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Abstract—In this paper we develop an online distributed
learning algorithm for unlabeled data. Here a goal is to detect
anomalies from streaming data. The assumption is that data is
drawn from a probability distribution, but that at some unknown
time data could be drawn from a different distribution. We
assume the data comes from distributed sources and develop
an online Federated Learning (FL) algorithm based on online
kernel methods using Random Fourier Features (RFF). This work
combines previous work on online unsupervised kernel algorithms
with online supervised kernel algorithms using FL and RFF. There
are many applications of this work including detecting bad power
grid data.

I. INTRODUCTION

In this day and age we are seeing an explosion of data
coming from a variety of sources and locations at different
rates. Much of this data come from distributed sources such
as sensors, IoT devices, mobile devices, cameras, individuals,
groups, or organizations. There is a need to process, learn,
and make inferences from the data. Here we consider data
gathered by edge devices or clients with information passed
to a central server or the cloud. In the past, data was sent from
the clients to the cloud where processing, learning and making
decisions would occur as shown in Fig. 1a) and labeled as the
centralized learning model. However, edge devices now have
much more computational power with faster processors (GPUs)
allowing more computations and learning to occur at the edge.
In addition there are many other concerns with sending data
from edge devices to the cloud. There are security and privacy
concerns of sending data and information to the cloud. There
is also concerns about an excess amount of communications
between the edge devices and the cloud. Federated Learning
(FL) was developed by [1] to address these issues where
processing and learning takes place at the edge device and
not passed to the cloud. This is shown in Fig. 1b) where
information, but not data is passed to the cloud. The cloud
assists in the learning process by sending collective information
back to each edge device so that collaborative learning can
occur. The FL model is also able to handle heterogeneous data
and heterogenous systems.

There are many applications for FL. where there are concerns
about data privacy, communication costs, and handling hetero-
geneous data and systems. These include mobile communica-
tions, autonomous systems with communications between au-
tonomous cars for real-time information and decision making,

Centralized Model Federated Learning Model
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Fig. 1. Collaborative learning models

healthcare applications include sharing information between
different hospitals, manufacturing for predictive maintenance,
and smart grid applications for demand-side management, [2].
For demand-side management consider a group of homes in a
community. Each home may be identical or similar in terms of
the architecture, but energy usage in each home may be very
different depending on the occupants, their energy preferences,
and energy consuming devices in the home. This includes
heating, air conditioning, hot water heaters, and appliances.
Homes may also have rooftop solar panels, battery storage,
and charging stations for Electric Vehicles (EV)s. This is a
good application for FL as at each home gets data from many
heterogeneous sources and there are privacy issues. This include
environmental sensors monitoring local climate including solar
irradiance, electrical grid data, data from sensors monitoring
energy usage, and possibly data from sensors monitoring EV
charging. From this data we can learn about household energy
usage while preserving comfort, conserving energy and reduc-
ing costs.

There has been considerable research and interest in FL
algorithms with the following papers giving a good discussion
of FL research [3], [4]. Most of the learning algorithm for FL
are supervised learning algorithms. In previous work we devel-
oped online kernel regression algorithms that used principles
of FL, [5], [6]. The algorithms developed in [6] are based on
edge devices (clients) learning data received using online kernel
methods implemented using Random Fourier Features (RFF),
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[7]. The clients send weight information to a server where the
server coordinates learning by aggregating information from the
clients and then sending this information back to the clients.
Communication savings are achieved as we only sample a small
number of clients at each update and the client only sends a
small fraction of RFF coefficients when sampled. This is called
Partial Sharing-Based Online Federated Learning (PSO-FED).
PSO-FED is shown to converge and through simulations have
good learning performance (even when a small fraction of RFF
are transmitted). The algorithm is also shown to have some
robustness against data poisoning (Byzantine attacks).

In this paper we extend our learning algorithms to unsuper-
vised learning. Although the vast majority of machine learning
deals with supervised learning algorithms where a target output
is associated with each input data a considerable amount of data
is unlabeled. Many learning algorithms have been developed
for unsupervised learning ranging from clustering algorithms
where similar input data is grouped together to Principal
Component Analysis (PCA) which is a statistical method for
reducing the dimensionality of a dataset by linear transforming
the dataset to find the coordinates with the largest variance.
Here we will focus on anomaly detection with a survey of
machine learning methods presented in [8]. Here we will
examine where data is drawn from a probability distribution
in an online manner. At some point data is drawn from an
anomalous distribution and the goal is to detect this change. We
first formulate an online kernel algorithm following [9] and then
use RFF to approximate the kernels to detect the change. We
then adapt this algorithm based on distributed learning using
principles of FL.

