
1

Reverse Engineering of Obfuscated Lua Bytecode
via Interpreter Semantics Testing

Chenke Luo, Jiang Ming, Member, IEEE, Jianming Fu, Member, IEEE, Guojun Peng, Member, IEEE,
Zhetao Li, Member, IEEE

Abstract—As an efficient and multi-platform scripting lan-
guage, Lua is gaining increasing popularity in the industry.
Unfortunately, Lua’s unique advantages also catch cybercrim-
inals’ attention. A growing number of IoT malware authors
switch to Lua for malicious payload development and then
distribute malware in bytecode form. To impede malware code
analysis, malware authors obfuscate standard Lua bytecode into
a customized bytecode specification. Only the attached interpreter
can execute that particular bytecode file. Rapid recovery of Lua
obfuscated bytecode is essential for a swift response to new
malware threats. However, existing generic code deobfuscation
approaches cannot keep up with the pace of emerging threats.
In this paper, we present a novel reverse engineering technique,
called interpreter semantics testing. Given a customized inter-
preter used to execute obfuscated Lua bytecode, we construct
a set of LuaGadgets that can adapt to the customized interpreter.
Each LuaGadget contains a carefully chosen opcode sequence
to fulfill an observable calculation—it is designed to test one
or two particular opcodes at a time. Next, we mutate unknown
opcode values to generate a bunch of test cases and run them
using the customized interpreter; we can observe the expected
result only when the mutation hits the opcode’s right value. We
perform test case prioritization to cost-effectively recover the
semantics of all obfuscated opcodes. Our approach makes no
assumptions about the interpreter’s structure and is free from
analyzing the numerous execution traces of opcode handlers. We
have evaluated our tool, LuaHunt, with Lua malware variants
and real-world applications. LuaHunt is able to recover the
obfuscated bytecode’s semantics within 90 seconds for each test
case, and all of our deobfuscation results can pass the correctness
testing. The encouraging results demonstrate that LuaHunt is a
promising tool to lighten the burden of security analysts.

Index Terms—Malware Analysis, Bytecode Obfsucation, De-
obfuscation, Lua, Interpreter Semantics Testing.

I. INTRODUCTION

ACCORDING to the PYPL (PopularitY of Programming
Language) Index [1], Lua’s popularity is on the rise in

recent years. Lua has risen as one of the best programming
languages for modern game engines, such as Angry Birds and
World of Warcraft [2]. Many applications utilize Lua as their

This work was supported in part by the National Key R&D Program of
China (2021YFB3101201), the National Natural Science Foundation of China
(61972297, 62172308, 62172144).

Chenke Luo, Jianming Fu, and Guojun Peng are with the School of Cyber
Science and Engineering, Wuhan University, Wuhan, Hubei, 430072 China (e-
mail: kernelthread@whu.edu.cn, jmfu@whu.edu.cn, guojpeng@whu.edu.cn).

Jiang Ming is with the Department of Computer Science, Tulane University,
New Orleans, LA 70118 USA (e-mail: jming@tulane.edu).

Zhetao Li is with the National & Local Joint Engineering Research
Center of Network Security Detection and Protection Technology, Guangdong
Provincial Key Laboratory of Data Security and Privacy Protection, College
of Information Science and Technology, Jinan University, Guangzhou 510632,
China (e-mail: liztchina@hotmail.com).

(a) Lua Script Interpretation

Lua Script

Lua Script
Lua

Bytecode

(b) Lua Bytecode Execution

Lua Compiler

(luac)

LUALUA

LUALUA

Lua VM

Loader Lua VM

Lua Interpreter

Lua Interpreter

Parser

Figure 1. Running a Lua program from scripts or bytecode. By contrast, the
interpreter is written in C and distributed in machine code form.

primary embedded script language to support dynamic script
extensions, which include but are not limited to Photoshop,
Apache, NetBSD, and Wireshark [3]. As shown in Figure 1,
Lua interpreter can load and execute Lua programs either in
textual source form (Figure 1(a)) or in precompiled bytecode
form (Figure 1(b)). The advantages of running precompiled
Lua bytecode are faster loading and protecting source code
from intentional or accidental changes.

However, it never takes malware authors long to catch up
with the latest technique trend. Since 2016, we have observed
that the number of IoT malware developed using Lua was
increasing [4]–[16], which makes malware development much
easier and malware distribution more flexible in miscellaneous
embedded devices. For example, LuaBot is the first IoT Botnet
written in Lua language and had a zero-detection rate when it
was found [4]. LuaBot’s functional modules are programmed
as multiple “.lua” source files, along with the Lua runtime
libraries. LuaBot author acknowledged that the lightweight,
cross-platform features and the easiness to integrate with C
code were the primary reason to choose Lua [5].

Another representative example is GodLua, which is the
first-ever malware spotted abusing the new DoH (DNS over
HTTPS) protocol to hide its DNS traffic [7]. GodLua down-
loads and runs Lua bytecode files to launch HTTP flood attacks
targeting some websites. GodLua evolves from its predecessor,
which was written in C and can only run on x86/x64 plat-
forms. In contrast, GodLua now supports multiple platforms
(x86/x64, ARM, and MIPS) [17]. Furthermore, to frustrate
reverse engineers and malware researchers, GodLua obfuscates
the bytecode file by randomizing the bytecode file format and
bytecode instruction set (i.e., opcode); it attaches a modified
interpreter to execute the new bytecode file. The bytecode

2

File Header

Function Header

Code

Constant Table

UpValues

Signature

Luac Data

Luac Version

. . .

Source

Line Defined

Last Line Defined

LOADK

ADD

CALL

. . .

RETURN

. . .

Luac Num

Protos

Debug

1

2

3Lua Bytecode

File Format

Figure 2. The data structure of a Lua bytecode file.

and interpreter can vary significantly from one obfuscated
instance to the other, preventing the generation of reliable
malware signatures. Lua decompiler (e.g., LuaDec [18]) and
Lua code static analyses [19], [20] are rendered useless on
such programs, and only the interpreter’s binary code is
directly readable.

This paper takes the first step towards the rapid recovery
of Lua obfuscated bytecode, which is essential for defeating
the emerging Lua malware. Lua bytecode obfuscation bears a
striking resemblance to code virtualization obfuscation [21]–
[24], which transforms the original instruction set architecture
(ISA) into bytecode in a new ISA format. At runtime, the
bytecode is emulated by an embedded interpreter on the
real machine. Although many techniques have been proposed
to deobfuscate the virtualized code, they are unsuitable for
handling Lua obfuscation. As the classic bytecode interpreter
structure is the so-called “decode-dispatch loop” [25], one
category of previous works detects such decode-dispatch loops
and finds the mappings between opcodes and related handler
functions [26]–[29]. However, the latest Lua version (Lua 5.4)
has switched to the indirect-threaded interpretation [30], which
shows no presence of the central decode-dispatch loop. The
second category of code de-virtualization work aims to remove
the virtualization obfuscation layer from the lengthy execution
instructions [31]–[34]; they apply dynamic taint analysis [32],
enhanced backward slicing [31], [33], or improved symbolic
execution [34] to extract the instructions that are related to
the program semantics. Unfortunately, the nature of expensive
dynamic information flow analyses (e.g., high-performance
penalty and limited path coverage) has severely restricted their
adoptions in production systems.

Lua’s lightweight and open-source features motivate us to
develop a new technique, called interpreter semantics testing,
to reverse-engineer an obfuscated Lua bytecode file. We first
pre-process the customized Lua interpreter to prepare inter-
preter semantics testing. In particular, we extract the obfus-
cated bytecode file format to generate executable bytecode.

Our key step is to find the semantics of obfuscated Lua
opcodes. We modify luac, the Lua compiler, to precompile
a set of LuaGadgets that can be accepted by the customized
interpreter. We design each LuaGadget to test one or two
specific opcodes via completing a basic Lua operation, and
its result is observable. Next, we give priority to testing the
LuaGadget that has the minimum opcode dependency—its

opcode sequence contains the fewest unknown opcodes. We
follow the above testing strategy to mutate each LuaGadget’s
unknown opcode values, and then the generated mutations
are fed into the customized interpreter to execute. Only when
the mutation hits the right opcode value, can we observe the
expected LuaGadget result. We reiterate the above process
until we recover the semantics of all obfuscated opcodes.

At last, we translate the obfuscated Lua bytecode file back
to an executable and semantically equivalent bytecode file,
which can be further processed by Lua decompiler (e.g.,
LuaDec [18]) and Lua code static analysis tools [18]–[20].

We have implemented our idea as an automated tool, named
LuaHunt. LuaHunt shares the same advantage as the generic
code de-virtualization methods [31]–[34]; that is, LuaHunt
does not assume the specific interpreter structure in use. More-
over, as LuaGadget testing treats the bytecode’s execution as a
blackbox, LuaHunt can recover complete bytecode semantics
but without the cost of the expensive information flow analysis.
We have evaluated LuaHunt with malware samples and real-
world applications that run obfuscated Lua bytecode files.
For each customized interpreter, including the complicated
one whose bytecode handlers are further obfuscated by code
virtualization [21], [22], LuaHunt can finish the whole process
of interpreter semantics testing within 90 seconds. Besides,
our deobfuscation results succeed in passing the correctness
testing; we utilize the Computer Language Benchmarks Game
for Lua [35] to test the correctness of LuaHunt—the union of
these benchmarks covers all kinds of Lua opcodes. In a nut-
shell, our study makes the following technical contributions:

• We study the obfuscation method adopted by an emerging
IoT threat—Lua malware, which has not received much
academic scrutiny. Since malware authors are capitalizing
on new programming languages to better develop mal-
ware, we hope our study paints a cautionary picture for
the security community on this new trend.

• Our proposed interpreter semantics testing idea represents
a new direction to the efficient reverse engineering of
script interpreters. LuaHunt achieves the ultimate goal of
deobfuscation [36]: restoring an executable and semanti-
cally equivalent bytecode file.

• LuaHunt’s performance is better than advanced code
deobfuscation tools by one or two orders of magnitude.
Security analysts utilizing LuaHunt will enjoy a simpler
and more streamlined malware analysis process than ever.

We have released LuaHunt’s source code and data sets to
facilitate reproduction and reuse, as all found at Zenodo.

II. BACKGROUND AND MOTIVATION

In this section, we first present the background information
needed to understand Lua bytecode and its obfuscation. Then,
we summarize the existing literature on code virtualization
deobfuscation. They are the works most germane to our
research, and their limitations motivate us to design LuaHunt.

