Pllr "-rPIn)

opcode operand

I. shld ebx, ebp, @ M
U —
opcode operand
Possible Mismatch Instructions Bytes
Partially Mismatched to An Instruction
I; mov ecx, dre IL;
Permutation Predicting Disassembly
2-len HSR _. > mov ecx, dro
e opcode inc ecx
=" 21 41 it shr edx, 7 Search in
-:Ijj TN N-gram Database
N -
o ~ —_— =
5-len HSR i=2 N\ Combinition) Pysg = max(Py,, -, Ppp,)
\ ILiyq
- . .
||| RN Disassembly 8oz oo tnr acx
adx, 7
2nce Probability Py ¢z : Misplace Match Probability
ty of different hexadecimal string rule.
1-4 byte 1-, 2-, 1 byte 1 byte 1, 2, or 4 byt .
(optional) 5 oyie (optional) (optional) optona last byte of our generated HSR is the opcode of control transfer
Instruction Prefix ~ Opcode | Mod RIM sl [Biepiacement] immediate instructions and the rest bytes of HSR are converted from normal
T disassembly instructions. Therefore, HSR cannot satisfy any combi-
ZMS‘: Reg;%?:”de ::J": [Operands nations of opcode and prefix. Our approach only needs to process
1l 1l 1l

Figure 7: The Intel instruction encoding format.

brute-force traverse every combination of bytes that can be mis-
matched by HSR. However, they would face an ultra-large search
space consisting of 256'> combinations of bytes. Because the max-
imum byte length of the x86/x64 instruction is 15 and the value
of each byte is in the interval [0, 255]. For example, to find the
instructions that can be fully misplace-matched by the shortest
HSR (i.e., two bytes), the analysts have to traverse more than
2561972 ~ 2 % 103! combinations of bytes.

Therefore, to efficiently predict every possible misplace-matched
instruction of HSR, we propose the predicting disassembly tech-
nique. Given the input HSR, we first search the qualified Intel XED
rules that can hold the full bytes of mismatched HSR. We choose
Intel XED rules as they reveal each combination of Intel instruction
encoding. To find the qualified XED rules, our approach trans-
forms HSR into searchable formats based on the encoding gram-
mar of XED rules. For example, as shown in @) of Fig. 6, the byte
“a4” would be converted to the format Mod=10, Reg/Opcode=100,
R/M=100. According to the components of XED rules matched by
transformed HSR, the transformation and prediction process can
be divided into the following three scenarios.

Predicting from Opcode (and Prefix) As defined in the Intel in-
struction encoding, the combination of opcode and prefix consists
of predefined concrete values. After searching in the combinations
of opcode and prefix, we observe that our generated HSR do not
mismatch any opcode combinations of instructions. Because the

the following two types.

Type I Predicting from Operand Our approach transforms the
given HSR into the operand encoding format of XED rules, and col-
lects the qualified XED rules that have the same operand encoding
format as the transformed HSR. As shown in Fig. 7, the components
of the operand encoding include Mod R/M, SIB, Displacement,
and Immediate.

For the given HSR mismatching the Mod R/M and SIB, we con-
vert HSR to the operand encoding format and find the qualified
Intel XED rules. As the example @) shown in Fig. 6, given HSR “{a4
eb}”, we first convert the byte “a4” to Mod=10, Reg/Opcode=100,
R/M=100 based on the Mod R/M encoding scheme. After verifying
the correctness of encoding, we convert the byte “eb” to the operand
[ebx+ebp*8] based on the SIB encoding scheme. For the given
HSR mismatching the Displacement and Immediate, we can di-
rectly convert HSR to the hexadecimal bytes. However, the prob-
ability of HSR mismatch in the Displacement and Immediate is
negligible, because these components can be arbitrary hexadeci-
mal bytes from 0x0 to Oxffffffff. Finally, we synthesize 9,055
instructions that can be mismatched by “{a4 eb}”.
Type II Predicting from Both Opcode and Operand We search
the first several bytes of HSR from the combinations of opcode and
prefix, and collect the qualified Intel XED rules. Then, we treat the
rest bytes of HSR as Type I and search for the qualified rules from
prior collected Intel XED rules. As the example @) shown in Fig. 6,
HSR’s first byte “a4” mismatches the tail of opcode “9fa4” and the
second byte “eb” mismatches the head of the operand “eb80”. In

PackGenome: Automatically Generating Robust YARA Rules for Accurate Malware Packer Detection

total, we synthesize one instruction that can be Type II mismatched
by “{a4 eb}”.

After collecting the qualified Intel XED rules, the predicting dis-
assembly synthesizes the possible mismatched instructions from
the collected rules. We describe the detailed process of predicting
disassembly inAlgorithm 1. Given the input HSR “{a4 eb}”, we
synthesized 9,056 instructions. Then, we calculate the occurrence
probability of each synthesized instruction. The maximum occur-
rence probability Prrsg = 0.7, which means this HSR can be easily
mismatched. When constructing the YARA rules, it should be com-
bined with the HSR that has a low misplace matching probability.

Algorithm 1: Predicting Disassembly

Input: HSR Hexadecimal String Rules

Result: INL List of Misplace Matched Instructions

Function B20pcode(HSR) := Converting HSR to the same
byte format as the opcode of XED rules.

Function B2Operand(HSR) := Transforming HSR to operand
based on the grammar of XED rules.

Function InsGen(rule) := Generating instructions from the
Intel XED rules.

OPC|opcode] := The XED rules that satisfy opcode.

OPE[operand] := The XED rules that satisfy operand.

INL « §}

if the length of HSR > 15 then
‘ return False

[

N)

()

'S

5

=Y

® N

9 end
/* Type I Predicting from operand */
10 if B20perand(HSR) # {} then
1 for each code in B20perand(HSR) do
12 ‘ INL < INL U InsGen(OPE[code])
13 end
14 end
/* Type II Predicting from both opcode and operand */
5 for each index i from the start of len to end do

-

16 sopcode := B20pcode(HSR[:1])

17 if sopcode # {} then

18 soperand := B20perand(HSR[i:])

19 if soperand # {} then

20 INL « INL U InsGen(OPC[sopcode],
OPE[soperand])

21 end

22 end

23 end

4 return INL

N

7 Evaluation

In this section, we evaluate PackGenome by answering the follow-
ing four research questions (RQs).
e RQ1: Can PackGenome effectively generate detection rules
for different types of packers?
e RQ2: How are the accuracy and efficiency of PackGenome’s
generated rules compared to human-written rules and other
automated rule generators?

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

e RQ3: How is the scalability of PackGenome’s generated rules
on detecting packed samples?

e RQ4: How is the performance of PackGenome’s generated
rules when detecting programs in the wild?