Let us briefly discuss two applications for anomaly detection.
Consider a network of environmental sensors monitoring water
quality. The sensors could be placed under water in a lake.
Each sensor would periodically sample environmental condi-
tions such as temperature, pH, turbidity, and perhaps other
chemicals. PAD-OFL could learn the support of the distribution
under normal conditions. Anomalies could occur due to natural
conditions such as unusual algae growth or due to human
factors such as the release of pathogens and/or pollutants into
the lake. In a second application consider monitoring a power
grid for bad data. Sensor could be distributed on the grid to
monitor voltage, current, and other electrical measurements.
Bad data could be the result of natural circumstances such as a
downed power line due to fallen trees or a malicious man-made
attack where bad data is injected. A more detailed discussion
presenting simulation results is presented for detecting bad
power grid data in the applications section.

The paper is organized as follows. In Section 2 we first
discuss using a one class least squares kernel algorithm for
modeling a probability distribution. We then approximate the
kernels using RFF, and develop an online learning algorithm
for anomaly detection. In Section 3 we assume the data
comes from distributed sources (clients) and information is
processed by a central server. We then develop a FL model for
anomaly detection. Section 4 presents a simple example and

an application detecting bad data for the electric power grid
where algorithms of Section 3 are used. Section 5 summarizes
the paper and discusses further directions.

II. MODELING DISTRIBUTIONS AND ANOMALY
DETECTION

A. Using Kernel Methods

In a key paper by Scholkopf, [10] a one-class support vector
is used to model the support of a probability distribution. Here
we will assume inputs x(i),1 < ¢ < m are drawn from a
sample of a random vector X € R". This can be represented
by

N D
min = [|uw| —p+v;& )

subject to w? ¢(z(i)) > p—&. and & >0,

where ¢(-) : R™ — Z is the mapping to a high dimensional
feature space such that the dot product of ¢ is usually computed
by evaluating a kernel k(z,y) = ¢(z)T ¢(y). The parameter
v > 0 is a regularization parameter and controls the fraction
of possible outliers [10] and &; are non-zero slack variables.
The goal here in feature space is to have as many data points
(in feature space) ¢(x(i)) as possible to lie on one side of
a hyperplane (described by f(z) = wl¢(z) — p = 0) away
from the origin such that the distance to the origin, p/w is
as large as possible. This is know as the One-Class Support
Vector Machine (SVM). The hyperplane solution can be found
by solving the dual optimization problem [10]

1
minilzj;aiajk(x(i)az(j)) @

subject to 0 < o; <~y and Zai =1,
i
where «; are the Lagrange multipliers. The solution for the
weight vector w is given by

w = Z ;i p(x (7))

We would like to consider online learning algorithms for this
problem and can use a different squared error cost function
which leads to a simpler online learning algorithms based on
linear adaptive filters. This was implemented by Choi in [11]
using a squared error loss function and is referred to as the
Least Squares OC-SVM (LS-OC-SVM). For this optimization
problem the goal is to perform linear regression in feature
space with the hyperplane again as far away from the origin as
possible. In the input space the manifold formed by the equation
f(x) = wle(x) — p = 0 describes a surface where most of
the support of the probability distribution lie near to f(x). The
LS-OC-SVM optimization problem can be formulated as

. . 1
min J(w,p) = min gful” —p+ I 3

subject to w = ®a and & = 1p — T w.
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where the feature input matrix ® = [¢(z1),...,0(zm)],
a = [ag,.. ]7, and 1 represents a column vector of Is.
Note hear that for the LS-OC-SVM we have constraints that are
equality constraints as opposed to the OC-SVM where we have
constraints that are inequality constraints. Defining the kernel
matrix K = ®7® we can then make substitutions in equation
(3) to get the following

.y O,

1
J(a,p) = S0 Ka + 2|[1p - Kal ] @
This is a quadratic function of the variables « and p with the
solution found by solving a system of linear equations given

‘” 12]-1%]

where O is a column vector of zeros and I is an identity matrix.

Here all the input data are support vectors and the hyperplane
in the dual space is given by f(z) = o’k(z) —p = 0
where k(z) = ®T¢(x). A problem with solving the set
of linear equations, from equation (5) is that the matrix K
grows as the number of input data grow, m as all input
data are support vectors for the LS-OC-SVM. For m data
the computational complexity for the solution grows as m?>
and alternative subspace methods are needed when m grows
large. Subspace methods require that a dictionary of support
vectors are chosen. For online learning the dictionary is grown
online as data is processed. In [9] an online dictionary is grown
using an approximate linear dependence (ALD) criterion, [12].
Alternatively, in [13] a dictionary is grown using a simpler
coherence criterion. A problem with these methods is that they
add complexity to the learning problem and we propose an
alternate solution in the next subsection.