A. Technical Basics of Lua Bytecode

As shown in Figure 1(b), Lua compiler (luac) translates
a program written in the Lua programming language into a

https://zenodo.org/record/7691472

3

7 Bits25 Bits

0 bit31 bit
iABC
iABx

iAsBx
iAx

Opcode

Opcode

Opcode

A (7~14)B (16~23)C (24~31)

A (7~14)Bx (15~31)

A (7~14)sBx (15~31)

OpcodeAx (7~31)

OpcodesJ (7~31)isJ

k

Figure 3. Lua 5.4 instruction format and five OpModes.

bytecode file that can be later loaded and executed by a Lua
interpreter. Figure 2 illustrates the data structure of a Lua
bytecode file. It starts with a file header (1 in Figure 2),
which stores the file’s metadata information, such as the
magic number, the Lua compiler’s version and format, big-
endian/little-endian order, and the size of different data types.
Function prototype information comes after the file header,
starting with a function header. The function header (2)
stores the function’s metadata information, such as the source
file’s name, the line numbers in the source code where the
function starts and stops, and the number of parameters. After
the function header, the “code” field stores a list of bytecode
instructions (3).

Lua Instruction Format The format of the Lua instruction
is shown in Figure 3. Each instruction is represented as an
unsigned 32-bit integer, in which the opcode takes up the lower
7 bits, and the remaining bits are allocated for operands. Each
opcode belongs to one of the following five OpModes [37]:
iABC, iABx, iAsBx, iAx, and isJ (from top to bottom in
Figure 3). They specify how to parse the higher 25 bits of
operands. The number of operands varies from one to three.
In the first three modes, operand A is an 8-bit unsigned integer.
In iABC mode, both B and C are 8-bit integers, and there is a
one-bit flag K as the signed argument. In iABx and iAsBx
modes, in addition to operand A, Bx is a 17-bit unsigned
number, while sBx is a 17-bit signed number. In iAx mode,
Ax is a 25-bit unsigned integer. In isJ mode, sJ is a 25-bit
signed integer representing jump offset, which is only used
by the opcode JMP.

B. Lua Bytecode Interpreter Structures

Next, we introduce the two interpreter structures of Lua
bytecode. As a scripting language’s interpreter can be im-
plemented in multiple ways [25], a general deobfuscation
approach working on different interpreter structures is needed.

Decode-Dispatch Loop This is the classic way to imple-
ment a script interpreter. The virtual program counter fetches a
piece of bytecode each time to decode it, and then dispatches
the control flow to the opcode-associated handler function
that contains the machine code to complete the calculation.
Typically, the binary code of this structure has a distinctive
feature in code structure: a central loop to decode, dispatch,
and execute the bytecode. The virtual machines of Lua 5.1 –
5.3 are all implemented in this way.

Indirect-Threaded Code Although decode-dispatch in-
terpretation is easy to develop, the frequently-used indirect
branches caused by this structure introduce expensive mis-
predict penalties [38], leading to a performance slowdown.

The latest version of Lua (Lua 5.4) has adopted an alternative
structure, called indirect-threaded code (ITC) [30], to improve
performance. The most important change of the ITC struc-
ture is removing the central decode-dispatch loop; instead,
it utilizes a jump table to bridge bytecode instructions and
their associated handlers. The ITC structure first establishes
the jump table at compilation time to store handler function
addresses; then it compiles the corresponding index of the
jump table’s item into the bytecode instruction.

C. Lua Bytecode Obfuscation

To stay under the detection radar, advanced Lua malware
families translate the standard Lua bytecode into a new byte-
code specification. Without knowledge of the new bytecode
semantics, luac or LuaDec [18] cannot output intelligi-
ble information. As only the binary code of the interpreter
is readable—but the interpreter itself does not exhibit the
maliciousness of programs, security analysts have difficulty
obtaining valuable insight into the malware payload.

Problem Scope Our research problem comes from the
longitudinal study of real-world Lua malware and applies to
other scripting languages’ bytecode obfuscation as well (see
“Applicability” paragraph in §VII). Our targeted Lua bytecode
obfuscation still complies with Lua standard OpModes pre-
sented in Figure 3, but it involves the following modifications.

1) All fields in the file header, function header, and the
opcode sequence are randomized. A customized virtual
machine is attached to interpret the new bytecode file.
The new bytecode can be generated at random, and thus
the bytecode varies greatly from one obfuscated version
to another.

2) Some non-essential file header fields (e.g., verification
fields and debugging information fields) could be re-
moved. The opcode randomization could be a one-to-
one mapping or a many-to-one mapping (see “Multiple
Mappings” in §IV-B).

3) As handler functions are semantically equivalent to the
bytecode, to impede understanding the machine code of
handler functions, malware authors can further obfuscate
them by using other obfuscation schemes, such as opaque
predicates [39], mixed boolean-arithmetic formulas [40],
and code virtualization [21], [22].

Many obfuscation methods have been proposed to protect
software in different ways, generating a large body of liter-
ature on this topic [41]–[44]. The Lua bytecode obfuscation
strategies presented herein capitalize on Lua’s advantages and
are lightweight without adding computational overheads, but
they still put reverse engineers at a disadvantage–—the cost of
manually analyzing an obfuscated malware sample is typically
much higher than applying obfuscation. We treat a differ-
ent opcode/operand encoding style as a completely different
virtual instruction set architecture, and we will discuss our
possible countermeasures in §VII.

IoT malware, running on resource-constrained embedded
devices, has a significantly different ecosystem from traditional
PC malware; any obfuscation that results in a non-negligible
performance drop is highly undesirable [45]. Cozzi et al.’s

4

0x4 0x5 0x0 0x1 0x2 0x3
Signature Version

... 0xf
...

luacData ...

0x4 0x5 0x0 0x1 0x2 0x3
Signature Version

... 0xf
...

luacData ...

Interpreter
Semantics Testing

Modified
luac

LuaGadget

010100
100111
000000

BIN
010100
100111
000000

BIN

Bytecode
Mutations

010100
100111
111111

BIN
010100
100111
111111

BIN

010100
100111
111111

BIN
010100
100111
111111

BIN

010100
100111
111111

BIN010100
100111
111111

BIN

010100
100111
111111

BIN

010100
100111
111111

BIN
Blackbox
Testing

Obfuscated
Opcode

Semantics

0X00: RETURN
0X01: CALL

...
0X3F: JMP

Customized
Interpreter

LuaGadget
Template LUALUA

010100
100111
110011

BIN
010100
100111
110011

BIN
010100
100111
110011

BIN

Deobfuscation

Obfuscated
Bytecode

Original Lua
Bytecode File

1

2

3

4
Mutate

5

6

7

Standard Lua
Interpreter

Obfuscated Bytecode File FormatFile Format Extraction

Wrapper
Function Stitched

Interpreter

Figure 4. Overview of LuaHunt’s interpreter semantics testing.

Table I
COMPARISON OF REPRESENTATIVE CODE DE-VIRTUALIZATION WORKS

AND LUAHUNT

Interpreter Overhead Deobfuscation Correctness
structures result testing?

Rotalumé [26] DDL High Simplified CFG No
Rolf Rolles [27] DDL High Simplified CFG No
VMAttack [29] DDL High Simplified trace No

Coogan et al. [31] Generic High Simplified trace No
Yadegari et al. [32] Generic High Simplified CFG No
BinSim [33] Generic High Simplified trace No
VMHunt [34] Generic High Simplified trace No

LuaHunt Generic Low Executable Yesprogram

longitudinal studies [46], [47] also confirm that, due to the
concern of affecting performance and compatibility, most IoT
malware samples are not obfuscated. Therefore, our targeted
Lua bytecode obfuscation represents the state-of-the-art code
obfuscation adopted by IoT malware.

D. Limitations of Existing Work

Lua bytecode obfuscation resembles code virtualization,
which is well recognized as a highly sophisticated obfuscation
technique adopted by Windows malware [48], [49]. Code
virtualization converts a selected part of x86/x64 binary code
into a customized bytecode format, and only the attached
virtual machine can execute that bytecode. In this way, the
program’s original code is not present in the memory any-
more. As researchers have worked on analyzing virtualization-
obfuscated binaries, a natural question is whether existing
approaches can be applied to Lua bytecode obfuscation.

One category of related work is limited to the classic,
decode-dispatch based code virtualization [26]–[29]. They
perform dynamic analysis to detect the central decode-dispatch
loop and then find the mappings between executed opcodes
and their associated handler functions. Next, they further sim-
plify these handler functions and output control flow graphs
(CFGs) or trace segments to understand opcodes. However,
Coogan et al. [31] and VMHunt [34] confirmed that the
threaded code interpretation violates the decode-dispatch loop
assumption embodied by this category of work.

The recent progress in code de-virtualization is agnostic to
the underlying interpreter structures [31]–[34]. These papers
first record the lengthy execution traces of handler functions.
Then, they remove the instructions that are not relevant to the
original code semantic using an advanced, fine-grained infor-
mation flow analysis, including bit-level taint-analysis [32],
enhanced backward slicing for system calls [31], [33], and
multiple granularity symbolic execution [34]. When applied to
obfuscated Lua bytecode, they may extract opcode semantics
from handler function execution traces. Unfortunately, due to
the nature of expensive dynamic information flow analyses,
these techniques suffer from high runtime overhead and lim-
ited opcode type coverage.

The ultimate goal of deobfuscation is “to go from obfus-
cated code back to the original” [36]. However, the common
limitation of the above works is that they only deliver “semi-
finished” products, such as simplified CFGs or trace segments.
Besides, all of them lack a systematic way to test whether
the deobfuscation result is correct. Table I summarizes the
differences between LuaHunt and representative code de-
virtualization papers, which do not fulfill our requirements.
The “DDL” in Table I is short for decode-dispatch loop.
As shown in the last row of Table I, our research takes
full advantage of Lua’s standard interpreter implementation to
develop an efficient bytecode deobfuscation technique, which
can produce an executable program and pass the correctness
testing.

III. LUAHUNT OVERVIEW

Figure 4 illustrates the architecture of LuaHunt. The work-
flow of LuaHunt involves the following steps.

1. Pre-processing To generate test cases that comply with
the specification of the customized interpreter, we need to
figure out the layout information of various bytecode file
fields and their meanings from the interpreter’s binary code.
The previous input format reverse engineering works have
demonstrated that memory access patterns reveal the layout
of the input format [50]–[53]. We first apply the mature input
format extraction technique to the customized interpreter, and

5

then we match the layout results with standard Lua bytecode
format to obtain the meanings of various bytecode file fields
(1 in Figure 4).

2. Interpreter Semantics Testing This step forms the core
part of our approach—interpreter semantics testing. We first
design high-quality “seed” inputs, which we call “LuaGadget
Templates.” Each template source file consists of a basic Lua
operation (e.g., an arithmetic calculation, loading a constant,
or table access) that covers one or two particular opcodes’
semantics, and the operation’s result is observable at run time.
With the obfuscated bytecode file format obtained from the
first step, we modify luac to compile LuaGadget Templates
into LuaGadgets that can be executed by the customized
interpreter (3 in Figure 4). Specifically, we modified the
bytecode file format part when generating bytecode, making
it compatible with the extracted bytecode file format and
ensuring that the generated LuaGadgets can be correctly
loaded by the customized interpreter. We mutate LuaGadget’s
unknown opcode values to generate a set of bytecode files (4)
for the following blackbox testing: 1) we implement wrapper
functions for different forms of customized interpreters (2)
to enable them to run specified bytecode; 2) we execute each
bytecode mutation with the customized interpreter and exam-
ine the output without peering into the customized interpreter’s
internal structures or workings (5). We can observe the
expected LuaGadget output only when the mutation hits the
exact opcode value. To find the semantics for all customized
opcodes (6) cost-efficiently, we schedule LuaGadget testing
(4 – 5) in an order that attempts to minimize the total
amount of testing.

