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ABSTRACT

We describe theory and experiments investigating nonlinear beat wave decay of diocotron modes on a nonneutral plasma column (or Kelvin
waves on a vortex). Specifically, a Kelvin/diocotron pump wave varying as A, exp [i(l,0 — w,t)] decays into two waves: a Kelvin/diocotron
daughter wave with exponentially growing amplitude A4(t), mode number Iy < [,, and frequency w, and an exponentially growing “beat
wave” with mode number /, and frequency w,. Nonlinear wave-wave coupling requires [, = [, —I; and wy = w, — w4. The new theory
simplifies and extends a previous weak-turbulence theory for the exponential growth rate of this instability, by instead using an eigenmode
expansion to describe the beat wave as a wavepacket of continuum (Case/van Kampen) modes. The new theory predicts the growth rate, the

nonlinear frequency shift (both proportional to A2), and the functional form of the beat wave, with amplitude proportional to A,A%(t).
Experiments observe beat wave decay on electron pfasma columns for a range of mode numbers up to [, = 5 and I; =4, with results in quan-
titative agreement with the theory, including the I;= 1 case for which measured growth rates are negligible, as expected theoretically.
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I. INTRODUCTION

The phenomenon of self-organization, in which fluctuation
energy in a fluid flow is transferred from smaller to larger spatial scales,
plays an important role in a range of physical processes in both fluids
and plasmas. Examples include the generation of zonal flows, the
merger of like-sign vortices,” and the formation of vortex crystals” and
other coherent structures’ from turbulent states.

Another manifestation of self-organization is the spontaneous
symmetrization of a single isolated vortex,” '’ in which asymmetries
initially present on the vortex decay through inviscid processes. One
such process, spatial Landau damping of the asymmetry, is associated
with a critical layer that occurs at a resonance between the rotation
rate of the vortex and the phase velocity of the asymmetry (a “direct”
resonance).'"'? However, this direct resonance process does not occur
for vortices with edges that are sufficiently sharp so that the resonance
condition is satisfied at a radius outside the vortex. Nevertheless, axi-
symmetrization can still occur through a different inviscid process, in
which nonlinear couplings between asymmetries present in the vortex
transfer energy from larger wavenumber asymmetries to smaller wave-
numbers (sometimes referred to as down-scattering' ") We will see that
this nonlinear axisymmetrization process is also driven by a resonance
at a critical layer, but the resonance is at a different radial location,

within the vortex. Theoretical and experimental investigations of this
nonlinear axisymmetrization process are this subject of this paper.
Previous experiments'” " have observed this nonlinear axisym-
metrization in a pure electron plasma, which closely mimics the
dynamics of an ideal inviscid 2D fluid'® (i.e., a 2D Euler flow). In these
experiments, a nominally cylindrically symmetric vortex is perturbed
in a controlled fashion to induce a Kelvin “pump” wave on the surface
of the vortex (termed a diocotron mode in the plasma literature). The
pump wave is a traveling wave that has time and 0 dependence of the
form cos (1,0 — wyt + ), where Y, is an arbitrary phase, [, > 1 is
the azimuthal mode number of the pump wave and w, > 0 is the
pump wave frequency. This wave is observed to decay in amplitude
through the excitation and exponential growth of a second Kelvin/dio-
cotron “daughter” wave with mode number Iz, 0 < I; < I,, and with
frequency wg 0 < wg < @p. (The terms pump wave and daughter
wave are taken from the theory of parametric oscillators.) This process
is mediated by a third wave, termed a beat wave, with mode number
Iy = I, — I3, which is driven at the beat frequency w, = w, — wy by
the nonlinear coupling of the two Kelvin/diocotron waves, and which
couples back to these waves to induce the growth of the daughter
wave. Thus, this process is similar in some respects to a standard
three-wave decay instability.'” However, the beat wave is not a Kelvin/
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diocotron wave with mode number /,. The beat wave is instead, pri-
marily, a wavepacket of the continuum eigenmodes'” of the vortex. Its
phase velocity @/l is resonant with the vortex rotation at a critical
layer within the vortex, and the resulting strong spatial Landau damp-
ing induced by this resonance is what drives the decay of the pump
wave, along with growth of the daughter wave. We, therefore, refer to
this decay process as a beat wave decay instability, to distinguish it
from three-wave decay.

A previous publication'” described this beat wave decay process
using a theoretical approach based on a weak turbulence expansion of
the nonlinear equations of motion to third order in perturbed quanti-
ties (i.e., one higher order than that required for a description of three-
wave processes). This weak turbulence approach has several antece-
dents in the plasma and astrophysics literature, having been applied to
analyze various nonlinear wave interactions,”” ' including instabilities
similar to the beat wave decay process considered here.””*’

In this paper, we describe beat wave decay from a different perspec-
tive, based on an eigenmode expansion of the system dynamics. These
eigenmodes, consisting of the Kelvin/diocotron modes and continuum
modes, form a complete orthogonal set, with orthogonality defined by an
inner product based either on energy or on angular momentum conser-
vation. We work in the rotating frame of the pump wave, in which the
wave is, in the initial phase of the instability, a stationary equilibrium
state. The beat wave instability is then described as a single unstable
eigenmode of the perturbed pump wave equilibrium, whose frequency
and growth rate can be analyzed (for small pump amplitudes) using per-
turbation theory of the system eigenfrequencies. In the perturbation the-
ory, we represent this unstable eigenmode as a wavepacket of the
eigenmodes (Kelvin/diocotron and continuum) of the unperturbed vor-
tex. This eigenmode approach to analyzing nonlinear instability also has
many antecedents.”* *" The eigenmode approach allows a detailed and
physically intuitive analysis of the beat wave process, in which explicit
expressions are obtained for the instability growth rate, the real frequency
shift, and the beat wave vorticity and stream function perturbations. We
compare these predictions to new experiments that observe the beat
wave decay for a range of decay processes, for pump waves up to mode
number /=5 and every possible daughter wave mode number.

The paper is laid out as follows: Sec. II contains a review of
known theoretical results that will be of use in describing beat wave
decay, including brief discussions of the connection between nonneu-
tral plasma dynamics and the Euler equations, constants of the motion,
the linear eigenmodes of the Euler equations including the Kelvin
waves (diocotron modes) and continuum eigenmodes, and inner prod-
uct relations for these modes. We also include here some new results
regarding the evaluation of the continuum modes. Section III analyzes
the beat wave decay process, including a detailed description of the
beat wave instability as well as nonlinear frequency shifts to both the
pump and daughter waves. Section IV discusses the results of new
nonneutral plasma experiments that observe beat wave decay, with
comparisons to the theory. Section V' summarizes the results. Finally,
the Appendix contains some derivations of intermediate results,
including a proof of the equivalence of two expressions for the beat
wave instability growth rate.

Il. PRELIMINARIES
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perturbations on an isolated vortex. These results will then be applied,
in Sec. 111, to the evolution of the nonlinear beat wave decay instability.

A. 2D equations of motion for ideal fluids
and magnetized plasmas

The Euler equations for the evolution of vorticity n(r, 6,t) in a
2D ideal (dissipationless) incompressible fluid with uniform mass den-
sity po per unit area are

0

8_? +v-Vn=0, (1)
where the fluid velocity v(r, 0, t) is related to the stream function ¢
through

. lop - 0¢
= =7r—-——0—
V=V E=rln 0%

and the stream function ¢(r, 0, t) is determined in terms of the vortic-
itynbyn = z - V x v, which after using Eq. (2), yields

(@)

Vi = —n. (3)

In this paper, we use a free-slip boundary condition ¢ = 0 on a sur-
rounding cylindrical wall at radius r=r,, so there is no dissipative
coupling to the wall.

Applying Eq. (2) to Eq. (1) yields another form for the vorticity
continuity equation,

On 10¢0n 10¢0n
o Tro0or roron @

It is well known that these equations are isomorphic to the equa-
tions of motion for 2D E x B drift dynamics of a collisionless nonneu-
tral plasma column contained in hollow cylindrical electrodes, with
plasma length much greater than the electrode inner radius r,, in a
uniform magnetic field —Bz, B > 0. The plasma consists of like charges
e> 0 with z-averaged number density N(r, 0, t), creating an electro-
static potential @(r, 0, t). The stream function ¢ is then proportional
to the potential @, ¢ = c¢®/Bj; the vorticity # is related to plasma den-
sity N through n = 4necN /B; and the fluid velocity v is the same in
both plasma and fluid systems. The boundary condition ¢(r,)
= ®(r,) = 0 corresponds to a grounded electrode. [Note: for a pure
electron plasma consisting of like charges - e, sign changes in two of
the above relations are necessary: the magnetic field is now in the +z
direction, +Bz with B> 0, and ¢ = —c®/B. Using these sign conven-
tions all other equations in the paper are independent of the sign of
plasma charge, unless directly specified.]

It is useful to Fourier transform in 0, writing # and ¢ as

00

n= > m(rt)e", )
I=—00
> :
b= di(r,t)e". ©6)
I=—00
Mode numbers less than zero satisfy n_; = nj, ¢_; = ¢ in order for

the sums to yield real quantities.
Then, when written in terms of Fourier modes Eq. (4) becomes

on i X - on,_j op; 5
In this section, we review some well-known results and also —+- Z ) ¢7#— n; Or =0, (7)
. . . . ot r. or or
derive some new results, concerning the linear evolution of I=—c0
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and the Poisson Eq. (3) is

P 10¢, P
oz Tiar Ah=Tm ®

B. Constants of motion

We will later have occasion to consider constants of the motion.
In the ideal fluid system, there are an infinite number of constants of
the motion, but here we will consider three: energy, angular momen-
tum, and particle number (equivalent to circulation).

In an ideal 2D Euler fluid with free-slip boundary conditions
described previously, the circulation I' = [ d*rn is a conserved quan-
tity. In the plasma analog, the corresponding conserved quantity is the
particle number per unit length [ d*rN.

In the fluid system, total kinetic energy is another conserved
quantity, given by # =2 [ dr|v|* =2 [ d*r|V¢|*. In the plasma
case, the analogous conserved energy in 2D drift dynamics is
& =L [ dr|VD[, the potential energy per unit length in the plasma
column. The fluid and plasma energies are then related according to

BZ
T anp,2

)

In addition, the cylindrical free-slip boundary condition implies
that total angular momentum of the fluid, & = p, [ d*rrvy, is a con-
served quantity. Using Eq. (2) for vg and integrating by parts, the angu-
lar momentum can be written in terms of integrals over the vorticity,

W:Eporirf@szrrzn. (10)
2 2

In the plasma case, the quantity analogous to the second term in this
expression is the canonical angular momentum for charges in a uni-
form magnetic field, &2y = —%Id2rNr2. The relation between the
fluid and plasma angular momenta is

P —372(9’ ! rzl“) (11)
0 = Imp,@ 200 wh |-

C. Kelvin waves/diocotron modes

In this subsection, we briefly review some properties of linear
oscillations associated with the two dimensional incompressible fluid
dynamics described by Eqs. (7) and (8). Assume that the /=0 Fourier
component of the vorticity describes a cylindrically symmetric equilib-
rium vortex of vorticity n,(r) and stream function ¢, (). Then, small
amplitude excitations about that equilibrium, with azimuthal mode
number /, may be described by the linearized version of Eq. (7),

on; . ilon,
ﬁﬁ—llwe(r)nl-ﬁ-?wd)l —0, (12)
where ,(r) = —¢(r)/r is the sheared rotation frequency of the

equilibrium vortex. (Here and throughout the paper primes refer to
radial derivatives.) Since the coefficient functions in Eq. (12) are time-
independent, solutions for #; that are proportional to exp (—iwt) can
be found. These oscillating solutions are linear eigenmodes of the sys-
tem. The oscillatory time-dependence implies that Eq. (12) can be
written as

ARTICLE pubs.aip.org/aip/pof
wn; = lwn; + é% o (13)

Equation (13) can be solved for #; in terms of ¢); and the result applied
to Eq. (8), to yield the following differential equation for the Ith
Fourier component of the stream function, ¢,,

o 10 2 ! on,
b 100 P

o ror r?

r(w — lw,) or P =0, (14)
with boundary condition that ¢;(r,,) = 0. By correct choice of », non-
trivial solutions ¢;(r) = ¢; x(r) can sometimes be found. These non-
trivial solutions are called Kelvin waves in the fluid literature and
diocotron waves in the plasma literature. For an equilibrium vorticity
profile n,(r) that is monotonically decreasing [so that w,(r) is also
monotonically decreasing] there may be a Kelvin/diocotron mode
solution ¢, x(r) of Eq. (14) with real frequency w; k. However, this
solution can only be found if the resonant radius 7,k that satisfies
w1k = lw,(r ) is at a location with no vorticity gradient, so that the
denominator in Eq. (14) is only zero for a radius r;x at which

n(rx) = 0.
Note that for any eigenmode with I > 0, there is a corresponding
eigenmode with /<0, with frequency w_;x = —w;k, and stream

function ¢_; x = ¢; . The negative | eigenmodes are merely complex
conjugates of the I > 0 eigenmodes, but are still required for complete-
ness, in order to form real functions out of sums of eigenmodes.