To answer RQ1, we apply PackGenome to generate 70 YARA
rules for 20 popular packers, and evaluate the contributions of our
byte selection technique (Sec. 7.2). We also discuss the new find-
ings of our study (Sec. 7.3). For RQ2, we design two experiments
to measure the accuracy of different rules (Sec. 7.6). To evaluate
the efficiency, we compare the running time of YARA and Detect
it Easy (DIE) on samples with four different magnitudes (Sec. 7.7).
For RQ3, we evaluate generated rules on the packed programs with
multiple versions. We also measure the scalability of PackGenome
on Linux packed programs, custom packers, and low-entropy sam-
ples (Sec. 7.8). For RQ4, we evaluate PackGenome on the real-world
malware samples to show the feasibility of detecting in-the-wild
custom packers and adversarial samples (Sec. 7.9).

7.1 Experimental Setup and Datasets

Peer Rules for Comparison We choose human-written YARA
rules, automated rule generators (i.e., yarGen [53], yabin [52], Yara-
Generator [51], and AutoYara [22]), and DIE [13] in comparison
with PackGenome. We first collect public-available human-written
packer detection rules from GitHub, including 9,296 rules from six
open-source YARA rule libraries [45-50], and 5,703 rules converted
from PEiD and Exelnfo PE [58]. After removing duplicates, we ob-
tained 10,249 unique rules. Among the collected rules, only 44 rules
support x64 packed program detection. Meanwhile, we use the
default parameters for automated rule generators and DIE console
diec.exe during our experiments.

Packers for Rule Generation We select off-the-shelf packers
from recent papers [6, 38]. Finally, we shortlist 20 packers (listed
in Table 2) because they can work properly in modern operating
systems. They are used to generate x86/x64 Windows packed pro-
grams. As the existing x64 human-written rules only support four
packers (i.e., UPX, MPRESS, Themida, and Enigma), we also use
these four packers to generate x64 packed programs.

Rule Generation Datasets (RGD) We traverse multiple versions
and configurations of 20 off-the-shelf packers to generate packed
programs (RGD). The input of packers are three manually con-
structed programs, which are compiled from 2-5 lines C codes.
Given each configuration of packers, we generate three packed
samples as the input of PackGenome during the experiment. The
purpose here is to estimate the performance of PackGenome in the
worst scenario that was pointed out by AutoYara, i.e., the number
of the same-packer protected programs is limited in real-world
scenarios. Similarly, we generate 16 packed samples, greater than
most rule generation scenarios (i.e., <10 samples) reported in the
AutoYara paper [22], as the input of automated rule generators to
generate rules for each configuration of packers.

Testing Datasets To construct the labeled packed samples dataset
LPD, we first use 750 real-world programs as input to generate
38,663 x86 programs and 2,237 x64 programs by combining 20 off-
the-shelf packers with multiple versions and configurations. This
dataset consists of the packed programs that can be linked to known
packers. We also constructed a non-packed samples dataset NPD

CCS *23, November 26-30, 2023, Copenhagen, Denmark. Shijia Li, et al.
Table 2: Comparing PackGenome with other rules on the LPD dataset. “Configurations” reports the obfuscation configurations
of packers we use to generate packed programs. “Related” means the configuration that affects the generated unpacking routine
instructions and “Total” means the total number of configurations used in the program generation process. “Obfuscation”
reports the obfuscation adopted by the first layer of unpacking routines. “GR” reports the number of the generated rules. “TDR”
reports the total detection rate of each tool. The order of column “FPR” and “Time” in “Our approach” is (PackGenome-N,

PackGenome).

P #of Configurations - j‘ Our Approach ‘ Human-Written YARA Rules ‘ AutoYara[22] ‘ Detect It Easy [13]
ackers Vers ——————— Obfuscation

Related Total GR FPR[%] FNR[%] TDR[%] Time[s] | FPR[%] FNR[%] TDR[%] Time[s] | FPR[%] FNR[%] TDR[%] Time [s] | FPR[%] FNR[%] TDR[%] Time [s]
UPX 6 8 36 N | 10 (135,0) 0 100 (2.1,1.9) 100 0 100 5.7 22.7 68.0 41.1 12 0 0 100 729
Armadillo 3 5 33 EUN 4 (100, 0) 0 100 (8,8.5) 79.3 6.29 94.1 284 100 423 100 42 0 0 100 592
MPRESS 3 1 10 N 2 (0,0) 0 100 (0.3,0.2) 100 0 100 0.9 38.8 95.9 38.8 0.2 0 0 100 55
PECompact 2 5 46 N 5 (11.9,0) 0 100 (3.3,3.0) 91.4 0 100 8.9 18.5 86.9 24.6 1.7 0 0 100 1032
ASPack 3 1 8 N 3 (14.2,0) 0 100 (1.5,1.3) 100 0 100 4.3 19.5 70.7 40.5 0.9 0 0 100 503
VMProtect 2 6 10 VM 9 (96.4,0) 0 100 (11.6,11.6) 15.9 0 100 17.6 19.0 88.7 19.3 54 0 0 100 545
FSG 1 1 1 N 1 (145,0) 0 100 (0.2,0.2) 100 0 100 0.9 19.0 88.5 19.5 0.1 0 0 100 33
Obsidium 1 7 37 (e 7 (98.8,0) 0 100 (1.7,13) 1.82 100 1.8 il 17.1 89.0 19.1 0.8 0 9.3 90.7 275
Petite 1 5 21 N 1 (125,0) 0 100 (0.6,0.5) 3.03 0 100 18 19.6 98.7 20.9 0.4 0 0 100 166
kkrunchy 2 1 4 N 2 (26.0,0) 0 100 (0.2,0.2) 233 1.95 98 0.9 319 735 40.5 0.1 0 0 100 42
MEW 1 2 9 N 2 (125,0) 0 100 (0.6, 0.5) 1.25 0 100 1.8 0.33 0 100 0.4 0 0.5 99.5 201
NsPack 3 1 15 N 1 (133,0) 0 100 (0.9,0.8) 718 0 100 2.5 20.3 90.3 20.3 0.5 21.1 61.4 59.7 287

. , EU;SCs 27 15 ; p Y 2 §

Themida 2 9 17 EU+VMN 9 (10,0) 0 100 (13.7,12.6) 10.7 35.8 66.4 26.3 19.5 67.5 42.3 6.5 5.33 0 100 639
ACProtect 2 2 14 N 3 (89.9,0) 0 100 (2.6,2.2) 98.6 0 100 5.6 19.5 67.3 46.2 145 216 0 100 512
ZProtect 1 1 29 EU+CF 1 (100, 0) 0 100 (1.4, 1.1) 5.08 24.9 76.5 2.9 19.2 17.8 85.2 0.6 0.08 0 100 212
Winlicense 1 2 31 EU+VMEU 4 (0.1,0) 0 100 (8.2,8.1) 19.7 0 100 16.4 19.5 78.1 374 4.1 8.28 0 100 413
Enigma 4 1 44 EU+SO 1 (100, 0) 0 100 (7.4,7.1) 100 0 100 12.7 8.42 0 100 4.2 0 0 100 698
MoleBox 1 1 10 N 1 (91.0,0) 0 100 (0.8,0.8) 2.22 0 100 19 17.4 94.3 17.4 0.4 0 100 0 138
‘WinUpack 1 1 15 N 2 (12.0,0) 0 100 (0.4,0.3) 100 0 100 13 18.5 92.5 23.8 0.2 0 0 100 138
expressor 1 2 15 N 2 (25.1,0) 0 100 (0.4,0.4) 0 100 0 13 38.8 90.4 38.8 0.3 0 0 100 95