3. Deobfuscation After we collect the results from the
above steps, we translate the obfuscated Lua bytecode file
format back to the standard Lua bytecode file format and
rewrite the randomized bytecode instructions into the standard
ones (7 in Figure 4). Therefore, applying further code static
analysis, such as decompilation [18] and bug finding [19],
[20], becomes possible. Please note that, given any obfuscated
Lua bytecode files that are compatible with that customized
interpreter, we are able to reproduce their original programs
rapidly without going through the above three steps again. This
benefit tremendously accelerates malware analysis. We have
observed that Lua malware samples take multiple obfuscated
bytecode files as different malicious function modules, and a
core module will schedule and control other modules. Only the
executable code of the interpreter is statically visible, posing
a huge challenge for malware code analysis. LuaHunt frees
security professionals from the burden of manually piecing
together the tedious steps of reverse engineering.

In the next section, we focus on implementation details of
the key step: interpreter semantics testing.

IV. INTERPRETER SEMANTICS TESTING

An opcode occupies 7 bits, and thus a customized opcode
could be any value between 0x00 ∼ 0x7F. Since the decoding
mode (OpMode) of operands is decided by the opcode, as long
as we find the opcode’s semantics, its associated operands are
also determined. LuaHunt capitalizes on blackbox testing to

recover the semantics of randomized opcodes. In contrast to
existing code de-virtualization works that are also agnostic
to the underlying interpreter structures [31]–[34], LuaHunt’s
advantages are to tolerate all code obfuscation effects within
handler functions and avoid analyzing tedious execution traces.
The process of semantics testing is driven by the so-called
“LuaGadget.” Each LuaGadget is designed to test one or two
specific opcodes; it is a small instruction sequence to perform
a basic Lua operation and print out the result, so that we can
verify the expected result at each round of testing.

1 LOADK 0 −1 ; Load 12345 i n t o r e g i s t e r 0
2 LOADK 1 −2 ; Load 56789 i n t o r e g i s t e r 1
3 GETTABUP 2 0 −3; Load " p r i n t " a d d r e s s i n t o r e g i s t e r 2
4 ADD 3 0 1 ; Add r e g i s t e r 0 and r e g i s t e r 1
5 CALL 2 2 1 ; C a l l " p r i n t " f u n c t i o n t o p r i n t r e s u l t
6 RETURN 0 1 ; E x i t Lua v i r t u a l machine

Figure 5. LuaGadget for testing the opcode “ADD.” The corresponding source
code is “print(12345+56789).”

Running Example Figure 5 shows an example
of LuaGadget for testing the opcode “ADD,” and
“print(12345+56789)” is the original source code. Among
the five opcode types, two “LOADK” instructions load
addends into two registers; “ADD” is the addition operator;
“GETTABUP” and “CALL” invoke a Lua built-in function
to print the result to the standard output; “RETURN” means
exiting Lua virtual machine. Let’s first assume “ADD” is the
only unknown opcode in Figure 5 (we label it as red). In that
case, we mutate the “ADD” opcode from 0x00 to 0x7F and
then execute each LuaGadget mutation using the customized
interpreter (5 in Figure 4). We can observe the expected
result only when the mutation just hits the exact “ADD”
opcode’s value. In particular, we will address the following
three challenges.

1) We first design LuaGadgets in Lua script form, so that we
can compile them to different bytecode files that adapt to
different customized interpreters. §IV-A introduces how
to cover each opcode’s semantics using as few as possible
source code operations.

2) In Figure 5, “GETTABUP”, “CALL”, and “RETURN”
forms an output/end module, which is necessary to a
LuaGadget. Apparently, we will find their opcode values
first. Besides, “ADD” depends on “LOADK” to complete
the add operation. §IV-B presents our strategy to prioritize
the order of LuaGadget testing.

3) In practice, the customized interpreter exists in the form
of either a dynamic-link library (stand-alone “.so” file)
or a static library (embedded into binary file of pro-
gram). §IV-C discusses how we patch programs to run
LuaGadgets using the customized interpreter.

A. LuaGadget Template Construction
We construct LuaGadgets from Lua scripts, which we

call “LuaGadget Templates.” We only need to develop these
templates once offline and reuse them in the reverse engineer-
ing of Lua bytecode obfuscation. Every time we recompile
LuaGadget Templates into a new customized bytecode form
and start LuaGadget testing.

Methodology Like other high-level languages, the Lua
compiler (luac) traverses a Lua script and generates an

6

OpCodes

TAILCALL

ADD

SUB

FORPREP

. . .

. . .

FORLOOP

NEWTABLE

newtab = {}

print(newtab)

a=0

for i=1,100,1 do

 a = a+i

end

print(a)

local a=12345

local b=56789

print(a+b)

...

ADD 3 0 1

CALL 2 2 1

RETURN 0 1

...

LOADK 3 -2

FORPREP 1 1

ADD 0 0 4

FORLOOP 1 -2

GETTABUP 1 0 -4

...

NEWTABLE 0 0 0

...

CALL 0 2 1

RETURN 0 1

(a) Target Opcodes (b) LuaGadget Templates (c) LuaGadgets

1

Figure 6. Examples of target opcodes and their corresponding LuaGadget
Templates and LuaGadgets. Each LuaGadget is designed to test one or two
specific opcodes via completing an observable calculation.

abstract syntax tree (AST), and then it translates the AST
into Lua virtual machine instructions. We analyze luac’s
source code to collect the Lua compiler’s bytecode generation
rules, especially how to generate opcodes according to the
different operators in the Lua script. Based on the mapping
between opcodes and operators in the Lua script, we design
LuaGadget Templates for testing each opcode. To reduce the
workload of LuaGadget testing, we hope the opcode types in
each LuaGadget are as few as possible. Therefore, for each
LuaGadget Template, we attempt to use as few operations
as possible to complete an observable functionality involving
the target opcode and then print the result. Figure 6 shows
three examples of target opcodes and their corresponding
LuaGadget Templates. Please note that both “FORPREP” and
“FORLOOP” are always used together to form a “for” loop.
For such opcodes used for control flow, we also include
a simple arithmetic calculation as the loop body or branch
condition (1 in Figure 6) so that the result is observable.

Output/End Module The output/end module, which is
the premise of testing other opcodes’ semantics, consists of
three opcodes: “GETTABUP”, “CALL”, and “RETURN.” The
challenge here is we do not want their LuaGadgets to involve
other opcodes in addition to themselves. We come up with
two specific LuaGadget Templates to find these three opcode
values.

First, we can get a LuaGadget containing a single “RE-
TURN” instruction by compiling an empty script file. As Lua
has to exit the virtual machine after executing a bytecode file,
the compiled opcode sequence is ended with a “RETURN”
instruction even if the script does not have any statement. The
result of running this single “RETURN” LuaGadget is also
observable during testing: as long as the opcode is assigned
with an incorrect value, the customized interpreter will issue
an exception warning. If the execution does not lead to the
exception warning, that means the opcode mutation hits the
right value of “RETURN.”

1 GETTABUP 0 0 −1; Load " p r i n t " a d d r e s s i n t o r e g i s t e r 0
2 GETTABUP 1 0 −1; Load " p r i n t " a d d r e s s i n t o r e g i s t e r 1
3 CALL 0 2 1 ; P r i n t t h e a d d r e s s o f " p r i n t "
4 RETURN 0 1 ; E x i t Lua v i r t u a l machine

Figure 7. LuaGadget for testing GETTABUP and CALL

Table II
THE ORDER OF LUAGADGET TESTING (L0→...→L4)

Layer LuaGadgets

L0 RETURN, (GETTABUP, CALL)

L1
RETURN0, RETURN1, SETTABUP, LOADK, LOADKX,
LOADI, LOADF, LOADFALSE, LOADTRUE, LOADNIL

L4

MOVE, NEWTABLE, ADD, SUB, MUL, MOD, POW, DIV,
IDIV, BAND, BOR, BXOR, BSHL, BSHR, BUNM, BNOT,
NOT, ADDI, ADDK, SUBK, MULK, MODK, POWK, DIVK,
IDIVK, BANDK, BORK, BXORK, SHRI, SHLI, CLOSURE,
JMP, LFALSESKIP CONCAT, LEN

L3

(SETLIST, GETTABLE), GETUPVAL, SETUPVAL, GETI,
SETI, GETFIELD, SETFIELD, TESTSET, TAILCALL, CLOSE
(FORPREP, FORLOOP), EQ, LE, LT, TEST, MMBIN, TBC
MMBINI, MMBINK, EQK, EQI, LTI, LEI, GTI, GEI, SELF,
VARARG, VARARGPREP, EXTRAARG

L4 SETTABLE, TFORCALL, (TFORPREP, TFORLOOP)

Second, we generate one LuaGadget Template to cover
both “GETTABUP” and “CALL.” This script only has one
statement: “print(print)”—calling the print function to print
out its own address. Figure 7 shows the instruction sequence.
If we test “RETURN” LuaGadget at first, we only need to
mutate the opcode values of “GETTABUP” and “CALL” at
the same time. After at most 127*126 times of trials, we can
find the correct values for these two opcodes.

LuaGadget Template Compilation To generate Lua-
Gadgets that can be executed by the customized interpreter,
we modify the backend of luac to compile LuaGadget
Templates into the bytecode that has the same file format as
the obfuscated bytecode (3 in Figure 4). All opcode values
are initially set as the standard Lua opcode values. In §V-D,
we will further modify luac to fulfill our correctness testing.

B. Test Case Prioritization

As shown in Figure 6(c), although each LuaGadget is
designed to test one or two specific opcodes, its instruction
sequence still contains several other opcodes to calculate the
observable result and print it out. The maximum number of
opcode types in our generated LuaGadgets is 11. Apparently,
the cost of LuaGadget testing increases exponentially with the
number of unknown opcodes. With all LuaGadgets in hand,
we have to schedule their testing order to minimize the total
number of mutations and testing.

According to the semantics of Lua opcodes, we classify
them into the following four categories, which will help us
illustrate our test case prioritization.

1) Assignment: opcodes in this category cover loading con-
stants, table operations, and assigning values to registers.

2) Basic Calculation: basic calculation opcodes include
arithmetics and bit-wise operators.

3) Control Flow: this kind of opcodes is used to implement
various control flows, such as an unconditional jump,
conditional jump, call, and loop.

4) Language-Specific: opcodes in this category are specific
to Lua language, such as assigning vararg function argu-
ments to registers (“VARARG”) and concatenating two
or more strings (“CONCAT”).