These Kelvin/diocotron eigenmodes are [ # 0 traveling waves in
the 0 direction on the surface of the vortex, with positive phase velocity
oy /1. For a vortex of uniform vorticity 7, with radius ,, the Kelvin/
diocotron frequency is™’

N 2
w1 = sign(l)o, [|l|—1+ <7") ] (15)

where @, = n,/2 is the rotation frequency of the equilibrium vor-
tex. Each mode (summed to its complex conjugate mode) corre-
sponds to time-dependent variation in the shape R(0,t) of the
vortex of the form

R(0,t)/rp — 1 = ay(t) exp (il0) + c.c., (16)
where
ai(t) = Ajexp (—icw; kt) (17)

is the dimensionless perturbation to the vortex radius and A; is the
dimensionless complex amplitude of this perturbation.

For [= 1, the Kelvin/diocotron solution can be found analytically
for general vorticity profiles,

I
[ we(rw) = ﬁy
$1k(r) = —Ar(w1x — w(r)), (18)

mk(r) = —Anl(r),

where A is an arbitrary amplitude equal to A;r, for the case of a uni-
form vortex patch. This mode is a displacement of the center of the
vortex, which then rotates about the axis of the cylinder at the mode
frequency w; x due to its interaction with “image vortices” in the cylin-
drical wall.

Phys. Fluids 36, 034121 (2024); doi: 10.1063/5.0190218
Published under an exclusive license by AIP Publishing

36, 034121-3

£€:§5°91 ¥20T Ydo1en 02


pubs.aip.org/aip/phf

Physics of Fluids

For higher mode numbers I and for general radial vorticity pro-
files, Eq. (14) can be solved numerically, for example, using a shooting
method, to determine the perturbed stream function ¢,; and vorticity
n; of a Kelvin/diocotron wave. For future reference, we define a dimen-
sionless radial perturbation amplitude g, in terms of the Ith multipole
moment of the vorticity,

szr n(r,0,t)r'e " err ny(r, t)r'
[ll(t) = = 3 (19)
(1+2) szr n(r, 0,6 (1+2) errne(r)rl

which agrees with Eq. (16) for a Kelvin/diocotron mode on a uniform
vortex of radius 7,,.

Examples of the Kelvin/diocotron stream functions ¢, x for the
first five modes are shown in Fig. 1 for an equilibrium vorticity profile
n¢(r) shown in Fig. 2. This profile is close to one generated in nonneu-
tral plasma experiments with a wall radius r,, = 3.5 cm, discussed in
Sec. IV.

In the figure, Kelvin/diocotron eigenmodes are all scaled in
amplitude so that their corresponding dimensionless amplitudes A,
equal unity. We use this normalization for Kelvin/diocotron eigenmo-
des throughout the paper.

D. Continuum modes

There is a second approach to finding the eigenmodes of an iso-
lated vortex, which identifies a complete set of eigenmodes, including a
set of continuum modes. The continuum modes in sheared Euler flow
were first identified by Case'® and are analogous, and play a similar
role, to the van Kampen continuum in plasma kinetic theory.” We
will briefly review the properties of these Case/van Kampen continuum
modes and also discuss some new results that will be useful later in the
description of the nonlinear beat wave instability.

Equation (13) for the linear eigenmodes of the perturbed vortex
equilibrium can be written as an integral equation involving the
Green’s function for the stream function ¢,

l.Oj‘ ]

_os |

E 06
<04

§02 ]

().01‘ : ‘ 5‘ ‘ ‘ : .

00 05 10 15 20 25 30 35

r (cm)

FIG. 1. Kelvin/diocotron mode stream functions ¢, for azimuthal mode numbers
I=1,...,5, each scaled to ng where ngg = ne(r = 0) is the central vorticity, for
the equilibrium vorticity profile shown in Fig. 2. These eigenmodes have amplitudes
chosen so that their dimensionless amplitudes A, equal unity. This normalization is
used for Kelvin/diocotron eigenmodes throughout the paper.
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FIG. 2. Equilibrium vorticity profile ne(r) used throughout the paper (smooth solid
black curve), and the locations of the resonant radii ro k., r3 k., fax, s x, as well as
the beat wave resonant radius rye, for 3 — 2 decay. The noisy data (red curve) is
the equilibrium density profile measured in the experiment. Also shown is the beat
wave forcing function Fy (r) for 3 — 2 decay (dotted line); see Eq. (54).

lon, - .
ony =l +-—— Gy = Liny, (20
r Or

where Gz is the Greens function operator,

¢ =Gy = — J r'ar'Gi(r, v Yyn(r') (21)

I 12|
O R

Equation (20) is an eigenvalue problem for the operator L;, deter-
mining an infinite set of vorticity eigenfunctions n;,(r) with corre-
sponding real frequencies w;,, in the range w,(0) > wy, /1 > w,(r),
where o is a counter that enumerates the eigenmodes. One of these
eigenmodes is the vorticity perturbation corresponding to the Kelvin/
diocotron mode found using the previous method, Eq. (14), if such a
mode exists. The other eigenmodes are continuum modes with singu-
lar radial dependence, i.e., a Dirac delta function in the vorticity pertur-
bation at radius 7, given by the solution to the resonance equation,

with

wl,x = la)e(ﬁ,a). (23)

These singular continuum eigenfunctions do not appear in the previ-
ous solution of Eq. (14), because there we divided by w — lw,(r)
assuming that it is nonzero everywhere that #(r) is nonzero.

The continuum modes can be determined numerically, for exam-
ple, by discretizing the radial dimension, converting Eq. (20) into a
standard matrix eigenvalue problem.'" An example of the resulting
discretized frequency spectrum is shown in Fig. 3 for /=2 using the
equilibrium vorticity profile of Fig. 2, setting #,(r) = 0 for all radii r
greater than some radius R chosen to be smaller than the resonant
radius 7, x of the Kelvin/diocotron mode, which equals 2.3 cm for this
vorticity profile (see Fig. 2). We, therefore, choose R = 2.1 cm. Figure
3 shows that the continuum modes form a band of frequencies satisfy-
ing Eq. (23) for resonant radii in the range 0 < r;, < R, while the
Kelvin/diocotron mode frequency falls outside this band, and for this
reason is sometimes referred to as a “discrete eigenmode.”
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FIG. 3. Frequency spectrum of eigenmodes found by discretizing the radial dimen-
sion in Eq. (20) for =2, taking r = iAr,i=1,...,M, for Ar = R/M,M = 50,
and R = 2.1cm. Frequencies are scaled to we = neo/2, the vortex rotation fre-
quency at r=0.

If we had instead chosen R > r;x in Fig. 3, the discrete mode
would then be manifested as a wavepacket of continuum modes. If one
excites the plasma using an external applied potential with mode num-
ber [ and a broad frequency bandwidth, the resulting motion of the
plasma may be dominated by this wavepacket, which is more or less
sharply peaked in frequency around the original Kelvin/diocotron fre-
quency ; x depending on the magnitude of 7/, (r; k). When this reso-
nant vorticity gradient is small, the wavepacket has a radial
dependence close to that of the discrete Kelvin/diocotron mode found
when R < 7;k. The finite frequency width of this wavepacket induces
phase-mixing in the time dependence of the packet, causing exponen-
tial “spatial Landau-damping” of the perturbation. The exponential
damping rate can be predicted via a contour-deformation analysis of
the solution to Eq. (14), assuming a complex frequency o and deform-
ing the radial integration path into a Landau contour around the
pole.'"'” Because the resulting damped mode is not a single eigen-
mode—it is a wavepacket of continuum eigenmodes—it is often
referred to as a “quasimode.” All of this has been covered in the refer-
enced publications.

We now consider some new results involving the continuum
eigenmodes that will be of use in the analysis of beat-wave decay.
Numerical accuracy of the matrix method used to determine the contin-
uum modes in Fig. 3 is limited by the difficulty of resolving a Dirac delta
function using a discrete radial grid. There is a novel, more accurate
approach. Using Eq. (13), it can be seen that the functional forms of the
singular vorticity and stream function perturbations in a continuum
eigenmode, 1, (r) and ¢, , (r), respectively, are related according to

P

. L,
iy = bb(r - rl,a) +;ne(r)¢lv“m7

(29)
where b is an arbitrary normalization with units of velocity, and P
denotes the principal part of the resonant denominator. The functions
ny, and ¢;, are further related by the Poisson equation (8) yielding
the ODE,

10 ( 64)1‘“) 12 I P On
B!

v\ or ) AT, Tl o

brp = —bd(r —114),

(25)
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with boundary condition ¢;,(r,) = 0. Comparing this equation to
Eq. (14), we can see that the continuum mode stream function ¢, , is
akin to a Green’s function for the regularized Kelvin/diocotron mode
differential operator, with the source point 7;, chosen to be the reso-
nant radius satisfying Eq. (23). In this formulation, the stream function
¢, solves a differential equation, allowing the application of high-
accuracy numerical methods not available for integral equations such
as Eq. (20).

In particular, one can employ such high-accuracy methods to
numerically solve for two independent homogeneous solutions
V,(r),,(r), with boundary conditions ,(0) =0 =y, (ry).
Standard analysis of the solutions near the regular singular point at
r = r1,, shows that these homogeneous solutions are finite and contin-
uous there. The solutions are then connected across the delta function
to obtain

o Ya(ra )y (r>)
(;bl,x(r) =-b W(T]Ax) )

where the Wronskian ~ W(r) =y, — ¥,Y, and  where
r-= .~ (r,n,). Examples of the stream function of continuum
mode! ‘are displayed in Fig. 4 for three values of the mode number /,
taking the resonant radius to be r;, = 1.5 cm in each case.

Furthermore, for /=1 an analytic solution for the continuum
modes is available,

(26)

¢1,u(r) br ) (we(r) - wl,m)h(rl,a - 7')7 (27)

=
rl,xwe(rIJ
b

7100 (11.4)

ma(r) = bo(r — i) — n(nh(ra—r),  (28)
where h(x) is a Heaviside step function. This can be proven by direct
substitution of Eqs. (27) and (28) into Egs. (24) and (25). The I=1
continuum eigenmodes are “self-shielding™ there is no stream func-
tion perturbation beyond the resonant radius r , because these modes
do not have a dipole moment. Only the discrete /=1 Kelvin/diocotron
mode makes a potential/stream function that can be felt at the wall; see
Eq. (18). For I> 1, however, numerical solutions for the continuum
modes show that they are not perfectly self-shielding (Fig. 4); the con-
tinuum eigenmodes can all be picked up at the wall for /> 1.

000f e ]

2 -0.02} |
Q

= 0,04} -
=

= 006} -

& —008} re=l5em

~0.10} _

00 05 10 15 20 25 30 35

r (cm)

FIG. 4. Examples of the stream function ¢, , of continuum eigenmodes, normalized
to b, for azimuthal mode numbers /= 1, 2, 3, and for resonant radius r;, = 1.5cm,
for the vorticity profile ne (r) shown in Fig. 2.
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E. Inner products, orthogonality, and completeness

It has been previously shown'' that the vorticity eigenfunctions
n;, form a complete orthogonal set with respect to an inner product
defined as

ny,nip
on,/Or”

(M1, nip)p =7 J rdr (29)

This follows from the fact that the linear operator L; appearing in
Eq. (20) is Hermitian with respect to this inner product, so the spectral
theorem applies to the eigenmodes of this operator.'" This is a general
feature of linearized non-dissipative wave systems. Due to the underly-
ing Hamiltonian nature of the dynamics, an inner product can be
found that is related to a constant of the motion, and with respect to
which the system eigenmodes are orthogonal.”’ For the above inner
product, the constant of the motion is the angular momentum of the
mode, given by p, (14, 114)p. We will prove this in Sec. Il A 2. In the
plasma case, the constant of the motion associated with the above
inner product is the canonical angular momentum (per unit length of
the plasma column), % (n14, M14)p. We, therefore, refer to the
quantity

P, = <”Lo<7 ”l,a)p (30)

as a (scaled) angular momentum for the eigenmode.
Now, it is well known that angular momentum of a rotating
wave, P, is related to the wave energy E; ,, through
w17
Ejo == P G
Moreover, the wave energy is also related to a second inner product
for the 2D Euler sys'[em,31

n

. La".p
(Mg, nip)p = “err (”Lx(pl,ﬂ + w,r ane/ar)’ (32)

with Ej, = (11,4, 14) the scaled energy, scaled in the same way as was
done for the angular momentum; that is, in the Euler fluid case the
actual mode energy is p,Ej,, while in the plasma analogue, the mode
energy (per unit length of the plasma column) is B> (n; ,, 11,,) ;. / (47c%).