1«

ed, “SO” means single obfuscation such as junk instructions,

to measure the false positive rates of rules. This dataset consists
of 26,326 non-packed malware samples retrieved from the recent
work [18], and 1,224 collected real-world benign programs such as
system files. To evaluate the performance of rules in the real world,
we collected 579,832 malware samples from VX-underground [59],
VirusTotal, and GitHub [60, 61]. They are divided into three cate-
gories. We use 560,285 Windows APT and malware samples as WD1
to evaluate the effectiveness of the rules. We also retrieved 18,288
packed and evasive samples from the low entropy dataset [18]
(WD2). It helps us to evaluate the robustness of rules on adversarial
samples. Furthermore, we retrieved 1,302 x86/x64 Linux malware
as WD3, which is used to evaluate the scalability of our generated
rules on different systems.

Testing Environment We run all experiments on a testbed ma-
chine with Intel i7-6700 CPU (4 cores, 3.40GHz), 32GB RAM, 1.8TB
Hard Disk, running Windows 10.

7.2 Rule Generation of PackGenome

We use the RGD dataset as the input of PackGenome to generate
rules. To evaluate the effectiveness of PackGenome and the con-
tribution of the byte selection technique, we generate rules under
two different configurations: (i) PackGenome: PackGenome gen-
erates rules from programs packed in the same configuration of
packers. (ii) PackGenome-N: PackGenome without byte selection
technique. Then, we apply generated rules to the LPD dataset and
compare the detection accuracy. As shown in the “FPR” column
of “Our Approach” in Table 2, the byte selection technique can
effectively reduce the mismatch possibility of our generated YARA
rules. After inspecting the PackGenome-N generated rules, we find
that most false positives are introduced by the hexadecimal string
rules with a high mismatch possibility. For example, more than
thousands of false positives are caused by a Winlicense detection
rule, which contains 13 hexadecimal string rules with a mismatch
possibility greater than 0.8.

N” means not obfuscated, “VM” means code virtualization obfuscation, “CF” means control-flow obfuscation, “EU” means the first layer of unpacking instructions are encrypt-

+” means using both obfuscation at the same time, “;” separates multiple types of unpacking instructions.

7.3 New Findings of Packers

We first apply PackGenome-generated rules to the labeled packed
dataset LPD (shown in Table 2), and examine extracted packer-
specific genes. The new findings of packers are described in the
following paragraphs.

Configuration of Packers As the configuration of packers con-
trols the decompression algorithms and obfuscations used in un-
packing routines, we traverse the configurations provided by the
packers. The total number of each packer’s configurations is shown
in the “Total” column of Table 2. We find that only parts of configu-
rations affect generated unpacking routines (shown in the “Related”
column of Table 2). Most of these configurations are the options of
compression algorithms. For example, UPX provides four compres-
sion options (i.e., Nrv2d, Nrv2e, Nrv2b, and LZMA).

Packer-specific Genes We notice that most of the extracted
packer-specific genes are the decompression (or decryption) func-
tions. The classification of packer-specific genes is shown in Fig. 10.
Many packers use similar unpacking algorithms, especially the stan-
dard decompression algorithms such as aPLib. For example, FSG
v1l.x and MEW v1.x use the same unpacking routine instructions.

7.4 Obfuscated Unpacking Routines

This section studies the performance of PackGenome when pro-
cessing real-world obfuscated unpacking routines. As shown in
Table 2, seven packers’ unpacking routines are protected with four
different obfuscation schemes. Firstly, for the packed programs
with anti-instrumentation configurations, PackGenome can still
generate rules by integrating with the framework ARANCINO. For
the control-flow obfuscation, ZProtect and Obsidium split their un-
packing routines into many small basic blocks. In their obfuscated
unpacking routines, each chained basic block consists of only two
instructions. Thanks to our byte selection strategy, PackGenome
can combine multiple short hexadecimal string rules to generate

PackGenome: Automatically Generating Robust YARA Rules for Accurate Malware Packer Detection

Table 3: Comparing PackGenome with other rules on the
NPD dataset. Due to space limitations, we summarize the
detection results of 20 packers.

PackGenome ‘Human-Written Rules AutoYara[22] Detect It Easy [13]
FPR(%] TDR[%] Time[s] FPR[%] TDR(%] Time[s] FPR[%] TDR[%] Time[s] FPR[%] TDR[%] Time[s]

Total (20) 0 0 40.8 228 228 73.2 18.9 18.9 26.6 0 0 5205

Rules

rules with a low mismatch possibility. For the single obfuscation
such as the junk instructions randomly inserted into unpacking
routines, our rules can use wildcards to escape these junk codes. For
the encrypted and virtualized unpacking routines (e.g., Themida),
PackGenome can still capture their reused decryption or virtualized
instructions as packer-specific genes. Although our byte selection
strategy can overcome light-weight obfuscation, obfuscation is still
a common limitation for any signature-based detectors (discussed
in Sec. 9).

Answer to RQ1: We extract packer-specific genes and generate
70 rules for 20 off-the-shelf packers. Our byte selection tech-
nique can help PackGenome generate rules with a low misplace
matching possibility.

7.5 Existing Automated Rule Generators v.s.
Packed Programs

This section studies the feasibility of existing automated rule gener-
ators creating rules from the RGD dataset. YaraGenerator [51] can
only generate text string rules, which cannot reveal the features of
packers. yarGen [53] creates rules from insignificant text strings
and opcodes. yabin [52] generates rules from erroneous function
prologues, which usually are the compressed data of packed pro-
grams. After applying their generated rules in the LPD dataset,
we discover that their performance is much lower than AutoYara.
Therefore, we only compare AutoYara with PackGenome in the
following experiments.

7.6 Accuracy

Our generated rules should accurately identify packed programs
and ignore non-packed programs. To validate this hypothesis, we
conducted the following two experiments.

Experiment I: Matching Labeled Packed Programs We apply
each tool to the LPD dataset. As can be seen from Table 2, our rules
outperform other rules. In contrast, AutoYara-generated rules can
only detect a limited number of packed programs correctly, because
they usually contain the common strings (e.g., “GetProcAddress”)
that are widely used by different packers. Meanwhile, AutoYara’s
large N-gram (n>8) cannot capture the features of the unpacking
routines protected by control-flow obfuscation. Another observa-
tion is that DIE rules perform better than other human-written
rules, because they heavily rely on the meta-information of pro-
grams such as the section name (discussed in Sec. 2.3). For example,
over the past 8 years, DIE suffers high false negatives (greater than
90% in our LPD) in detecting Themida and Winlicense until they
switch to detect section names “.themida” and “.winlice” [62].
Unfortunately, they can be easily evaded or misled by in-the-wild
custom packers (detailed in Sec. 7.9).