7

Wrapper

Function

libc.so

Customized Lua

Interpreter (.so)

Load

LuaGadgets

Execute

Malicious Code

Embedded

Lua Interpreter

C&C Server

Request

Download

Load &

Execute Embedded

Lua Interpreter

Malicious Code
Wrapper

Function

XRemove

LuaGadgets

Load &

Load &

Execute

ELF

Header

...

libm.so

...

ELF

Header

Malicious

Bytecode
libc.so

libm.so

...

ELF

Header

libc.so

...

libm.so

(a) (b) (c)

Memory Memory Memory

010100
100111
111111

BIN
010100
100111
111111

BIN
010100
100111
111111

BIN

010100
100111
111111

BIN
010100
100111
111111

BIN
010100
100111
111111

BIN
BINBIN

BIN

Figure 8. Running LuaGadgets with the customized interpreter. (a) The interpreter is a dynamic-link library, so we write a wrapper function to load it into
memory and then execute LuaGadgets. (b) GodLua malware downloads malicious bytecode files from a C&C server and executes them. (c) We patch GodLua
with the wrapper function to execute LuaGadgets.

Prioritization Strategy Our strategy to prioritize Lua-
Gadgets is on the basis of the degree of opcode depen-
dency. Table II shows the order of LuaGadget testing we
generated, and we divide LuaGadgets into five layers. Two
opcodes in parentheses mean they are tested at the same time.
The different colors represent Assignment, Basic Calculation,
Control Flow, and Language-Specific, respectively. The three
opcodes forming the output/end module certainly have the top
priority (L0 in Table II), because the remaining LuaGadgets
all depend on them. After that, we traverse the remaining
LuaGadgets to select the ones that can be tested on the basis
of currently known opcodes. These LuaGadgets form a new
layer, and their selection criterion is: the LuaGadget’s opcode
sequence only has one unknown opcode. For example, L1
in Table II represents the LuaGadgets having one unknown
opcode based on L0; L2 represents the LuaGadgets only
having one additional unknown opcode based on L0 + L1. The
opcodes in L4 have complicated semantics and therefore reveal
the maximum degree of opcode dependency, so we test them
only when the other four layers of opcode values have been
recovered to boost performance. Please note that Table II also
shows four exceptions: the opcode pair in parentheses means
that we have to mutate and test their values at the same time,
because they are designed to be used together.

Opcode Dependency Pattern We observed some opcode
dependency patterns from Table II. Most of opcodes in L1
are related to the variable assignment, such as loading a
constant or boolean value into a register. Therefore, we can
directly test them by printing out the variable’s value. All basic
calculation opcodes belong to layer L2. Due to the design of
the register-based virtual machine, all arithmetics and bit-wise
instructions rely on assignment opcodes to load values into
registers first for calculations. Layer L3 has many opcodes
used for conditional branches, because we take a simple
arithmetic calculation as the loop body or branch condition
to get an observable result. Language-specific opcodes have a
similar dependency pattern: they also depend on assignment
and calculation opcodes to deliver an observable result.

LuaGadget Mutation According to the order listed in
Table II, we pass each LuaGadget to a mutation engine (4

1 # i n c l u d e " l u a / l u a . h "
2 # i n c l u d e " l u a / l u a l i b . h "
3 # i n c l u d e " l u a / l a u x l i b . h "
4
5 i n t main (i n t a r g c , c h a r * a rg v [])
6 {
7 / / C r e a t e a new Lua v i r t u a l machine s t a t e
8 l u a _ S t a t e *L = l u a L _ n e w s t a t e () ;
9 / / Load Lua s t a n d a r d l i b r a r y f u n c t i o n s

10 l u a o p e n _ b a s e (L) ;
11 / / a r gv [1] i s t h e name of a LuaGadget f i l e
12 l u a L _ d o f i l e (L , a rg v [1]) ;
13 r e t u r n 0 ;
14 }

Figure 9. The wrapper function’s source code for calling the customized Lua
Interpreter.

in Figure 4). This engine first excludes the recovered opcodes
so far to limit the mutation space for the opcode to be tested.
Then it mutates the unknown opcode value to generate a set
of bytecode, which is later fed into the customized interpreter
to find the correct opcode value.

Multiple Mappings Table II shows 83 opcodes in total; that
means there are 45 reserved opcode values. Malware authors
can utilize these reserved opcode values by associating them
with existing opcode handlers, which results in multiple map-
pings between opcodes and handler functions. For example,
the “MOVE” opcode may have three different values (e.g.,
0x02, 0x26, 0x3F), and the mixed usage of three different
“MOVE” opcode values in a bytecode file complicates reverse
engineering. Therefore, when a LuaGadget execution reveals
its expected result the first time, instead of terminating the
testing, we will continue to mutate possible opcode values to
find such a multiple mapping case.

C. Customized Interpreter Re-Stitching

Given that LuaGadget mutations are available, another prob-
lem rears its head. In most cases, the customized interpreter
does not exist as a stand-alone executable file, but rather a
dynamic-link library or static library. We take different mea-
sures to force the interpreter to execute LuaGadget mutations.

Dynamic-Link Library In our collected real-world Lua
applications, benign programs (e.g., firmware and games)
distribute the interpreter as a dynamic-link library for the ease
of updating the customized interpreter. But some malware

8

also adopt the Lua interpreter as a dynamic-link library (e.g.,
LuaBot, Shishiga, Chalubo, and Remsec) for multi-platform
adaptation. As shown in Figure 8(a), we write a wrapper
function to call the interfaces of this dynamic-link library to
execute a specified bytecode file. In particular, the wrapper
function’s source code is listed in Figure 9. The interfaces
of Lua is declared in “lua.h”, “lualib.h”, and “lauxlib.h”. We
first initialize a new Lua virtual machine state and load Lua
standard library functions (line 8 & line 10) to provide a
runtime environment. Then we call “luaL_dofile” to load and
execute the specified bytecode file (line 12).

Static Library Lua malware such as GodLua prefers
attaching the customized interpreter as a static library. In
this way, the interpreter will be embedded into the malware
code to form a single file. The advantage of doing so is the
interpreter and malware code can be spread together without
fear of losing dynamic-link libraries. We use GodLua as an
example to demonstrate how we re-stitch the Lua interpreter to
apply LuaHunt. As shown in Figure 8(b), when GodLua starts
running, it downloads malicious, obfuscated bytecode files
from the C&C server, and then the embedded Lua interpreter
will execute these downloaded bytecode files.

Figure 8(c) illustrates our method to test this kind of
Lua interpreter. We patch the malware binary code with the
wrapper function (Figure 9) to load and run LuaGadgets.
The challenge here is the wrapper function patched into the
malware binary should be address-independent like shellcode.
However, the three Lua library functions called in the wrapper
function (line 8, 10, and 12 in Figure 9) all depend on the fixed
function addresses defined in the static library. Our solution
is to use a binary diffing tool [54] to locate these three Lua
library functions in the embedded Lua interpreter, and then we
rewrite the wrapper function’s binary code using their correct
addresses. In this way, we enable the embedded, customized
interpreter to execute LuaGadgets for testing.

V. EVALUATION

We evaluate LuaHunt from four dimensions. First, we per-
form interpreter semantics testing with test cases to measure
the performance of each step. We compare LuaHunt with the
state-of-the-art code de-virtualization tool, VMHunt [34], to
show that LuaHunt offers an complete and efficient deob-
fuscation solution. The second experiment evaluates a more
challenging case—nested virtualization, to demonstrate the
novelty of our design. Third, as few related approaches eval-
uate the correctness of their deobfuscation results, we design
correctness testing to bridge this gap. At last, we present a case
study to show that our result can assist in malware analysis.

A. Dataset and Peer Tool

Our test cases include malware samples and customized
interpreters collected from an IoT device and games. They
come from three different architectures: x86, MIPS (e.g.,
XiaoMi Router), and ARM (e.g., games). Our collected test
cases represent the mainstream Lua applications in the real
world.

Table III
DIFFERENCES BETWEEN CUSTOMIZED INTERPRETERS

Program OF HO MM VMS Linking Arch. Ver.

GodLua1∼9 3 % % DDL Static X 5.3
GodLua10 3 % ! DDL Static X 5.3

GodLua11∼14 3 % ! ITC Static X 5.4
Shishiga 5 ! % ITC Dynamic X/A/M 5.3
IoTroop 4 % % DDL Static M/A 5.2
Flamer 2 % % DDL Static X 5.1

Chalubo 2 ! % DDL Dynamic X/A/M 5.3
Sauron 1 ! % DDL Static X 5.2
LuaBot 5 % % DDL Dynamic X/A/M 5.3
Remsec 0 % % DDL Dynamic X 5.2

XiaoMi 9 % ! DDL Dynamic M 5.1Router Lua

Space Hunter 3 ! % DDL Dynamic A 5.3
Time Summon 2 % % DDL Dynamic A 5.3
KOF Destiny 2 % ! DDL Dynamic A 5.2

Raziel 4 % % DDL Dynamic A 5.3

customized Interpreters’ Diversity Table III shows the
differences between interpreters in evaluation. Obfuscated
Fields (OF) means the number of obfuscated fields in a
bytecode file. Handler Obfuscation (HO) indicates whether ad-
ditional obfuscation is applied to the opcode handlers. Multiple
Mapping (MM) represents whether the opcode randomization
uses a many-to-one mapping. VM Structure (VMS) shows the
interpreter structure in use. DDL and ITC stand for “Decode-
Dispatch Loop” and “Indirect-Threaded Code.” Linking means
whether the interpreter is embedded into the binary file via
static linking or exists as a dynamic-link library. Architecture
(Arch.) lists the supported architectures for each sample, and
the “X/A/M” are short for x86, ARM, and MIPS. Version (Ver.)
is the Lua version of each customized interpreter. To the best of
our knowledge, we have not found an obfuscation tool that can
achieve the diversity degree shown in Table III. We conjecture
that these various obfuscation options are not from the same
obfuscation tool; instead, they are implemented by different
developers in an ad-hoc way. The differences between them
are significant, and some of them even apply other obfuscation
methods to protect opcode handlers.

Malware Samples GodLua is a representative IoT malware
family applying bytecode obfuscation [7]. We used VirusTo-
tal’s Intelligence service [55] to collect 145 GodLua samples
that have different hash values. We further classify these
samples into 14 families, whose embedded Lua interpreters
are different from each other. “GodLua1”∼“GodLua9” have
a similar diversity degree. We notice GodLua samples in
“GodLua10” have applied the multiple mapping in their inter-
preters, and “GodLua11”∼“GodLua14” have updated to Lua
5.4, which means their interpreter structures have changed
from decode-dispatch loop to indirect-threaded code.