System eigenmodes are also orthogonal with respect to this
energy inner product, and so

Dy

(M0, 1p)p = i (1,05 111.8) p (33)

for all o and f. This and other inner product relations will be derived
in a following paper.”'

Later in the paper we will need to consider a change of frame
from the laboratory frame to one rotating with some angular velocity
wg. The plasma rotation frequency ,(r) then changes to
@(r) = we(r) — wy, and eigenfrequencies are Doppler-shifted to
W1y = W14 — log, but the functional form of the eigenmodes is
unchanged. It then follows directly from Egs. (30) and (31) that angu-
lar momentum and energy transform according to

Pl,az = Pl,zxa (34)
El.u _ El.zz (35)
Dy Do '
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The latter relation is consistent with the fact that |E;, /ey ,| is the clas-
sical wave action (the “number of quanta” in a wave) and is, therefore,
invariant under frame change.

Since wave energy is not invariant under frame change, neither is
the energy inner product given by Eq. (32). Nevertheless, the eigenmo-
des remain orthogonal. When evaluated in a rotating frame the energy
inner product is denoted by (14, 1;4) 5, given by Eq. (32) but with w,
replaced by @.. On the other hand, the angular momentum inner
product is frame-independent.

Completeness of the set of eigenmodes, a consequence of the
Hermitian property of the operator L;, implies that any “sufficiently
smooth” function f{r) can be represented on 0 < r < R as a superposi-
tion of the eigenmodes,

f(r)= Zcxn;‘g‘(r)7 (36)

while mode orthogonality implies that the “Fourier coefficients” ¢, can
be determined by either an energy or angular momentum inner prod-
uct. Here, we will use the energy inner product defined in Eq. (32),
yielding
<”l,0<7f >E
Cy B, (37)
In Eq. (36), we have used a summation convention, appropriate
for the discretized continuum modes found by using a discrete radial
grid with stepsize Ar = R/M, M finite, as in Fig. 3. However, in the
M — oo continuum limit, an integral form is more appropriate. Now
we split off the Kelvin/diocotron mode contribution (assuming that
there is a discrete mode) and convert the remaining sum over o into
an integral over the resonant radii r; , using Eq. (23) to relate the mode
number « to a given resonant radius, obtaining

[R dr <”l>1vf>E n, (I‘) + <n/J<7f>

E
: mi(r),  (38)
Jo T e, Eix 1e(r)

flr) =

where E g is the energy of the discrete Kelvin/diocotron mode, and

a(ry) = A}linx ArE,. (39)

Equation (38) is a novel type of integral transform similar in some
respects to an inverse Fourier transform. We will find that this trans-
form is useful in the description of the beat wave instability considered
in Sec. 111

However, there is a complication: for a continuum mode, the sin-
gularity in the mode causes a divergence such that the energy E;, and
angular momentum P;, of the mode are infinite. For /= 1, this can be
seen directly by attempting to evaluate E; , or P; , using Egs. (27) and
(28). Fortunately, we are saved by the fact that continuum mode
energy enters Eq. (38) only in the combination ¢ = limy;_.., ArEj,.
When M is finite, the Dirac delta function in the continuum modes is
regularized and the energy and angular momentum (found by discre-
tizing the radial integrals in the usual way) is finite; so that Egs. (36)
and (37) are sensible equations for finite M. However in the M — oo
limit, Ar — 0 and E;, — oo in such a way that ¢(r,) is a finite
function.

This can be seen by direct numerical evaluation, first solving the
matrix eigenvalue problem Eq. (20) on a discretized radial grid
rj =jAr,j=1,...,M, with Ar = R/M, as was done for Fig. 3, and
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then using these discretized eigenmodes to evaluate the eigenmode
energies via a discretized version of the integral in Eq. (32). One may
then use these discretized eigenmode energies to determine ¢;(r;,,) via
Eq. (39), and show that as M increases the result for the function ¢(r)
converges. However, this only provides an approximate numerical
form for ¢/(r). An analytic approach, derived in the Appendix, yields
the following exact result:

2 ' 2
(ry) = nrfmwe(rl,a),b— 1+ <M> . (40)

ne(rl‘oc) brl,aw/e(rl,az)

We have checked that this analytic form for €(r) agrees with the
numerical approach outlined above.

Ill. BEAT WAVE DECAY OF A KELVIN/DIOCOTRON
WAVE

In this section, we consider an experiment in which a Kelvin/dio-
cotron “pump wave” is excited to amplitude A,, with mode number
I, > 1 and frequency w, ~ wj, k > 0. This mode can decay in ampli-
tude through a nonlinear beat wave process via the spontaneous
growth of a Kelvin/diocotron mode “daughter wave” with mode num-
ber I; in the range 0 < Iy < I, frequency wg ~ wy, x, 0 < wg < wyp,
and small but exponentially growing amplitude A4(t). In this decay
process a “beat” daughter wave is also excited, with frequency
wp & Aw = o, k — oy, k, and mode number I, = I, — Iy.

The beat wave is not a discrete Kelvin/diocotron mode; otherwise
this would be a standard three-wave decay process.'” Note here that
the Kelvin/diocotron mode with mode number [, does not satisfy the
three-wave resonance condition'” wl, x = oy, k + oy, k. Instead, the
beat wave is the /=1, Fourier component of a discrete eigenmode of
the nonlinear equations, drawn from a Landau-damped spectrum of
continuum eigenmodes with mode number J;,.

Nevertheless, there are some similarities between beat wave decay
and three-wave decay. As in three-wave decay, we will see that the
daughter wave and beat wave have energies of opposite sign when
viewed in the frame of the pump wave, and this allows both waves to
grow through the resonant exchange of energy from the negative
energy wave to the positive energy wave.”” Also, the resonance condi-
tion wj, x = wy, k + Aw obviously holds for the process, just as it
does in three-wave decay.

A. Theory of beat wave decay

The beat wave decay process involves only a few azimuthal
Fourier components: the pump wave mode number [,, the daughter
wave mode number I; the beat wave mode number [, and the com-
plex conjugate modes —I,, —I;, —I,. We, therefore, approximate the
vorticity as

n(r,t) — n.(r) = e””onlp(r, t) + e 0ny, (r,t) + e*ny, (r, 1) + c.c.,
(41)

where the complex conjugate vorticity perturbations satisfy the stan-
dard Fourier identity n} (r, t) = n_(r, t).

We should note here that Eq. (41) neglects the nonlinear change
onp(r) to the /=0 component of the vorticity, caused by the pump
wave, as well as two other beat waves (and their complex conjugates):

ARTICLE pubs.aip.org/aip/pof

Fourier components 2lp and [; + lp. Mode ZIP, the second harmonic of
the pump wave, is needed to evaluate the frequency shift of the pump
wave due to its finite amplitude, and mode I; + lp is needed to evaluate
an extra frequency shift term in the daughter wave and beat wave.
These extra modes do not affect the growth rate of the beat wave insta-
bility at order A; and will therefore be considered separately in Sec.
IITA2.

The nonlinear continuity equation for the pump wave vorticity
perturbation with azimuthal mode number I, is given by Eq. (7), after
substitution of Eq. (41),

% Z.lp(ﬁlp (9118
ot or

where the nonlinear term F, is due to mode coupling to the daughter
and beat waves,

b=l (ﬂ%_@%> il (d%fﬁ _"_l%) (13)

+ ilyemy, + + iF,(r,t) =0, (42)

r Or r Or or r Or

However, we will assume for simplicity that the daughter
wave and beat wave are much smaller in amplitude than the pump
wave so we drop F,. This linearizes the equation, and along with
the Poisson equation (8) yields a linear Kelvin/diocotron mode
solution for ny, (7, t),
ny, = Ape Ky (1), (44)

P

where A, is the dimensionless mode amplitude of the Kelvin/dio-
cotron mode; see Egs. (16), (17), and (19). Dropping F, implies
that the pump wave has time-independent amplitude A,; this is a
good approximation only in the early stages of growth of the
daughter and beat waves, before they grow large enough to notice-
ably deplete the pump wave, but this is enough to determine the
growth rate of the instability.

Here, and throughout the paper, we use the normalization con-
vention that discrete Kelvin/diocotron eigenmodes n;x(r) are real
with dimensionless amplitudes [defined by Eq. (19)] equal to unity.
For simplicity, we also assume that A, is real.

For the daughter and beat waves, we will work in the frame of the
pump wave, which rotates at phase velocity wy = @y, x/l, with
respect to the lab frame. This greatly simplifies the analysis because the
pump wave is stationary in this frame, with stream function
2A,¢; k(1) cos (I,0) (after adding in the complex conjugate mode).
This allows a description of the daughter and beat waves in terms of
an eigenmode of a new equilibrium that includes the stationary pump
wave perturbation. Nonlinear coupling between the daughter wave,
beat wave, and the pump wave can then be understood in terms of a
fairly straightforward perturbation theory of the eigenfrequencies of
the new equilibrium.

The equation for the /= I, beat wave vorticity perturbation n, (r)
is also given by Eq. (7),

anlb _ ilb()bl 8"8
s ,
ot + l@ett, + r Or

where @, = @, — wy is the rotation frequency as seen in the rotating
frame of the pump wave, and the nonlinear term F,(r,t) is due to
mode coupling to the pump wave and the | = —I; Fourier component
of the daughter wave,

+iApFy(r,t) =0, (45)
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)0 p)
Fb(r, t) =l (¢’ld (1’, ) rg;K _ n—1d£1’7 t) (gl:,K>
b1,k On_y, n,x 0, )
HI’( ;T o) 0)

Next, we write a similar equation for the daughter wave Fourier
component —Ig, since this is the component that appears in Eq. (46):

on_y, . _ ilap_y, Om, .
ot 4 lldﬂ)ei’l,]d - ng + IAPFd(T'7 t) = O7 (47)
where the nonlinear term F,(r, t) is due to mode coupling between
the [ = I, Fourier component of the beat wave and the I = —I, compo-

nent of the pump wave,

leh(ﬁ t) 6”lp,K B n;b(r, t) 8¢IP‘K>
r

Fy(r,t) =1y (

or r or
d
b (¢’;‘K O (1, 1) "X O r)), (48)

and where we used the fact that nZP_K(r) is real, so that n_y, x = ny k,
and similarly for ¢; .

We expect that Fourier component —I; is close to a discrete
Kelvin/diocotron mode with vorticity eigenmode ny, x(r), stream
function eigenmode ¢, i, and some growing amplitude
a;,(t) = aj,(t), so we write the solution to Eq. (47) as

n_y(r,t) = a;‘d(t)n;d_,K(r) + An(r, t),
¢y, (r.t) = ay (), k (r) + Ad(r, 1),

where An(r,t) and A¢ are small corrections. Recall that the Kelvin/
diocotron eigenmode is chosen so that 1, x and ¢,  are real, so that
nojx =n,x and ¢ = ¢,d7K. However, a;, may be complex,
describing an arbitrary phase shift between the Kelvin/diocotron
daughter wave and the pump wave. The corrections An and A¢ can
be expressed as a sum (integral) over the other continuum eigenmodes
of azimuthal mode number —I,;. By construction, A# is orthogonal to
ny, x> with orthogonality defined by either of the inner products dis-
cussed in Sec. IT E.
Applying Eq. (49) to Eq. (47) then yields

(49)

af myk + i+ il () x + An) +iA,Fa =0, (50)

where Iilp is the linear Kelvin/diocotron eigenmode operator of Eq.
(20) as viewed in the rotating frame of the pump wave,

on, ~

—Gny . 51
3y M (51)
We simplify Eq. (50) by taking an energy inner product with respect to
the Kelvin/diocotron eigenmode 7, x to obtain the following evolution
equation for the dimensionless Kelvin/diocotron mode amplitude
ay, (1), as viewed in the frame of the pump wave,

2 _ 1
Llp”lp = lwenlp +;

E]d‘K(ﬁ;; + id)_ld’](a;;) + <f’lld‘K, iAPFd>E = 07 (52)

where @_j, x = —®;, x is the Doppler-shifted frequency of the —I;
Kelvin/diocotron eigenmode, as seen in the pump wave frame, and
Ej,x = (m,x,n,x)g is the energy of an [=1I; or —I; Kelvin/dioco-
tron eigenmode as seen in the pump wave frame.