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Il 500,000 samples
B=mm 100,000 samples
7 50,000 samples

m
T 10%: mm 10,000 samples
]
@
)
Q 3.
£ 10
iz
o
£
C
e % % %
O
)
i)
2 / /
= 10%- i /
PackGenome AutoYaray,man-written Rules DIE

Figure 8: Scanning time comparison under four different
sample magnitudes.

Experiment II: Matching Non-packed Programs We use the
NPD dataset to measure the false positives rate that rules mistakenly
match the non-packed programs. From the results shown in Table 3,
we can see that our rules and DIE have zero false positive rate on
each samples of NPD. The reason is that DIE’s rules heavily rely on
the meta-information that would not exist in non-packed programs
(e.g., the "UPX" string). But these rules can be easily bypassed
by the real-world camouflaged packers (detailed in Sec. 7.9). In
contrast, the human-written rules exhibit the highest false positive
rate. Most false positives are introduced by the rules created from
insignificant features. For example, an Armadillo packer detection
rule mistakenly identifies 56 non-packed samples as packed.

7.7 Efficiency

To evaluate the efficiency of rules when processing massive pro-
grams, we compare our generated rules with human-written rules,
AutoYara, and DIE using different amounts of programs randomly
selected from the WD1 dataset. During the experiments, we use
four threads to execute YARA and DIE. The running times of YARA-
based tools and DIE are shown in Fig. 8. The scanning overhead
of our generated rules is on a par with the human-written YARA
rules and the AutoYara-generated rules. In contrast, DIE performs
worse than YARA-based tools, because the JavaScript-like grammar
of DIE spends a lot of time on parsing and matching programs.

Answer to RQ2: Our generated rules outperform state-of-the-
art human-written rules and an automatic rule generation tool on
the labeled packed dataset and non-packed dataset. The scanning
overhead of our generated rules is acceptable.

7.8 Scalability

Since the packer-specific genes are reused by the packers, our gener-
ated rules would be suitable for multiple scenarios such as detecting
custom packers. We performed the following four experiments to
validate this hypothesis.

Different Versions of Packers After examining the packer-
specific genes extracted from 11 packers with multiple versions
(detailed in Table 2), we find that nine packers reuse the unpacking
routines across different versions. Our rules can directly detect

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

+~~Standard UPX-Packed Numbers:

/-’ /- — PackGenome Correctly Identified Numbers: + 3,711
_/' /S — — DIE Correctly Identified Numbers: +2,804
4 X /
’ /' / DIE Falsely Identified Numbers: 4,126 =
LT —-
/oA AA A ~7TN \
DL~ A A /a4 —. / N—
AR Vi {e N ¢ !
B vA . VAl j N)
‘oo & ,la, —— Nl
QTRA A/ A / ~~~
""" a PackGenome Falsely Identified Numbers: 56
Figure 9: Comparison of UPX samples detected by

PackGenome and DIE on the WD1 dataset.

multiple versions of packed programs that reuse the same unpack-
ing routines. For example, as the classification of packer-specific
genes shown in Fig. 10, four different versions of Enigma share the
same unpacking routines but use completely different entry point
instructions. A single PackGenome-generated rule is enough to
detect different versions of Enigma-packed programs. In contrast,
human analysts have to repeat the tedious rule development process
when creating rules from the entry point instructions of packers.
For example, we find 61 human-written YARA rules are developed
for matching the entry point of Enigma-packed programs.

Different Systems A packer may support multiple OSs at the
same time. For example, UPX supports different executable formats
such as Linux and Windows programs. We use the Linux malware
samples dataset WD3 to evaluate whether our generated rules,
created only from UPX-packed Windows programs, can also iden-
tify the UPX-packed Linux programs. Our evaluation shows that
PackGenome-generated rules can successfully recognize all of 87
UPX-packed Linux programs. Because UPX reuses the same instruc-
tions of the unpacking algorithm in generated x86/x64 Linux and
Windows packed programs. In contrast, only three human-written
rules, created from compression algorithms (e.g., Nrv2x), can de-
tect 34 UPX-packed programs. These long-length rules contain
many consecutive basic blocks. They can be easily thwarted by the
control-flow obfuscations. DIE’s UPX detection rules can only iden-
tify 64 programs, because they heavily rely on meta-information
(e.g., “$Id: UPX” string), which has been eliminated in custom UPX
packers.

Custom Packers This experiment evaluates the ability of our
generated rules on detecting custom UPX variants. We choose UPX
because it is the most widely used open-source packer and is usually
customized by malware authors. Malware authors typically cam-
ouflage the features of standard packers by modifying the unique
strings (e.g., “UPX”) or the entry point instructions [14]. We first
apply our generated rules and DIE on the WD1 datasets, and filter
out the programs packed by standard UPX. To identify standard
UPX-packed programs, we use the rules created from the entry
point instructions of the standard UPX-packed programs. Then, we
manually inspect whether the detected samples are generated by
custom UPX packers.

The experiment results show that our generated rules capture 907
unique custom packed programs with low false positives (shown
in Fig. 9 and Table 4). After examining the packed samples, we find
that these custom packers reuse the standard UPX’s decompression
algorithms. For example, we find that a packed sample from APT 29

Shijia Li, et al.

Table 4: Comparing with DIE in the WD1 dataset. We choose
five popular packers as targets and verify the detection re-
sults. “4UD” reports the number of unique detected samples
which cannot be discovered by another tool. “4FD” reports
the number of falsely detected samples.

Packers PackGenome Detect It Easy [13]
#UD #FD #Total #UD #FD #Total

Open Source Compression Algorithm

UPX 907 56 49,920 0 4,117 53,083

MPRESS 197 0 791 0 48 642

Close Source

ASPack 466 10 7,578 0 421 7,523

Obsidium 2 0 43 0 974 1,015

PECompact 9,449 138 16,440 0 12 6,805

Themida 35 1 1,422 0 2 1,388

can bypass the entropy-based detection and most human-written
rules, including the rules created from the entry point instructions
and rules of DIE.

Low Entropy Samples To demonstrate the robustness of our
generated rules in detecting adversarial packed samples, we also
apply our rules to the WD2 dataset, which consists of the low
entropy packed programs discovered by the study [18]. Mantovani
et al’s study [18] points out that the existing off-the-shelf packers
detectors (e.g., DIE) are unable to identify low entropy packed
samples. However, different from their study finding only three
samples packed by known packers, PackGenome-generated rules
identify 47 samples packed by the off-the-shelf packers, where 33
samples were also detected by DIE. The reason is that their study
falsely treat any known packers as false positives. These samples
are protected by the off-the-shelf packer combined with the low-
entropy technique. For example, two samples with entropy less
than 4.02 are packed by standard NsPack.