In addition to GodLua, we also obtained seven other
Lua malware families from our industrial partner; they are
Shishiga, IoTroop, Flamer, Chalubo, Sauron, LuaBot, and
Remsec. The Shishiga family uses four different protocols
(SSH, Telnet, HTTP, and BitTorrent) to implement a mod-
ular architecture. The old version of Shishiga uses the un-
obfuscated version of Lua script to implement its modules, but

9

Table IV
RUNNING TIME OF LUAHUNT

Program (# of samples) File Format Extraction Semantics Testing Total VMHunt

Layout Fields Total L0 L1 L2 L3 L4 Total (Col.4 + Col.10) Performance # of Opcodes

GodLua1∼91 (97) 30.1 1.3 31.4 12.6 4.3 5.9 11.7 4.4 38.9 70.3 512.7 15
GodLua102 (15) 30.8 1.5 32.3 12.7 5.1 6.3 13.5 4.1 41.7 74.0 N/A N/A
GodLua11∼143 (33) 30.8 1.4 32.2 12.7 5.1 6.3 12.8 3.9 40.8 73.0 N/A N/A
Shishiga (63) 28.6 1.4 30.0 16.4 5.6 7.8 13.5 3.4 46.7 76.7 653.1 16
IoTroop (51) 33.2 1.5 34.7 15.2 3.9 6.6 11.7 6.0 43.4 78.1 N/A N/A
Flamer (19) 32.1 1.4 33.5 13.5 4.5 6.3 14.2 3.6 42.1 75.6 N/A N/A
Chalubo (56) 28.6 1.5 29.1 13.6 5.9 4.8 10.7 3.4 38.4 67.5 N/A N/A
Sauron (23) 25.3 1.5 26.8 15.0 4.5 4.8 14.0 4.5 42.8 69.6 N/A N/A
LuaBot (59) 25.8 1.5 27.3 11.4 6.2 5.9 10.4 4.1 38.0 65.3 655.9 10
RemSec (40) 27.0 1.6 28.6 11.4 3.7 4.6 11.6 3.8 35.1 63.7 N/A N/A

XiaoMi 32.5 1.4 33.9 14.6 4.2 6.8 14.7 3.3 43.6 77.5 625.14 264
Router Lua

Space Hunter 28.3 1.0 29.3 16.3 6.1 7.5 12.9 5.2 48.0 77.3 N/A N/A
KOF Destiny 34.3 1.2 35.5 16.2 5.9 6.7 11.5 6.9 47.2 82.7 N/A N/A

Raziel 30.2 1.7 31.9 15.9 6.7 7.9 11.3 5.4 47.2 79.1 N/A N/A
Time Summon 27.7 1.4 29.1 16.5 6.0 7.7 12.5 6.3 49.0 78.1 N/A N/A

1We manage to obtain obfuscated Lua bytecode files for this variant.
2This interpreter has multiple mappings: multiple opcode values are dispatched to the same opcode handler.
3The customized interpreters in these four categories (GodLua11∼GodLua14) adopt the structure of Indirect-Threaded Code.
4As VMHunt’s Pintool can only work on the x86 platform, we generate an x86-version of the customized interpreter.

we found that a new version of Shishiga had compiled Lua
source code into the obfuscated bytecode format. Shishiga,
IoTroop, Chalubo, and LuaBot are all IoT botnets aiming for
infecting IoT devices. Flamer, Sauron, and Remsec are cyber-
espionage tools used in the APT attack chain [11], [13], [14].

XiaoMi Router The second kind of our test cases comes
from the customized Lua interpreter embedded in the XiaoMi
router firmware. XiaoMi dominates the market share of IoT
devices in China. XiaoMi develops the router firmware on top
of OpenWrt, a Linux operating system targeting embedded
devices. OpenWrt’s configuration interface, called LuCI [56],
uses Lua scripting language to implement the dynamic con-
figuration. In the recent versions of XiaoMi router, all Lua
scripts are first compiled into obfuscated bytecode files and
then put into the firmware. After communicating with their
developers, we know that they did this to prevent attackers
from analyzing Lua scripts. XiaoMi developers admitted that,
many of the previous vulnerabilities of XiaoMi router were
discovered in the wild after analyzing the Lua scripts used by
LuCI.

Lua Interpreters in Games An increasing number of
games are using Lua as their dynamic script support [57],
because Lua is very lightweight and can be easily embedded in
games. Besides, the open-source framework called xLua [58]
allows Unity’s real-time 3D development platform [59] to
support Lua programming. xLua also supports the hotfix
update, so that a game can obtain the latest code updates
from the server in real time without restarting. We find four
games have their customized Lua interpreters to run obfuscated
bytecode, including Space Hunter [60], KOF Destiny [61],
Raziel [62], and Time Summon [63].

VMHunt We select VMHunt [34] to compare because it
is the only available and functional code de-virtualization tool
that is also generic to support different interpreter structures.
VMHunt represents the state-of-the-art in the automated deob-
fuscation of malicious binary code [24]. VMHunt first records

a tediously long execution trace using Intel Pin [64], and
then it simplifies the virtualized code section by performing
semantics-based slicing and multiple granularity symbolic
execution. VMHunt’s output is instruction segments that can
affect program behaviors.

B. Performance Measurement

We perform all of our experiments on a consumer-grade
laptop with one Intel i7-7700HQ CPU (4-Core 2.8GHz),
16GB memory, and 1TB SSD hard drive, running Ubuntu
20.04 LTS. We first construct LuaGadget Templates offline
and reuse them in our evaluation. We want to iterate that
LuaGadget Template construction is a one-time effort, and
we can complete the construction within one hour. Table IV
demonstrates the running time of LuaHunt. Column 2–11 of
Table IV shows the running time of LuaHunt’s online steps
when performing interpreter semantics testing with our test
cases. For each malware family, the number in parentheses
means the number of malware samples. The “Layout” and
“Fields” columns represent the running time of layout ex-
traction and fields matching. L0∼L4 indicate the steps of
LuaGadget testing defined in Table II. “VMHunt” columns
show the average running time (seconds) and the number
of recovered opcodes by one time of VMHunt’s trace-based
analysis. Our file format extraction can be finished in 40
seconds. After that, the semantics testing takes less than 50
seconds. Among the five layers of LuaGadget testing, we find
that testing L0 and L3 takes the longest time. The reason is
that they have pairs of opcodes that need to be mutated and
tested at the same time: L0 has a pair of such opcodes, and L3
has two pairs. However, the running time of testing L3 is not
much longer than that of L0. This is because when testing L3,
we have removed known opcode values to limit the mutation
scope. After semantics testing, given an obfuscated bytecode
file, we only need to take an additional one second to rewrite

10

 � � � 	 � � 	

 � �
 	 � �

 � �
 � � �

� � � � � � � � � 	

� � � � � � � � � � � � � � �
 � � � � � �

� � � � 	 � � � � � � � �
 � 	 � � � � �
 � � � � � �
 � � � 	 � � � �
 � �
� �

� � �

� � � �

� � � � �

 VMP: VMProtect CV: Code Virtualizer
ITC: Indirect-Threaded Code

	�
�

��
��

��
�

��
�

��
��

��
��

��
��

	�
��

���
��

��
��

� � 	 � � 	 � �
� � � � 	 � �

DDL: Decode-Dispatch Loop

Figure 10. Running time (seconds) of LuaHunt and VMHunt when handling
nested virtualization.

it back to a standard Lua bytecode file. Overall, the whole
process of deobfuscation can be completed within 90 seconds.

A common observation from Table IV is that LuaHunt’s
running time does not fluctuate much across different in-
terpreters. Because for every interpreter, we go through a
similar LuaGadget testing process to recover all randomized
opcode values. It is the number of opcodes to be tested
decides the upper limit of LuaHunt’s overhead. Note that in
Table IV, we only obtain obfuscated Lua bytecode files for
four cases: GodLua5, Shishiga, LuaBot, and XiaoMi Router;
but LuaHunt can still work in the presence of only the
customized interpreter—we generate LuaGadgets to force the
execution of the interpreter. LuaHunt outperforms VMHunt
with regard to full opcode type coverage and low overhead.
As shown in the last two columns of Table IV, VMHunt only
succeeded in the four cases whose obfuscated Lua bytecode
files are available. Due to the high overhead caused by
VMHunt’s multiple granularity symbolic execution, VMHunt
suffers at least 7X performance slowdown, and its overhead
upper limit is decided by the size of the execution trace.
Besides, VMHunt’s performance data only reflects one time of
execution trace analysis, which means VMHunt only recovers
a limited number of opcodes that appeared in a single trace,
such as 15 for GodLua5, 16 for Shishiga, and 10 for LuaBot.

C. Nested Virtualization

The VMHunt paper also evaluated a more challenging
obfuscation case that applied another layer of code virtualiza-
tion to a virtual instruction’s native handler function, which
is the so-called “nested virtualization.” VMHunt is able to
deal with this complicated case layer-by-layer at the cost
of much larger runtime overhead. In contrast, as LuaHunt
takes the opcode handler functions as a blackbox, applying
further obfuscation on handler functions has little impact
on LuaHunt’s performance. We select the benchmark SHA-1
from Table V as input. We first generate two obfuscated Lua
bytecode versions with different interpreter structures: decode-
dispatch loop (DDL) and indirect-threaded code (ITC). Then,
for each interpreter structure, we apply Code Virtualizer [21]

and VMProtect [22] to further obfuscate opcode handler
functions, respectively.

As shown in Figure 10, we get six bytecode files with
different obfuscation/virtualization combinations. LuaHunt’s
running time remains stable in all six cases, and we attribute
the small performance degradation in the last four cases to the
two layers of virtual machine execution. However, VMHunt’s
cost when analyzing the four nested virtualization samples
stands in stark contrast to that of LuaHunt—about 67X∼73X
slowdown. The root cause is after applying code virtualization,
the trace size has five orders of magnitude explosion.

We stress that our comparison to VMHunt is not a criticism
of its technique, but rather offers a new idea of reverse-
engineering script interpreters efficiently. LuaHunt relies on
the construction of executable LuaGadgets to drive blackbox
testing iterations, while VMHunt requires less knowledge on
the interpreter; it only performs trace-based data flow analysis.
We will further discuss this tradeoff in §VII. We believe the
benefits of using LuaHunt far outweigh the drawbacks.

D. Correctness Testing

All of our test cases are either malware or real-world
applications; for most of them, we cannot even get their
bytecode files. For example, all C&C hosts of our collected
GodLua samples have been taken down, so we are unable to
download their malicious bytecode files. The lack of ground
truth (e.g., the original bytecode file before obfuscation) casts
doubt on how to demonstrate our deobfuscation result is
correct. In this paper, we define the “correctness” as follows:
whether we can recover obfuscated bytecode file format and
find the right values for all obfuscated opcodes.

To bridge this gap, we further modify luac to design
the correctness testing. First, after opcode deobfuscation, we
feed the right opcode values back to luac. In this way,
given any Lua script, we can independently compile it into
the bytecode that can be smoothly executed by the cus-
tomized interpreter. Second, we select the Computer Language
Benchmarks Game for Lua [35] to test the correctness of
LuaHunt. These benchmark programs are initially developed
to evaluate the efficiency of Lua language. However, we find
that the union of their bytecode covers all kinds of Lua
opcodes. The description of each benchmark and the number
of opcodes covered are shown in Table V. Therefore, for each
test case, we compile benchmark programs into customized
bytecode files and run them using the customized interpreter.
As benchmark programs have provided a test suite, if we got
it wrong on any input field format or opcode semantics, the
test suite executions cannot be all successful. We reiterate this
correctness testing on all customized interpreters in Table IV
and none failed.