ARTICLE pubs.aip.org/aip/pof

Turning to the beat wave with mode number [, we substitute for
n_j, and ¢_,, into F, from Eq. (49), and drop the small corrections An
and A¢ since the Fj, term in Eq. (45) is already small. This yields

ilbd)lb ane
r Or

where the beat wave forcing function F, x is determined entirely by
the Kelvin/diocotron mode densities and stream functions,

9 0

bi, kO 1,k OP K)
i P> 4. K T, K ) 54
+ p( r  Or r  Or (54)

Equations (52) and (53) are coupled linear homogeneous differ-
ential equations with time-independent coefficients, so solutions with
time-dependence of the form exp (—i@¢) exist,

(a;; (t)a n, (T, t)) = eii@t(AZlh ﬁlb (r))v (55)

where Ay is the dimensionless initial amplitude of the I; diocotron
mode and 71y, (r) is the radial dependence of the beat wave.
Equations (52) and (53) can then be expressed as

I;lzb + ilba]enlh + + iAPa;‘d(t)Fb,K(r) =0, (53)

_ax _ % n, .KaFd E
DAL = w,,d,KAdi+AP7< dE, - )i
d s

. o Ll (r) ~ .
wny, (1‘) = lbwe”lb (1‘) + % d)lb (7‘) + APAdiFh,K(r)7 (57)
where (ﬁlb(r) =g, (r,t) and Fy(r) = e®'F4(r,t). These coupled
equations are an eigenvalue problem for the daughter and beat wave
vector eigenfunction (A%, 71, (r)), if we recall that Fj is linear in n;,

; (56)

and ¢,,, and that ¢, = Gy,ny,- This eigenvalue problem includes the
mode-coupling effect of the pump wave on the daughter and beat
waves, and can therefore describe the nonlinear beat wave instability.

These eigenvalue equations can be solved numerically by dis-
cretizing radius, and then determining the eigenvalues and eigenvec-
tors of the resulting matrix eigenvalue problem. This is a simple
generalization of the numerical method used to find linear contin-
uum eigenmodes of the unperturbed (A,=0) system discussed in
relation to Fig. 3. We will use this numerical method later, but for
now, we will obtain analytic expressions for the instability growth
rate and frequency shift.

In the beat wave decay process, the [ =1, perturbation is a wave-
packet of continuum modes, so we write the vorticity perturbation as

hlb (7’) = Z aocnlb,x(r)v (58)

where the sum is over all of the /= [, continuum eigenmodes as well as
the single discrete /=1, Kelvin/diocotron eigenmode. We will later
convert the sum over continuum eigenmodes into an integral, but for
now it is convenient to leave the expression in this form. Using this
eigenmode expansion in Eq. (57) and taking an energy inner product
with respect to one eigenmode then yield

Elbma)ax = Elb,aa)lb,aua + ApAZI,‘Cozdy (59)

where the nonlinear coupling coefficient C,4 between the continuum
eigenmode and the daughter wave is defined as
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Cua = (1,5, Fyx) - (60)

On the other hand, in Eq. (56) F4 = ¢'F; depends on nj, and
¢),; see Eq. (48). Substituting for n;, = ¢ **'#1;, and ¢, = !¢, in
terms of the eigenmode expansion via Eq. (58), Eq. (56) then becomes

@Ajii = (I)*ldAKAZi + Ap Z Cdfzaa = 07 (61)
o

where the second nonlinear coupling coefficient C, between the con-
tinuum mode and the daughter wave is defined as

Cd(l = <nld,Ka Fd,x>Ea (62)

and where

Iy
Fao(r) = " (¢lb,a";,,‘1< - ”lb,ocd’gpx)
l
P
- ((/’IP,K”;,,# - "ZPA,K‘/’;M)» (63)

Equations (59) and (61) are coupled linear equations for daughter
wave amplitude A’ and continuum mode amplitude a,. The equa-
tions can be solved to obtain the frequency and growth rate of the
decay instability. First, one can solve Eq. (59) for a, in terms of A,
Substituting the result into Eq. (61) yields

D(@)Ay; =0, (64)
where D(®), the nonlinear dielectric function, is

Cd o Cacd

Eld,K((b - d)lwt) .

D(®) =@ —d_j,x — A; ;EW (65)
To evaluate the sum appearing in this expression, we now separate the
single Kelvin/diocotron mode contribution, with frequency @®;, x
= oy, x — [y, in the pump wave frame, energy E), x, and coupling coef-
ficients Cy, Ci, [obtained by replacing o by K in Egs. (60), (62), and (63)].
We convert the rest of the sum to an integral since we are dealing with con-
tinuum modes. Following the discussion surrounding Eq. (38) we obtain

D((I)):(I)—(D,[ K — 2 _ _CdKCKd
- ¢ Elb«KEldsK((D - @lb,K)
Cdacxd
— A2 Jdr‘, e _ , (66)
r * €1, (rd)Eld,K(a) - lba)e(ru))

where €;(r,) is given by Eq. (40), evaluated in the barred (pump wave)
frame.

We search for a zero of the dielectric function. Anticipating that
for small A, @ ~ @_j, k + iy for some growth rate y (assumed small),
we use this in the O(Alz,) terms to obtain a perturbed value for @,

Cix Cra

D@)=0=0—w_;,x — A= = — -
(@) K P By kEL k(@ x — 01, k)
Cu,C
o AIZ; J dra _ _ _ do“od : _ )
€, (ra) Ep k(01 x + 1y — loe(rs))

(67)
We apply the Plemelj formula to the Landau pole in the last integral
and solve for @, yielding

0 =0_|,x + 0w+ iy, (68)

where the growth rate y and nonlinear frequency shift dw are
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Cducad _ —
= —nA’ | d 22 5(1 —a_ 69
! " PJ raEl,,(fx)EldK (be(ra) = ©-1.), (69)
- Cdmcacd
S = A% Pdr, - = — —
P) e, (r) Egy (01, x — hde(ry))
2 Cax Cka

(70)

= = — — 5
PE}, kElx(®-1,x — @)

and where § is the Cauchy principal value of the integral.

The expression for the growth rate y involves a Dirac delta func-
tion, which is nonzero only when the resonance condition ®w_j, x
= lp@,(ry) = @, is met, ie., the daughter and beat waves have the
same frequency when viewed in the frame of the pump wave. The res-
onance condition is met at a radial location 7, = 7peq, the beat wave
resonant radius. Transforming the resonance condition to the lab
frame yields a more familiar form for the resonance condition,

Ol = @ (Tpear) = 0, x — @1, x = Ao (71)

This Landau resonance at the beat frequency Aw between the Kelvin/
diocotron modes occurs at a location within the plasma where both
On,/Or and F, k are typically nonzero: see Fig. 2.

At such a resonance, energy conservation for the daughter and
beat waves then implies C,; = C;‘,y.ﬂ’l This can be verified by direct cal-
culation of C,4 and Cy,,. Therefore, we may write

|Cc<d‘2 _ _
y = —nA? | dr,——~=—— (I ¥) — O 72
=t drs ) k) ()
2 |Cm'|2

" o (rlen (B
Note that El_bl(rbm,) o 1, (tbeat) [see Eq. (40)], so the growth rate is
nonzero only if there is a nonzero equilibrium vorticity gradient at the
beat wave resonant radius.

Also, the growth rate is positive only when the beat and daughter
wave energies in the pump wave frame are of opposite sign, satisfying
€,E;, x < 0. This is consistent with a general criterion for instability
due to mode coupling between two daughter waves:' "’ when the
waves have equal frequencies and energies of opposite sign when
viewed in the frame of the pump wave, the negative energy daughter
wave can then resonantly transfer energy to the positive energy wave,
allowing both daughter waves to grow.

In the lab frame, all two-dimensional drift waves have negative

(73)

T =Tpear *

energy, including the [ = —I; Kelvin/diocotron wave and the =1,
beat wave. Note, however, that their lab frame frequencies are of oppo-
site sign, since w_j, x = —wy, k < 0 but w;, , = Aw > 0. However, in

the pump wave frame their frequencies are the same,
@j,.« = W_1, x > 0. This implies, via Eq. (35), that the daughter wave
energies are of opposite sign when viewed in the pump wave frame,
satisfying the instability criterion. In the pump wave frame, the I=1,
Kelvin/diocotron mode has positive energy, while the /=1, beat wave
has negative energy. Thus, when viewed in this frame, energy flows
from the negative energy beat wave to the positive energy Kelvin/dio-
cotron wave, so that both grow. The energy is extracted from the wave-
packet of resonant /= I, continuum modes making up the beat wave, a
Landau damping process that induces wave growth rather than damp-
ing due to the resonant interaction with the positive energy daughter
wave.

Phys. Fluids 36, 034121 (2024); doi: 10.1063/5.0190218
Published under an exclusive license by AIP Publishing

36, 034121-9

£€:§5°91 ¥20T Ydo1en 02


pubs.aip.org/aip/phf

Physics of Fluids

Equation (73) is similar in some respects to Eq. (10) of Ref. 13,
although we have not been able to determine whether the expres-
sions yield the same growth rate. Rather than a sum over wavenum-
bers involving an inverse propagator that appears in Ref. 13, our
expression for the growth rate involves a single resonant continuum
mode—in the eigenmode expansion, the propagator is analytically
invertible as an eigenmode frequency, which simplifies the growth
rate expression.

Equation (73) implies that the growth rate is proportional to the
square of the pump wave amplitude A,. The A; scaling of the growth
rate with pump amplitude is one of the main observations in past
experiments on beat wave decay.'* However, by neglecting higher har-
monics of [, in Eq. (41), we are treating the pump wave as a linear
mode, which is only a good approximation for small pump amplitudes
A,. Our expression for the growth rate is therefore valid only to lowest
order in A,.

The growth rate expression, Eq. (73), is fairly easy to evaluate
since only a single continuum eigenmode is required: the mode at
the beat wave frequency, i.e, ®j,, = Aw. For [,=1 the mode is
known analytically [Eqgs. (27) and (28)], while for I, > 1 it can be
evaluated via the numerical methods discussed in Sec. II. One such
method uses the discretized version of the resonant continuum
mode obtained for finite Ar, along with discretized forms for the
inner products C,g, Ej,, involving this mode. When these inner
products are written in terms of sums, each sum is proportional to
Ar. In the denominator, ¢, = ArEy, , oc Ar* and this factor of Ar?
cancels with the same factor arising from |C,4|* in the numerator,
leaving a finite result for y that approaches the continuum limit as
Ar — 0, provided that Ar is chosen so that the resonant radius of the
beat wave, 7y, is on the grid, i.e., rpeqr /Ar € Integers. More accurate
numerical results can be obtained by evaluating the inner products
in Eq. (73) using the resonant continuum mode obtained from a
high accuracy shooting method solution of Eq. (25), or via the
Green’s function approach of Eq. (26).

1. Alternate expressions

The expressions developed so far for the frequency shift dw and
the functional form of the beat wave, as integrals over the continuum
eigenmodes, are unwieldy. More elegant, easy to evaluate expressions
can be found. We return to eigenvalue equations (56) and (57) for the
initial Kelvin/diocotron amplitude A}, and the beat wave vorticity
713, (r). Noting that the eigenfrequency @ ~ @_j, x + iy, we will use
this approximate expression to determine alternate forms for the real
frequency shift, the growth rate, and the radial dependence of the beat
wave vorticity perturbation, without employing a continuum mode
expansion.

We first define and the scaled beat wave vorticity and stream
function,

u(r) = g () (ApA3), &y, (1) = ¢4, (N/(447),  (74)

and then solve Eq. (57) for #;, and apply the Plemelj formula (assum-
ing y is small), yielding

A I, ~ On, P Ry =
= (Fn e ) (5n ~ 000-x 100,

(75)
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Combining this with Poisson’s equation yields an inhomogeneous
boundary value problem for the scaled beat wave stream function

¢zb(r)»

0? 10 2. .
02? ; (ffrlb - rlz(ﬁlb +n, =0 (76)
with boundary condition (Eb,b (rw) =0.

The inhomogeneous term in Eq. (75), proportional to Fjk(r),
drives the beat wave stream function. Furthermore, the function
F4(r) = €®'F(r, t) appearing in the inner product in Eq. (56) is lin-
ear in 71, (r) and ¢, (r), [see Eq. (48)], and so F, is also proportional
to ApA%,. This implies that we can divide out a factor of A}, from every
term in Eq. (56), leaving the expression

Fo)e
® =D gk +A 7@2’; Kd>E , 77)
d s
where
. _Fa(r) b, N
F4(r) = AA, 7(¢zh”§p,x - 1, ¢}, k)
! A .
- f (1, k), — 11, xP},)- (78)

Equation (77) is an alternate expression for the growth rate and real
frequency shift in the beat wave instability, which can be evaluated
without needing to evaluate and integrate over the continuum eigenm-
odes. Instead, the inner product involves the scaled beat wave vorticity
and stream function 7;, and (}5,‘7. It can be written explicitly in a fairly
compact form as an integral over these functions by converting the
energy inner product to an angular momentum inner product using
Egs. (33) and (31) and then applying Eq. (29), yielding

. nA?
O =@k =00+ iy =— pipjdr [’A’Ib(ldﬂldqs;px +1p(rm,) by )

1K
=y larmyn)  + pm)m )], 79)
where we introduce r/(r) = —n; x /1., the radial displacement of fluid

elements in a Kelvin/diocotron eigenmode, and where we have com-
bined terms after substituting /, = I, — I; and integrating by parts, so
that no radial derivatives of 71, or ¢, appear.