171 —1TK

-1 K+1I/y ©)

B. Approximating Kernels with Random Fourier Features

In a landmark paper by Rahimi and Recht, [7] they showed
that if the kernel function can be expressed in terms of one
variable, that is k(u,v) = k(u — v), then we can have an
alternative approach to construct a set of basis functions. Here
assume that k(u,u) = 1. From Bochner’s theorem we can
then represent the kernel function in terms of its inverse n-
dimentsional Fourier transform by

k(u—v)= <217T)n/o:o/o:€w(w) exp(jw? (u — v))dw;...dw,

= Ew[tw(u)ihw(v)"]

where v,,(u) = exp(jwTu) and * represents complex con-
jugate. From the righthand side of the equation we have
Y, (1)1, (v)* is an unbiased estimate of k(u —v) as py (w) is
an n-dimensional probability density function. Note that

(6)

k(u —v) = Eyw cos(w” (u — v))

since pw (w) is real and even function of its n components (as
k(u,v) is real, even, and positive semi-definite). Let ¢, (u)=

V2 cos(wu+0) where w is drawn from pyy (w) and @ is drawn
from a uniform [0, 27] random variable. We then have

Ew [co(v)cw(v)] = Ewglcos(w” (u—v))+cos(w” (utv)+20)]
= k(u—v)

where the last equality holds as the expectation of the second
term is O.

Let (wj,0;),1 < j < D be D samples drawn from W and
6. We then have

D

) = (6(u),0(0)) = 55 3 ea, (W, () = ¢ (w)e(r)
j=1

(N

where c(u) = % [Co, (1), ..., cup (u)]T. Here we approximate
the kernel by drawing D samples and averaging. As an example

of W let the kernel function be
k(u,v) = exp(o®|lu — v|[*/2)

then the kernel function is a Gaussian kernel and the inverse
Fourier transform gives a Gaussian random vector with each
component being iid with zero mean and variance o2. From
the kernel representation result we then have the estimate of

f(-) given by

)
i=1
If we let 8 =3." a;c(x(i)), then we have that
f(z) = pex) = p. ©)

This reduces the problem to a linear regression problem in D-
dimensional space generated by the RFF with the goal of find-
ing the parameters 8 and b. Let C = [¢(x(1)), ..., c(z(m))].
Then with regularization we are trying to find 8 and p to
minimize 1

J(8,p) = 3IBIP + Slel* = p

where e = CT3 — pl. Solving this optimization problem is
found by taking gradients and partial derivatives and setting to
0 resulting in

Vs J(B,p) = (I+~CC")B —~vClp =0 (10)
and 87
OG0 _ 45— 1=0 (11
dp
resulting in the following set of linear equations,
—me Re+1/(my)| |B] [ 0

where m. = =C1 and R, = - CC”. The solution is found
by solving a system of D + 1 linear equations.
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C. Anomaly Detection and Online Learning

Solving for § and p gives us a manifold described by g(z) =
BTc(z) — p = 0. Given we use enough training data m and
enough RFF, D the support of the random variable X lies close
to this manifold with the distance of a point « from the manifold
given by
dw) — 19|

VB e(x)Te(z)p
Following [9], if the distance of a data point is far from the
manifold we classify this as an anomalous data point. Here we
define a threshold value § > 0 such that if d(z) > ¢ then
the data point is an anomaly. The setting of § determines the
fraction of points that are classified as anomaly data.

Here we assume that the first m data points are drawn
from the random variable X. This can be considered the
baseline data. The LS-OC-SVM can be trained to find the
manifold using batch methods solving equation (12) or by
online methods. Online methods include using the Recursive
Least Square (RLS) algorithm or the Least Mean Square (LMS)
algorithm described in [14]. The nice thing is that instead of
working with kernel online learning algorithms we work with
simpler linear adaptive filter algorithms.

After seeing the m data points we are presented with more
data and need to determine if the data is anomalous data. Here
we set the parameter §, initialize S(m) and p(m), and let
z(k) = ¢(z(k)) by solving equation (12), and then use the
LMS learning algorithm to update the parameters. The learning
algorithm is given below.