We conduct a separate experiment to demonstrate how
a failed opcode value recovery could affect the correctness
evaluation result. We set eight opcode values incorrectly on
purpose and test how many benchmarks will fail accordingly at
runtime. Table VI shows the validation result. This table shows
that if an opcode was wrong, which benchmark’s execution
does not pass the correctness testing. The abbreviations of the

11

Table V
THE COMPUTER LANGUAGE BENCHMARKS GAME FOR LUA

Benchmarks Description #Opcodes

Binary Trees This program creates perfect binary trees using minimum number of allocations. 18

Fannkuch Redux The fannkuch benchmark comes from the paper “Performing Lisp Analysis of the FANNKUCH Benchmark” [65]. 20

Fasta This program takes two actions: 1) generate DNA sequences by copying from a given sequence; 272) generate DNA sequences by weighted random selection from 2 alphabets.

K-nucleotide Mapping the DNA letters to the bytes 0, 1, 2, 3, and using a hash function to concatenate those two-byte codes. 25

Mandelbrot Calculating Mandelbrot Set [66]. 17

N Body Modelling the orbits of Jovian planets with the same simple symplectic-integrator. 21

Reverse Complement Reverse Complement converts a DNA sequence into its reverse, complement, or reverse-complement counterpart. 20

Spectral Norm Solving the Hundred-Dollar, Hundred-Digit Challenge Problems [67]. 18

SHA-1 A 160-bit Secure Hash Algorithm. 27

Table VI
CORRECTNESS VALIDATION RESULT

Opcode BT FR FT KN MB NB RC SN SHA-1

GETTABUP % % % % % % % % %

LOADBOOL ! % ! % ! ! ! ! !

DIV ! ! % % % % ! % %

POW % ! ! ! ! ! ! ! !

JMP % % % % % % % % %

FORLOOP % % % % % % % % %

CONCAT ! ! % ! ! ! % ! %

LEN ! ! % ! ! % ! ! %

first row are “Binary Trees,” “Fannkuch Redux,” “Fasta,” “K-
nucleotide,” “Mandelbrot,” “N Body,” “Reverse Complement,”
and “Spectral Norm.” As all benchmarks rely on GETTABUP,
JMP, and FORLOOP, their wrong opcode values make all
benchmark executions crash. On the other end of the spectrum,
only the “Binary Trees” benchmark uses the exponentiation
operator POW, and hence only one benchmark fails when
POW’s value is incorrect. The union of our selected bench-
marks ensure that we do not miss any failed bytecode reverse
engineering steps.

For XiaoMi router’s firmware, as we can extract the standard
Lua scripts from its old version (version 2.19.40), we also
compare them with our deobfuscation results. In particular,
we first deobfuscate the obfuscated Lua bytecode in the
latest version of XiaoMi router firmware (version 2.22.19).
Then, we use LuaDec [18] to decompile LuaHunt’s result
back to Lua scripts. Since all debugging symbols have been
removed from the obfuscated bytecode, LuaDec’s output is
unable to show intelligible variable names. Nevertheless, our
manual comparison confirms that the control flow relations are
equivalent. Besides, we put deobfuscated bytecode files in the
old firmware version to replace the original Lua scripts, and
XiaoMi router can still work properly, which also indicates
that our deobfuscation result is correct.

E. Lua Malware Analysis Case Study: GodLua

As the code size of “Upgrade.png” in Figure 11 is small, we
list the decompilation result of its bytecode file based on Lua-
Hunt’s output in Figure 12. LuaHunt can work in the presence
of only the customized interpreter. For different obfuscated
bytecode files sharing the same customized interpreter, we

Malicious Code

Embedded

Lua Interpreter

C&C Server

Request

Download

Load &

Execute

GodLua

. . .
Run.png

Packet.png

Upgrade.png

Watch.png

BIN

. . .

BIN

BIN

BIN

BINBIN
BIN

Figure 11. Reverse-engineering GodLua bytecode files.

1 l o c a l l_0_0 = (_Env . r e q u i r e) ("common . u t i l ")
2 l o c a l l_0_1 = {}
3 l_0_1 . h a n d l e = f u n c t i o n (l_1_0)
4 −− f u n c t i o n num : 0_0 , u p v a l u e s : _Env , l_0_0
5 i f n o t l_1_0 t h e n
6 r e t u r n (_Env . Env) . V e r s i o n
7 end
8 i f (_Env . Env) . System == " Linux " and (_Env . Env) . V e r s i o n <

l_1_0 t h e n
9 (l_0_0 . sys tem) (" rm − r f " . . (_Env . Env) . F i l e)

10 ;
11 (l_0_0 . download) (" h t t p s : / / d . c l o u d a p p c o n f i g . com / " . . (

_Env . Env) . Cross . . " / S a t a n " , (_Env . Env) . F i l e)
12 ;
13 (l_0_0 . sys tem) (" chmod 777 " . . (_Env . Env) . F i l e)
14 ;
15 (l_0_0 . sys tem) (" c a t / dev / shm / . p | x a r g s k i l l ; " . . (_Env

. Env) . F i l e)
16 end
17 r e t u r n (_Env . Env) . V e r s i o n
18 end
19
20%r e t u r n l_0_1
21%

Figure 12. Decompilation result of one GodLua bytecode file (“Upgrade.png”
in Figure 11) based on LuaHunt’s output.

only need to perform LuaHunt’s interpreter semantics testing
once; LuaHunt’s result is reused to translate an obfuscated
bytecode file into a standard Lua bytecode file within one
second.

Although all C&C hosts of our collected GodLua samples
have been taken down, we manage to extract four malicious

12

bytecode files from VirusTotal’s PCAP files.1 All of these four
bytecode files disguise their filename extensions as “.png”.
We deobfuscate them using 14 different opcode sequences
obtained from Table IV, and eventually, we find that they all
use the same customized interpreter as “GodLua5.” Based on
LuaHunt’s output, we are able to demystify the correlation
between these four malicious bytecode files.

As shown in Figure 11, GodLua adopts modular program-
ming. “Run.png” is the core of GodLua, scheduling other mod-
ules to communicate with the C&C server and perform HTTP
flood attacks. “Run.png” can process eight C&C commands
and dispatch them to other modules. These eight C&C com-
mands include HANDSHAKE (0x01), HEARTBEAT (0x02),
LUA (0x03), SHELL (0x04), UPGRADE (0x05), QUIT
(0x06), SHELL2 (0x07), and PROXY (0x08).

“Packet.png” is the module responsible for communicating
with the C&C server using socket; it is called by “Run.png”
when communicating with the C&C server, such as sending
HEARTBEAT messages and receiving C&C commands. “Up-
grade.png” is the module for updating GodLua’s bytecode;
it downloads the latest bytecode from the C&C server, adds
execution permissions to the bytecode, kills the corresponding
old process, and then executes the new bytecode. “Watch.png”
keeps GodLua alive in the target operating system. As the
GodLua process could be killed for some reason, “Watch.png”
will create a scheduled task for the system and periodically
detect whether GodLua is still alive. These modules work
together to prolong GodLua’s lifetime and execute attack
commands issued by the C&C server.

VI. RELATED WORK

Scripting Language Deobfuscation Existing deobfusca-
tion methods in this direction are orthogonal to LuaHunt; they
focus on reverse-engineering obfuscated source code [69]–
[72], rather than obfuscated bytecode. JSDES [70] conducts
dynamic analysis to log the possible functions that are used
to run the obfuscated JavaScript code. Li et al.’s work [71]
performs an emulation-based recovery at the level of sub-
trees in the abstract syntax tree of PowerShell scripts. Lu
et al. [69] collect JavaScript bytecode execution traces and
apply backward slicing for system calls to obtain semantically
relevant instructions, which are further translated to JavaScript
source code. Script-level obfuscation (e.g., code encryption
and variable renaming) can be defeated by analyzing bytecode
execution traces, because opcodes do not change. In contrast,
the problem we solved is more challenging, because the
bytecode is not analyzable after opcode obfuscation, and the
original program’s bytecode is never restored anywhere.

Lua Code Security Analysis Compared with other in-
creasingly popular programming languages, security analysis
research for Lua code is lacking. Andrei Costin [19] developed
the first static analysis tool to find vulnerable Lua script code.
BMCLua [20] performs formal verification to detect Lua script
bugs via SMT-based bounded model checking [73]. Park et
al. [74] demonstrate that Lua interpreters are vulnerable to

1PCAP (Packet Capture) files contain malware network packet data when
executed in a sandbox environment [68].

bytecode corruption attacks, which can lead to arbitrary code
execution. Exploiting vulnerabilities within malicious code can
potentially help cyber-defenders terminate malware execution
or take down botnets [75]. As LuaDec [18] can decompile
LuaHunt’s output back to malware source code for further
security analysis, LuaHunt is an appealing complement to
existing Lua script bug-finding tools [19], [20].

VII. DISCUSSION

The cyber arms race between malware analysis and its
countermeasures has transformed into an intensive tug-of-war.
A natural question is whether script-based malware authors
can easily impede LuaHunt once it is publicly known. We do
not assume that evading our approach is strictly impossible,
but it can prohibitively increase adversaries’ costs. This section
discusses LuaHunt’s applicability and adversary analysis.

Applicability Other scripting languages’ bytecode obfus-
cation [76]–[80] closely resembles Lua bytecode obfuscation.
For example, the client of Dropbox, a very popular file hosting
service, consists of a modified Python interpreter running
obfuscated Python bytecode [76], and its opcodes are also
randomized. Security analysts found that new Python malware
whose bytecode files are obfuscated in the same way as
GodLua [78], [80]. JavaScript Bytecode Compiler [79] and
Quarkslab [77] obfuscate JavaScript/Python bytecode by ran-
domizing opcodes, which are used together with the provided
customized virtual machine. Although this paper focuses on
Lua bytecode deobfuscation, we stress that the methodology
of our interpreter semantics testing (e.g., LuaGadget Template
construction and LuaGadget prioritization) is general and
applicable to other scripting languages as well.

Anti-LuaGadget-Testing As discussed in §II-C, current
Lua bytecode obfuscation represents a good tradeoff between
obfuscation strength, runtime performance, and development
cost. We rely on the semantics of the standard Lua bytecode
instruction set to construct LuaGadgets for semantics testing.
To deter the generation of LuaGadgets, adversaries can re-
design a new virtual instruction set architecture (ISA) that is
totally different from the standard Lua ISA in opcode size
and operand decoding mode. The fundamental question here
is how much customization malware authors can perform on
a Lua interpreter for it to become a new interpreter for a new
language, just like “The Ship of Theseus.”