Answer to RQ3: Our generated rules are suitable for detecting
different versions of packers. The rules created from packer-
specific genes can directly detect custom packers that reuse the
same unpacking routines.

7.9 Performance in the wild

To study the accuracy and robustness of our generated rules
in the real world, we compare our rules with DIE on the WDI
dataset. We choose DIE as it outperforms other human-written
rules and AutoYara. Considering the sample number of WD1 is
more than 560K, which exceeds the ability of manually reverse
engineering. We choose five popular packers (i.e., UPX, MPRESS,
ASPack, Obsidium, PECompact, and Themida) as targets, and filter
out the incomplete samples (e.g., unpacked failed samples). After
applying each rule to 560,285 samples, we collect 81,708 detected
samples and summarize the comparison result in Table 4.

2Existing work takes the entropy value of 7.0 or higher as the signal of a packed
program [4, 18].

[ENRETS O

[SRSIN-RCREN e N2,

—_

PackGenome: Automatically Generating Robust YARA Rules for Accurate Malware Packer Detection

- Share the same unpacking routine in different versions

Customized standard algorithms

aPLib Nrv2e,Nrv2d, Nrv2b

PECompact

ver3022, ver311

NsPack
ver23, ver37, verdl

-~ PECompact ACProtect
o ver311 ver 132, ver 141

7 PECompact
See ver311

Custom Decryption Algorithm

/ ver 100, ver 120,
\ '\ ver 125, ver 200,
ZARNGE ver 309, ver 396 [

N ver218, ver219 WiV /} . ver 100, ver 120,)
A e]i‘l‘e}}“Z ver 125, ver 200, /
_______ - -~ -
R 7 PECompact >, i 309, ver 396 I

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

- Custom LZ-based ;\\\‘\\\\

- WinUpack ~>~
N ver031 AN
/

~“" MPRESS MPRESS

UPX \

) P

-~ 7 Custom Unpacking Algorithm

-,
~ 7’ .
VMProtect Themida ZProtect Obsidium Winlicense S ’ Petite ASPack kkrunchy
ver246, ver 340 ver237 ver160 verls ver239 (customl,custom2) S N4 ver24 ver229, ver238, ver242 ver023a
Armadillo Enigma MoleBox <\ Armadillo (ASLR protected program) expressor
erCORe 00 NerS00 e DRSS hvents en o ver 43018 \ ver604, ver700, ver800 verl8 (customl, custom2)

\ .

Figure 10: The classification of first layer unpacking routines by comparing with the packer-specific genes extracted from

PECompact-packed programs.

// Generic

if(PE.getEntryPointSection()==PE.nLastSection)

{

if (PE.compareEP("EB")) // "EB" is the opcode of short
relative JMP instruction

if(PE.getImportSection()>=0)

if(PE.isOverlayPresent())
{
bDetected=1;
1333

Figure 11: The example of DIE’s Obsidium detection rule
which based on multiple meta-information. It can mismatch
many custom packers and non-packed malware, because the
meta-information is insignificant.

From the results shown in Table 4, we can find that our gen-
erated rules perform better than DIE. Our generated rules have
few to no false positives. More than 74% of false positives are
introduced by the samples using similar unpacking routines. For
example, we discover that parts of false positives are introduced by
an inaccessible packer k/cryptor which uses the same unpacking
algorithm to PECompact. Meanwhile, our generated rules can dis-
cover unique samples, which DIE cannot recognize these packed
programs. The reason is that more than 95% of these samples use
adversarial techniques to bypass detectors such as modifying any
suspicious meta-information and entry point instructions. But they
will not mislead PackGenome, because our generated rules are cre-
ated from reused unpacking routines. For example, the Obsidium
packed programs’ entry point instruction is a short relative JMP
instruction that jumps to the instructions that are distant from the
entry point. Although they can easily bypass the rules created from
entry point instructions, our generated rules can accurately identify
them by capturing their unpacking routines.

In contrast, DIE’s meta-information-based rules are overly in-
clusive, and leading to more than 91% of false positives. For exam-
ple, as shown in Fig. 11, DIE’s rules use many insignificant meta-
information to match variants of Obsidium-packed programs. How-
ever, many custom packers and non-packed malware also satisfy

these rules (e.g., the “PE. compareEP (’EB’)” rule can mistakenly
match many custom packers and non-packed malware that use the
JMP instruction at the entry point). Another example is that one sam-
ple (SHA256: 1b97190c8357f6edd0951128cde9702d9f5b542a30c3870d
1ce007881980b48b) protected by VMProtect camouflages its sec-
tion name “.vmp” as “. themida” which is falsely captured by DIE’s

Themida detection rule “PE.isSectionNamePreset (".themida")”.

Meanwhile, more than 90% of false positives are adversarial samples,
which are crafted to evade detectors and unpackers by mimicking
the appearance of different packer-protected programs. For exam-
ple, we found 3,425 samples that use custom first-layer unpacking
routines but are camouflaged as standard UPX-packed programs.
The remaining samples have similar structures (e.g., the order and
name of import tables) or entry point instructions to what DIE’s
rules expect, but are falsely mismatched by the wildcards in the
entry point matching rules.

Answer to RQ4: Our generated rules created from the packer-
specific genes are robust to detect custom packers in the wild
with low false positive rates.

8 Related Work

We have summarized the literature of packer detection in Sec. 1
and Sec. 2.2. This section describes the related work on YARA
improvement and binary unpacking.

YARA Improvement An orthogonal work, YARIX [63], builds a
preprocessed inverted malware file index to efficiently search for
YARA rules. PackGenome-generated rules can also benefit from the
search engine of YARIX, and we expect several orders of magnitudes
performance boost on packed program detection.

Binary Unpacking Over the past two decades, this is a long-
standing challenge in malware analysis. Due to the rise of machine-
learning-based malware classifiers, binary unpacking has recently
undergone a renaissance [4, 6, 9, 18, 38, 64]. The classic way, rep-
resented by Deep Packer Inspector [4], dynamically monitors the
“written-then-executed” unpacking layers to identify the original
entry point (OEP). The recent innovations are to propose a new

CCS *23, November 26-30, 2023, Copenhagen, Denmark.

heuristic to quickly determine the end of unpacking [38] or take
advantage of hardware features [9]. For example, BinUnpack [38]
monitors the API calls based on kernel-level DLL hijacking tech-
niques; it can quickly locate OEP by capturing the “rebuilt-then-
called” feature of import address tables. API-Xray [9] leverages
hardware-assisted tracing to defeat API obfuscation schemes and
then reconstruct API import tables, so that the unpacked malware
payload can be executed independently. Facing millions of mal-
ware samples, PackGenome is an appealing complement to generic
unpacking tools: once PackGenome rapidly identifies packed exe-
cutable files, they can be flagged as high priority for further binary
unpacking.