13)

Centralized Anomaly Detection with Online Learning using
Kernels and RFF (CAD-OL)

1) Initialization: Learn 5(m) and p(m), set § > 0, set
step sizes pi1, (12, and k = m.
Get data point, x(k + 1)
If 2(k + 1) is anomaly data that is (d(z(k + 1)) > 9),
label point A(k+ 1) =1 and

Bk +1) = B(k), p(k+1)=p(k)
otherwise update parameters using LMS algorithm

estimating gradients and derivatives from equations
(10) and (11)

e(k+1) = 2(k+ 1)TB(k) — p(k),
Blk+1) = (1- %)5(@ — me(k +1)z(k + 1),

2)
3)

4)

ok +1) = p(k) +u2(% +e(k +1)),

and A(k+1)=0
5) k< k+1, go to 2)

Note that CAD-OL can detect anomalies if § is set correctly
with the vector of anomalies recorded in A. It also tracks slowly
varying changes in the distribution as the manifold parameters
slowly change as new data is presented.
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ITI. ONLINE UNSUPERVISED FEDERATED LEARNING USING
PSO-FED

As mentioned in the introduction many sources of data come
from distributed sources and this Section develops the models
and Federated Learning (FL) algorithms for this scenario. Here
we assume we have L clients and also assume that clients
receive data synchronously at each update, but this can be easily
modified to asynchronous updates [5], [15]. At time k client [
receives input data x(k,l) with z(k,1) = c(x(k,!)). There is
also a server that communicates with all the clients and helps
to coordinate learning. One approach as mentioned earlier is a
centralized learning approach where the clients send all data to
the server. Then the server can just use CAD-OL discussed in
the previous section. As mentioned earlier this results in high
communication costs and loss of data privacy. This motivates
the need to use FL algorithms.

Here we combine the unsupervised anomaly detection learn-
ing algorithm discussed in the previous section, CAD-OL with
PAO-FED discussed in [6]. At each update the server chooses
some random set of P << L clients who each communicate
with the server about their parameter information. When a
server chooses a client, that client gets the server model of
the parameters and adaptively updates their parameter based
on its current input, z(k, ) (CAD-OL step 4) unless that data
point is an anomaly. The server then takes the sum of all the
P clients updates as its new parameter estimate. The process
then repeats as the server chooses a new set of P clients at the
next update. In [6] this is referred to as Online-Fed learning.

To implement PAO-FED, [6] we start at each update by
choosing R << D parameters of the vector S for each client.
Each client can have the same components chosen (coorinated)
or choose different components (uncoordinated). Initially, these
can be chosen randomly or sequentially. To denote which
components of § are chosen we will define a selection matrix
S(k,1) at time k for client [ which is a diagonal matrix of
dimension D with 1s on the diagonal element where there will
be an update on that component of 8 and Os otherwise. We
also let P(k) denote the set of clients chosen at time k. The
algorithm for each client is similar to CAD-OL for edge devices
with a server aggregating the selected clients and sending this
information to each of the chosen clients. At each update the
clients must also rotate which components of 3 are updated to
iterate for the next update. We initially assume that we learn
the support of the distribution.

Partial Sharing Anomaly Detection with Online FED
Learning using Kernels and RFF (PAD-OFL)
(learning support of distribution)

1) Initialization: Set 3(0), p(0) , 5(0,1), p(0,1),1 <1 < L,
set step sizes i1, i12, determine initial chosen compo-
nents, S(0,1), 1 <! <L, and k = 0.

2) Get data points, z(k,1), choose P clients, P(k), and
communicate S(k,[)3(k) to selected clients.
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3) Client Update: If j € P(k)
e(k+1,5) = z(k +1,7)7 8 (k.g) — p(k, ),
Blk+1,5) = (1—;‘—;Wm—ule<k+1,j>z<k+1,j>,
Else
e(k+1,7) = z(k+1,5)"B(k.5) — p(k. j),
Blk+1,5) = <1—%)/3<k,j>—me<k+1,j>z<k+1,j>,
Endif

) . 1 .
p(k+1,7) = p(k, j) + ug(% +e(k+1,7),

4) Selection matrix update: S(k,; + 1) =
circshift(diag(S(k,j)), r). Shift of r.
5) Server update: average client update parameters to
get global update
B+ =5 Y A+ 1)
JEP(K)

JESk
1 .
plk+1)= 5 Z p(k+1,5)
JEP(k)
6) k<« k+1, go to 2)

The second part of PAD-OFL is to detect anomalies. Here
the algorithm is the same as for learning support of distribution
except that we have a check if data point z(k,!) is an anomaly
by checking if d(z(k,l)) > after step 2). The procedure is
the same as CAD-OL. For PAD-OFL note that at each update
the client [ only communicates R components of 3(k,l) to
the server and the server only communicates R components of
B(k) to each client.