This expression shows that the real parts of the scaled beat wave
vorticity 7, and stream function ¢, are responsible for the frequency
shift dw, and the imaginary parts determine the growth rate 7. The
real parts of the beat wave are in phase with the I; Kelvin/diocotron
mode, and the imaginary parts are 90° out of phase (when viewed
in the pump frame where the daughter and beat waves have the same
frequency). As is typically the case, growth (or damping) of waves
due to interaction between them requires a phase shift between the
waves.

In the Appendix, it is shown that the imaginary part of the beat
wave vorticity is directly proportional to the resonant continuum
eigenmode 7y, , that enters our previous expression for the growth
rate, Eq. (72), so Egs. (79) and (72) yield the same result for 7.

As a special case, Eq. (79) simplifies when the daughter wave is
assumed to have mode number [;= 1. Mathematically, this is dpe toa
cancelation between the term in the integrand proportional to ¢, and

Phys. Fluids 36, 034121 (2024); doi: 10.1063/5.0190218
Published under an exclusive license by AIP Publishing

36, 034121-10

£€:§5°91 ¥20T Ydo1en 02


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE

the term proportional to 71;,, which occurs because r;, = constant for
the I;= 1 Kelvin/diocotron mode: the mode is a uniform displacement
of the plasma off of the trap axis. The cancelation is then proven by
performing two integrations by parts on the 71, term after substituting

from Poisson equation (76) for 7, in terms of ¢ ,» then substituting
for ‘M,,,K and ¢”;p’K in terms of n, x and nQP’K respectively, and then
taking I;=1and [, = 1 + ;. After the cancelations a single boundary
value term is left over from the integrations by parts, yielding

2

TA R
dw+iy=—Lr,n, ¢} ()¢ x(r), ifla=1. (80)
Pld K b Py

Thus, for [;= 1, instability arises from the imaginary part of the beat
wave electric field [proportional to qbl (r)] evaluated at the wall radius
7, If the wall is very far away, r,, — o0, the growth rate therefore van-
ishes. Intuitively, this makes sense because in the absence of a wall, the
location of the center of mass of the plasma column (the “center of
vorticity” of the fluid vortex) is a constant of the motion, and so in this
case the I;= 1 Kelvin/diocotron mode, which is a displacement of the
center of vorticity, cannot be spontaneously excited by coupling to
other vortex modes.

Evaluation of Eq. (79) [or Eq. (80)] requires an accurate functional
form for the beat wave stream function (blh. For I, =1, we will see in a
moment that an analytic form for this function can be found. For [, > 1,
however, the inhomogeneous boundary value problem given by Egs. (75)
and (76) must be solved numerically. There are several ways of doing so.
We have found that the most accurate and efficient approach is to use a
shooting method in which, for ¢; (0) = 0 and an arbitrary value of
¢z (0), a numerical solution is obtained in the range 0 < r < rpp —
for some ¢ < 1; a typical value is € = 10~*. This solution is then con-
nected across the resonance to an outer numerical solution running from
Tbeat + € tO T, Using an analytic power series solution in the connection
region |1 — rpe| < € of the form ¢, (rpear + x) = ao + Zm L X (am
+by,log|x|), where the series coefficients (a,, b,) are related to
(@m—1,bmu—1) through a recursion relation. Note that the coefficient a,
changes value from x < 0 to x> 0 in order to account for the delta func-
tion in 7, and this changes the other coefficients through the recursion
relation. Then, ¢j (0) is varied until the boundary condition ¢, (r,,) = 0
is obtained in the outer solution.

For the case [, =1, (the case observed in previous experiments' D)
the boundary value problem for ¢z , Egs. (75) and (76), is solvable ana-
lytically for general equilibrium vorticity profiles. The imaginary parts
of ¢;, and 71y, ¢; and #;, respectively, are particularly simple:

r(Aw — (1)), < Toear,
0 r Z Theat

- D

A o

where the coefficient D (with units of vorticity) is given by

i p ’
B T n.(r 7, F, r 82
rl%eat|w%(rbeat)| (‘rbr( Iaeut) e( heat) + Toear va( heat))7 ( )

and where the real part of (2)117 when evaluated at the Landau resonance
radius 7peq, is given by the expression

n 1 Theat

(toeat) = ————— | dr*Fyx(r). (83)
) == s, Pt
The imaginary part of the vorticity is then found by taking the imagi-
nary part of Eq. (75), yielding

pubs.aip.org/aip/pof

m,(r)

ni(r) =D
l( ) w/e(rbeat)

h(rbeat - T) - rbeaté(r - rbeat):| 5 (84)

where h(x) is the Heaviside step function.
The real parts of the vorticity and stream function can also be
found in integral form. The real part of the stream function, ¢,, is

b,0) = ~0l0) || R~ ) f i PO,
(85)

where the functions 1, and y;, are [ = 1 homogeneous solutions to the
differential equation appearing in Eq. (25),

%(T) = r(Aw - we(r))v (86)
Tw dr/
Yy(r) = = (r) fﬁ W’ (87)

and where here C is any contour in the complex 7’ plane running from
r to r,, that avoids the pole at ' = ry [note that ¥, (rpeqr) = 0]. The
real part of the beat wave vorticity is then

71, (n b, + rFpx), (88)
2
where P stands for the principal part of the resonant denominator.

In Fig. 5, the complex beat wave stream function ¢, is plotted vs
radius for the 3 — 2 decay, ie., for I, = 1,13 = 2,1, = 3. The beat
wave stream function is calculated for the same vorticity profile as
shown in Fig. 2. The figure shows that there is a discontinuity in slope
of the imaginary part of the stream function at the beat wave resonant
radius 7., [see also Eq. (81) which describes this analytically for
I,=1)], and a “jog” in the real part, which has logarithmically infinite
slope (i.e., an infinite velocity field) at the resonance.

The inset to the figure shows that the beat wave stream function
is almost, but not quite, self-shielding: there is a weak beat wave veloc-
ity field at the wall. The corresponding electric field at the wall in the
plasma analogue, in the lab frame, is, in principle at least, a measurable
quantity in the plasma experiments, given by the expression
By (s £) = —e (@ W00ty (r)/0r], with @y (r) = £Beb, (1),
[with the upper (lower) sign for positive (negative) nonneutral

0.0} ]
E —-0.5¢ ]
2 0.05f

(=3

£ -1 ol [T ]
-

—1.5¢ ~005}| | ,
1 1 1 2 1 3 1

00 05 10 15
r (cm)

20 25 30

FIG. 5. Real (solid) and imaginary (dashed) components of the radial dependence
¢,b( ) of the beat wave stream function ¢, (r,t) = A,A;e *"”‘d),b( )fora3 —2
decay, assuming infinitesimal pump wave amplitude A,.
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plasmas]. For [, = 1, the beat wave electric field at the wall can then be
determined analytically from Egs. (85)-(87):

r

Ei(ry,t) == )APA;. exp (—i(@® + wgy)t) J : rzdrF;,J((r)7

¢ rW‘//a (rW 0
(89)

where we also used Egs. (55) and (74).

For [, =1, Eq. (89) shows that the beat wave electric field is pro-
portional to the dipole moment of the beat wave forcing function Fj .
For the 3 — 2 decay, the ratio of the wall electric fields of the beat
wave to the I; daughter wave is fairly small, given by 0.07A,, so the
beat wave field is difficult to observe in the experiments for this decay.

In Fig. 6, the complex beat wave vorticity n;, for the 3 — 2 decay
is plotted vs radius. The vorticity is singular at the resonant radius 74,
The singularities in the beat wave vorticity and stream function are
expected because the beat wave has a Landau resonance. For growth
rate y — 0 (ie., for pump amplitude A, — 0), the imaginary part of
the beat wave is proportional to a single singular continuum eigen-
mode, as discussed in the Appendix, see Eq. (A8). However, for finite
growth rate y (i.e., finite pump amplitude) these singularities and dis-
continuities are smoothed out over a radial distance of order
/10, (pear) |- In other words, for finite pump amplitude A, the unsta-
ble eigenmode becomes a discrete eigenmode in the eigenvalue prob-
lem given by Egs. (56) and (57).

An example of the vorticity perturbation for finite pump ampli-
tude is displayed in Fig. 7 for 3 — 2 decay, calculated by solution of
the matrix eigenvalue problem obtained by discretizing radial position
in Egs. (56) and (57). For a radial grid with M elements (M = 2000 in
the figure), there are M + 1 eigenmodes in this problem. M — 2 of the
modes are discretized versions of singular continuum modes analo-
gous to the continuum modes of the unforced Kelvin/diocotron prob-
lem, discussed previously in relation to Eq. (20) and displayed in
Fig. 3. The other three eigenmodes are discrete (i.e., with continuous
eigenfunctions). One of these discrete modes is the / = I, Kelvin/dioco-
tron mode. The other two discrete eigenmodes have complex frequen-
cies and eigenfunctions that are conjugate to one-another, so one

400
300¢ 3
200 1
100¢ ]

n11/neo

o S

—100¢ 1

200 T T 16 18 20

r (cm)

FIG. 6. Real (solid) and imaginary (dashed) components of the scaled radial depen-
dence 71y, (r) of the beat wave vorticity perturbation n, (r, t) = A,Ae~"!y, (r) for
the 3 — 2 decay, corresponding to the beat wave stream function ¢, (r) in Fig. 5.
The imaginary part of 7, is proportional to a single continuum eigenfunction nj, ,,(r)
[a solution of Eq. (20)], with o determined by the beat wave resonance condition
}, 4 = Aw.
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FIG. 7. Real (solid) and imaginary (dashed) components of the radial dependence
iy, (r) of the beat wave vorticity perturbation ny, (r, t) = A,A4e~"®'h, (r) for 3 — 2
decay and for two dimensionless pump amplitudes: A, = 0.03 and A, — 0 (the
latter limit is the same as in Fig. 6; note the change in scale of the x and y axes). At
finite pump amplitude, the beat wave vorticity perturbation is no longer singular; it is
the I, Fourier component of a discrete unstable eigenmode, a solution of Egs. (56)
and (57).

grows in time and the other decays. The real and imaginary parts of
the eigenmode corresponding to exponential growth are plotted in
Fig. 7 and is compared to the infinitesimal amplitude case plotted in
Fig. 6. Note that the vector eigenmode (A%;, 71;,(r)) can have an arbi-
trary overall amplitude, but the ratio 71, (r)/A}; is uniquely deter-
mined, and this is what is plotted in the figure, scaled by A, as well in
order to produce 71, [see Eq. (74)] and to compare to Fig. 6.

In addition to resonance broadening at finite pump amplitude,
there is a small but noticeable decrease in the radius of the resonance.
This is explained by the nonlinear increase dw in the real frequency of
the eigenmode as shown in Table 1. This frequency increase shifts the
position of the Landau resonance to smaller radius according to
Lywe(r) = Aw + dw.

In Table I, we display the theoretically predicted growth rates in
beat wave decay, for a range of Kelvin/diocotron mode numbers. For
I, = 2,1; = 1, the growth rate is zero. This is an analytic result based
on Eq. (80), using Eq. (81) for the imaginary part of the scaled radial

~ 1

derivative of the beat wave stream function, ¢;(r,,). Since this function
is zero at all radii beyond the resonant radius 7y, the growth rate van-
ishes. The rate is also small and decreasing with increasing [, for
I, > 2,1; = 1. In these decays, the wall is far enough from the vortex
that there is almost no coupling of the pump wave to the ;= 1 mode.

In general, growth rates increase with increasing daughter wave
mode number ;. The experiments also observe this trend as shown by
the final column in the table, with measured growth rates of similar
size to those evaluated theoretically. This column will be discussed in
more detail in Sec. I'V.