9 Discussion

Missing Brand-new Packers Like other signature-based ap-
proaches, PackGenome bears with a similar limitation: it may miss
brand-new packers that reveal totally different signatures. If the
brand-new packer is accessible, PackGenome can still generate ro-
bust rules from proactively synthesized packed programs. As for
the inaccessible packers, one approach is to use PackGenome di-
rectly generates rules from the manually collected packed programs
that are potentially protected by the same packer. Our experiments
show that PackGenome can successfully generate robust detection
rules for inaccessible packers. Another possible countermeasure
is to leverage the unpacking routine’s side channel information.
For example, the unpacking process performs iterations of decryp-
tion or decompression, which can incur identifiable deviations in
hardware events [65]. We will explore the direction of modeling
hardware performance counter values to detect packers.

Unavoidable Byte Mismatch As discussed in Sec. 2.3, due to
the performance concern, signature-based detection tools mainly
search for bytes rather than the expected form of instructions.
Especially under the scope of full-binary matching, some YARA
rules will introduce false positives. On the other side, performing
binary disassembly and instruction searches are too expensive to
process large-scale programs. PackGenome attempts to reduce the
mismatch rate via our proposed byte selection strategy, which
strikes a delicate balance between byte mismatch and performance.

Heavyweight Obfuscation Another limitation of signature-based
detectors is that they cannot handle heavyweight obfuscation by
nature. YARA rules are like a piece of programming language but
only with limited grammar expression power, and we have already
adopted special constructions such as wildcards to overcome light-
weight obfuscations such as junk code. Determined attackers can
obfuscate packer-specific genes using syntactically different in-
structions. Like our response to brand-new packers, a promising
countermeasure is to explore tamper-resistant hardware features.
We leave it as our future work.

10 Conclusion

Over the past two decades, packed malware in circulation is a
tremendous amount. Security analysts rely on signature-based de-
tection to quickly determine the packing technique/tool used; after
that, unpacking a malware sample becomes easier. However, ex-
isting work on packer signature generation heavily depends on
human analysts’ experience, which makes the process of writing

Shijia Li, et al.

and maintaining rules painful, error-prone, and tedious. In this pa-
per, we develop PackGenome, an automatic YARA rule generation
framework for packer detection. We harvest packer detection rules
from the unpacking routine, which is reused by the same-packer
protected programs. Furthermore, we propose the first model to
systematically evaluate the mismatch probability of bytes rules. Our
large-scale experiments show that PackGenome outperforms exist-
ing human-written rules and peer tools with zero false negatives,
low false positives, and a negligible scanning overhead increase.

Acknowledgments

We sincerely thank ACM CCS 2023 anonymous reviewers for their
insightful and helpful comments. This work was supported by Na-
tional Natural Science Foundation of China (62172238, 61972215,

and 61972073); National Key R&D Program of China (2018YFA0704703);

Natural Science Foundation of Tianjin (20JCZDJC00640); Tianjin Re-
search Innovation Project for Postgraduate Students (2019YJSS092);
and the Fundamental Research Funds for the Central Universities
of China. Jiang Ming was supported by the National Science Foun-
dation (NSF) under grant CNS-2128703 and Carol Lavin Bernick
Faculty Grant.

References

[1] Trivikram Muralidharan, Aviad Cohen, Noa Gerson, and Nir Nissim. 2022. File
Packing from the Malware Perspective: Techniques, Analysis Approaches, and
Directions for Enhancements. ACM Computing Surveys (CSUR) 55 (April 2022),
1-45.

[2] Kevin A. Roundy and Barton P. Miller. 2013. Binary-Code Obfuscations in
Prevalent Packer Tools. ACM Computing Surveys (CSUR) 46, 1 (2013), 1-32.

[3] Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Douglas M. Blough,
Elissa M. Redmiles, and Mustaque Ahamad. 2021. An Inside Look into the
Practice of Malware Analysis. In Proceedings of the 28th ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 3053-3069.

[4] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G. Bringas.
2015. SoK: Deep Packer Inspection: A Longitudinal Study of the Complexity of
Run-Time Packers. In Proceedings of the 36th IEEE Symposium on Security and
Privacy (S&P). IEEE, 659-673.

[5] Babak Rahbarinia, Marco Balduzzi, and Roberto Perdisci. 2017. Exploring the
Long Tail of (Malicious) Software Downloads. In Proceedings of the 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 391-402.

[6] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano
Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020.
When Malware is Packin’ Heat; Limits of Machine Learning Classifiers Based
on Static Analysis Features. In Proceedings of the 27th Network and Distributed
System Security Symposium (NDSS). Internet Society.

[7] Christian Wressnegger, Kevin Freeman, Fabian Yamaguchi, and Konrad Rieck.
2017. Automatically Inferring Malware Signatures for Anti-Virus Assisted Attacks.
In Proceedings of the 12th ACM Asia Conference on Computer and Communications
Security (ASIA CCS). ACM, 587-598.

[8] Mario Polino, Andrea Continella, Sebastiano Mariani, Stefano D’Alessio, Lorenzo

Fontana, Fabio Gritti, and Stefano Zanero. 2017. Measuring and Defeating Anti-

Instrumentation-Equipped Malware. In Proceedings of the 14th International Con-

ference on Detection of Intrusions and Malware, and Vulnerability Assessment

(DIMVA). Springer Cham, 73-96.

Binlin Cheng, Jiang Ming, Erika A. Leal, Haotian Zhang, Jianming Fu, Guojun

Peng, and Jean Yves Marion. 2021. Obfuscation-Resilient Executable Payload

Extraction From Packed Malware. In Proceedings of the 30th USENIX Security

Symposium (USENIX Security). USENIX Association, 3451-3468.

Erin Avllazagaj, Ziyun Zhu, Leyla Bilge, Davide Balzarotti, and Tudor Dumitras.

2021. When Malware Changed Its Mind: An Empirical Study of Variable Program

Behaviors in the Real World. In Proceedings of the 30th USENIX Security Symposium

(USENIX Security). USENIX Association, 3487-3504.

VirusTotal. VirusTotal - Stats. https://www.virustotal.com/gui/stats (accessed

on 2022-12-09).

Victor Manuel Alvarez. YARA — The Pattern Matching Swiss Knife for Malware

Researchers. https://virustotal.github.io/yara/ (accessed on 2022-12-09).

Horsicq. Detect-It-Easy. https://github.com/horsicq/Detect-It-Easy (accessed on

2022-12-07).