IV. APPLICATION OF ALGORITHM

Let us first examine a simple example that was presented
in [9]. This is the synthetic square-noise dataset with normal
points labeled in blue and noisy points labeled as red. This is
shown in Fig. 2. If we assume the normal points are drawn from
a probability distribution we can get the distribution support lies
within two square boxes that contain the blue points. It is not
difficult to simulate the LS-OC-SVM to construct the square
boundary boxes approximately and then being able to detect
the red point anomalies. The online CAD-OL has also been
implemented and can get a good approximation of the two
square boundary boxes and detect anomalies using Gaussian
kernels and RFF. Similarly, PAD-OFL can be implemented with
a number of clients to get the two square boundaries and detect
the red point anomalies.

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded o

12

301

' - . o0 g 2%
 RDEYA TR
20 i ;‘. L ¥ - ..
15 1 o.\¢ - -
10 | . :’ . . -
1 ':-uuam-é
00‘00 05 10 15 20 25 10

Fig. 2. Synthetic square-noise data set
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Fig. 3. IEEE 14-bus test system

For real applications, the probability distributions could be
in high dimensions with complicated support. A goal is to
implement the algorithms developed here on some of these
applications. Here we briefly discuss one example of detecting
bad electric power grid data.

At buses 1, 2, 3, 8

At branches 1-2, 1-5, 2-4, 2-5,
4-5, 4-7, 4-9, 5-6, 6-11,

6-14, 9-10, 9-14, 12-13

At buses 3, 6, 8, 10, 14

Table 1. Measurement configuration for IEEE 14-bus system

Power injection
Power flow

Voltage magnitude

In [9], detection of bad power grid data was considered. The
IEEE 14-bus system [16] shown in Fig. 3 was used to test for
bad grid data. A standard residual test for non-critical branch
measurements was able to detect bad grid data, however branch
P4-7 is a critical branch that is not observable and the standard
residual test does not work. If we use an online LS-OC-SVM
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using a kernel RLS algorithm we can detect bad grid data for
branch P4-7. The experiment was done by considering a vector
x = [Py_7,Py_2, Py, Py_o]" which contains the critical mea-
surement along with measurements from neighboring buses.
The true value for this flow is P;_7 = 0.2285p.u. We created
a stream of 1000 samples by adding zero mean Gaussian noise
with variance .0004 to the true value. The data was trained on
a LS-OC-SVM to produce a manifold where the support of the
distribution lies close to the manifold. Gaussian kernels were
used and first trained on 700 training data. Then 300 test data
were used with 5 of the data points injected with bad data. The
LS0-OC-SVM was able to detect all five bad data points.

We then used CAD-OL using RFF using the LMS learning
algorithm with suitably adjusted hyperparameters and small
learning step sizes. This algorithm like the LSO-OC-SVM
was also able to detect all five bad data points. Note that
much power grid data is measured from distributed sources
and we then applied the PAD-OFL to attempt to detect the
bad grid data. We used 10 clients where data was equally and
randomly distributed among these clients and then used the
LMS algorithm where at each update we chose 3 of the clients
to update. A total of 30 RFF were used and at each update we
chose 5 of these RFF to update. The savings in communication
cost over using all RFF is a factor of six. PAD-OFL using
these parameters was also able to detect all five bad data points.
PAD-OFL achieved communication savings and also reduced
computations compared with centralized approaches and using
LSO-OC-SVM.

We have discussed a power grid application where we could
implement online FL algorithms such as PAD-OFL. There are
many other applications where online anomaly detection for
distributed sources using PAD-OFL could be used. These in-
clude personalized healthcare, networked autonomous vehicles,
and precision agriculture with some of these applications are
discussed in [2].

V. SUMMARY AND FURTHER DIRECTION

This paper discussed implementing online unsupervised
learning algorithms for anomaly detection. We consider situ-
ations where data is coming from distributed sources and use
principles of Federated Learning. We also use kernel methods
and represent kernels using random Fourier Features (RFF).
The paper combines implementation of LS-OC-SVM [9], with
RFF [7], and using the PAO-FED algorithm [6]. The algorithm
developed is called Partial Sharing Anomaly Detection with
Online FED Learning using Kernels and RFF (PAD-OFL). We
simulated results detecting bad power grid data showing the
efficacy of both CAD-OL and PAD-OFL.

There is much further work to be considered including using
PAD-OFL on numerous other applications and understanding
the analytical behavior of PAD-OFL using tools from signal
processing and information theory.
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