Our countermeasure is to first recover the new ISA details
and then apply LuaHunt. In particular, we will first perform
dynamic input format extraction [50]–[52] to recover the new
virtual ISA’s format from execution traces and then adopt
LuaHunt to deobfuscate bytecode. We did an experiment
to estimate the impact on our performance via dynamically
recovering the new ISA. We treat Lua’s ISA as an unknown
ISA and adopt Tupni [51]’s technique to reverse-engineer the
ISA format. Tupni’s analysis takes about 7 minutes, plus Lua-
Hunt’s 1.5 minutes running time; the overall performance is
still better than performance-heavy information flow analysis
methods like VMHunt. However, having this new ISA also
abandons Lua’s unique advantages, and it will push adversaries
to redevelop a new scripting language compiler and interpreter,
which is a non-trivial task for skilled malware developers.

13

VIII. CONCLUSION

Cybercriminals are using Lua as a new programming
language to better develop IoT malware. Furthermore, they
obfuscate malicious Lua bytecode files to frustrate malware
analysis. In this paper, we first demystify the inner mechanism
of Lua bytecode obfuscation. Then, we develop and evaluate
LuaHunt, an efficient technique to reverse-engineer obfuscated
Lua bytecode via the novel interpreter semantics testing idea,
which is free from analyzing the tediously-long execution
traces of opcode handlers. LuaHunt reveals a very small
runtime overhead and significantly reduces the workload of
security analysts; it represents a new direction to the efficient
reverse engineering of bytecode obfuscation in interpreters of
script languages.

REFERENCES

[1] PYPL Index. PYPL PopularitY of Programming Language. http://pypl.
github.io/PYPL.html, [online].

[2] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar
Celes. A Look at the Design of Lua. Communications of the ACM,
61(11), 2018.

[3] Wikipedia. List of applications using Lua. https://en.wikipedia.org/wiki/
List_of_applications_using_Lua, [online].

[4] Pierluigi Paganini. LuaBot is the First Linux DDoS Botnet Written
in Lua Language. https://securityaffairs.co/wordpress/51155/malware/
linux-luabot.html, September 2016.

[5] x0rz. Interview with the LuaBot Malware Author. https://medium.
com/@x0rz/interview-with-the-luabot-malware-author-731b0646fc8f,
September 2016.

[6] Michal Malik. Linux Shishiga malware using LUA
scripts. https://www.welivesecurity.com/2017/04/25/
linux-shishiga-malware-using-lua-scripts/, April 2017.

[7] Sergiu Gatlan. New GodLua Malware Evades Traffic Monitoring via
DNS over HTTPS. http://tiny.cc/k198tz, July 2019.

[8] GReAT. ProjectSauron: Top Level Cyber-Espionage Platform Covertly
Extracts Encrypted Government Comms. https://securelist.com/
faq-the-projectsauron-apt/75533/, August 2016.

[9] Warren Mercer, Paul Rascagneres, and Vitor Ventura. PoetRAT: Malware
targeting public and private sector in Azerbaijan evolves. https://blog.
talosintelligence.com/2020/10/poetrat-update.html, October 2020.

[10] Check Point Research. IoTroop Botnet: The Full Investigation. https:
//research.checkpoint.com/2017/iotroop-botnet-full-investigation/, Octo-
ber 2017.

[11] Darien Kindlund. Flamer/sKyWIper Malware: Analysis. https://www.
fireeye.com/blog/threat-research/2012/05/flamerskywiper-analysis.html,
May 2012.

[12] Binary Defense. Chalubo Botnet. https://www.binarydefense.com/
threat_watch/chalubo-botnet/, October 2018.

[13] Nicholas Weaver. What Sauron Tells Us About What NSA’s Up To, and
What It Should Do Next. http://tiny.cc/2d6ytz, August 2016.

[14] Warwick Ashford. Strider cyber attack group deploying malware for
espionage. http://tiny.cc/9d6ytz, August 2016.

[15] StackHawk. Lua XSS: Examples and Prevention. https://www.
stackhawk.com/blog/lua-xss-examples-and-prevention/, March 2022.

[16] BlackBerry Research. Threat Thursday: SunSeed Malware Targets
Ukraine Refugee Aid Efforts. https://blogs.blackberry.com/en/2022/03/
threat-thursday-sunseed-malware, March 2022.

[17] 360 Network Security Research Lab. An Analysis of GodLua Back-
door. https://blog.netlab.360.com/an-analysis-of-godlua-backdoor-en/,
July 2019.

[18] Hisham Muhammad and Zsolt Sztupak. LuaDec is a Decompiler for
the Lua Language. https://github.com/viruscamp/luadec, [online].

[19] Andrei Costin. Lua Code: Security Overview and Practical Approaches
to Static Analysis. In Proceedings of the 2017 IEEE Security and
Privacy Workshops, 2017.

[20] Felipe R. Monteiro, Francisco A.P. Januário, Lucas C. Cordeiro, and
Eddie B. de Lima Filho. BMCLua: A Translator for Model Checking
Lua Programs. ACM SIGSOFT Software Engineering Notes, 42(3), 2017.

[21] Oreans Technologies. Code Virtualizer: Total Obfuscation against
Reverse Engineering. http://oreans.com/codevirtualizer.php, [online].

[22] VMProtect Software. VMProtect software protection. http://vmpsoft.
com, [online].

[23] Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu,
and Yajin Zhou. Parema: An Unpacking Framework for Demystifying
VM-Based Android Packers. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA’21),
2021.

[24] Shijia Li, Chunfu Jia, Pengda Qiu, Qiyuan Chen, Jiang Ming, and
Debin Gao. Chosen-Instruction Attack Against Commercial Code
Virtualization Obfuscators. In Proceedings of the 29th Network and
Distributed System Security Symposium (NDSS’22), 2022.

[25] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for
Systems and Processes (The Morgan Kaufmann Series in Computer
Architecture and Design). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

[26] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Auto-
matic Reverse Engineering of Malware Emulators. In Proceedings of
the 30th IEEE Symposium on Security and Privacy (S&P’09), 2009.

[27] Rolf Rolles. Unpacking Virtualization Obfuscators. In Proceedings of
the 3rd USENIX Workshop on Offensive Technologies (WOOT’09), 2009.

[28] Yoann Guillot and Alexandre Gazet. Automatic Binary Deobfuscation.
Journal in Computer Virology, 6(3), 2010.

[29] Anatoli Kalysch, Johannes Götzfried, and Tilo Müller. VMAttack:
Deobfuscating Virtualization-Based Packed Binaries. In Proceedings
of the 12th International Conference on Availability, Reliability and
Security (ARES’17), 2017.

[30] Robert B. K. Dewar. Indirect Threaded Code. Communications of the
ACM, 18(6), 1975.

[31] Kevin Coogan, Gen Lu, and Saumya Debray. Deobfuscation of
Virtualization-Obfuscated Software: A Semantics-Based Approach. In
Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security (CCS’11), 2011.

[32] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya De-
bray. A Generic Approach to Automatic Deobfuscation of Executable
Code. In Proceedings of the 36th IEEE Symposium on Security and
Privacy (S&P’15), 2015.

[33] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. BinSim:
Trace-based Semantic Binary Diffing via System Call Sliced Segment
Equivalence Checking. In Proceedings of the 26th USENIX Conference
on Security Symposium (USENIX Security’17), 2017.

[34] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. VMHunt: A
Verifiable Approach to Partial-Virtualized Binary Code Simplification.
In Proceedings of the 25th ACM Conference on Computer and Commu-
nications Security (CCS’18), page 442–458, 2018.

[35] Isaac Gouy. The Computer Benchmark Game. https:
//benchmarksgame-team.pages.debian.net/benchmarksgame/
measurements/lua.html, [online].

[36] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. Symbolic
Deobfuscation: From Virtualized Code Back to the Original. In Proceed-
ings of the 15th Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA’18), 2018.

[37] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar
Celes. Lua 5.4 Reference Manual. https://www.lua.org/manual/5.4/
manual.html, 2020.

[38] M. Anton Ertl and David Gregg. The Behavior of Efficient Virtual
Machine Interpreters on Modern Architectures. In Proceedings of the
2001 European Conference on Parallel Processing, 2001.

[39] Christian Collberg, Clark Thomborson, and Douglas Low. Manufactur-
ing Cheap, Resilient, and Stealthy Opaque Constructs. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’98), 1998.

[40] Dongpeng Xu, Binbin Liu, Weijie Feng, Jiang Ming, Qilong Zheng,
Jing Li, and Qiaoyan Yu. Boosting SMT Solver Performance on
Mixed-Bitwise-Arithmetic Expressions. In Proceedings of the 42nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’21), 2021.

[41] Jasvir Nagra and Christian Collberg. Surreptitious Software: Obfus-
cation, Watermarking, and Tamperproofing for Software Protection.
Pearson Education, 2009.

[42] Kevin A. Roundy and Barton P. Miller. Binary-code Obfuscations in
Prevalent Packer Tools. ACM Computing Surveys, 46(1), 2013.

[43] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg
Merzdovnik, and Edgar Weippl. Protecting Software Through Obfusca-
tion: Can It Keep Pace with Progress in Code Analysis? ACM Computing
Surveys, 49(1), April 2016.

http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://en.wikipedia.org/wiki/List_of_applications_using_Lua
https://en.wikipedia.org/wiki/List_of_applications_using_Lua
https://securityaffairs.co/wordpress/51155/malware/linux-luabot.html
https://securityaffairs.co/wordpress/51155/malware/linux-luabot.html
https://medium.com/@x0rz/interview-with-the-luabot-malware-author-731b0646fc8f
https://medium.com/@x0rz/interview-with-the-luabot-malware-author-731b0646fc8f
https://www.welivesecurity.com/2017/04/25/linux-shishiga-malware-using-lua-scripts/
https://www.welivesecurity.com/2017/04/25/linux-shishiga-malware-using-lua-scripts/
http://tiny.cc/k198tz
https://securelist.com/faq-the-projectsauron-apt/75533/
https://securelist.com/faq-the-projectsauron-apt/75533/
https://blog.talosintelligence.com/2020/10/poetrat-update.html
https://blog.talosintelligence.com/2020/10/poetrat-update.html
https://research.checkpoint.com/2017/iotroop-botnet-full-investigation/
https://research.checkpoint.com/2017/iotroop-botnet-full-investigation/
https://www.fireeye.com/blog/threat-research/2012/05/flamerskywiper-analysis.html
https://www.fireeye.com/blog/threat-research/2012/05/flamerskywiper-analysis.html
https://www.binarydefense.com/threat_watch/chalubo-botnet/
https://www.binarydefense.com/threat_watch/chalubo-botnet/
http://tiny.cc/2d6ytz
http://tiny.cc/9d6ytz
https://www.stackhawk.com/blog/lua-xss-examples-and-prevention/
https://www.stackhawk.com/blog/lua-xss-examples-and-prevention/
https://blogs.blackberry.com/en/2022/03/threat-thursday-sunseed-malware
https://blogs.blackberry.com/en/2022/03/threat-thursday-sunseed-malware
https://blog.netlab.360.com/an-analysis-of-godlua-backdoor-en/
https://github.com/viruscamp/luadec
http://oreans.com/codevirtualizer.php
http://vmpsoft.com
http://vmpsoft.com
https://benchmarksgame-team.pages.debian.net/benchmarksgame/measurements/lua.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/measurements/lua.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/measurements/lua.html
https://www.lua.org/manual/5.4/manual.html
https://www.lua.org/manual/5.4/manual.html

14

[44] Sebastian Banescu and Alexander Pretschner. Advances in Computers,
volume 108, chapter Chapter Five - A Tutorial on Software Obfuscation.
Elsevier, 2018.