2. Other nonlinear effects on Kelvin/diocotron waves:
Frequency shifts and the Love instability

Frequency shifts caused by the pump wave in typical experimen-
tal conditions are small, of order Af7 < 1, but might still be observed
in the experiments, so it is worthwhile to pursue them theoretically.
We start with the frequency shift éw, to the pump wave itself. We
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TABLE I. Frequency shifts and growth rates in beat wave decay for the experimental density profile of Fig. 2.
Unperturbed Unperturbed daughter Frequency shift Experimental
Decay process pump frequency frequency contribution Growth rate growth rates
K DK 0w v Vexp
L, la, I Weo Weo weOA‘f] weoAlz, weoAﬁ
541 3.72 2.83 64.3 27.9 20.6 (Fig. 16)
5 2 1.92 21.0 10.9 10.
523 1.02 6.07 2.00 3.1
514 0.22 —9.6x10°° 4.1x 1077 0
431 2.83 1.92 20.7 11.1 7.86 (Fig. 15)
4 2 2 1.02 6.43 2.29 2.1
413 0.22 —12x107* 2.4 %107 0
321 1.92 1.02 6.78 2.77 2.73 (Fig. 14)
312 0.22 —0.0015 8.0 x 10°° 0
211 1.02 0.22 —0.017 0 0

have not considered this shift so far. For an [, =2 mode on an isolated
vortex patch, the nonlinear mode frequency was determined by
Kirchhoff for arbitrary amplitudes.”” For general mode numbers, the
frequency shift was evaluated by Burbea, also for an isolated vortex
patch, using an elegant conformal mapping method.”” Burbea
obtained, to lowest order in A,

0w, = —A;nelp(lp —1). (90)

This formula is generalizable to the case where the patch is con-
tained within walls of finite radius r,,,

1— 2,[72[?
(i =00 2%~ (),

(o1

owy = —Af,nelp

where p = r,/1,,. For [, = 1, this expression agrees with the nonlinear
frequency shift of an [, = 1 mode derived by Fine.”' Equation (91)
also reduces to Eq. (90) in the p — 0 limit. The formula follows from
a perturbation analysis of the vortex patch edge. The edge is deformed
by the mode to

1+ 24, cos (1,0 — wpt) + A;Bcos 2(,0 — wpt) + - --
\/1 +2A2+ ASB2/2 4

R(0,t) =1,

(92)

[a nonlinear generalization of Eq. (16)], where A2B is the amplitude of
the second harmonic, and the denominator is cﬁosen so that the area
enclosed by the contour is 772, independent of mode amplitude A,,.
This is required by the incompressible nature of the flow. The value of
B and the nonlinear pump wave frequency w, = wj, x + dw, can
then be found by satisfying the dynamical equation for the edge of the
Vortex,53

AR vy(0.1)OR
o' R 00

where vy = —0¢/0r|,_p and v, = O¢p/0),_ are the 6 and r compo-
nents, respectively, of the fluid velocity evaluated at the vortex edge,

Ur(ev t)? (93)

and ¢ is the stream function of the deformed vortex patch. The
dynamical equation is then solved in a power series expansion in A,
order by order. Incidentally, this expansion can be automated by using
computer algebra manipulation, to produce analytic expressions for
the frequency shift and the shape of the patch to arbitrary order in A,
The results reproduce the numerically determined large amplitude
mode results of Deem and Zabusky.”

At large amplitudes, an instability in the nonlinear mode is pre-
dicted to occur, termed the Love instability, after A. E. H. Love, who
analyzed the instability of large amplitude /, = 2 Kelvin modes on an
isolated vortex patch.”* The Love instability occurs when one of the
eigenmodes of the deformed vortex patch approaches zero frequency
(as seen in the frame of the pump wave), and causes a bifurcation of
the deformed equilibrium to a new equilibrium containing both higher
and lower azimuthal mode numbers. The instability has been observed
for [, =2 in nonneutral plasma experiments’” and contour dynamics
simulations.™

For larger values of [,, the Love instability has been studied ana-
lytically and numerically on uniform vortex patches.”” This instability
is quite different from the beat wave decay instability. There is an
amplitude threshold for onset of the Love instability, and also, the
excited waves have substantial contributions from both higher and
lower mode numbers, unlike the decay instability where the energy is
transferred mainly to lower mode numbers, and where growth rates
are finite for all finite pump amplitudes. Finally, the Love instability
can occur for a vortex patch, but beat wave decay cannot, as it requires
a finite vorticity gradient at the resonant radius ., within the vortex.

Returning to the question of frequency shifts, for a general non-
uniform vortex with an edge of finite width, the frequency shift of the
pump wave caused by finite pump amplitude has not been considered
theoretically to our knowledge, although the shift has been observed in
recent experiments.'” The frequency shift to the /; daughter wave
caused by the finite pump amplitude has also not been considered. We
determined one portion of the shift to the daughter wave frequency,
0w, in Sec. III A1, caused by mode coupling to the [, beat wave.
However, there are two other shifts that have not yet been considered.
First, the pump wave changes the /=0 component of the vorticity at
second order in A;, which in effect changes the equilibrium vorticity
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used to determine the mode frequency. This effect is purely geometri-
cal, producing a frequency shift d(!) due to the shift in the contours
of constant vorticity caused by the pump wave. Second, nonlinear cou-
pling of the daughter wave to the pump wave produces a second beat
wave at wavenumber lp + 14, which then couples back to I; to produce
a frequency shift dw(®. If we take I;=1, then this same calculation
provides the pump wave shift. Each of these two effects can be consid-
ered separately, producing frequency shifts (V) and dw® that can
be added to obtain the total nonlinear shift in the frequency to either
the pump wave or the daughter wave.

We first consider the O(Af,) change to the /=0 vorticity profile
caused by the pump wave. On a nonuniform vortex, a given contour
of constant vorticity deforms from a circle of radius r to a curve with
radial variation in 6 which, in the rotating frame of the mode, is a gen-
eralization of Eq. (92),

r+2A,1,(r) cos 1,0 + AZB(r) cos 21,0 + - - -

V7240, (1) + ASB(rY 2+ -

RO, r)=r , o (94)

where 1, (r) = —nyx(r)/n,(r) is the radial displacement caused by
the pump wave in linear theory, and B(r) is the nonlinear correction,
now a function of radius. The denominator is again determined by the
incompressibility of the flow, so that the area enclosed by the contour
is mr>. Now, the vorticity n(r, 0) in the presence of the pump wave is
expressed as

n(R,0) = n.(r(R,0)), (95)

where (R, 0) is the function obtained by taking the inverse of Eq.
(94). This follows from the fact that the solution of the continuity
equation (1) is that vorticity is constant along the equation’s
characteristics.

This equation can be evaluated as a power series in A, and to sec-
ond order yields

n(R,0) = ne(R) — 24,7, (R)n,(R) cos 1,0

/ rli(R) ! Z 2
HR) |+ 2, (R (R) | + nl(R)r? (R)

+ A2 cos (21,0) [n;(R)(—B(R)

2
+AP

+2n, (R)r, (R)) + n! (R)7: (R)]. (96)

The /=0 vorticity component is the 0 average, no(r) = [dOn(r,0)/
(2m) = n,(r) + dny(r) with the change dny(r) given by

2
r (r)

2 [/ 2
ong(r) = A 1l (r) < ”r +2n, (r)r,P'(r)) + n;'(r)r,p (r)} . (97)

Using an integration by parts one can easily show that the change
in total circulation, f d*rdny, is identically zero, as one would expect.

However, this vorticity perturbation does cause a variation
0w,(r) in the E x B rotation rate of the vortex,

()

0w, (r) = A;PTne(r). (98)

Adding these terms to mode equation (20) for a Kelvin/diocotron
wave of mode number I, the equation becomes

pubs.aip.org/aip/pof

. I
wny, = Lay, + Lidowen;, + fang%. (99)

Taking an inner product with respect to eigenmode vorticity n;, x then
yields the lowest order frequency shift,

1
<ﬂld,1<, Odweny, k + ; 5”6¢ld,1<>

£ (100)
Pk

SV = o — ok =la

where Pj, xk = (nj,x,n, x)p is the scaled angular momentum of the
diocotron eigenmode.

For I; = 1, an evaluation of the inner product shows that this fre-
quency shift vanishes, as expected, since a change to the equilibrium
radial vorticity profile has no effect on the ;=1 mode frequency pro-
vided that total circulation I' is conserved, see Eq. (18).

Incidentally, the eigenmode angular momentum Py, x can be
directly evaluated from the I=0 vorticity perturbation dn, using the
definition of angular momentum, Eq. (10),

07 1 (45,
o2 _ﬁjd rreony(r)

— % J 2nrdrr? [n'e(r) (rl”fr) + 2rlp(r)rlp’(r)> + n;’(r)rlzp (r)}

= Janrrzn;(r)ri(r) = 2P, k, (101)

where in the last line an integration by parts on the n)/(r) term was
applied. This calculation verifies the functional form of eigenmode
angular momentum given in Eqgs. (30) and (29). The change in angular
momentum is twice the eigenmode angular momentum Pj, x because
*1, eigenmodes contribute equally to the vort1c1ty perturbatlon

Turning now to the frequency shift 6 due to mode coupling
of I and I, we first evaluate the nonlinear mode equation (7) for the
second beat wave at mode number [, + Iy = l,,, with frequency
o,k + o, g = op,. To do so we use Eq. (44) for the pump wave, and
the linear form for the daughter wave vorticity perturbation,

ﬁld (7’) = Adnld‘K(r)' (102)

The equation for the [, vorticity harmonic is then

I N
(0, — I ()i, =2 m(r)y, + ApAdFi(r),  (103)

where the mode coupling term Fj, is

I

d
Fy,(r) = 7 (qﬁld«,K“;p,K - nld~K¢;p,K)
l
Py i) LA, (100

l
Fy, (1) = ﬁ(@p},{ngpx — an‘qu; x) i =1, (105)

Solving Eq. (103) for n ,, in terms of ¢ b, and the driving term
Fy,, we substitute for 71 1, into the Poisson equat10n (8) and solve the
resulting 1nhomogeneous boundary value problem for q{), ,,» providing
the beat wave vorticity and stream function. Since the driving term is
proportional to A,Ay, the beat wave is also proportional to these
amplitudes, so we write
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FIG. 8. Solid curve: scaled vorticity ;,, of the second beat wave, at mode number
Iy, = I, + Iy for the case |, = 3, ly = 2. Dashed curve: the /=15 Kelvin/diocotron
wave component of the beat wave vorticity.

ﬁlbz = ﬁleApAdv ¢lb2 = ¢lb2A[)Ad7 (106)
where 71, and ) 1,, are scaled so as to be independent of the pump
and daughter amplitudes. An example solution for the scaled vorticity
1y, is shown in Fig. 8 for the case I; = 2,1, = 3. The contribution to
this I, = 5 beat wave of the /=5 Kelvin/diocotron mode is displayed
as the dashed line. One can see that much of the beat wave perturba-
tion is due not to the discrete mode but due to [,, = 5 continuum
modes. However, unlike the main beat wave with mode number I,
there is no Landau resonance with @;,, = I, within the vortex, so
there is no resonant response and no contribution to the growth rate,
only a frequency shift.

The frequency shift () can now be evaluated by accounting
for the I, mode in the I; nonlinear mode equation (7),

wny, = il’lld —I—A;Adl_?d(r), (107)

b, - ) Lo .
Fa(r) =—>(¢y, nyx — i, B k) — v (¢4, k1), — 11, Py,)-

(108)

Substituting for n;, using Eq. (102) and taking an inner product with
respect to n, x then yields the frequency shift,

<nld,K7Fd>P

(109)
Pld,K

0@ = o — oK = AIZ)
The total shift is then the sum of dw™ and dw®. For I;= 1, the result
is the pump wave frequency shift, s, = sV + 5@

We have performed this evaluation for a few of the modes, for
the vorticity profile shown in Fig. 2. The resulting pump wave fre-
quency shifts are given in Table IT and compared to expression (91)
for a uniform vortex patch. For smaller mode numbers, the formula
for the experimental profile, the sum of Egs. (100) and (109), provides
a frequency shift that is fairly close to that for a uniform patch, Eq.
(91), with similar ratio of plasma to wall radius chosen as p = 1/2.
For [, > 3, however, the pump wave frequency shift for a nonuniform
profile increases rapidly compared to that for a patch. This is because
the resonant radius r, x becomes closer to the edge of the plasma (see
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TABLE II. Nonlinear frequency shifts of Kelvin/diocotron pump and daughter waves.

Pump frequency Pump frequency Daughter

Pump Daughter shift using shift for patch,  frequency

mode mode exp. profile Eq. (91) shift
0w, 0w, ﬂ

lp ld (DeoAf’ a)eoA; p=1/2 weoA;

1 1 0.180 0.222

2 2 —3.44 —3.44

2 1 0.15

3 3 —12.8 —11.6

3 2 —6.00

3 1 0.043

4 4 —36.3 —23.8

4 3 —16.2

4 2 —6.28

4 1 0.012

5 5 —117.3 —39.9

5 4 —44.2

5 3 —21.5

5 2 —6.81

5 1 0.0034

Fig. 2). Integrals required in Eqs. (100) and (109) exhibit divergences
and dw), diverges to negative infinity as 7, x approaches the region of
finite vorticity. Physically, only very small mode amplitudes are
required to push the vorticity to a radius where it becomes resonant
with the mode, forming a cat’s eye that cannot be described using per-
turbation theory. In this situation, a perturbation theory for a nonlin-
ear mode is relevant only for very small amplitudes, before cat’s eyes
become important. To describe larger amplitudes it would be useful to
construct “BGK”-like stationary states™ that include the vorticity
trapped in the cat’s eyes. We leave this more sophisticated analysis to
future work.