—
o)

[10

[11

[12

=
)

https://www.virustotal.com/gui/stats
https://virustotal.github.io/yara/
https://github.com/horsicq/Detect-It-Easy

PackGenome: Automatically Generating Robust YARA Rules for Accurate Malware Packer Detection

[14

[15

[16]

[19]

[20

[21

[22

[23

[24]
[25]

[26]

[27

[28]

[29]

[35

[36]

[37

Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2018. Understanding Linux Malware. In Proceedings of the 39th IEEE Symposium
on Security and Privacy (S&P). IEEE, 161-175.

Robert Lyda and James Hamrock. 2007. Using Entropy Analysis to Find Encrypted
and Packed Malware. IEEE Security and Privacy 5, 2 (2007), 40-45.

Guhyeon Jeong, Euijin Choo, Joosuk Lee, Munkhbayar Bat-Erdene, and Heejo
Lee. 2010. Generic Unpacking using Entropy Analysis. In Proceedings of the 5th
International Conference on Malicious and Unwanted Software (MALWARE’10).
IEEE, 114-121.

Munkhbayar Bat-Erdene, Taebeom Kim, Hyundo Park, and Heejo Lee. 2017.
Packer Detection for Multi-Layer Executables Using Entropy Analysis. Entropy
19, 3 (2017), 1-18.

Alessandro Mantovani, Simone Aonzo, Xabier Ugarte-Pedrero, Alessio Merlo, and
Davide Balzarotti. 2020. Prevalence and Impact of Low-Entropy Packing Schemes
in the Malware Ecosystem. In Proceedings of the 27th Network and Distributed
System Security Symposium (NDSS). Internet Society.

Fabrizio Biondi, Michael A. Enescu, Thomas Given-Wilson, Axel Legay, Lamine
Noureddine, and Vivek Verma. 2019. Effective, Efficient, and Robust Packing
Detection and Classification. Computers & Security 85 (2019), 436-451.

Fabian Kaczmarczyck, Bernhard Grill, Luca Invernizzi, Jennifer Pullman, Ce-
cilia M. Procopiuc, David Tao, Borbala Benko, and Elie Bursztein. 2020. Spotlight:
Malware Lead Generation at Scale. In Proceedings of the 36th Annual Computer
Security Applications Conference (ACSAC). ACM, 17-27.

Erik Bergenholtz, Emiliano Casalicchio, Dragos Ilie, and Andrew Moss. 2020.
Detection of Metamorphic Malware Packers Using Multilayered LSTM Networks.
In Proceedings of the 22nd International Conference on Information and Communi-
cations Security (ICICS). Springer, Cham, 36-53.

Edward Raff, Richard Zak, Gary Lopez Munoz, William Fleming, Hyrum S. An-
derson, Bobby Filar, Charles Nicholas, and James Holt. 2020. Automatic Yara
Rule Generation Using Biclustering. In Proceedings of the 13th ACM Workshop on
Artificial Intelligence and Security (AISec@CCS 2020). ACM, 71-82.

Xianwei Gao, Changzhen Hu, Chun Shan, and Weijie Han. 2022. MaliCage:
A Packed Malware Family Classification Framework based on DNN and GAN.
Journal of Information Security and Applications 68 (2022), 2214-2126.

Aldeid. PEiD. https://www.aldeid.com/wiki/PEiD (accessed on 2022-12-09).
Evan Downing, Yisroel Mirsky, Kyuhong Park, and Wenke Lee. 2021. DeepRe-
flect: Discovering Malicious Functionality through Binary Reconstruction. In
Proceedings of the 30th USENIX Security Symposium (USENIX Security). USENIX
Association, 3469-3486.

Kyuhong Park, Burak Sahin, Yongheng Chen, Jisheng Zhao, Evan Downing, Hong
Hu, and Wenke Lee. 2021. Identifying Behavior Dispatchers for Malware Analysis.
In Proceedings of the 2021 ACM Asia Conference on Computer and Communications
Security (ASIA CCS). ACM, 759-773.

Unipacker. Unpacking PE files using Unicorn Engine. https://github.com/uniPa
cker/uniPacker (accessed on 2022-12-09).

Daniel Votipka, Seth M. Rabin, Kristopher Micinski, Jeffrey S. Foster, and
Michelle M. Mazurek. 2020. An Observational Investigation of Reverse Engi-
neers’ Processes. In Proceedings of the 29th USENIX Security Symposium (USENIX
Security). USENIX Association, 1875-1892.

Oreans Technologies. Themida Overview. https://www.oreans.com/themida.php
(accessed on 2022-12-09).

Fanglu Guo, Peter Ferrie, and Tzi-cker Chiueh. 2008. A Study of the Packer
Problem and Its Solutions. In Proceedings of the 11th Recent Advances in Intrusion
Detection (RAID). Springer Berlin, Heidelberg, 98-115.

Dhondta. Awesome Executable Packing. https://github.com/dhondta/awesome-
executable-packing (accessed on 2022-12-09).

Ange Albertini. Packers. https://corkami.blogspot.com/ (accessed on 2022-12-09).
Rufus Brown, Van Ta, Douglas Bienstock, Geoff Ackerman, and John Wolfram.
Does This Look Infected? A Summary of APT41 Targeting U.S. State Governments.
https://www.mandiant.com/resources/apt41-us-state-governments (accessed on
2022-12-09).

Cisco Talos Intelligence Group. New Research Paper: Prevalence and impact of
low-entropy packing schemes in the malware ecosystem. https://blog.talosinte
lligence.com/2020/02/new-research-paper-prevalence-and.html (accessed on
2022-12-09).

Intel. Intel® 64 and IA-32 Architectures Software Developer Manuals. https://ww
w.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
(accessed on 2022-12-09).

Ajit Varki and Tasha K. Altheide. 2005. Comparing the human and chimpanzee
genomes: Searching for needles in a haystack. Genome Research 15, 12 (2005),
1746-1758.

Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity of Bi-
naries. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM, 266-280.

(38]

(39]

[40

~
=

=
)

~
Ko

=
&

[57]

[58

[59

[60]

o
N

[62

[63

[64

o
o

CCS ’23, November 26-30, 2023, Copenhagen, Denmark.

Binlin Cheng, Jiang Ming, Jianming Fu, Guojun Peng, Ting Chen, Xiaosong Zhang,
and Jean-yves Marion. 2018. Towards Paving the Way for Large-Scale Windows
Malware Analysis: Generic Binary Unpacking with Orders-of-Magnitude Perfor-
mance Boost. In Proceedings of the 25th ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 395-411.

Arne Swinnen and Alaeddine Mesbahi. 2014. One Packer to Rule them All:
Empirical Identification, Comparison and Circumvention of Current Antivirus
Detection Techniques. In BlackHat USA. BlackHat, 1-55.

Erick Bauman, Zhigiang Lin, and Kevin W. Hamlen. 2018. Superset Disassembly:
Statically Rewriting x86 Binaries Without Heuristics. In Proceedings of the 25th
Annual Network and Distributed System Security Symposium (NDSS). Internet
Society.