[45] Jinchun Choi, Afsah Anwar, Hisham Alasmary, Jeffrey Spaulding,
DaeHun Nyang, and Aziz Mohaisen. IoT Malware Ecosystem in the
Wild: A Glimpse into Analysis and Exposures. In Proceedings of the
4th ACM/IEEE Symposium on Edge Computing, 2019.

[46] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding Linux Malware. In Proceedings of the 39th
IEEE Symposium on Security and Privacy (S&P’18), 2018.

[47] Emanuele Cozzi, Pierre-Antoine Vervier, Matteo Dell’Amico, Yun Shen,
Leyla Bilge, and Davide Balzarotti. The Tangled Genealogy of IoT
Malware. In Proceedings of the 36th Annual Computer Security
Applications Conference (ACSAC’20), 2020.

[48] Michalis Polychronakis. Reverse Engineering of Malware Emulators,
chapter Encyclopedia of Cryptography and Security. Springer US, 2011.

[49] Ramya Manikyam, J. Todd McDonald, William R. Mahoney, Todd R.
Andel, and Samuel H. Russ. Comparing the Effectiveness of Commer-
cial Obfuscators Against MATE Attacks. In Proceedings of the 6th
Workshop on Software Security, Protection, and Reverse Engineering
(SSPREW’16), 2016.

[50] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot:
Automatic Extraction of Protocol Message Format Using Dynamic
Binary Analysis. In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS’07), 2007.

[51] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis
Irun-Briz. Tupni: Automatic Reverse Engineering of Input Formats. In
Proceedings of the 15th ACM Conference on Computer and Communi-
cations Security (CCS’08), 2008.

[52] Lei Zhao, Yuncong Zhu, Jiang Ming, Yichen Zhang, Haotian Zhang,
and Heng Yin. PatchScope: Memory Object Centric Patch Diffing. In
Proceedings of the 27th ACM Conference on Computer and Communi-
cations Security (CCS’20), 2020.

[53] Zhiqiang Lin and Xiangyu Zhang. Deriving Input Syntactic Structure
from Execution. In Proceedings of the 16th International Symposium
on Foundations of Software Engineering (FSE ’08), 2008.

[54] zynamics. BinDiff: Graph Comparison for Binary Files. https://www.
zynamics.com/bindiff.html, 2020.

[55] VirusTotal. VT Intelligence: Combine Google and Facebook and
apply it to the field of Malware. https://www.virustotal.com/gui/
intelligence-overview, [online].

[56] OpenWrt Project. LuCI - OpenWrt Configuration Interface. https://
github.com/openwrt/luci, [online].

[57] Mehedi Hasan. Best Programming Language for Games: 15 Game Pro-
gramming Languages Reviewed. https://gamedev.stackexchange.com/
questions/11/what-scripting-language-should-i-choose-for-my-game,
2020.

[58] Tencent. xlua. https://github.com/Tencent/xLua/, [online].
[59] Unity Technologies. Unity Real-Time Development Platform. https:

//unity.com/, [online].
[60] YinHan Games. Space Hunter. http://hunter.yh.cn/hunter/index, [online].
[61] Tencent. King of Fighters. https://kofd.qq.com/main.shtml, [online].
[62] Tencent. Raziel. https://raz.qq.com/, [online].
[63] YinHan Games. Time Summon. https://moba.yh.cn/moba/v2/pc/index.

html, [online].
[64] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’05),
2005.

[65] Kenneth R Anderson and Duane Rettig. Performing Lisp Analysis of
the FANNKUCH Benchmark. ACM SIGPLAN Lisp Pointers, 7(4):2–12,
1994.

[66] Wolfram Math World. Mandelbrot Set. https://mathworld.wolfram.com/
MandelbrotSet.html, [online].

[67] Wolfram Math World. Hundred-Dollar, Hundred-Digit
Challenge Problems. https://mathworld.wolfram.com/
Hundred-DollarHundred-DigitChallengeProblems.html, [online].

[68] Emiliano Martinez. VirusTotal += PCAP Analyzer. https://blog.
virustotal.com/2013/04/virustotal-pcap-analyzer.html, April 2013.

[69] Gen Lu and Saumya Debray. Automatic Simplification of Obfuscated
JavaScript Code: A Semantics-Based Approach. In Proceedings of the
IEEE 6th International Conference on Software Security and Reliability
(SERE’12), SERE’12, 2012.

[70] Moataz AbdelKhalek and Ahmed Shosha. JSDES: An Automated De-
Obfuscation System for Malicious JavaScript. In Proceedings of the
12th International Conference on Availability, Reliability and Security
(ARES’17), 2017.

[71] Zhenyuan Li, Qi Alfred Chen, Chunlin Xiong, Yan Chen, Tiantian Zhu,
and Hai Yang. Effective and Light-Weight Deobfuscation and Semantic-
Aware Attack Detection for PowerShell Scripts. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS’19), 2019.

[72] Han Liu, Chengnian Sun, Zhendong Su, Yu Jiang, Ming Gu, and
Jiaguang Sun. Stochastic Optimization of Program Obfuscation. In Pro-
ceedings of the 39th International Conference on Software Engineering
(ICSE ’17), 2017.

[73] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. SMT-Based
Bounded Model Checking for Embedded ANSI-C Software. IEEE
Transactions on Software Engineering, July 2012.

[74] Taemin Park, Julian Lettner, Yeoul Na, Stijn Volckaert, and Michael
Franz. Bytecode Corruption Attacks Are Real—And How to Defend
Against Them. In Proceedings of the 2018 International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’18), 2018.

[75] Juan Caballero, Pongsin Poosankam, Stephen McCamant, Domagoj
Babić, and Dawn Song. Input Generation via Decomposition and Re-
Stitching: Finding Bugs in Malware. In Proceedings of the 17th ACM
Conference on Computer and Communications Security (CCS’10), 2010.

[76] Dhiru Kholia and Przemysław Węgrzyn. Looking inside the (Drop) Box.
In Proceedings of the 7th USENIX Conference on Offensive Technologies
(WOOT’13), 2013.

[77] Serge Guelton. Building an Obfuscated Python Interpreter: we need
more opcodes. https://bit.ly/2Y9mIdn, May 2014.

[78] Joshua Homan. Deobfuscating Python Bytecode. https://www.mandiant.
com/resources/deobfuscating-python, May 2016.

[79] Johannes Willbold. Rusty-JSYC (JavaScript bYtecode Compiler) is a
JavaScript-To-Bytecode Compiler Written in Rust. https://github.com/
jwillbold/rusty-jsyc, 2019.

[80] Austin Jackson. Python Malware on the Rise. https:
//www.cyborgsecurity.com/cyborg_labs/python-malware-on-the-rise/,
July 2020.

Chenke Luo is currently pursuing his Ph.D. in the
School of Cyber Science and Engineering at Wuhan
University under the supervision of Dr. Jianming Fu.
His current research focuses on system security and
software security.

Jiang Ming is an Assistant Professor in the De-
partment of Computer Science at Tulane University.
He received his PhD from The Pennsylvania State
University. His research interests span Software and
Systems Security. He strives to ground his efforts
in practical security problems with an eye towards
developing effective solutions to address realistic
threats caused by today’s emerging technologies.

Jianming Fu received his Ph.D. degree from Wuhan
University, Wuhan, China, in 2000. He is currently
a professor at the School of Cyber Science and
Engineering, Wuhan University. His research inter-
ests include system security, software security, AI
security, and mobile security.

https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html
https://www.virustotal.com/gui/intelligence-overview
https://www.virustotal.com/gui/intelligence-overview
https://github.com/openwrt/luci
https://github.com/openwrt/luci
https://gamedev.stackexchange.com/questions/11/what-scripting-language-should-i-choose-for-my-game
https://gamedev.stackexchange.com/questions/11/what-scripting-language-should-i-choose-for-my-game
https://github.com/Tencent/xLua/
https://unity.com/
https://unity.com/
http://hunter.yh.cn/hunter/index
https://kofd.qq.com/main.shtml
https://raz.qq.com/
https://moba.yh.cn/moba/v2/pc/index.html
https://moba.yh.cn/moba/v2/pc/index.html
https://mathworld.wolfram.com/MandelbrotSet.html
https://mathworld.wolfram.com/MandelbrotSet.html
https://mathworld.wolfram.com/Hundred-DollarHundred-DigitChallengeProblems.html
https://mathworld.wolfram.com/Hundred-DollarHundred-DigitChallengeProblems.html
https://blog.virustotal.com/2013/04/virustotal-pcap-analyzer.html
https://blog.virustotal.com/2013/04/virustotal-pcap-analyzer.html
https://bit.ly/2Y9mIdn
https://www.mandiant.com/resources/deobfuscating-python
https://www.mandiant.com/resources/deobfuscating-python
https://github.com/jwillbold/rusty-jsyc
https://github.com/jwillbold/rusty-jsyc
https://www.cyborgsecurity.com/cyborg_labs/python-malware-on-the-rise/
https://www.cyborgsecurity.com/cyborg_labs/python-malware-on-the-rise/

15

Guojun Peng received his Ph.D. degree from
Wuhan University, Wuhan, China, in 2008. He is
currently a professor at the School of Cyber Science
and Engineering, Wuhan University. His research
interests include malware analysis and defense, soft-
ware security, mobile security, and trusted comput-
ing.

Zhetao Li (M’17) is a professor in College of
Information Science and Technology, Jinan Univer-
sity. He received the B.Eng. degree in Electrical
Information Engineering from Xiangtan University
in 2002, the M.Eng. degree in Pattern Recognition
and Intelligent System from Beihang University in
2005, and the Ph.D. degree in Computer Application
Technology from Hunan University in 2010. He is
a member of IEEE and CCF.

	Introduction
	Background and Motivation
	Technical Basics of Lua Bytecode
	Lua Bytecode Interpreter Structures
	Lua Bytecode Obfuscation
	Limitations of Existing Work

	LuaHunt Overview
	Interpreter Semantics Testing
	LuaGadget Template Construction
	Test Case Prioritization
	Customized Interpreter Re-Stitching

	Evaluation
	Dataset and Peer Tool
	Performance Measurement
	Nested Virtualization
	Correctness Testing
	Lua Malware Analysis Case Study: GodLua

	Related Work
	Discussion
	Conclusion
	References
	Biographies
	Chenke Luo
	Jiang Ming
	Jianming Fu
	Guojun Peng
	Zhetao Li