However, some idea of the effect of particle trapping in cat’s eyes
can be obtained through particle in cell simulations, which we have
performed for a range of mode amplitudes. The simulations follow
8 x 10° particles with time advanced using a third-order accurate
Adams Bashforth method. To evaluate the velocity field at each time
step, the Poisson equation for the stream function ¢(x, y, t) is solved
on a uniform square grid with grid spacing Ax = Ay = r,,/201, keep-
ing grid points within a circular boundary at r = r,,, and with boundary
condition ¢ = 0 at r=r,, evaluated by linear interpolation between
boundary grid points just inside and outside the circular domain."’
The Poisson equation on this grid is reduced to a linear matrix prob-
lem by standard second-order discretization of the Laplacian operator,
and solved using the Slatec routine SNBFS. Particles are arranged ini-
tially to produce the experimental equilibrium vorticity profile of
Fig. 2, and with an approximation to an [, = 4 Kelvin/diocotron mode
of  amplitude A, added to the initial  condition,
n(r,t = 0) = n.(r/(R(0,0)/r,)), with R(0,0) given by Eq. (92).

Oscillations in moments of the vorticity can then be observed,
whose frequencies are similar to those expected in perturbation theory
for a vortex patch, Eq. (91), provided that the mode amplitude is
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FIG. 9. Nonlinear shift dw, = @), — o, k in the Kelvin/diocotron mode frequency
vs pump amplitude A, compared to the theoretical linear frequency wj, x, for an
I, =4 mode on a vortex with the equilibrium profile of Fig. 2. Solid curve is the the-
ory for a vortex patch, Eq. (91), where o, « is given for a patch by Eq. (15).
Dashed curve is the shift given in Table || for the nonuniform vorticity profile used in
the simulation, with w;, x determined by the shooting method. Dots give values of
dawy obtained in particle in cell simulations, with ), x again given by the shooting
method.

sufficiently small; see Fig. 9. Note that the downward shift appears
somewhat larger than expected from the patch theory, and might be
argued to agree better with the theory for a nonuniform patch in this
small amplitude regime, but scatter in the data makes the size of the
discrepancy difficult to interpret. An example of the particle positions
at the end of a run is shown in Fig. 10 for an [, =4 mode with small
amplitude, A, = 0.005; there are no significant cat’s eyes at this ampli-
tude. However, for somewhat larger amplitudes, trapping in cat’s eyes
starts to occur (Fig. 11). The mode frequencies then begin to deviate
significantly from the relatively large downward shift expected in per-
turbation theory (Fig. 9).

We have also determined the frequency shift contributions to the
l; daughter wave, dw!) + w®), whenly < I,. The total frequency
shift to the I; mode is then —dw + 6V + dw® = dwy. (Recall that
the shift do is to the —I; mode frequency, while we define dw, as the

08

r/r,

FIG. 10. Particle positions in the edge of a vortex after 25 oscillation periods in a
particle in cell simulation of a small amplitude (A, = 0.005) /, =4 Kelvin/diocotron
mode on a vortex with the equilibrium vorticity profile of Fig. 2. The resonant radius
r4 k is shown as the dashed line.

ARTICLE

pubs.aip.org/aip/pof

081

07k

FIG. 11. Particle positions in a larger amplitude /, =4 mode after 25 periods, with
A, =0.015.

shift to the +1I; mode; this explains the minus sign in the equation for
dwy.) In Table 11, we tabulate dcwg values for all relevant values of [,
and I, for the experimental density profile of Fig. 2.

To summarize, when frequency shifts are included up to O(A;) in
the pump wave amplitude, the pump wave frequency is w, = wj, k
+0wy, the I; daughter wave frequency is wg = wj, ¢ + 0wy, and the
beat wave has frequency w, = w, —wy = o, x — O,k + 0w,
—5wd.

IV. EXPERIMENTS ON BEAT WAVE DECAY

We have performed a series of experiments to observe beat wave
decay. The experiments employ a pure electron plasma trapped in a
cylindrical Penning trap. The trap consists of a set of hollow cylindrical
electrodes of radius r,, = 3.5 cm, with the end electrodes biased nega-
tively to —100V in order to provide a potential well that traps elec-
trons in the axial () direction (Fig. 12). In these experiments the
plasma length is roughly 34 cm. Radial trapping is provided by an
applied magnetic field Bz, with a strength of B = 12kG. In order to
measure the z-integrated plasma density, the plasma can be dumped
onto a phosphor screen by lowering the end confinement potential,
and the emitted light from the phosphor is then captured by a CCD
camera. Dividing the z-integrated density by the plasma length then
provides the plasma number density N“%(r, 0,t). A typical equilib-
rium radial density profile N;*" (r) is displayed in Fig. 2, normalized to
the central density. With the exception of a small tail at large radius,

CSAD Sectors (’§’Z )

|—€ electron plasma —
fe

v. = I LI W

Source
Phosphor

FIG. 12. Schematic of the experimental apparatus.
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which we neglect in the theory, this density can be fit by a fairly simple
functional form that is used in the theory of Secs. II and 111,

M) = Noesp { [0 20/ /7)) }0 = o),
(110)

where b = 32.2,¢ = 0.036, f = 13.6, the approximate plasma radius
isr, = 2.2cm, the cut off radius is 7. = 1.95c¢m, the central density is
N,y = 9.88 x 10°cm?®, and e=1. A smooth form for the density,
rather than noisy experimental data, is required in the theory because
derivatives of the density are needed. The listed N value is obtained
from comparison of measured diocotron mode frequencies to theory
for the given density profile, which gives a more accurate value of the
central density than the phosphor screen can provide. We should also
note that there is shot to shot variation in the overall particle number
of order 1%, and shot to shot variation in the plasma radius by about
1% as well. Also, the value e=0 gives a better fit to the density data
shown in Fig. 2 in the edge region of the plasma, but the value e=1 is
chosen instead in order to smoothly eliminate a small portion of the
edge density beyond the listed cutoff radius 7, so as to remove weak
Landau resonances for the /=4 and /=5 pump modes, allowing a
description of these modes as discrete linear eigenmodes. We
completely neglect the low-density tail observed in the experimental
data (Fig. 2) at larger radii, for the same reason. For [ < 3, either value
of e can be taken without much change to theory results (< 1% on
eigenmode frequencies, < 10% on growth rates and frequency shifts),
except for the functional form of the /=2 and /=3 diocotron mode
density perturbations, which are more accurately described by the
e= 0 theory.

Diocotron modes are excited on the plasma column by applying
oscillating voltages to the sectored electrode labeled S7 in Fig. 12,
which consists of eight 25° sectors. We apply 15-30 cycles of properly
phase-shifted oscillating voltages (with amplitude up to several volts)
to two adjacent sectors to excite the pump mode of interest. Frequency
selection implies that simultaneous excitation of other diocotron
modes is at least two orders of magnitude smaller in amplitude. A third
sector on S7 is used to detect image current in order to monitor the fre-
quency and amplitude of the resulting diocotron wave(s) as a function
of time. An example is displayed in Fig. 13. Here, t =0 corresponds to

Ip . .
3 — 2 decay
0.100}
zoo0l0p A Ad
< 0.001} %X
104} _#y =136
=5k . . . . .
0700702 04 06 08 10

t (sec)

FIG. 13. Amplitude vs time for an |,=3 pump wave (labeled A)) and an /;=2
daughter wave (labeled A,), measured from the signals induced on sectored cylin-
drical electrodes, and an exponential fit to the daughter wave amplitude.
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the time directly after the oscillating voltage is turned off, 10s after ini-
tial injection of the plasma into the Penning-Malmberg trap. This 10s
period is used to prepare the equilibrium density profile. In this exam-
ple an [, = 3 pump wave is excited with amplitude A,(t), and an ;=2
daughter diocotron mode with amplitude A,(t) subsequently grows
out of noise, with a measured growth rate in this case of
79! = 13.65"!. No [, = 1 beat wave signal is observed in the experi-
ment, presumably because the signal is below the noise floor of the
measurements. [Recall that the beat wave wall signal is expected to be
small, as discussed in relation to Eq. (89).] However, as discussed later,
the I, =1 beat wave density perturbation can be observed using the
phosphor screen dump diagnostic.

This experiment is then repeated for a range of initial pump
amplitudes A,. The resulting growth rates are plotted vs amplitude in
Fig. 14. The theory for the rate for the best-fit equilibrium profile of
Eq. (110), given in Table [, is y = 2.77A;w80, which is within two per-
cent of the value obtained from a fit to the growth rate data,
Wit = 2734505

This process was repeated for 4 — 3 and 5 — 4 decays, and the
resulting growth rates are plotted vs pump amplitude in Figs. 15 and
16. The theory for the growth rates is given in Table I,
P43 = 11.1A12,w20, and >~ = 27.9Alz,u)eo. For both decays, the
predicted growth rate is somewhat larger than the experimental fits,
Wit = 7.86A;weo for the 4 — 3 case and P = (—4.6 x 107 +
20.6A12))(ueo for the 5 — 4 decay. For the 5 — 4 decay, a slight nega-
tive offset, —4.6 x 10w, is added to the fit to better match the
growth rate data. It is likely that this offset is caused by linear Landau
damping of the [; = 4 daughter wave.

Other decays have also been observed and measured growth rates
are compared to theory in Table I, for several of these decay processes.
For the case of 3 — 2, 4 — 3, and 5 — 4 decays, the quoted value in
the Table is y/ from the data in Figs. 14-16. For other cases, the quoted
values are from single evolutions similar to that shown in Fig. 13. These
growth rates also follow the general trend of the theory that rates are
increasing functions of the daughter wave mode number /;.

For I, =I; =1 (ie, a 2 — 1 decay), the theory value of y is
7= 0. This follows analytically from Eq. (80) along with the fact that
Sy, (r) = 0 for r > rpeqs; see Eq. (81). The measured value for 2 — 1

0.003

0.0025 L
s 0.002 L 3 — 2 decay
3

~ 0.0015 |
>
0.001 |

0.0005 +

0

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

A
P

FIG. 14. Experimental decay rates for 3 — 2 decay, normalized by the central rota-
tion rate ey = 74.5krad/s, vs pump amplitude A,. Solid curve is the theory for the
rate, and the dashed curve is a quadratic fit to the data.
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FIG. 15. Experimental decay rates for 4 — 3 decay, normalized by the central rota-
tion rate ey = 74.5krad /s, vs pump amplitude A,. Solid curve is the theory for the
rate, and the dashed curve is a quadratic fit to the data.

decay is also zero, consistent with the theory, to within experimental
accuracy. In more detail, there is an observed (very) small growth of
the [;=1 diocotron mode that we have determined to be caused by
the resistive wall instability,”” with a growth rate of 0.0037s~'. This
growth rate can be varied by adding or removing resistors between the
sectored electrodes. However, keeping such resistances as small as pos-
sible, this [;= 1 growth rate is independent of whether or not an [, =2
pump wave is launched, and therefore, to experimental accuracy we
measure a beat wave growth rate of zero.

Similarly, for all I; = 1 decays with [, > 2, both y and dw are
predicted to be nonzero but extremely small, according to Eq. (80) and
the numerical solution for ¢, discussed previously; see Table 1. These
decays were also not observed in the experiments; i.e., the small resis-
tive growth rate of the ;=1 mode was unaffected by the launch of
any pump wave.

In addition to the measured growth rates, the dump diagnostic
can provide an instantaneous measurement of density perturbations in
the plasma. In Fig. 17, we display the density N(r, 0) obtained from a

0.005

0.004 | 5 — 4 decay

0.003

el

0.002

v/ o

0.001

0

-0.001 1 I
0 0.005 0.01 0.015

FIG. 16. Experimental decay rates for 5 — 4 decay, normalized by the central rota-
tion rate e = 74.5krad /s, vs pump amplitude A,. Solid curve is the theory for the
rate, shifted to account for weak linear mode damping, and the dashed curve is a
quadratic fit to the data.
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N o

FIG. 17. Color contour map of plasma density N(r, &) measured via the dump diag-
nostic at the end of a 3 — 2 decay experiment. The linear color scale on the right
is in arbitrary units. The red arcs at the edge of the image indicate the wall radius,
ry = 3.5cm, and the cross at the center indicates the geometrical center of the
trap electrodes. The faint spiral in the central region is an artifact caused by a burn
in the phosphor.