Tomislav Pericin. 2011. Reversing software compressions: Tale of dragons and
men who slay them. In REcon 2011. REcon.

the MITRE Corporation. Obfuscated Files or Information: Software Packing.
https://attack.mitre.org/techniques/T1027/002/ (accessed on 2022-12-09).
Thomas Barabosch. The malware analyst’s guide to aPLib decompression. https:
//0xcOdecafe.com/malware-analysts-guide-to-aplib-decompression (accessed on
2022-12-09).

Microsoft. PE Format. https://docs.microsoft.com/en-us/windows/win32/debug
/pe-format (accessed on 2022-12-09).

Yara-rules. rules. https://github.com/Yara-Rules/rules (accessed on 2022-12-09).
Avast. retdec. https://github.com/avast/retdec/tree/master/support/yara_pattern
s/tools (accessed on 2022-12-09).

JusticeRage. Manalyze. https://github.com/JusticeRage/Manalyze (accessed on
2022-12-09).

Godaddy. yara-rules. https://github.com/godaddy/yara-rules/ (accessed on
2022-12-09).

AlienVault-OTX. OTX-Python-SDK. https://github.com/AlienVault-OTX/OTX-
Python-SDK (accessed on 2022-12-09).

X64dbg. yarasigs. https:/github.com/x64dbg/yarasigs (accessed on 2022-12-09).
XenOphOn. YaraGenerator. https://github.com/Xen0OphOn/YaraGenerator
(accessed on 2022-12-09).

AlienVault-OTX. yabin. https://github.com/AlienVault-OTX/yabin (accessed on
2022-12-09).

Neo23x0. yarGen. https://github.com/Neo23x0/yarGen (accessed on 2022-12-09).
Shijia Li, Chunfu Jia, Pengda Qiu, Qiyuan Chen, Jiang Ming, and Debin Gao. 2022.
Chosen-Instruction Attack Against Commercial Code Virtualization Obfuscators.
In Proceedings of the 29th Network and Distributed System Security Symposium
(NDSS). Internet Society.

Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated
Code. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 732-744.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation (PLDI). ACM Press, 190—-200.

Xin Hu, Kang G Shin, Sandeep Bhatkar, and Kent Griffin. 2013. MutantX-S:
Scalable Malware Clustering Based on Static Features. In Proceedings of the 2013
USENIX Annual Technical Conference (USENLX ATC). USENIX Association, 187—
198.

ASL. EXEINFO PE. http://www.exeinfo.byethost18.com (accessed on
2022-12-09).

Vx-underground team. vx-underground. https://samples.vx-underground.org/
(accessed on 2022-12-09).

Cyber-research. APTMalware. https://github.com/cyber-research/ APTMalware
(accessed on 2022-12-09).

MalwareSamples. Linux-Malware-Samples. https://github.com/MalwareSample
s/Linux-Malware-Samples (accessed on 2022-12-09).

Horsicq. Fix: 2022-06-02 - horsicq/Detect-It-Easy@c332fa4 - GitHub. https:
//github.com/horsicq/Detect-It-Easy/commit/c332fa452087bc0e6705c452e003
31618a9da00e (accessed on 2022-12-09).

Michael Brengel and Christian Rossow. 2021. YARIX: Scalable YARA-based
Malware Intelligence. In Proceedings of the 30th USENIX Security Symposium
(USENIX Security). USENIX Association, 3541-3558.

Guillaume Bonfante, Jose Fernandez, Jean-Yves Marion, Benjamin Rouxel, Fabrice
Sabatier, and Aurélien Thierry. 2015. CoDisasm: Medium Scale Concatic Disas-
sembly of Self-Modifying Binaries with Overlapping Instructions. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS’15). ACM, 745-756.

Binlin Cheng, Erika A. Leal, Haotian Zhang, and Jiang Ming. 2023. On the Feasi-
bility of Malware Unpacking via Hardware-assisted Loop Profiling. In Proceedings
of the 32nd USENIX Security Symposium (USENIX Security). USENIX Association,
7481-7498.

https://www.aldeid.com/wiki/PEiD
https://github.com/uniPacker/uniPacker
https://github.com/uniPacker/uniPacker
https://www.oreans.com/themida.php
https://github.com/dhondta/awesome-executable-packing
https://github.com/dhondta/awesome-executable-packing
https://corkami.blogspot.com/
https://www.mandiant.com/resources/apt41-us-state-governments
https://blog.talosintelligence.com/2020/02/new-research-paper-prevalence-and.html
https://blog.talosintelligence.com/2020/02/new-research-paper-prevalence-and.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://attack.mitre.org/techniques/T1027/002/
https://0xc0decafe.com/malware-analysts-guide-to-aplib-decompression
https://0xc0decafe.com/malware-analysts-guide-to-aplib-decompression
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://github.com/Yara-Rules/rules
https://github.com/avast/retdec/tree/master/support/yara_patterns/tools
https://github.com/avast/retdec/tree/master/support/yara_patterns/tools
https://github.com/JusticeRage/Manalyze
https://github.com/godaddy/yara-rules/
https://github.com/AlienVault-OTX/OTX-Python-SDK
https://github.com/AlienVault-OTX/OTX-Python-SDK
https://github.com/x64dbg/yarasigs
https://github.com/Xen0ph0n/YaraGenerator
https://github.com/AlienVault-OTX/yabin
https://github.com/Neo23x0/yarGen
http://www.exeinfo.byethost18.com
https://samples.vx-underground.org/
https://github.com/cyber-research/APTMalware
https://github.com/MalwareSamples/Linux-Malware-Samples
https://github.com/MalwareSamples/Linux-Malware-Samples
https://github.com/horsicq/Detect-It-Easy/commit/c332fa452087bc0e6705c452e00331618a9da00e
https://github.com/horsicq/Detect-It-Easy/commit/c332fa452087bc0e6705c452e00331618a9da00e
https://github.com/horsicq/Detect-It-Easy/commit/c332fa452087bc0e6705c452e00331618a9da00e

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Binary Packing
	2.2 Signature-based Packer Detection
	2.3 Challenges of Generating Packer Detection Rules

	3 Overview
	4 Packed Program Preprocessing
	5 Packer-specific Gene Extraction
	5.1 Recording the First Unpacking Layer Execution Trace
	5.2 Discovering Unpacking Routine Instructions
	5.3 Extracting Packer-specific Genes

	6 YARA Rule Generation
	6.1 Byte Selection
	6.2 Calculating Misplace Matching Probability
	6.3 Predicting Disassembly

	7 Evaluation
	7.1 Experimental Setup and Datasets
	7.2 Rule Generation of PackGenome
	7.3 New Findings of Packers
	7.4 Obfuscated Unpacking Routines
	7.5 Existing Automated Rule Generators v.s. Packed Programs
	7.6 Accuracy
	7.7 Efficiency
	7.8 Scalability
	7.9 Performance in the wild

	8 Related Work
	9 Discussion
	10 Conclusion
	References