CCD image of the phosphor screen after a plasma dump at the end of
a3 — 2 decay experiment. One can observe an obvious /= 3 perturba-
tion in the image, along with a less obvious /=2 perturbation. By
Fourier analyzing the data in 0, we can then obtain n;(r) for different
mode numbers /, and the magnitude of these Fourier components are
shown in Figs. 18-20. The dimensionless amplitudes A; can also be
computed directly from N(r, 0) using Eq. (19). The magnitudes are,
for I=3, |A,| = 0.03 and for [=2, |A4| = 0.02. This is a compara-
tively large amplitude pump wave, and the daughter wave has grown
until it is almost as large. The dashed lines in Figs. 18 and 19 are the
theory predictions for the Kelvin/diocotron eigenfunctions at the given
amplitudes, which are reasonably good fits to the experimental data
[for these plots we have taken e=0 in Eq. (110); the fit would be

-
1\

0.15} R ]
2 !
£ 0.10f :
G :
£ 005! \
0.00} , , , , .
00 05 10 15 20 25
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FIG. 18. Solid curve: Fourier component ns(r) of the vorticity measured from the
image in Fig. 17. Dashed curve—diocotron eigenfunction Apns k (r), with A, = 0.03
as determined from Eq. (19) applied to n(r, 0) for [=3.
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FIG. 19. Solid curve: Fourier component ny(r) of the vorticity measured from
the image in Fig. 17. Dashed curve—diocotron eigenfunction Aqn «(r), with
Ay = 0.02 as determined from Eq. (19) applied to n(r, ) for [=2.

significantly worse for e= 1 because of the larger edge density gradient
in the model].

For the [=1 beat wave, a signal can also be observed in Fig. 20
above the level of noise in the data. The signal has peaks in similar
locations to those predicted by the theory (dashed), and in particular,
the experimental peak at 1.62cm is close to the beat wave resonant
radius rpe = 1.7 cm. The small discrepancy could easily be due to a
slightly different radial vorticity profile used in the theory as compared
to this particular experimental shot. However, the experimental peak
at the beat wave resonance is considerably lower and broader than the
theory predicts. We believe that the explanation for this discrepancy
may be a nonlinear trapping effect, described below.

The dump diagnostic was triggered at the end of the decay experi-
ment, when perturbations are no longer growing exponentially due to
nonlinear saturation. The discrepancy between the theoretical and
experimental beat wave peak widths may therefore be related to non-
linear effects not kept in the theory of linear Landau resonance. One
such effect is pump depletion, the reduction in pump wave amplitude
caused by the growth of the daughter and beat waves, which plays an
important role in the saturation of the instability. However, we refer to

200¢

150¢

100¢

501

[r1(0)] / (1ApA4l neo)

~

OB , , -
1.2 14 1.6 1.8 20

r (cm)

FIG. 20. Solid curve: Absolute value of the beat wave vorticity perturbation ns(r)
measured from the image in Fig. 17, scaled by the amplitudes Ay = 0.02 and
A, = 0.03 of the diocotron daughter and pump wave. Dashed curve—absolute
value of the /=1 beat wave component to the unstable vorticity eigenmode (the
absolute value of the A, = 0.03 function displayed in Fig. 7).
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a different nonlinear effect: nonlinear Landau damping, i.e., cat’s eye
formation due to trapping of vorticity in the beat wave. To investigate
this further, we consider the stream function in the frame of the beat
wave, taking 0 = 0 — Awt. The stream function then has the form, to
first order in A, and A

1 5 S
B(1,0,1) = Bulr) = 80 = $1(1)e + Aaghy ()2 n2800)

+ AP¢3 K(r)eSiD—i(zuF—SA(u)t) ¥
(111)

For radii near the beat wave resonance, where —r;} ¢! (fpear)
= 0g(Tpear) = Aw, the [= 0 stream function can be Taylor expanded,
yielding

_ 1
d)(rv 97 t) + Erbeatw;(rbeat)(r - rbeat)z
= ¢, (T)eié + Add)z’K(r)eZi(;—iOwd—ZwP)t)
+ Ap(z)s‘K(r)eSi(;fi(Swd—Z(uP)r) +cc. (112)

The [=* 2 and /= %3 components to the stream function are
nonresonant, so we will ignore them and focus on the resonant beat
wave stream function only, which has the form of a pendulum
Hamiltonian. Contours of this stream function in the r — 0 plane are
displayed in Fig. 21, superimposed on the theoretical beat wave density
perturbation R{#;(r)e"’ /ny}. This can be compared to the experi-
mentally measured density perturbation shown in the same figure. The
cat’s eye observable in the stream function contours is of similar width
to the density features in the experimental data, indicating the possibil-
ity that nonlinear Landau damping has saturated the instability. To
investigate this further, an estimate of the trapping frequency «, in the
cat’s eye follows from the stream function:

O = ) =20, (1) b1 () | rcar 2 0.6/ Aapi,. (113)

For Ay = 0.02, A, = 0.03, the trapping frequency is roughly 6 times
the theory growth rate for 3 — 2 decay (see Table I), which is consis-
tent with the possibility that cat’s eye formation in nonlinear Landau
damping is responsible for the broadening of the observed resonant
density peak, and plays a role in the saturation of the instability. In this
case, the width of the cat’s eye, w; /| (Fpear)| & 0.05 cm, replaces the
linear resonance width /| (7peq)| Of the beat wave, roughly consis-
tent with the observed width of the beat wave density features.
Nonlinear Landau damping has also been shown to cause the satura-
tion of linear plasma kinetic instabilities such as the bump on tail insta-
bility.”” A more detailed analysis of the effect of nonlinear Landau
damping on the growth and saturation of the beat wave instability will
be pursued in future work.

V. DISCUSSION

We have presented new experiments and theory investigating the
beat wave decay instability of Kelvin/diocotron modes on a two-
dimensional vortex, in which a Kelvin/diocotron pump wave decays
into a smaller wavenumber Kelvin/diocotron daughter wave and a
Landau-damped beat wave at the difference frequency and difference
wavenumber between the pump and daughter waves. This is an exam-
ple of the general process of self-organization in 2D fluid flow, where
energy is transferred from small scales to larger scales (the “inverse
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FIG. 21. Color contour maps of the theory (right) and experimental measurement (left) of %*{n1(r)e’’ / (neApAq) }. Contours of the resonant beat wave stream function given
by Eq. (112) are superimposed on the theory density, indicating the region of cat's eye formation expected for wave amplitudes A; = 0.02 and A, = 0.03. The dashed line is
the theoretical beat wave resonant radius r,e.i; the experimental resonant radius is smaller by about 0.8 mm.

»44)

cascade” ") By working in the frame of the pump wave, in which the
wave is a stationary equilibrium at early times, the Kelvin/diocotron
daughter wave and the beat wave were described as two Fourier compo-
nents of a single eigenmode of the perturbed pump wave equilibrium.
Using this approach, explicit, physically intuitive expressions for the
growth rate of the instability and the functional form of the beat wave
were derived and compared to nonneutral plasma experiments that mea-
sured the growth rate, and that also observed the beat wave. Measured
growth rates for a range of beat wave decay processes were in quantitative
agreement with theory, within the scatter of the experimental data.

Nonlinear frequency shifts of both the pump and daughter waves
were also derived, and through comparison with particle in cell simula-
tions it was found that frequency shifts for pump waves on a vortex
patch differ from those for a vortex with a more realistic rounded edge
when pump amplitudes become sufficiently large so that vorticity in the
edge begins to become trapped in cat’s eyes. This effect becomes more
important for higher mode number pump waves, where the resonant
radius for spatial Landau damping approaches the edge of the vortex.

A discrepancy between the theory and experimental measure-
ments of the beat wave vorticity perturbation was also observed. A
possible explanation of this discrepancy is that the measurements were
taken in the late stages of the beat wave decay, where nonlinear
Landau damping (cat’s eye formation) had time to broaden the beat
wave vorticity perturbation compared to the theoretical model, which
describes only the earlier linear Landau damping stage of the instabil-
ity. In future work, we intend to study this instability saturation mech-
anism in more detail, for example, through numerical simulation.

Beat wave decay was shown in this paper to be dependent on a
Landau resonance between the beat wave and the plasma rotation rate.
It would, therefore, be of interest to consider what the effect would be
on the instability of modifying this resonance process. In recent
work,”** it has been observed that externally applied time-
independent asymmetries in the stream function can produce a slow
radial flux of vorticity that strongly modifies the Landau damping of
Kelvin/diocotron modes, resulting in algebraic rather than exponential

damping. The effect of such a flux on the growth rate of the beat wave
instability could be substantial and will be considered in future theory
and experiments.
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APPENDIX: GREENS FUNCTION SOLUTION FOR THE
BEAT WAVE, AND THE FUNCTIONAL FORM OF ¢(r)

Equations (75) and (76) can be formally solved for the scaled
beat wave vorticity ;,(r) and stream function ¢, (r) via a Greens
function, providing some analytic insight, as well as the functional
form for the function ¢(r). Breaking ¢, into real and imaginary
parts, ¢, = ¢, +ig;, Eqs. (75), (76), and (74) yield
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where s(r) = I,n,/r, and resonances are evaluated using only their
principal parts. We can solve these coupled equations using a
Greens function g(r, r’), which satisfies

g 19g I

i r sg=06(r—r). (A3)

_j,x — o,

" dr/g(rheata r,)Fb,K(r/)
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In terms of this Greens function the real and imaginary beat wave
stream functions are

&’i(’) = g(7 Thear) m
X [S(rbeat)q?)y(rbeat) + Fb,K(rbeat)] ) (A4)
sy b gl ) Fk(r)
¢:lr) = 4;0 dr @1 x — (1)

- ms(rbeat)qsi(rheat)g(ra rbeat)~ (AS)

When Egs. (A4) and (A5) are evaluated at r = 7y, they can be
combined to yield a closed-form expression for ¢, (¥peqt):

— — +
~ 4>0 D, — lbwe(r/)

¢ (Toear) = —

lb (D/e (rbeat )

2
T8\ Tbeat s T
( 2(Tbeat beat)) S(rbeat)Fwa(rbe“')

(A6)

o

This expression for &),(rhmt) can then be used in Eq. (A4) to obtain a
closed-form expression for the imaginary beat wave stream function

¢i(")’
R v
9i(r) = 81 thea) o

vy 1 8 roear)Fok (1)
F _ d ! 9 ea s
b‘K(rbeat) S(rheat) 4;0 ! Vbeat (DfldAK - lha)e(r,)

2
1+ (ng(rbeah rheat)s(rbeat))

lb (,()/e (rbeat )

X

(A7)

where we applied the identity g(rpear, ') = £(7', Tbeat )7’ / Theat-

Note that —bg(r, 7peqr) solves the same differential equation
as the continuum eigenmode stream function ¢, , for resonant
radius 7y, ; = 7peqrs compare Eq. (A3) and Eq. (25). This implies
that ¢; is proportional to this continuum eigenmode stream func-
tion, i.e.,

$i(r) = Cyo(r) (A8)

for some constant of proportionality C, and thus 71;(r) = Cny,(r)
also. Substituting g(, 7pear) = —¢;, ,/b into Eq. (A7), and applying
the definition s, we can write this constant of proportionality as

oo Cod ()
= o) rey (r)n ()
S TPty (7o) (1)
nri,(ry)b? |1+ br, B, (1)
Ta=Tbeat
(A9)

T[g(rbeah rbeut)s(rbeat)

2
leUi, (rbeat) )

Here we have related C,4 to C by applying Eq. (33) to Eq. (60),
yielding

(I)l o
Cad: lb <nlb,ot7FbAK>p
b

_ D}, o 2dr 1y, 2 Fp
lb n’e
B T, (ry)r2b

(1)

W_j, K — lbd)e(r’)

(A10)

@JPr/dr/ ¢l;,,a(r/)Fb,K(r/)

|:FbAK(rzx) + b?’a

and where in the second line we substituted for ny, , using Eq. (24),
used the definition s, and applied the resonance conditions
Ty = Theat> and @ (r,) = @j, , = @ _y, x. The quantity in the square
bracket appears in the numerator of Eq. (A7), leading to Eq. (A9).

Equation (A9) allows us to connect the new expression for the
growth rate, the imaginary part of Eq. (77), to the old expression Eq.
(69). The imaginary part of the radial integral in Eq. (79) is determined
by #; and ¢;, which are proportional to the resonant continuum
eigenmode vorticity and stream function, respectively, (7, <?>,)
= C(y,,2, ¢y, ) see Eq. (A8). This implies that the imaginary part of
the inner product appearing in Eq. (77) is S(mpx,Fa)g
= C(npx, Fi4)p = CCyy, where in the last step we used the definition
of Cay, Eq. (62). Thus, the imaginary part of Eq. (77) yields

)= A2 CCyy

= . (A11)
P Ex

Comparing this expression to Eq. (69) after applying Eq. (A9), we
see that the two expressions for the growth rate are identical pro-
vided that Eq. (40) for ¢/(r,) is satisfied, for I=1,. This argument
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provides a (somewhat roundabout) method for determining the
proper functional form of ¢(r,).
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